冗
 운
 ن

LIERARY
WOTAL AIRCRAFT ESTABLISHMENT BEDFORD.

MINISTRY OF TECHNOLOGY
AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

The Calculation of Sub-Critical Pressure Distributions on Symmetric Aerofoils at Zero İncidence

By
P. G. Wilby

LONDON. HER MAJESTY'S STATIONERY OFFICE
1968

The Calculation of Sub-Critical Pressure Distributions on Symmetric Aerofoils at Zero Incadence
- By -
P. G. Wilby

liarch, 1967

SUMMARY

Several compressibility correction rules that relate the sub-critical velocity on an aerofoil to the incompressible velocity are reviewed. Theoretacal and experimental values for velocity at the crest of symmetric aerofoils at zero incidence are studied and a new compressibillty correction factor is derived using thard-order small dasturbance theory. When used in conjunction with the incompressible Weber formula, this new compressibility factor is found to give good agreement whth experıment.
Symbols

1. Introduction
2. Compressibilaty Correction Laws
2.1. Prandtl-Glauert Law
2.2. Kármán-Tsıen Law
2.3. Sprezter's Law
2.4. Küchemann-Weber Law
2.5. Van Dyke's Second-Order Theory
3. Velocity at Aerofoil Crest
3.1. Assessment of Second-Order Solutions
3.2. A Third-Order Solution
3.3. Sımplıfied Representation of Third-Order Theory
4. Applicatzon of Simplafied Third-Order Theory toComplete Velocity Distrabutions
5. Conclusions

SYNBOLS

B	general compressibilaty correction factor.
B_{1}	particular compressibility correction factor (see Eq. 30)
K_{1}, K_{0}	coefficiënts in second-order expression for compressible flow velocity (defined by Eqsis. 16,17 and 18).
k_{1}, k_{9}, k_{3}	coefficients in third-order expression for compressible flow velocity (aefined by Eq. 27).
M	Mach number.
$\mathrm{n} \quad=$	$\frac{Y+1}{2} \frac{\mathrm{M}^{2}}{\beta^{2}}$
$S^{(1)}(x)$	thackness term in Weber formula for velocity on an aerofoll (see Ref.5).
U	non-dumensional total velocity ($=1+u$) .
u	non-damensional perturbation velocity.
14.	first-order perturbation velocity.
4	second-order contribution to perturbation velocity.
u_{3}	third-order contrabution to perturbation velocity.
p	static pressure.
ρ	densıty.
${ }^{C}$	pressure coefficient $\left(=\frac{p-p_{\infty}}{\frac{1}{2} \rho_{\infty} u_{\infty}^{2}}\right)$.
x, 2	rectangular cartesian co-ordanates, x measured in free stream durection.
$\beta \quad=$	$\sqrt{1-\mathrm{M}_{\infty}}$
γ	ratio of specafic heats of amr (taken to be 1.4).
λ	parameter that defines B .
λ_{2}, λ_{2}	coefficients in thrd-order solution for λ (see Eq.28).
ϕ	perturbation velocity potential function.
ϕ_{1}, ϕ_{2}	first- and second-order contributions to ϕ.
T	axis ratio of an ellıpse.
Subscripts	
*	free stream condztions.
2	incompressible-filow value.

1. Introduction

It $2 s$ useful first to outline the dominant changes that occur in an aerofoll pressure dastrabution as Mach number increases. Over the major part of the aerofoil. surface, where the slope $1 s$ small, the pressure decreases as Mach number ancreases; a region of supersonac flow eventually develops and as usually terminated by a shock wave. This overall effect is illustrated in Fig. 1., which shows experamental pressure distributions for a NACA 0012 aerofoil at zero incidence. The reduction of pressure as Mach number increases is predacted by small disturbance theory, which shows that the perturbation velocity at the surface can be obtained by applying a Machnumber dependent compressibility factor to the perturbation velocity for incompressible flow. The accuracy of the theoretical results, in the region of small surface slope, depends more upon the order of accuracy of the theory that is built on the basic assumption of small disturbance than upon the basic assumption 1 tself.

In the region of large surface slope, the situation is somewhat different, as here the pressure increases as Nach number increases. Obviously, at some intermedaate value of slope there must be a neutral point where the pressure for some free stream velocity is the same as for the ancompressible case. If at were possible in this region to express the perturbation velocity simply as a compressibulaty correction applied to the uncompressible value, then there would be one single neutral point for all values of free stream Mach number. This common neutral point would of course be the point at which the perturbation velocity was zero (i.e. where the pressure coefficient $C_{p}=0$). That thas as not so as evadent an Fig. 2., whach shows that pairs of pressure distributions intersect at dafferent points, and that the neutral point varies with Mach number. Thus it is evidently not sufficient to apply a compressibillty factor to an accurate incompressible perturbation velocity, but for realustac results some allowance must be made for the way in which the influence of surface slope varies with Mach number.

Apart from the compressibility effects that are associated with a symmetric aerofoll at zero incidence, the manner in which camber and incidence induced velocities vary whth Mach number should also be studzed. This, however, must be deferred until better data are avallable for assessing the results. No exact theoretical solutions are so far available and the use of experimental data is complacated by the viscous effects on carculation - which arise from the fact that the dafferential boundary-layer growth on the two surfaces dustorts the effective camber and incidence. For the present, therefore, attention will be confined to thickness-induced perturbation velocities as deduced for symmetrical aerofolis at zero incidence, for which the significant effects of boundary layer growth are confined to the rear part of the aerofoll.

The theories that wall be dascussed here are based on the isentropic equations of motion and cannot be called upon to represent flows that include a region of supersonic velocity with a terminating shock wave. Thus, in the main, only sub-critzcal flows will be consıdered.

Several existing compressibility correction rules will be reviewed and their results compared with experiment at the crests of various aerofozls. It will be shown that none of these rules can be considered accurate for the whole range of sub-critical Mach numbers, and that there is a need for an improved theory. With the intention of satasfyang this need, a compressibilaty correction based on third-order theory will be presented and the resulting theoretical pressure distributions compared with experiment. In the derivation of thas correction, particular emphasis is placed on its incorporation whthin the framework of the Weber forrula because this is so convenient and so widely used.

2. Compressibility Correction Laws

2.1. Prandtl-Glanert Law

Glauert (1) and Prandti (2) derived an expression for the compressible perturbation velocity from the linearised form of the velocity potential equation,

$$
\begin{equation*}
\left(1-M_{\infty}^{2}\right) \phi_{x x}+\phi_{z z}=0 \tag{1}
\end{equation*}
$$

Thear solution of thas equation gaves the perturbation velocaty u in the free stream direction as
where

$$
\begin{align*}
& u=\frac{1}{\beta} u_{1} \\
& \beta=\sqrt{1-M_{\infty}^{2}} \tag{2}
\end{align*}
$$

and the suffix denotes the incompressible value. Thas beang a small perturbation theory, transverse velocity perturbations are neglected and the non-dimensional disturbed total velocity is given as

$$
U=1+u .
$$

Although deraved as a velocity rule, the Prandtl-Glauert Law is usually used in its pressure coefficient form

$$
\begin{equation*}
C_{p}=\frac{1}{\beta} \quad C_{p_{\perp}} \tag{3}
\end{equation*}
$$

which comes from substitutang Eq. 2 in the linearised expression for C_{p}.

Due to the approximataons anvolved, thas law is valid only for than aerofoals at low subsonic Mach numbers.

2.2. Kármán-Tsien Law

The Kármán-Tsien Law was orıgınally derıved (3) usıng the hodograph method which produces a pressure law,

$$
\begin{equation*}
C_{p}=\frac{C_{p_{1}}}{\beta+\frac{1}{2}(1-\beta) C_{p_{1}}} \tag{4}
\end{equation*}
$$

Spreiter ${ }^{(4)}$ shows that this result can also be derived from the velocity potential equation if it is written in the simplified second-order form;

$$
\begin{equation*}
\left(1-\mathbb{M}^{e}\right) \phi_{x X}+\phi_{z z}=0 \tag{5}
\end{equation*}
$$

where M is the Iocal. Mach number. On setting $y=-1$, a simplified.
expression for M an terms of M_{∞} leads to the solution

$$
u=\frac{u_{1}}{\beta-(1-\beta) u_{1}}
$$

Substitution of this in the linearased equation for C_{p} gaves the usual pressure law of Eq. 4. It should, however, be ${ }^{p}$ noted that the above velocity rule used in conjunction with the exact expression for C_{p} gives a less accurate result than Eq. 4 .

2.3. Spreiter's Law

A slightly more rigorous solution of Eq. 5 is presented by Sprezter and Alksne (4), but again a simplafying assumption is made. The local Mach number M is expressed in terms of M and Eq. 5 becomes

$$
\begin{equation*}
\left[1-M_{\infty}^{2}-(y+1) M_{\infty}^{2} \phi_{x}\right] \phi_{x x}+\phi_{z z}=0 \tag{6}
\end{equation*}
$$

The coefficient of $\phi_{x x}$ is temporarily assumed constant to give

$$
\begin{equation*}
u=\frac{u_{i}}{\sqrt{1-M_{\infty}^{e}}-(\gamma+1) M_{\infty}^{2} u} \tag{7}
\end{equation*}
$$

and with the same assumption maintaned, Eq. 7 is dafferentiated with respect to x. The resulting equation is then treated as a nonlinear differential equation in u, which is solved to give

$$
\begin{equation*}
u=\frac{1}{(y+1) M_{\infty}^{2}}\left\{\beta^{2}-\left[\beta^{3}-\frac{3}{2}(y+1) M_{\infty}^{2} u_{i}\right]^{2 / 3}\right\} \tag{8}
\end{equation*}
$$

Using the linearised equation for C_{p}, this gives

$$
C_{p}=-\frac{2}{(\gamma+1) M_{\infty}^{2}}-\left\{\beta^{2}-\left[\beta^{3}+\frac{3}{4}(\gamma+1) M_{\infty}^{2} C_{p_{i}}\right]^{2 / 3}\right\}(9)
$$

This theory does not give real results for velocities greater than the preducted critacal value and is not rellable for velocities that are just sub-critical.

2.4. Küchemann-Weber Formula

Küchemann and Weber ${ }^{(6)}$ derive a compressibility factor that can be applied to the incompressible solution for velocity on an aerofoil, as gaven by Weber (7). They start whth Eq. 4 and obtain an approximate expression for local Mach number so that the velocity potential equation can be written,

$$
/\left[1-M_{\infty}^{\beta} \cdots\right.
$$

$$
\begin{equation*}
\left[1-M_{\infty}^{0}\left(1+2 \phi_{x}\right)\right] \phi_{x x}+\phi_{z z}=0 \tag{10}
\end{equation*}
$$

Thas is seen to be the equation solved by Spreater, when $y=1$.
In order to obtain a simple solution to Eq. 10, the coefficient of $\phi_{x x}$ must be constant and this condition is satisfied by writing

$$
2 \phi_{x}=-C_{p_{I}}
$$

where $C_{\mathrm{p}_{1}}$ Is taken to be some surtable mean value. The solution then follows the same arguments as the first order solution and gives the perturbation velocity as

$$
u=\frac{u_{I}}{\sqrt{1-M_{\infty}^{2}\left(1-C_{p_{1}}\right)}}
$$

If the compressibility factor found an this equation is applied to all terms in the ancompressible Weber formula (Ref. 5) that anvolve z, then the velocity on a symmetric aerofoll at zero incidence as,

$$
\begin{align*}
& U=\frac{1}{\sqrt{1+\left(\frac{1}{B} \frac{d z}{d x}\right)^{2}}}\left[1+\frac{S^{(1)}(x)}{B}\right] \tag{11}\\
& \text { where } B=\sqrt{1-M_{\infty}^{2}\left(1-C_{p_{1}}\right)} \tag{12}
\end{align*}
$$

(1)
and S is a function of the throckness distribution. Usually the local value of $C_{p_{1}}$ is used rather than a constant mean value and it is suggested that B should be taken to be β when $C_{p}>0$. Finally, the pressure coefficient C_{p} is calculated by substatuting Eq. 11 in the exact isentropic expreSsion

$$
c_{p}=-\frac{2}{\gamma{\underset{N}{\infty}}_{2}}\left\{\left[1+\frac{y-1}{2} M_{\infty}^{2}\left(1-U^{2}\right)\right] \begin{array}{c}
y \\
y+1 \\
y \\
\hline
\end{array}\right]
$$

This is the first theoretical result that allows for the manner in which the non-linear influence of surface slope varles with Mach number, and which was shown above to be a pre-requisite for accurate results.

2.5. Second-Order Theory

Suppose that the velocity potential function is expressed as the sum of the furst-order solution and a second-order term, that is

$$
\begin{equation*}
\phi=\phi_{2}+\phi_{2} \tag{13}
\end{equation*}
$$

The first-order solution ϕ_{1} is obtained by solving the first-order potential equation with boundary conditions satisfied on the $z=0$ plane, but to find the second-order term it is necessary to solve the second-order potential equation with boundary conditions satisfied on the aerofoil surface. Because of these differences in procedure, the compressibilaty correction to the second-order term wall differ from that applicable to the first-order solutapn. Expressing the velocity potential in the form of Eq. 13, Hayes (7) solves the equation

$$
\left(1-\mathrm{N}_{\infty}^{2}\right) \phi_{\mathrm{xx}}+\phi_{z z}=\frac{\chi+1}{2} \mathrm{M}_{\infty}^{4}\left(\phi_{\mathrm{x}}\right)_{\mathrm{x}}^{2}+\mathrm{M}_{\infty}^{2}\left[\phi_{z}^{\rho}+\left(1-\mathrm{M}_{\infty}^{9}\right) \phi_{\mathrm{x}}^{2}\right],(14)
$$

which includes all the second-order terms of the full potential equation. Hayes then shows that the ratio of the second-order term to the firstorder term, for velocity on the surface of an aeroforl, is

$$
\frac{t}{\left(1-M_{\infty}^{2}\right)^{3} / 2}\left[\begin{array}{cc}
\chi+1 & M_{\infty}^{4}+2\left(1-M_{\infty}^{2}\right) \\
2 & m_{\infty}
\end{array}\right]
$$

where t is a measure of the aerofoil thickness.
Thas result is used by Van Dyke ${ }^{(8)}$ who shows that if the incompressible velocity is gaven by

$$
\begin{equation*}
U_{i}=1+u_{u}+u_{u}, \tag{15}
\end{equation*}
$$

where u_{k} contains linear terms in thickness, camber and incidence, and u their squares and products, then in compressible flow the velocaty is

$$
\begin{equation*}
U=1+K_{1} u_{k}+K_{Q_{0}} u_{0}+\frac{K_{0}-1}{2} u_{k}^{2}, \tag{16}
\end{equation*}
$$

where $K_{K}=\frac{1}{\beta}$
and

This second-order solution is the most rigorous of the theorles so far discussed, with its accuracy dependent only upon the convergence of the series solution for velocity.

3. Velocity at Aerofoil Crest

3.1. Assessment of Second-Order Solutions

The crest of an aerofoil is the pount at which the tangent to the surface is parallel to the free stream durection, and for a symmetric
aerofozl this is the point of maximum thzckness and zero surface slope. The velocity at the crest forms a convenient basis for the comparison and assessment of exastang correction factors - and the initial derivation of an mproved factor - because the terms related explicitly to surface slope disappear there. These latter terms are of course very important and must be considered at some stage of the assessment of a compressibility correction rule.

Each of the laws discussed in the previous section provides a dufferent expression for crest velocity as follows:

$$
\begin{align*}
& \text { PrandtI-Glavert } U=1+\frac{u_{1}}{\beta} \tag{19}\\
& \text { Karman-Trien } \quad U=1+\frac{u_{i}}{\beta-(1-\beta) u_{i}} \tag{20}\\
& \text { Spreiter } U=1+\frac{\beta^{2}-\left[\beta^{3}-\frac{3}{2}(\gamma+1) v_{\infty}^{2} u_{1}\right]^{2 / 3}}{(\gamma+1) M_{\infty}^{2}} \tag{21}\\
& \text { Küchemann-Weber } U=1+\frac{u_{i}}{\sqrt{1-M_{\infty}^{2}\left(1-C_{p_{i}}\right)}} \tag{22}\\
& \text { Van Dyke } U=1+\frac{u_{1}}{\beta}+\frac{\left(1-0.4 M_{m}^{2}\right)}{2 \beta^{4}} \tag{23}
\end{align*}
$$

Eq. 23 comes directly from Eq. 16 if it is assumed that $u_{0}=0$. This is exactly true for an ellipse and in general u_{0} is found to be negligibly small, even compared with u_{a}^{2}, for most practical section shapes; this explains the high acouracy of the Weber formula (5) for incompressible flow. Thus, if wall be assumed that Eq. 23, which is certainly valid at the crest of an ellipse; is valid also at the crest of a general symmetric aerofoil.

Now Van Dyke's solution can be thought of as the first three terms of a series in ascending powers of u_{i}, and if Eq. 23 is re-arranged to give

$$
U=1+\frac{u_{i}}{\beta}\left[1+\frac{\left(1-0.4 M_{\infty}^{p}\right)}{2 \beta^{3}} M_{\infty}^{p} u_{i}\right],
$$

then the terms in the square brackets are the first two terms of a power series in u_{i}. As

$$
\frac{\left(1-0.4 \mathbb{N}_{\infty}^{e}\right)}{\beta^{3}} \mathbb{N}_{\infty}^{2} u_{i}
$$

is small compared with unity they can, to second order, be replaced by

$$
\left[1-\left(1-0.4{\underset{\infty}{\infty}}_{2}^{\infty}\right) \frac{\alpha_{\infty}^{2}}{\beta^{3}} u_{i}\right]^{-\frac{1}{2}}
$$

The velocity can thus be written in the form

$$
\begin{equation*}
U=1+\frac{u_{2}}{B}, \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& \text { where } B=\sqrt{1-M_{\infty}^{2}\left(1+\lambda_{1} u_{i}\right)} \tag{25}\\
& \text { and } \quad \lambda_{a}=\frac{1-0.4 M_{\infty}^{2}}{\beta} \tag{26}
\end{align*}
$$

The second-order solution is now expressed in the same form as Eqs. 19, 20 and 22, making possıble a direct comparison of existing compressibilıty correction factors.

As a check on the approximations made in going from Eq. 23 to Eq. 24, values of velocity given by these two equations are compared in Fig. 3 for the partacular case of $u_{i}=0.2$. (This, of course, is equivalent to the crest velocity on a 20% thick ellipse). Included in the figure are the results given by Karman-Tsien (Eq. 20) which is an approximate second-order solution. It is seen that the Kármán-Tsien velocity is close to the Van Dyke solution but a little below, and that Eq. 24 gives velocities that are slightly higher than the Van Dyke solution. The latter observation indrates that the third and higher order terms implied by Eqs. 24 and 25 are very small.

In Fig. 4 the second-order result (Eqs. 24 to 26) is compared with Spreiter (Eq. 21) and Küchemann-Weber (Eq. 22). The two latter laws are found to agree fairly well until just below the critical Mach number, and both gave considerably hlgher values of velocity than those given by second-order theory. That such significant differences can occur points fairly clearly to the need to examine a thard-order solution.

3.2. A Third-Order Solution

A third-order solution is given by Hantzsche ${ }^{(9)}$ for the maximum velocity on an ellipse at zero incidence. If the axis ratio of the ellipse is T then $u_{i}=T$ and Hantzsche shows that the compressable velocity is given by

$$
\begin{equation*}
U=1+k_{Q} u_{i}+k_{Q} u_{i}^{2}+k_{G} u_{i}^{3}, \tag{27}
\end{equation*}
$$

where

$$
k_{a}=\frac{1}{\beta}
$$

$$
k_{e}=\frac{\left(1-0.4 N_{\infty}^{P}\right)}{2 \beta^{4}} N_{\infty}^{R},
$$

and $\quad k_{s}=\frac{N_{\infty}^{2}}{\beta^{3}}\left\{\frac{\pi}{4}\left[1+\frac{n}{4}\left(1+\frac{n}{2}\right)\left(8-N_{\infty}^{2}\right)-\left(\frac{1}{2}+\frac{3}{4} n+\frac{1}{3} n^{2}\right)\right]\right\}$,
with

$$
n=\frac{\gamma+1}{-2} \frac{M_{\infty}^{2}}{\beta^{2}}
$$

It is seen that the first three terms of Eq. 27 give Van Dyke's second-order solution (Eq. 23) which, it has been argued, can be assumed to be valad at the crest of a general symmetric aerofoll, and it wall be assumed here that the third-order term in Eq. 27 is also valid for a general symmetric aerofoll. Thus, Eq. 27 will be taken to be the thirdorder solution for the velocity at the crest of a symmetric aeroforl.

Now it would be convenient if it were possible to rearrange Eq. 27, in the same way as was done for the second-order solution, to the form of Eq. 24. To do this, we require the expansion of \underline{u}_{1} to gave not
only the correct farst and second-order terms but also the correct thardorder term. This can be achieved by writing

$$
\begin{equation*}
B=\sqrt{1-M_{\infty}^{2}\left[1+\lambda_{1}\left(1+\lambda_{2} u_{1}\right) u_{2}\right]}, \tag{28}
\end{equation*}
$$

where λ_{s} will be gaven by equatang the coefficients of $u_{1}{ }^{3}$, in the expansion of $\frac{y_{2}}{B}$, to ks . It is found that

$$
\lambda_{a}=\frac{k_{3}}{k_{\beta}}-\frac{3}{2} \beta \quad k_{\beta} .
$$

Values of the coefficients $k_{k}, k_{k}, k_{8}, \lambda_{1}$ and λ_{8} are tabulated in Table 1 for varıous values of Mach number.

The only lamatation on the accuracy of this thard-order solution is set by the convergence of the series that is used to express velocity. In Fig. 5 the first, second and thard-order solutions are plotted against M_{∞} for several values of u_{i} and it is seen that the results converge quickly at low to moderate sub-critical Mach numbers. Convergence becomes less rapid as critical Mach number is approached and eventually breaks down in the super-critical region. As a result of this rather slower rate of convergence near critical conditions there $1 s$ probably a further advantage, in addztion to convenience, in expressing velocity according to Eqs. 24 and 28 as the mplied fourth and hagher-order terms may give improved accuracy. The effect of these extra terms on the preducted veloczty is shom in Fig. 5.

In Figs. 6,-7, 8 and 9, experimental values of crest pressures are compared with secoñd and third-order theory and whth Küchemann-Weber theory for four different aerofolls. The experimental results for NACA 0015 section were taken-from Ref. 10 and the results for the other three sections are from uñpublished NPL results. All cases show very good agreement between thard-order theory and experiment, and also show that the KüchemañWeber correction tends to overestimate velocity. The other compressibility correction that is widely used is the Kármán-Tsien rule which gives results that are very close to second-order theory (see Fig. 3) which agrees well with experiment in the lower Mach number range but underestimates velocity at the hagher Mach numbers.

3.3. Simplified Representation of Thard-Order Theory

For convenience we will wrate the compressibility correction as

$$
\begin{equation*}
B=\sqrt{1-M_{\infty}^{2}\left(1+\lambda u_{2}\right)}, \tag{29}
\end{equation*}
$$

with $\lambda=\lambda_{1}\left(1+\lambda_{2} u_{1}\right)$ being the third-order solution. This expression for λ is rather complicated for use in quick computation and a simplified expression would be much more convenient.

At an early stage in this investigation of compressibility corrections it was found empiracally that good results were gaven by using the factor

$$
\begin{equation*}
B=B_{1}=\sqrt{1-M_{\infty}^{2}\left(1-M_{\infty} C_{p_{2}}\right)} . \tag{30}
\end{equation*}
$$

This is equavalent to putting

$$
\lambda=-M_{\infty} \frac{C_{p_{2}}}{\mathrm{u}_{1}},
$$

in Eq. 29, and thas expression for λ is compared with others in F1g. 10. Remembering that the Prandtl-Glauert rule is equavalent to $\lambda=0$, that the Kuchemann-Weber rule is equivalent to
$\lambda=-\frac{C_{p_{2}}}{u_{i}}(\Omega 2)$, and that the results gaven by these two rules duffer by
a very small amount when Mach number is less than 0.4, we see from Fig. 10 why thas empirical expression was found to work so well, and why it can be used as a simple approximation to the thard-order solution. It wall be reallzed that for $M<0.4$ a variation of λ between the values 0 and 2 produces only very small changes in the value for velocity and that the exact value of λ (provided it lies between 0 and 2) is thus of little importance in this low Mach number range .

Aerofoll crest pressure coefficients that are obtained when Eq. 30 is used as the compressibillty correction are shown an Figs. 6 and 7, and are seen to differ from those gaven by Eqs 24 and 28 only at supercritical Mach numbers. For the cases illustrated in Figs. 8 and 9, the use of Eq. 30 produced a negligible dafference for Mach numbers below 0.8 . Thus, Eq. 30 seems to provide an acceptable simplafication for sub-critacal Mach numbers.

4. Application of Simplifized Third-Order Law to Complete Velocity Distributions

Weber ${ }^{\text {For }}$ (5) symmetric aerofoal at zero incadence in inc

$$
\begin{equation*}
U_{1}=\frac{1}{\sqrt{1+\left(\frac{d z}{d x}\right)^{2}}}\left[1+s^{(1)}(x)\right] \tag{31}
\end{equation*}
$$

where $S^{(1)}(x)$ is a function of the aerofoll thickness distribution. This formula has proved extremely flexible and is wadely used, for example, in the direct aerofoil design problem, in methods for ancorporating vascous effects in aerofoll velocity prediction, and in preduction and design methods for swept wangs. It is thus desarable to incorporate the revised compressibility correctaon into thas equation for the velocity at all points on the aerofoil.

In order to simplify the argument we will again consider the case of an ellupse whose axis ratio is T. Over the major part of the chord the surface slope $\frac{d z}{d x}$ is small and Eq. 31 can be written approximately as

$$
\begin{align*}
U_{i} & =(1+r)\left[1-\frac{1}{2}\left(\frac{d z}{\partial x}\right)^{2}+\ldots \ldots\right] \\
& =(1+\tau)\left[1-\frac{1}{2} \frac{\tau^{2}}{4 x}-\frac{(2 x-1)^{2}}{1-x)^{2}}+\ldots \ldots\right] \\
& =1+T-\frac{1}{8} \frac{(2 x-1)^{2}}{x(1-x)} T^{2}, \tag{32}
\end{align*}
$$

If terms that are of third-order in T are ignored. Following Van Dyke's second-order compressible flow theory, the compressible velocaty can now be wrutten as

$$
\begin{equation*}
U=1+K_{2} T+\frac{K_{0}-1}{2} T^{2}-K_{0} \frac{(2 x-1)^{2}}{8 x(1-x)} T^{2} \tag{33}
\end{equation*}
$$

Suppose now that we wash to express the compressible velocity in the form

$$
\begin{align*}
& \mathrm{U}=\frac{-1}{\sqrt{1+\left(\begin{array}{ll}
\frac{1}{2} & \left.\frac{d z}{B_{0}}\right)^{2}
\end{array}\right)^{2}}\left[\begin{array}{r}
1+\frac{T}{-} \\
\\
\mathrm{B}_{1}
\end{array}\right]}, \tag{34}\\
& \text { i.e. } \quad U=1+\frac{T}{B_{A}}-\frac{1}{8 x(1-x)} \frac{(2 x-1)^{2}}{\underline{r}_{B^{2}}^{2}} \quad \text { approx. } \tag{35}
\end{align*}
$$

Now we have seen that the first three terms of Eq. 33 are represented by the first two terms of Eq. 35 If B_{1} Is given by Eq. 25, or even better, by the thard-order result in Eq. 28. Thus, comparing Eqs. 33 and 35 we have that

$$
\begin{equation*}
\mathrm{B}_{\mathrm{Q}}{ }^{2}=\frac{1}{\mathrm{~K}_{2}} \tag{36}
\end{equation*}
$$

It has been general practice, when using the Küchemann-Weber formula, to take B_{0} and B_{1} to be the same (both gaven by Eq. 12). Thas is based on the principle that the formula gives the velocity in incompressible flow on the surface of an aerofoll whose ordanates are those of the aerofoll in question drvided by the compressibility factor. Thus, any term that is lonear in z is divaded by the correction factor B (see Ref. 6). From the practical point of view, lt is much more convencent to be able to use the
same compressibilaty factor throughout the equation, and with this possibility in mind $\sqrt{\frac{1}{K_{2}}}$ is compared with B_{2} in Fig. 12, for various values of $C_{p_{1}}$, over the range of Mach number that is of interest. The chosen values of $C_{p_{1}}$ correspond to certain points on the surface of a 15% thick ellapse, and thus help to show that B_{1} and B_{2} are very close in value in the region for whach the derivation of B_{R} is valld (that is, the region of small surface slope). Thus, for the major part of an aerofoil surface we can, in fact, take B_{2} to be equal to B_{1}.

In the absence of a valad theoretacal solution for the region of large surface slope we will put $B_{8}=B_{1}$ everywhere and compare the resulting theoretical results with experiment. Such a comparison is made an Fig. 3 for the leading-edge of a 10% thlck elliptic aerofoll, and velocity is plotted there against surface slope. It is seen that the use of the same factor for slope term and thickness term gives good agreement with experiment, and that even better agreement is obtained when B is put equal to β for $C_{p_{1}}>0$. This is a procedure that is recommended for the Küchemann-Weber formula.

If we again assume that what is valld for an ellipse is also valid for a general symmetric aerofoll, then we can write the velocity on the aerofoal surface as

$$
U=\frac{1}{\sqrt{1+\left(\begin{array}{ll}
1 & \left.\frac{d z}{B}\right)^{2}
\end{array}\right.}\left[1+\frac{S^{(1)}}{B}(x)\right], ~}
$$

A procedure for calculatang the function $S^{(1)}(x)$ is gaven by Weber (Ref. 5).

Pressure distributions for four aerofolls at zero ancidence are shown in Figs. 14, 15, 16 and 17. The farst two aerofolls are Nieuwland aerofolls, and his exact theoretical solutions are compared with those obtalned from Eq. 37. For the thard and fourth cases, theory is compared with experament. It is seen in each case that Eq. 37 gives very good results when

$$
\begin{gather*}
\lambda=-M_{\infty} \frac{C_{p_{1}}}{u_{1}} \\
\text { or } B=B_{1}=\sqrt{1-M_{\infty}^{p}\left(1-M_{\infty} C_{p_{1}}\right)} \tag{38}
\end{gather*}
$$

The Naeuwland aerofolls do not have entirely sub-critical pressure distributions as they have regions of local supersonic flow. However, they are calculated to have isentropic compressions in anviscid flow at the particular Mach numbers indzcated in the figures, and thus gave a good
basis for comparison with the present approximate theory. A further point concerning the second Nzeuwland aerofoll is that thas has an unusually thick leading-edge and it is suspected that the incompressible Weber formula will overestimate velocity near the leading edge. Any such errors wall of course be magnified in the pressure distributions of Fig. 15.

5. Conclusions

Of the methods for calculatang aerofoll velocity dustributions that have been considered here, the most accurate is a compressible form of the Weber formula (Eq. 37), whth a compressibilıty correction based on thirdorder theory. Thard-order theory provides the compressibality factor given in Eq. 28, but for most practical purposes this can be replaced by the simplified factor given in Eq. 30.

Attention has been restricted here to the case of symmetric aerofoils at zero incidence, but the effect of compressibility on the contrabutions to velocaty due to camber and incidence are being considered an order to extend the study to lifting aerofoils.

BMG

RETERE?CES

1. H. Glauert	The effect of compressibility on the lift of an aerofoil. Proc.Roy.Soc.A, Vol.118 p.113-9, 1928.
2. I. Pranatl	"Uber Stromungen deren Gerschwandigkeiten mit der Schallgechwindigkeit vergleichbar sind. J.Aero.Res.Inst.Tokyo. Vol.63, 1930.
3. Th. von Kárman	Compressibility effects in aerodynamics. J.Aero.Sci. 8, 337-356 (1941).
4. J. R. Sprieter A. Y. Alksne	Thin aerofoil theory based on approximate solution of the transonic flow equation. NACA Report 1359, 1958.
5. J. Weber	The calculation of the pressure dastribution over the surface of two-dimensional and swept wings whth symmetrical aeroforl sections. R \& M No. 2918, July, 1953.
6. D. Küchemann J. Weber	```The subsonic flow past swept wangs at zero lift wathout and wath body. R & M No. 2908, 1956.```
7. D. W. Hayes	Second-order pressure lait for two-dinensionai compressible filow. J. Aero.Sc., April, 1955.
8. M. D. Van Dyke	Second-order subsonic aerofozl theory including edge effects. NACA Report 1274, 1956.
9. W. Hantzsche	Die Prandtl-Clauertsche Naherung als Grundlage für ein Iterationsverfahren zur Berechnung kompressibler Unterschallströmungen. Z.angew.Math.Mech., Bd.25, 1943, pp.185-199.
10. D. J. Graham, G. E. Nitzberg and R. N. Olson	A systematic anvestigation of pressure distributions at high speeds over five representative NACA low-drag and convontional airfozl sections. NACA Report 832.
11. G. Y. Nieuwland	The computation by Lughthill's method of transonic potential flow around a family of quasiellaptical aerofolls. INLR Report NLR-TR T.83, Ansterdam Sept. 1964. A.K.C. 26 609.

M	$\frac{1}{\beta}$	k_{2}	k_{3}	λ_{1}	λ_{2}
.4	1.09	.105	.101	1.020	0.856
.5	1.155	.200	.255	1.035	1.015
.6	1.250	.375	.696	1.070	1.41
.7	1.400	.760	2.21	1.123	2.10
.8	1.667	1.825	10.55	1.24	4.14

TABLE 1. COFFFICIENTS IN THIRD-ORDER VELOCITY EQUATIONS

FIG. I

Experimental pressure distributions on NACA 0012 aerofoil

FIG. 2

Experimental pressure distribution on leading edge of NACA 0012 aerofoil

Comparison of second-order theories for $U_{i}=1 \cdot 2$

Comparison of compressible velocity laws $U_{i}=1 \cdot 2$

FIG. 5

Convergence of third order series solution

FIG. 6

Pressure at crest of a NACA 0015 aerofoil

FIG. 7

Pressure at crest of a NACA 0012 aerotoil

FIG. 8

Pressure at crest of a 10% RAE 104 aerofoll

Pressure at crest of a 10% thick elliptic aerofoil

FIG. 10

Comparison of various expressions for λ

FIG. II

[^0]FIG. 12

Comparison of two possible compressibility factors for application to the slope term in the Weber
formula

Velocity distribution over the leading edge of a 10% thick elliptic aerofoll at $M=0.4, \alpha=0^{\circ}$

FIG. 14

Pressure distribution on a Nieuwland aerofoil ($0.09,0.6,1.0$)

$$
\text { at } M_{\infty}=0.706, \alpha=0^{0}
$$

FIG.15

Pressure distribution on a Nieuwland aerofoil $(0.08,0.6,2.1$ at $M_{\infty}=0.659, \alpha=0^{\circ}$

FIG. 160

Pressure distribution on 10% thick RAE 104 aerotoil at $M_{\infty}=0.6, \alpha=0^{\circ}$

FIG. 16 b

Pressure distribution on 109% thick RAE 104
aerofoil at $M_{\infty}=0.7, \alpha=0^{\circ}$

FIG. 16 c

Pressure distribution on a 10% thick RAE 104
aerofoil at $M_{\infty}=0.76, \alpha=0^{\circ}$

FIG. 17 a

Preasure distribution on NACA 0012 aerofoil

$$
\text { at } M_{\infty}=0.4, \alpha=0^{\circ}
$$

FIG.17b

Pressure distribution on NACA 0012 aerofoil

$$
\text { at } M_{\infty}=0.6, \alpha=0^{\circ}
$$

FIG. 17 c

Pressure distribution on NACA 0012 at $M_{\infty}=0.7, \alpha=0^{\circ}$

A.R.C. C.P. No. 993
 March, 1967
 P. G. Wilby

THE CALCULATION OF SUB-CRITICAL PRESSURE DISTRIBUTIONS ON SYMMETRIC AEROFOILS AT ZERO INCIDENCE

After a review of existing compressibility correction rules a new correction factor is derived using third-order theory. This new factor is used in the calculation of sub-critical pressure distributions on symmetric aerofoils at zero incidence. Theory and experiment are found to agree well.

A.R.C. C.P. NO。 993

March, 1967

P. G. Wilby

THE CALCULATION OF SUB-CRITICAL PRESSURE DISTRIBUTIONS ON SYMETRIC AEROFOILS AT ZERO INCIDENCE

After a review of existing compressibility correction miles a new correction factor is derived using third-order theory. This new factor is used in the calculation of sub-critical pressure distributions on symmetric aerofoils at zero incidence. Theory and experiment are found to agree well.

A.R.C. C.P. iNo.993

March, 1967
P. G. تililby

THE CALCULATION CF SUB-CRITICAL PRESSURE DISTRIBUIIONS ON SYMMETRIC AEROFOILS AT ZERO INCIDENCE

After a review of existing compressibility correction rules a new correction factor is derived using third-order theory. This new factor is used in the calculatior of sub-critical pressure distributions on symmetric aerofoils at zero incidence. Theory and experiment are found to agree well.
(c) Crown copyrıght 1968

Printed and published by
Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w c 1
423 Oxford Street, London w 1
13A Castle Street, Edınburgh 2
109 St Mary Street, Cardiff CF1 1JW
Brazennose Street, Manchester 2
50 Farfax Street, Bristol 1
258-259 Broad Street, Birmingham 1
7-11 Linenhall Street, Belfast BT2 8AY
or through any bookseller
Printed in England

[^0]: Velocity given by simplified compressibility factor compared with third-order results

