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SUMMARY 

Results are presented for the stability derivatives of a slender-vnng and 

fin configuration as obtained from a series of tests with models flying at near- 

zero lift. These results are compared with theoretical estimates obtained from 

lifting surface theory at subsonic speeds and slender-wing and linearised super- 

sonic theory at supersonic speeds. The agreement between the experimental and 

theoretical results is satisfactory, the largest discrepancies occurring at 
trsnsonic speeds and at the higher supersonic Mach numbers. 

* Replaces R.A.E. Technical Report No. 66170 - A.R.C. 28574 
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1 INTR0DucT10N 
. 

Over the past few years a great deal of experimental and theoretical work 
has been done on the aerodynamics of slender wingsl, mainly directed towards the 

l 

design of supersonic transport aircraft. While Some of this information has been 

used in theoretical studies of the dynamic characteristics 293 of such aircraft, 

and experimental work4 has been done at low speeds, little had, at the time of 

starting this investigation, been attemped for supersonic flight conditions. 

The slender-wing configuration raises many novel stability problems. For 

example, several of the lateral stability derivatives are strongly dependent on 

incidence so that pronounced aerodynamic coupling msy arise between the longitudi- 

nal and lateral motions. Furthermore, the very smsll moment of inertia about the 

rolling axis compared with the moments of inertia about the other axes mW result 

in very different lateral oscillatory characteristics from those of conventional 

subsonic aircraft. 

For these reasons, quite apart from the general ones involved in the deSign 

of most aircraft, it is imports& that the stability derivatives be measured at 

trsnsonic and supersonic speeds so that the characteristics of any particular . 
slender-wing design can be accurately calculated. The measured derivatives may 

also be used to check the validity of present theoretical meth;ds5 of estimation, 
. 

extending the comparisons already made for subsonic conditions , and enabling 

estimates to be made for the derivatives of other similar slender-wing designs. 
Standard wind-tunnel techniques can, of course, yield data on all the longitudi- 

nal and lateral static stability derivatives, snd their variation with incidence. 

The measurement of the rotary and acceleration derivatives is more difficult, 

although Thompson and Fail7 have evolved a wind-tunnel technique using oscillat- 
ing models throughout the speed range. However, at the time this investigation 

started, the only feasible way of obtaFning the required inform&ion was by the 
free-flight model technique, and so a series of tests with rocket-boosted models 

was made and the results are reported here. The derivatives are obtained under 

oscillatory conditions, and results are given for derivatives due to incidence 

and sideslip (corresponding to the static derivatives measured under steady 

conditions in the tunnel tests), and for most of the more important derivatives 

due to angular velocities. An additional advantage of this method is that the 
i models are completely unrestrained, so that any unexpected flight characteristic 

(e.g. sn autorotational state) can be observed and investigated. 



In order to facilitate the desired comparison between experdmental and 
theoretical results a plenfonn was chosen which is typical of a range of . 
configurations studied for the supersonic transport but at the same time is 

simple enough to be anenable to theoretical treatment. * 

The eventual aim of the programme is to measure and compare the derivatives 

over a rllnGe of lifting conchticns so that the lift-depcndcnt effects can 

be studied. The present paper is concerned with the necessary first stage of 

obtaining the derivatives at zero lift. In flying the models, however, it is 

not possible to obtain precisely zero-lift conditions at all times and SO some 

lifting effects are included. For the theoretical estimation of the derivatives, 

the effects of leading edge vortices are neglected at supersonic speeds, so that 

"classical" linearised theories may be used for the wing and fin contributions. 

Interference effects between the wing and fin are estimated, usually on the 

basis of slender body theory, end the increments due to wing thickness are 

included. 

The experimental technique depended on exciting either the short-period 
pitching oscillation or the lateral Dutch-roll oscillation by disturbing the 

model during its flight by firing small pulse-rockets. Before the model design 

was finally settled, some preliminary theoretical studies were made on a Short's 

analogue computer. These gave a valuable insight into the relative magnitudes 

and types of response that could be induced by firing sets of pulse rockets in 

various ways to produce different combinations of pitching moment, rolling 

moment, yawing moment, normal force and side force. The effects of some of the 

aerodynamic cross-coupling derivatives were also explored in this way. 

In this progrsmme the experimental technique was being developed end new 

kinds of instruments were being tried and developed, and so a relatively large 

number of models had to be florin to collect data of the required quantity and 

quality. The experimental results have, in fact, been compiled from the flight 

records of eight models. 

Three specialised test-rhicles, for measuring the roll dsmping derivative 

under steady-state conditions , were also flown. From tbese tests results are 

presented for wings of different. stiffness and for the incremental effect of a 

dorsal fin. 
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2 ECPERItlE~ TECIXgIQUE 

2.1 Design of models -- 

The model design is illustrated in Figs.1 to 4, end the main data are 

given in Table I. The wing plenform is delta-type, with parabolic tips, (Fig.l), 

and with thickness distribution such that the spanwise section is diamond, and 

the chordwise section,on the centrelin~perabolic. The fin is of similar plan- 

form, but with less leading edge sweep, and has flat chorclwise sections, although 

a few of the early models had a cropped delta fin of the seme area end 

sweepback. 

Because of the very simple configuration chosen for this investigation a 

cheap and rapid method of model construction could be adopted. fn the event, 
the relative cheapness of the models allowed a large number of them to be made 

and floun for a number of investigations additional to these experiments on 

dynamic stability. 

The method of construction was common to all the models although their 

internal equipment differed considerably. The wing was constructed as a sandwich 

having a+-inch-thick aluminium alloy centre-plate forming the wing plenform, 

and hence the leading end trailing edges, with hollowglass fibre mouldings 

glued above end below to provide the profile shape (Fig,2(a) and (c)). These were 

moulded to the required dimensions and finish on the outer surface so that no 

hand working was required over the larger pert of the wing. Inside the mouldings 

a number of spenwise and chordwise stiffening ribs were incorporated which were 

also bonded to the centre-plate. The early models in the series had only four 

chordwise ribs end experienced a violent vibration in several different modes at 
Mach numbers above 1.7. For the free-flight stability investigation this 

vibration had to be restrained or avoided because it ruined the telemetry trens- 

mission endcompromised the aerodynsmic conditions of the test. It was found 

that increasing the number of chordwise ribs progressively raised the Mach number 

at which the vibration started and eventually an srrengement of 14 ribs, shown in 

Fig.2(c),was chosen because it eliminated the most troublesome vibration modes at 

Mach numbers below 2.1. 
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The fin was a hollow structure fabricated from aluminium alloy sheet and was 

bolted along its base to the wing centre-plate. The fin section was flat, with a , 
blunt trailing edge and the front 86 of the chord was rounded off to a circular- 

arc section to give a sharp leading edge and a tangential junction with the flat 

portion of section. 

Detachable hatches were provided in the top surface of the wing to give 

access to the instrumentation and pulse-rocket installations (Fig.2(b)). The 

recess in the underside of the model, for the boost-motor attachment hook, ~88 

covered by a retractable door to preserve the shape of the wing profile but the 

ports for the pulse-rocket nozzles had to be left uncovered. TWO pyrotechnic 

flares were faired into the underside of the wing at the traili&edge centre- 

line. !l!hese were required to assist the operators of the visual-tracking equip- 

ment at the range. 

Each model was ballasted to bring the centre of gravity 8s Close as possible 

to the desired mid-point of the centre-line chord. This was achieved within the 

limdts -0.01 to +0.04 co for all the models in the series. No attempt was made 

to give all the models the same Fnertia characteristics but the moments of 

inertia of each model were measured and incorporated in the analysis of the 

results. 

The method adopted for disturbing the models in flight was to fire the 

pulse rockets by a clockwork sequence switch at pre-determined times. 'Ihe array 

of pulse rockets used on the later models in the series is shown in Fig.3(8). 

Early models had either the set of eight pulse rockets at the mid-chord for 

lateral stability tests or the set of twelve at the rear for longitudinal 

stability tests. On the basis of some theoretical studies made on an analogue 

computer the pulse rockets were chosen to give a thrust of 180 lb for 0.07 secon& 

duration and were arranged to fire in pairs. The pulse.rockets at the mid-chord 

were fired in opposed pairs so that 8 pure rolling couple was produced with no 

resultant normal force, assuming perfect matching of the pair. The pulse rockets 

at the rear were fired either as a symmetrical pair about the centre line to 

produce a'combined pitching moment and normal force with no lateral component or 

as an asymmetric pair on one side of the fin. The latter srrsngement produced . 

a pitching moment and normal force but the dominant effect was to provide 8 

18rge yawing moment plus side force arising from the shock-induced loading on L 
one side of the fin. 



9 

2.2 Tnstrumentation 

All the models were equipped with the R.A.E. 465 MC/S sub-miniature 

telemetry system but there were considerable differences between the instrumenta- 

tion details adopted for the various models. For example some carried two multi- 

channel sets to provide a large capacity for data transmission, some cerried one 

multi-channel set and a Doppler transponder system for improved traJectory 

determination and some carried one telemetry set only. In all cases the aerials 

were either mounted flush with the wing surface or behind the blunt trailing 

edge of the fin so that the shape of the models w&s unaffected from the aero- 

dynamic point of view. 

There was also considerable variation in the choice and arrangement Of the 

transducers for the various models. This was largely dictated by the specific 

purpose for which a given model was to be flown but it &so arose in the search 

for an adequate method of measuring the rotary components of motion,which is an 

essential requirement of the analysis procedure. In the course of the tests 

three methods were used, 

(4 rate gyroscopes 

(b) displaced and differenced linear accelerometers 

(c) angular accelerometers. 

On several of the models two of these methods were used simultaneously. 

A typical arrangement of transducers as used on the later and most successful 

models is shown in Fig.j(b) . Most of the measurements were made by dffferencing 

pairs of linear accelerometers, The differencing was not done electrically 

within the model but subsequently during the snalysis in order to obtain the 

highest degree of reliability and accuracy. This method wan entirely satis- 

factory for determining the angular accelerations in pitch and yaw but We3 not 

so good for the roll acceleration because the accelerometers could not be placed 

sufficiently far apart (Fig.3(b)). In principle, rate gyroscopes are a satis- 

factory wry of measuring the rotary motion but they suffered the following 

disadvantages in practice:- 

(a) their power supplies required a relatively hefiy rotary convertor 

having an inevitable gyroscopic couple, 

(b) the roll gyro was sensitive to any steady rate of roll performed by 

the model as well as to the oscillatory component to be measured, (this W&S, at 

times, a large effect), 
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(c) the yaw gyro was sensitive to the rate of curvature of the flight 

path lrhenever the model was flying with its wings out of the horizontal, this . 
usually being a small effect. 

A more preferable instrument, which avoids these difficulties, is the * 

angular accelerometer. Tne only suitable instrument of this kind readily avail- 

able was a spring-mass transducer with a variable capacity output that had been 

developed, but not used, by Space Department, R.A.E. Inevitably a number of 

practical difficulties arose in using this untried instrument but it eventually 

proved to be the best method of obtaining the required measurements. It was 
used for the rolling axis only since the displaced linear accelerometers were 

satisfactory for the other axes. 

2.3 Flight tests 

The models were launched pick-a-back fashion from solid-fuel rocket motors 

(Fig.4(a)). Two sizes of rocket motor were used depending on whether the maxi- 

mum Mach number was to be about M = 2 or M = 1.3. The larger motor was poten- 

tially able to accelerate the models to M = 2.5 but velocities above M = 2 were 
avoided for the later models because of the flutter problem already mentioned. 

. 
The vehicles were launched on a fairly low trajectory in order to obtain 

the maximum Reynolds number and the highest possible quality of experimental 
. 

data. Typically the maximum altitude was about 5000 ft and the rsnge about 

50000 ft. During the coasting portion of the flight, while the stability tests 

were being made, the models were, of course, free to roll and trim according 

to any imperfections in their shape. They generally performed a steady roll, 

to port or starboard, of about 50" per second which is low enough to have a 

negligible effect on the dynamics of the superimposed oscillatory motions. 

The trim conditions varied somewhat from model to modal. At Mach numbers above 

1.4 they generally flew at very nearly zero lift, but as the Mach numbers fell 

to near sonic the trim usually changed rather quickly to a small negative lift 

but sometimes to a small positive lift. 

2.4 The roll-da&ng test vehicles 

Supplementary to the main experimental investigation three special tests 

were made to measure the roll-damping derivative A . The models were made of 
P 

solid metal to one quarterscaleofthe external linear dimensions of the main 

models, end were attached to the nose of a test vehicle equipped with a roll 

balance. The Vhole vehicle was made to roll at a high rate so that the roll- 

damping component on the model could be measured directly by the roll balance. 

A photograph of one of the vehicles is shown in Fig.4(b). 
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Three kinds of modal were used, 

(1) the wing alone made in light alloy, 

(2) the wing alone made in steel, 

(3) the wing plus fins above and below (for symmetry) made in light alloy. 

A comparison of the results from models (1) and (2) was intended to show 

the influence of aeroelastic distortion, snd the difference between the results 
of models (1) and (3) yields the contribution of the fin to the total damping of 

the complete configuration. 

On all the models the wings were of the same section and planform as in 

the stability models but a small modification had to be made at the rear to 

accommodate the sting mounting of the roll-balance. 

3 ANALYSIS OP THE! EXPEXIMWPAL DATA 

3.1 Basic data 

Typical values of Reynolds number, end trimmed lift coefficient end 

approximate angle of incidence throughout the Mach number range are shown in 

Figs.5 and 6, together with the extent of variation between all the models. 

An almost complete telemetry record from one of the models is reproduced 

in Fig.7. This particular form of presentation is used for visual assessment 

only and is not of sufficient accuracy for numerical analysis, for which the 

data was obtained either from the film record, or on later models in digital 

form recorded on magnetic tape. It does, however, conveniently show meny 

interesting features of the model behaviour. When the model separates from 

its boost motor, at 3.8 seconds, it experiences disturbances in pitch and yaw 
which may be analysed to yield useful stability data. During the coasting part 
of the flight considerable differences can be seen in the types of response 

from firing different combinations of pulse rockets. 

(a) When a rolling couple pair near the c.g. are fired there is very 

little response in pitch, e.g. at 7.4 seconds. 

(b) When a symmetrical pair at the rear are fired there is very little 

response in yau or roll, e.g. at 15 and 18.2 seconds. 

(c) When an asymmetric pair aaacent to the fin are fired there is a 

very large response in yaw and rollvrith a moderate response in pitch, e.g. at 

5.8, 8.7, 10.2 and 11.8 seconds. 

On several of the lateral oscillations the roll subsidence mode can be 

observed superimposed on the roll record (e.g. at 10.2 and 11.8 seconds) end at 
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13.4 seconds t'ne roll subsidence mode is dominant with the oscillatory mode 

almost completely absent. The significance of this is discussed later on. On 

this particular model the record from the angular accelerometer shows a certain 

amount of "fuzziness" during some of the oscillations. This was probably caused 

by vibration, in the rolling Dlsne, of the instrument mounting bracket. 

Subsequent laboratory tests on an identical mounting showed that the degree of 

fuzziness could be accounted for by a vibration amplitude of only 0.00007 inches. 

Later models with a redesigned bracket showed no sign of this effect. 

3.2 Longitudinal stability 

The analysis of the lOngitUdin41 stability information was limited to 

evaluating the derivatives zw, w m end the damping pair mq + m;. Standard 

methods of data reduction were used' ba&ed on an analysis of the frequency, 

damping and "focal point" of the short-period oscillation. 

The longitudtnal response is, of course,affected when there is also a 

significant response in the lateral modes, e.g. the oscillation starting at 

10.2 and 11.8 seconds in Fig.7. Distortion of the wed harmonic wave form 

of the records of normal acceleration can be seen with the naked eye and the 

results from the "coupled" oscillations have not been included in this report. 

The frequency of the longitudinal oscillation is shown in Fig.B(a) for 

the various models, end the reduced frequency of one model, 17, is seen to be 

between 0.112 and 0.115, Fig.8(b). The total demping, Fig.g(a), exhibits 

greater scatter than the frequency, but the variation with Mach number is 
clearly defined. Some results for M> 2 are also given, as some of the models 

were free of the flutter phenomenon at the speed of separation from the boost 

rocket. 

3.3 Lateral stability 

The motion in the lateral Dutch-roll mode is strongly affected by any 

motion in the longitudinal mode because of the large incidence-dependent 

derivatives on a configuration of this kind. In the present tests, however, 

it was possible to avoid such effects because the longitudinal motion damped 

out so much more quickly than the lateral motion, e.g. at 8.7, 10.2 end 11.8 

seconds in Fig.7. The analysis of the lateral motion was therefore restricted 

to those parts of the flight record where the longitudinal motion had decayed 
to a negligibly small amplitude. 

As already mentioned, the response to a lateral disturbance sometimes 

contained a significant contribution from the roll subsidence mode, so that 
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responses of the form Ae -kt + Be 
A2t 

sin (v2t + E) had to be analysed. In order 

to separate the modes, successively corrected values of Ale 
-kjt 

were subtracted 

from the response until the peak values of the resultant oscillation lay on a 

straight line when plotted logarithmically. The final value of k](=k) obtained 

was used to determine an approximate value of the damping in roll derivative, .4 . 
P 

The frequency of the Dutch-roll oscillation is shown in Figs.a(c) and (d), 

and the results for the various models are seen to be consistent. !Che total 

damping, Fig.o(b), exhibits a similar percentage scatter to that of the 

longitudinal oscillation, although the damping is smaller, as is to be expected 

for a slender wing design. The roll-subsidence damping, as obtained for one of 

the models, is shown in Fig.10. 

The main method adopted for deriving the stability derivatives from the 
10 oscillatory mode was the time-vector solution developed by Doetsch . A detailed 

description of how this technique is applied to free-flight model tests is given 

in Ref.11. Briefly, the amplitude and phase relationships, plotted in Figs.ll(a) 

and Ii(b), between the three degrees of freedom v, p, r, of the Dutch-roll 

oscillation are measured and used in vector solution for the rolling-moment and 

yawing-moment equations. Examples of the vector diagrams are shown in Figs.l2(a) 

to (c,. Measured values of the inertia characteristics are used and, in order 

to solve the two equations, one of the derivatives in each must be assumed. In 

the present case, estimated values of Rr and np were used (Figs. 13 and 14) 

because they are the least important ones, and the vector solution for the yawing 

moment equation has been obtained by neglecting the derivative nv. However, the 

vector diagram (Fig.l2(c)) of the kinematic equation 

r 

shows that P = - r, and so 

rb Pb -nrz-nvE = 
> 

(-nr + nv) $ 

Thus the vector labelled (-nr rb/2V) in Fig.l2(a) may be taken to provide an 

approximate solution for the derivative pair (nr - nv), and so the results have 

been presented this way. 

In addition to the vector method the following analytic solutions were 

used to reduce some of the experimental data as a semi-independent check. 
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EL& 
‘v= V aB Y 

(1) 

-h 

(2) , 

(3) 

While most of the perturbation parameters behave in an ord$Y manner 

over the Mach number range the behaviour of the roll/yaw amplitude ratio and 

phase angle (Fig.11) merits further conrment. Between M = 1.25 and 1.4 there 

is a sudden phase-change of about 160 degrees accompanied by a translation 

through zero* of the amplitude ratio at M = 1.34 (i.e. at 14 seconds on the 

telemetry record Fig.7). This represents a de-coupling of the roll and yaw 

motions and probably explains why the pulse rocket at 13.4 seconds (on the 

model from which the record of Fig.7 was obtained) produced a roll subsidence 
mode only. In terms of the aerodjmamic derivatives this behaviour is accounted 

for by a change of sign of the rolling moment due to sideslip derivative Av, due 
to interference between the fin and wing. The effect of this change in Jv on the 

vector diagrams is illustrated in Fig.12. It is worth noting that the experi- 

mental points covering this particular feature of the results came from four 

models. Two yielded results from M = 1.8 down to 1.5, one yielded the points 

at M = 1.75 end 1.06 and the fourth covered the range from M = 1.8 down to 1.2. 

Although these four models did not fly at precisely the same trim conditions 

they were sufficiently similar for a valid comparison to be made. 

Most of the values of Rv plotted in Fig.Zl(a), including the sign change, 

were checked by equation (3), the results agreeing within 0.0005 Av in each 

case. 

The experimental values of Rp derived from both the oscillatory and roll- 

subsidence modes are plotted together in Fig.22(a). It is perhaps surprising, 
but encouraging, to observe that both kinds of analysis yield very similar 

results. The points showing the sudden reduction in R below M = 1.25 came 
P 

* In the bottom diagram of Fig.ll(a), the amplitude ratio R;; is plotted above 

or below the zero magnitude axis according as *.a pr is less than or greater thsn 

1800, in order to demonstrate the zero amplitude more clearly. 
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from ttro tiffercnt models and so there is some confirmation that it is a genuine 

effect. 

3.4 @a&v-state roll dsmpina 

The results from the three roll-damping test vehicles (Fig.&(b)) sre 
shown in Fig.22(b) and (c). The particular merit of this technique is that a 

continuous measurement of the roll-damping moment is obtained over the whole 

Mach number range, instead of at rather widely spaced discrete points as in the 

case of the stability models. Thus sny sudden change of rolling moment over a 

small increment in Mach number, as might occur trsnsonicslly, can be detected. 

It is clear that this has in fact happened, although in different ways, On all 

three models between I4 = 1.05 and 1.15. 

The roll-damping moment obtained by this technique is, of course, measured 
under very different conditions from those on the stability models. Here a 

steady-state rolling motion is maintained, with a tip-helix angle of between 

0.5 and 2.0 degrees whereas the rolling motion of the stability models is 

dyncmic (uhether oscillating, decaying or both) with a maximum tip-helix angle 

of about 0.02 degrees. 

Nevertheless the general level of results, above M = 1.4, IS very similar 

from both kinds of model.. Below M = 1.25 the steady-state results do not show 

the sudden falling awsy that is sn unexpected feature of the dynamic results. 

Comparing the results from the two roll-damping models of different stiff- 
ness (models 1 and 2, Fig.23(b)) it is evident that there csn be very little 

loss of roll-damping from aeroelastic distortion, bearing in mind that the steel 

mods1 has three times the stiffness of the aluminium-alloy model. What difference 

there is between the two results can be accounted for by experimental uncertain- 

ties. In fact, between M = 1.2 and 1.3, the more flexible model shows the higher 

damping. This is impossible for such a planform where aeroelastic distortion at 

the tips causes the load to be shed snd not increased. Therefore a mean line 

betrrecn the results from models I and 2 has been taken as representing the roll- 

damping derivative for the case of the wing alone. 

Comparing the results from the models with and ttithout the vertical fins, 

(Fig.22) shows that the fin contribution to kp is very small, as one might expect. 

Here one must remember that model 3 had vertical fins above and below the wing 

instead of on the upper surface only as on the stability models. 



An interesting peculisrity is that all three models show quite different 

characteristics between M = 1.05 and 1.15. The models without fins show a 10% 
increase in damping, the steel one having a much more violent change, whereas 

* 

the model with fins shows a decrease in dsmping of about 746. 

3.5 Accuracy 
t. 

A general analysis of the accuracy with which the main flight parameters 

such as velocity, Mach number, dynamic pressure etc. can be established in free- 

flight model tests has been made by Picken 12 . Typical values are, velocity and 
Mach number 0.596, dymmic pressure I$. 

The accuracy with which the aerodynamic derivatives can be determined from 

the stability models varies considerably from model to model, depending on the 

quality of the instrumentation and the amplitudes of the oscillations. Purther- 

more the accuracy with which different derivatives can be determined varies 

according to whether they have a dominant or minor influence on the motion. 

Thus mw and nv can generally be extracted to within about 5% because they are 

the main stiffness terms in the longitudinal and lateral modes and so have the 
largest effect on the frequencies of the oscillations. On the other hand the 

yaw-damping derivative nr has a relatively minor part to play and can be 

determined only within about S?O%. An immediate appreciation of the relative 

accuracies with which the various lateral stability derivatives are extracted 

can be obtained from the sample vector diagrams (Fig.12). The amplitude ratios 

between the different degrees of freedom, which determine the length of the 

vectors, can generally be obtained to about &J. The roll/yaw phase angle can 

be determined to about SIP degrees and the yaw/sideslip phase angle within about 

& degree. When these conditions hold the derivatives Lp andRY can be evaluated 

within about SO%. 

The accuracy with which Ap can be obtained for a specific model from the 

roll-dsmping test vehicles depends almost entirely on the magnitude of the 

rolling moment experienced by the model. At the highest Mach numbers, where 

the moment is large, the derivative can be determined with an uncertainty of 

about ?3$, but at transonic and subsonic speeds the uncertainty increases to 

about 27%. An additional error may be present in the results from the indivi- q 
dual models arising from imperfections in their manufacture such as twist at 

the wing tips. Careful measurements on each model indicate that this should 

not exceed 5% of the wing-tip helix angle. 
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4 ~IWICIZL EQTHODS OF ESTlN&TIO~I OF DWIVATIVES 

4.1 General background . 

For the simple configuration chosen (shora in Fig.]), flying at near-zero 

lift, the theoretical estimation of the derivatives may be based on the 

linearized theories of potential flow for the wing and fin considered separately, 

with corrections for the interference effects between the two surfaces being 

applied to the results. The effects of leading-edge vortex sheets can be 

ignored. In practice, application of the theories necessitates various approxi- 

matiolic being made, which must be proved satisfactory or otherwise for perticular 

types of planform by comparing the results with experimental values. Such- 

comparisons have not previously been made for slender wing designs at transonic 

snd supersonic speeds, for the longitudinal and lateral derivatives. 

The wing planform is defined by the relations 

s(x) = 0.3 x for 

s(x) = 0.3 x - 2’2 0.45 x - 7 
( ) 

for 

with c = 1. 0 
However, some of the existing computer programmes for 

theories require that the planform shape be expressed 
n 
-3 

s(x) = anxn, osxxd > 
T’ 

and it is found that the “mild gothic” planform given by 

various lifting surface 

as a polynomial, 

1 (5) 

s (4 = 0.25 (1.25 x - 0.25 x5) 10) 

is very close to the actualplanform. The maximum difference in local semispan 

is 3.3s (at 0.447 co) and so equation (6) was used when necessary. In addition, 

an “equivalent” cropped delta planform was chosen, for which charts or algebraic 

expressions for many of the derivatives have been evaluated. The cropped delta 

has the same slenderness ratio, s/co = 0.25, and same parsmeter A tan Ao, giving 

A = 0.853 (compared with o&65), A0 =p.35” (73.30”), planform parameter P=Sibco= 

0.582 (0.578) and h = 0.164. The conditions at the wing tips must be different 

for tine two planforms, as the discontinuity in leading-edge sweep of the cropped 

delta implies a discontinuous behaviour of the pressure distribution on the-wing 

along the rearrrard-going Mach line through the corner, a feature which is not 
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found with the c-d leading edge. However, the resultant total forces and 

moments may be similar, and, if so, the derivatives of other slender wings 

could be readily estimated by considering an appropriate cropped delta. 

The fin planform is similar to that of the wing but with less leading- 
edge sweep, and so corresponding equivalent planforms could be chosen. 

The thickness distribution of the wing, being diamond spenwise and para- 

bolic chorduise,is amenable to the analysis required for evaluation of thickness 

corrections. The corresponding correction to the fin contribution is zero, 

since the section is a flat plate. 

4.2 Derivatives due to incidence 

(i) Plenform contribution 

An approximation to supersonic linearised theory has been applied to wing 

planforms with curved leading edges by Smith in some unpublished work 13, the 

load distribution being obtained by the cancellation technique in a similar way 

to that used by CohenI for wings with straight edges. The Mercury programme 

has been written for planforms given by equation (5), end so the mild gothic, 
equation (6),has been considered. 

An extension to Multhopp's lifting surface 15 theory to supersonic flow 

has also been orogrammed16 A , mainly with a view to calculating the generalised 

forces for structural problems. Frequency effects may be evaluated, although 

for the frequency of the longitudinal. short-period oscillation of the free- 

flight models it should be admissible to assume zero frequency (i.e. stea&) 

conditions. It is again necessary to use equation (6) for the planform. 

For the cropped delta planform, charts of lift-curve slope and aerodynamic 

centre are given in Ref.17, and algebraic expressions have been derived in 

Refs.18 end 19. There is a restriction on Mach number range, as the theory 

does not account for interference between the two Mach cones from the wing 

tips, that is Mz 1.2 for h = 0.164 and so/co = 0.25. (The restriction 

that the leading edge should be subsonic is not significant for the present 

study, being MC 3.5 for sweepback of 73.35".) 
* 

"Kot-so-slender" theory may also be used for moderate supersonic speeds, 

and Squire2' has obtained the lift-curve slope and aerodynamic centre for the 

mild gothic plenform, defined by equation (6) above, in terms of the parameter 

PsJco. The theory agrees with linearised supersonic theory to order (!~sJc~)~, 

so that with so/co = 0.25, and assuming that reasonable accuracy is obtained 

with (Ps~/c~)~ < 0.1, then the maxCmum Mach number for which the theory applies 

is about 1.6. 
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At >I = 1, 21 sonic theory gives zw = - fiA/1: for the actual. planform, and 

for the equivalent cropped delta, but the positions of the aerodynamic centre 

on the root chord are different, berng dependent on planform shape. At subsonic 

speeds with the programmes 22 available for Multhopp’s lifting surface theory, it 

is possible to consider the actual plsnform shape, and to include frequency 

effects. The cropped delta planform is included in the charts of Ref .2j, 

(Wings S .Ol .03.03-06 and S .08.01 .02), although interpolations have to be made 

in the rEgion where some of the theoretical curves are themselves f$.rings 

betrreen results from Ikissinger’s compressible lifting line theory and sonic 

theory. Goodman25 
26 

also gives charts, based on Lawrence’s low aspect ratio 

theory , for cropped deltas in incompresslble flow, but the method has not 

been applied to wings with curved leading edges. 

(ii) Thickness contributions 

Slender body theory, for exsmple Ref.27, indicates a change in pitching 

moment due to incidence, but no change in overall lift, for thick wings with 

sharp trailing edges. The conformal transformation required for wings with 

diamond (spanwise) cross-section has been obtained by Maskell in some unpub- 

lished work, and is given in Ref .6. The expression for the rearward shift in 

aerodynarmc centre, as a percentage of root chord,is given as 7 
a; = s s2(x) r 

0 

~‘1 -Y(&& -$j++an+x 

r 

*= n:/2cosQr.(l -~)J++~) 

(7) 

and 2C(x) is the apex angle of the diamond cross-section at the leading edge. 

Two-dimensional, supersonic theory, extended by strip theory to finite 

wings, predicts a forward shift of aerodynsmic centre due to thickness, (see, 

for example, the results obtained by Lehrisn28). For low aspect ratio wings, 

the results are only valid for large M, but do indicate that there must be an 

appreciable Mach number effect which cannot be estimated adequately by existing 

methods. The non-linear thickness correction used by Cooke 29 and others, has 

not been extended to wings at incidence, as far as is known. 
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The contributions to zw from the profile drag has been assumed to be 

negligible. 

(iii) Incidence contribution 

Although the models were designed to fly at zero lift, the trim change at 

sonic speeds gave rise to small trdmmed incidences during the subsonic phase of 

flight, as shown in Fig.6, so that non-linear effects must be considered. The 

expressicn for lift suggested in Ref.17, CD = a(xA/2 + 41al), based on slender 

body theory, may be used to give the increment in zti and the shift of the aero- 

dynamic centre has been calculated for the mild gothic by Smith in an unpublished 

extension of the work of Ref.30. 

(iv) Fin contributions 

The incremental lift and pitching moment induced on the Ving due to the 

fin thickness 31 distribution is independent of incidence, and so contribute 

nothing to the derivatives. 

4.3 Damping-in-pitch derivative, rns = mq + rn; 

(i) Planform contribution 

The methods of estimatiou outlined in Ref.32 ;z2been used as far as 

possible. The lifting surface theories, progrsmaed ' for oscillating wings, 

are those used for estimating the derivatives due to incidence, and so the same . 

planforms may be considered. Por the cropped delta planform, algebraic expres- 

sions we given for the derivatives m q amd rn; at supersonic speeds in Refs.19 

and 33 respectively, which although lengthy may be evaluated fairly readily. 

For subsonic flows, Ref.34 tabulates functions for cropped deltas of effective 

aspect ratio A 1 - l?= 3, 2 and 1.2, with X = l/7, and these have been extra- 

polated to zero at A = 0 to give the values required for the equivalent cropped 

delta. Lawrence rs26 theory has also been applied to cropped deltas in incom- 

pressible flow, the functions required being given in Refs.25 and 35. 

At sonic speeds, although slender body theory gives a value for mq + m; 

independent of frequency, lifting surface theories 36,37 show a strong 

dependence, since a term involving log v, arises. A general formula for 10~ 

aspect ratio wings is given in Ref.37, end the integrals sre more readily 

evaluated for the actual plsnform than for the mild gothic. 

Not-so-slender theory could be applied directly to obtain m 
s' 

but the 

load distribution due to acceleration, $, has not been considered. 
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(ii) Thickness contribution 

Although slender body theory gives mq and m; dependent on the thickness 

distribution, the oscillatory damping-in-pitch, 3 = mq + rn? is dependent 

only on the shape at the trailing edge, since the terms due to the thickness 

distribution are equal but opposite in sign for mq and m;. Results for two- 

dimensional supersonic aerofoils are given in Refs. 28 and 38, but the applica- 

tion of strip theory to obtain finite wing results is only valid at high Mach 

numbers. 

(iii) Incidence contribution 

Garner and Lehrian3g have developed a method for estimating the effects 

of leading edge separation on the pitching derivatives of a gothic wing, but 

for the small incidences under consideration the increment is negligible end 

has not been evaluated. 

(iv) Fin contribution 

Any interference between the fin and wing in pitch has been neglected. 

4.4 Cerivatives due to sideslip 

11.4.1 Sideforce due to sideslip, yv 

(i) Uing contribution 

Although the thickness distribution of the wing will give rise to a 

sideforce in sideslip, the contribution has been neglected in comparison with 

that from the fin. Slender body 27 theory giveszero sideforce, being dependent 

only on the spanwise cross-section shape at the trailing edge. 

(ii) Fin contribution 

In order to evaluate the lift-curve slope of the fin, the wing is 

considered to be a complete reflection plate. The planform of the fin with its 

reflection is similar to that of the wing, but of larger aspect ratio, and so 

the same methods of estimation could be used as for the incidence derivatives. 

At supersonic and subsonic speeds the lift-curve slope of the equivalent cropped 

delta should give sufficient accuracy (A = 1.37, A,= 65.50, h = l/7), evaluated 
from Refs.17 and 23 respectively, For low supersonic speeds, 1.0 ~5 MS 1.2, 
not-so-slender theory2' maybeused, andatM=l, dCJda = *A/2. The sideforce 

on the fin due to sideslip is then given by 

. 

. 

where the suffix R denotes the contribution from the fin wrth its reflection. 
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(iii) Xing-fin interference 

A correction factor to y has been derived40J4' from the 
vR 

wing-plus-fin, of the wing alone and of the fin-plus-reflection 

fcrm 

yv = Y 
F "R 

sideforce of the . 

alone, in the 

(10) 

the terms inside the square brackets being evaluated by slender body theory. 

Since the leding edge of the fin remsins subsonic for MC 2.37, the region of 

interference is independent of M in the present speed range, end so the inter- 

ference factor remains constant. 

(iv) Incidence contributicn 

For the small angles of incidence under consideration, the interference 

effects considered. in Refs.40 and 42 may be neglected. 

4.4.2 Ewing moment due to si&slip, nv 

(i) Iring contribution 

The thickness distribution gives rise to a destabilising (negative) yawing 

moment, uld so, although small, it is necesssry to estimate its effect. The 

integral expression for n 
V\J' 

corresponding to equation (7),is given in Ref.6. 

(ii) Fin contribution 

!Che position of the aerodynamic centre on the root chord of the fin may be 

obtained, for the fin-plus-reflection, by the same methods as for the lift-curve 

slope. The fin section is fl.at plate, so that no thickness corrections are 

needed, thus the yawing moment is given by 

XF n =- 
vR 0 s YV R 

where xF is the distance of the aerodynamic centre behind the centre of gravity 

of the model. 
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(iii) Wing-fin interference 

The correction factor to be applied to nv is obtained from the enalogoUS 

relation to equation (lo), giving n end so R 

“F 

1 

. 

. 

n =n +n 
V VW YF ' 

(iv) incidence contribution 

The effect of incidence “0, 42 on nv has been neglected. 

4.4.3 Rolling moment due to sideslip, v -- 

(i) Uing contribution 

The planform end thickness distribution do not contribute directly to the 

rolling moment, and the wing contribution is considered under (iii) and (iv) 

below. 

(ii) Fin contribution 

The height above the wing of the centre of pressure on the fin may be 

estimated from slender body theory, giving 4sd3*, end is independent of Mach 

number. The rolling moment is then given by 

and so is negative. 

(iii) Vine-fin interference 

There is a large positive rolling moment arising from the pressure induced 

by the fin on the wing, opposing the fin contribution. At supersonic speeds, 

the region of interference is confined to the Mach cone from the fin apex, and 

the pressure distribution on the wing, due to a delta fin, has been evaluated 

in Ref.43 for Mach numbers such that the Mach lines intersect the trailing edge 

of the wing, that is M > 7.75 for the present configuration. D order to give 

some idea of the magnitude of the interference effect at lower Mach numbers, the 

induced pressures were integrated over the wing surface within the Mach cone, 

neglecting the effect of the wing tip. This should overestimate the magnitude 

of the induced rolling moment, since the simplification implies that a finite 

pressure difference exists at the wing leading edge; application of cancellation 

techniques to correct the difference is not straightfonrard, as the configura- 

tion is non-planar. 
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At sonic speeds, slender body theory gives the wing-plus-fin rolling moment 

to be dependent only on the aspect ratio of the wing, end the fin height at the i 
trailing edge, end a simple algebraic expression is given in Ref.44. (It should 

be noted that the opposite sign to the usual convention for rolling moment has 

been used.) The interference at subsonic speeds is difficult to determine, but 
, 

becomes negligible when the angle of incidence is appreciable. 

(Iv) Incidence contribution 

The rolling moment due to combined incidence and sideslip is large and 

negative for slender wings, end should be estimated even for the small incidences 

under consideration. The expression derived from supersonic linearised theory 45 

is too lengthy to be useful, but slender wing theory should give the accuracy 
46 required. Mach number dependence may be approximated by the slenpr body factor 

to the loading, as for delta Wings. The effect of wing thickness and the 

presence of the fin 44 may also be obtained separately from slender body theory 
to give further corrections to the thin wing result. 

4.5 D-in@;-in-roll derivative, R_ 

W Ving contribution , 

In principle, any lifting-surface theory may be used for calculating the 

loa&ng due to steady rolling, the eff;etive downwash being yp at the wing . 

surface. Supersonic linearized theory for the equivalent cropped delta plan- 

fcim leads to an algebraic expression, end at sonic speeds, R 
prr 

=-U/32. Also, 

for the cropped delta, Lawrence's low-aspect-ratio theory has been used to obtain 

charts35 for subsonic speeds (incOmpressible flow). 

The effect of thickness has been studied for an infinite wing 47 end is 

found to be small for sections with zero trailing edge thickness. 

(ii) Fin contribution 

At supersonic speeds, the variation of Rp with Mach number for slender 

wings is small, and so slender body theory may be used to obtain the loading on 

the fin. Considering the fin and its reflection, in roll, the effective down- 

wash i&pi 21, for which the velocity potential must be obtained from the Fourier 

series 
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. 

‘p = v, (x, - Ao sin g + (13) 
F 

w = - - pizI _ 
V V An cos ne , z 5 SF(X) cos e 

1 

and SF(x) is the local fin height. 

The lift on the fin is found to be 

cy = 
( > 
P “F -5% , 
v 

where AR is the aspect ratio of the fin-plus-reflection and the height of the 
centre of pressure is given by 

m 
i 2 2 r = - 1( [I -+ c 3 = (14) 
F 3 (b2- 1) (2n+3) 

1 %x2-l '+' 4(ntlf & 
- 1 
II 

, 

Then 

R 
PR 

(iii) Wing-fin interference 

(15) 

The fin interference on the wing Is small, but the loading on the vriug 

causes a sidewash on the fin, reducing its effectiveness. For the accuracy 

required it is sufficient to use the mean value of sidewash evaluated in Ref.6 

from slender body theory, so that 

LP* = 3 

av 
1 "R ' 

(16) 
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(iv) Incidence effects 

The effect of incidence on Rp is second order, and may be neglected for 

the present coqarisons. 

4.6 Dqing-in-yaw derivative nr - n; 

(i) IJing contribution 

The thickness distribution contributes to the steady damping nr, and 

slender body theory 27 gives 

1 

A n = 51 -72 (y 6 /f (x - 

b" 

xg' (+J2 [tan 0 - 48 f$y] dx 9 ('7) 

for the diamond cross-section where rds is given by equation (8). However, the 

oscillatory damping-in-yaw, nr - n;, is zero, being dependent on the thickness 

at the trailing edge only. 

(ii) Fin contributjon 

As for the sideslip derivatives, the damping-in-yaw due to the fin may be 

determined from the corresponding longitudinal derivative of the fin with its 

reflection, that is, nr from mq and n; from -m;. The methods of estimation given 

in Section 4.3 may be used, the lift also having to be evaluated in order to . 

obtain the moment about the centre of gravity position on the wing chord. The 

conversion to wing representative length and area is given by 

(nr - n;r)R = (3 2 (mq + m$ . 08) 

An alternative method of estimation, usually used for configurations with 

the fin mountedon the fuselage some distance behind the wing, is to assume 

that the incidence distribution (x - xg) r/V due to the steady rate of yau is 

equivalent to a constant mean incidence of x$, and that the effect of the 

acceleration fi is accounted for by a lag in sidewash 49 Qda , -FT, so that 

br - n& = Q2(l -$gyvR . (19) 
. 
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However, at zero incidence the only asyrmnetric loading on the sideslipping wing 

is that induced by the presence of the fin, so that da/@ = 0. 

(iii) Ming-fin interference 

Slender body theory gives en interference factor equal to that for yv, 

since the oscillatory damping-in-yaw is dependent only on the trailing edge 

configuration. 

5 COI4F'ARISON BLTWEEM THEORY AIiB EXPERDIENI 

5.1 Lift curve slope, zw = - $ dCL/&, Fig.15 

At supersonic speeds the lift curve slope obtainedby Smith 13 for the 

mild gothic planform, gives a satisfactory mean curve for the experimental 

values for M> 1.2. For the application of Multhopp's theory 
16 to slender 

wings, it is necessary to use a relatively large number of lift and downwash 

points on the wing, and the initial choice of five chordwise and eight SpmWiSe 

points had to be increased to five chordwise and ten spanwise points (with 

eleven integration points across the span), before satisfactory agreement6with 

Smith's results for zw was obtained. The difference in zw as calculated for 

steady conditions (zero frequency) and for the'experimental frequency is less 

than $%at M = 1.4, and so is negligible. The lift curve slope of the equivalent 

cropped delta wing 17 is slightly larger than that of the mild gothic planform 
throughout the supersonic speed range, but the difference is smaller than the 

experimental scatter. It also appears that not-so-slender theory 20 is applicable 

only up to about M = 1.2, where it gives values close to Smith's linearized 

theory 13 result, for the present slenderness ratio of s/co = 0.25, but the experi- 

mental value of -zN at M = 1.07 is much greater than the theoretical result. 

The theoretical variation of sw with Mach number subsonically is given 
23 for the equivalent cropped delta in steady flow , and agrees well with the 

22 theoretical value at M = 0.8, v = 0.1, obtained using lifting surface theory 

for the actual planform. The experimental value of -zw at M = 0.93 was obtained 

from a model flying at C 

?w 

= -0.03, and so the non-linear contribution to zw 

has been evaluated, the i c ement being shown in Fig.15 for 0.8 C M< 1.0. The 

agreement between experiment and theory is excellent, although this may be 

fortuitous, as there is appreciable scatter between the experimental values at 

supersonic speeds. 
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5.2 Manoeuvre margin, h - ho, Fig.16 

The theoretical position of the aerodynamic centre appears to be further 

forward then that obtained ezq,oerimentslly over most of the Mach number range, 

end there is about 4% E overall difference between the results of the theories 

of Refs.73, 16 and 17. At M = 1.4, the theoretical results from Ref.16 for 
zero frequency and finite (experimental) frequency agree, and so Smith's steady 

theory 13 is the most rigorous method of estimation. It appears that even more 

Multhopp points on the wing would have to be considered before agreement is 

achieved between the results of Refs.16 and 13, although increasing the number 

of spanwise downwash points from eight to ten and integration points from eight 

to eleven reduced the difference from 5.5% c to 1.5% 5 at M = 1.4 and from 

16.6% C to 2.O$C at M = 2.0. 

The theoretical results for the equivalent cropped delta sre about 2% 5 

rearward of the results of Ref.13, but at subsonic speeds agree with the subsonic 

lifting surface 22 theory at M = 0.8. Thus the theoretical variation of aero- 

dynamic centre position with Mach number is best assessed from the Data Sheets2j 
(plus the non-linear contribution) for MC 1.0, not-so-slender theory for 

1.0 < M < 1.2, and Smith's theory"for M> l&so that-up to about M = 7 .51 the ' 

average difference between experiment and theory is 4% c. For M> 1’.6, although 

the experimental results snd theoretical curves are in closer agreement, the . 

variation uith M appears to be different, with the experimental aerodynamic 

centre moving forward as M increases, and the theoretical position continuing to 

move reanuard, up to M = 2.1, before beginning to move forward. As mentioned in 

Section 4.2, this discrepancy msy be due to the effect of thiclmess. A constant 

increment, nh = 0.033 from equation (7),has been added to the thin wing results, 

although it is known that & becomes negative at higher Mach numbers, according 

to strip and piston theories. Van Dyke's thick aerofoil results have also been 
evaluated, and used with strip theory, but this gives &I = -0.05 and -0.O35 at 

M = 1.8 end 2.2 respectively that is, again in the opposite sense to experiment; 

these latter increments have not been included in the theoretical results shown 

in Fig.76. 

5.3 Pitching moment due to incidence, mw, Fig.17 

Since rnlf = (h - ho) z+ the difference between estimated and experimental. 

position of the aerodynamic centre is also apparent in the results for the 

pitching moment. The experimental trend is more clearly defined for mw, (since 

this can be obtained directly from the frequency of the longitudinal oscillation 

, 
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and requires only small corrections for change of c.g. position for the various 

models) and there is little scatter between the results. A striking difference 

between experiment and theory occurs in the transonic region, for which no 

explanation can be given. At subsonic speeds, the ssme trend with Mach number 
23 is given by experiment and theory , but the experimental results for -mw are 

about 0.025 greater than the theoretical curve, even when the increment, 

n mw = -0.015, due to non-linear incidence effects is included. At M = 1.0, 

the measured mw is 50$ greater in magnitude than estimated, but experiment and 

theory converge as M increases supersonically until agreement is reached at 

about M = 1.7. 

A constant increment ofAmw = -0.022 due to thickness has been included 

throughout the speed range, and corresponding remarks to those in Section 5.2 
about the possible variation of thickness effects with Mach number also apply 

to the estimation of mw. 

5.4 Damping-in-pitch derivative rns = m + rn> Fig.18 

Supersonic linearised theory'S)'33 for the cropped delta planform and lift- 

ing surface theory for the mild gothic planform 16 overestimate the damping, the 

error increasing as M increases. Part of this may be due to thickness effects, 

which can besignificant, but again the only method of estimation is to use 

strip theory with the aerofoil theories of either Ref.28 or 38. An increase in 

damping is indicated at M = 1.4 (A "j = -0.02), with a slight decrease at M = 1.8 

and 2.2 (Am3 = 0.005 and 0.007 respectively), but these increments have not been 

included in the theoretical curve in Fig.18 as the application of strip theory 
to slender wings does not seem justified. 

The theory of Ref.16 is essentially oscillatory for the estimation of the 

damping, and so no comparison csn be made with steady results at supersonic 

speeds. 27 At M = 1.0, where frequency effects are imports&., slender body theory 

gives rn$ = -0.51, independent of frequency, whereas oscillatory theo d7 at sonic 

speeds gives rni = -0.54 for GC/V 5 O:ll, the experimental. frequency. It is 
difficult to establish absolutely the trend of the experimental results in the 

sonic region, but all the theoretical estimates appear to be too large in magni- 

tude . Although the interpolations made on the results given in Ref.34 do indi- 

cate lorrer values of dsmping subsonically, the value at M = 0.8 does not agree 

with the lifting surface calculation, Ref.22. 



30 

5.5 Sideforce due to sideslip ye5 Fig.19 

The theoretical estimate of yv egrees very well with the e~erimentel 

results throughout the supersonic speed range. The lift curve slope of the 
cropped delta "equivalent" to the fin planform has been used for the supersonic 

and subsonic regions (Refs.17 and 23), end that of the mild gothic (Ref.20) at 

low supersonic speeds. yv is possibly overestimated slightly for l.O< M< 1.2, 

and for M> about 1.7, but the error is not significant. 

5.6 Yawing moment due to sideslip, nv, Fig.20 

The same theories have been used for estimating nv as for yv? and the 

3esult.s agree quite well with experiment, indicating the trsnsonic increase in 

y,., and the decrease (i.e. loss of directional stability), as M increases 

further. At supersonic speeds, the experimental results exhibit differences 
due to the different fin shapes under test. One of the early models (5) had an 

actual cropped delta fin, and the results obtained are shown by the triangular 

symbols. These are seen to be above the results from models with the fin with 
rounded tip, and the loss of nv as M increases is greater. The corresponding 

theoretical estimates are shoun by the dashed and fill curves respectively, and , 

the difference caused by the change of fin shape is seen to be opposite to 
that found e~erimentally. This suggests that a different choice of "equivalent" 

cropped delta for the fin with rounded tip might give closer correlation between 

experiment and theory, as the variation with Mach number agrees well., there 

being a constant difference of 0.017 between theory end the experimental mean 

curve. However, no attempt has been made to adjust the theoretical estimate on 

this basis. The difference in the variation with M for the results of model5 

is probably due to tip loss effects on the actual cropped delta, which cannot 

be accounted for theoretically, and which sre eliminated experimentally by 

rounding the tips. 

The experimental results at transonic speeds are greater than the theoreti- 

cal curve, implying that the centre of pressure on the fin is further aft then 

calculated. A similar difference was noted in the comparison of experimental and 

theoretical results for mw end static margin (paras. 5.2 and 5.3). 

5.7 Rolling moment due to sideslip, R+ Fig.21 

Theoretically, the two major contributions to Rv are of opposite sign 43 , 

and comparable magnitude, and the estimates sre plotted separately in Fig.2l(b) 

and combined in Fig.2l(a) for comparison with experiment. The fin contribution 
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. 

is negative, while the induced pressures on the wing give rise to a positive 

rolling moment, both contributions decreasing in magnitude as M increases. 

(The dashed part of the curve is that obtained by neglecting wing tip effects 

on the induced pressures (see Section 4.4.3), end is an overestimate of the 

wing-fin interference effect.) The resultant estimate of Rv gives the correct 

variation with 14, but there is an almost constant difference of about 0.008 

between experiment and theory. However, sn error of this magnitude is not 

significant when considered relative to the magnitudes of the separate contribu- 

tions. Slender body theory 44 
gives Av = +0.0083 at M = 1, which is in reasonable 

agreement with the experimental results. 

For the test flight which established the experimental variation of .Ev 

between M = 1.2 and 1.6, the model flew at a small negative trio3med CL at the 

lower supersonic Machnumbers (e.g. CL = -0.004 at M = 1.2 and CL = -0.002 at 

M = 1.4), and so the increment in Rv due to incidence is also indicated on 

Fig.21. The estimated increment for the test flight under consideration is 

shown in Fi&.2l(b), and the constant increment for CL = -0.004 is shown in 

Fig.2l(a). 

5.8 Damping-in-roll derivative, R Fig.22 

The theoretical estimate 18 of the damping in roll of the equivalent cropped 

delta plenfonn is about lC$ greater than that obtained experimentally from the 

steady rolling tests at supersonic speeds, showing little variation with Mach 
number between M = 1.2 and 2.3 (see Fig.22(a)). The experimental results obtained 

from the oscillatory tests possibly indicate a reduction in damping as M increases 

above about 1.6, but the trend is not sufficiently established to warrant any 

revision of the theoretical estimate'. No explanation can be given of the 
e%Jerimental reduced damping at low supersonic speeds (M = 1.07 and 1.15). At 

14 = 1.0, sonic 21 theory end theexperimental results from the steady rolling tests 

agree rrell, but subsonically the estimate based on incompressible flow theo J5 
is below the experimental curve. 

The theoretical fin contribution to the damping is R 
pF 

= -0.0044, indepen- 

dent of I$ which agrees well with the experimental results shown in Fig.22(c) for 

* Values were obtained from lifting surface theory lb at M = 7.4 and 2.0, which 
did show a reduction in damping at the higher Mach number, but it was not possible 
with the present Mercury progsmmes to increase the number of spanwise points in 
the calculations sufficiently to confirm the results. 
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wing alone and wing with two fins, above and below the wing, where the experi- 

mental increment must be compsred with 2 A 
PF' 

5.9 Damping-in-yaw derivative nr - n> Fig.23 

The estimate based on the oscillatory damping of the fin 19,33 gives greater 

dsmping than the approxdmate values obtained from the sideslip derivatives, and 

is in better egreement h%th the experimental results at the low supersonic speeds. 

At the higher supersonic speeds, the two estimates converge, and are close to the 

experimental values. At sonic speeds, the result from slender body theory 27 is 

in sgreement with the experimental trend, which indicates increased dsn&ng in 

the sonic region. The theoretical subsonic results 34 are shown for completeness 

although there are no experimental results for comparison. 

6 CONCIJJSIONS 

Free-flight experiments have yielded values of the longitudinal end 

lateral stability derivatives for a slender wing-plus-fin design. The results 

were obtained at near-zero lift conditions throughout the speed range, M = 0.8 

to 2.4, end are compared with the theoretical estimates. 

The experimental values obtained from the various models are consistent, 

with little scatter in the results for the derivatives due to incidence and 

sideslip. The dsmping derivatives are more difficult to analyse from the . 
experimental &ta, so that greater scatter is evident, but the variation of the 

derivatives with Kach number is clearly defined. The damping-in-roll has also 

been obtained from steady rolling models, and the results agree well with those 

obtained from analysis of the Dutch-roll oscillation and the roll subsidence 

damping, except in the trsnsonic region. 

Tie theoretical. results are based on existing methods of estimation. In 

principle, it is possible to calculate the major contributions to all the 

derivatives using lifting-surface theories, some of which have been programmed 

for digital computers, and theoretical results are given for some specific Mach 

numbers snd frequencies. Ho%;ever, these programmes are lengthy, so two further 

sets of theoretical results have been evaluated in order to check the validity 

of the more simple theories. First, for supersonic speeds, not-so-slender 7 

theory and the lift-cancellation technique have been applied, for smsJ.l 

incidences, to a "mild gothic" planform, which is very close to the actual * 
planform of the models, so that the range M = 1.0 to 2.0 has been covered for 

the derivatives due to incidence and sideslip. Second, an "equivalent" cropped 

delta planform has been chosen for which slgebraic expressions or charts exist 

for most of the derivatives throughout the speed range. Where comparison 



between the various theoretical results is possible, the agreement is good, and 

the difference is usually less than the experimental scatter. 

i 
The agreement between experimental and theoretical results is reasonable, 

although the difference in msnoeuVre margin at trensonic speeds is appreciable, 

even when the non-linear contribution due to the trimmed angle of incidence is 

included. The experimental values of all the moment derivatives (except av) 

also indicate greater dependence on Mach number, for M greater than about 1.6, 

than is given by the theoretical results, but this may be due to the failure of 

existing theories to account for thickness effects at such speeds. However, the 

overall agreement is sufficiently good to enable one to estimate derivatives for 

similar slender wing designs with a fair degree of confidence, by applying 

correction factors, obtained from the present comparison, to the theoretical 

results. 

It should perhaps be reiterated here that the model design tested was 

purposely chosen to be a simple wing-plus-fin, so that the basic theories could 

be checked. Fkrther,tests will enable comparisons to be made for a lifting wing, 

when non-linear incidence effects may become important, and lsrger interference 

effects of the wing on the fin could be expected. These effects are more diffi- 

cult to estimate theoretically, but are essentially added contributions and 
. corrections to the linesr theories considered here. 

. 
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Table 7 

Model data 

Geometry 

Wing: Planform area 

Aspect ratio 

Planfom parameter, P 

Qsn/length ratio 

Geometric meen chord, c 

v01u?ne 

Thic'kness/chord ratio on centre line 

Newby area distribution 

Zero canber and twist 

Fin: Area (gross) 

Aspect ratio 
Geometric mean chord, cF 

Centre of gravity 

Typical weight end inertias 

Weight 

Inertia in roll, I, 

Inertia in pitch, I 
Y 

Inertia in yaw, I 

Product of inerti: Ix 

12.813 ft2 

0.865 

0.578 

0.5 

3.853 ft 

I .926 n? 

0.065 

4s.t x (7-x) 

1.281 f-b2 

0.695 

1.379 ft 

0.50 co 

208 lb 

1.4C slug ft2 

16.78 slug ft2 

16.96 slug ft2 

0.136 s~u@; t-t2 

f 

F 

. 
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SYMBOLS 

aspect ratio 

coefficients in series (equations (13) md (5)) 

lateral acceleration at the centre of gravity, ft/s2 

SPan 
lift coefficient, L/+pv2 S 

root chord 

geometric mean chord 

geometric mean chord of fin 

= - Qx 

= - I.& 

acceleration due to gravity, *t/s2 

position of aerodynamic centre on S 

position of centre of gravity on C 

moments of intertia in roll, pitch and yaw, respectively 
slug ft2 

product of inertia, slug ft2 

= I&lls~ 

= I&us', 

%ting index of roll subsidence mode 

rclling moment 
rolling moment derivatives, e.g . 5 = w//ap 

= L 'pVSb2 
d" 

= LJ$PVSb2 

= Lv,&VSb 

Mach number 

A 

AnJ “n . 
“Y 
b 

cL 
c 0 
c 

c 
F 

e x 
e 2, 

I xz 
i x 

i s 
k 
L 
4 

L P' v Lr, L 

a 
P 

a r 

% 

M 
M 

M 
s' Mw' ME, 

m 

",9 w 

pitching moment 

pitching moment derivatives, e.g. Mq = aA/dq 
mass of model 
= Ms/p s v E2 
= Mv/p SV: 

= M.JpscS 

yawing moment 

yawing moment derivatives, e.g. Np = oN//ap 
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$ 
n r 

n v 

n* v 

P 

P 
q 

Re 

R 

r 

r 

so 

sF 
6 

0 

SF 
B(X) 

SF(X) 
A 
t 

v 

v 

w 

x 

“g 
Y 

% 

yv 

Y 

z 

zw 
z 
w 

z 

i: 

SYMROLS (Contd) 

E N +pVSb* 
4 

= N,/+oVSb* 

= R&VSb 

= Ni,//pSb* 

plsnform parameter, S/bco 

rate of roll, rad/s 

rate of pitch, raa/s 

Reynolds number 

ratio of amplitude in Dutch-roll mode e.g. R 
amplitude In ay 

a# = smplitude inp > 
rate of yaw, rad/s 

defined in equation (8) 

wing area 

fin area 
wing semispan at trailing edge 

height of fin 

local semispsn of uing 

local height of fin 
based on co = 1 

. 

unit of aerodynamic time, m/p S V 

velocity along flight path 

lateral perturbation velocity 

normal perturbation velocity 

chordwise coordinate, with co = 1 

distance between centre of gravity and centre of pressure of 

fin 

distance of centre of gravity aft of wing apex, with co = 1 

sideforce 

sideforce derviative due to sideslip, Yv = dY/dv 

= YJp SV 

lateral coordinate 

normal force 

normal force derivative due to normal velocity, Zw = dZ/bw 

= zJp sv 

normal coordinate 

height of centre of pressure of fin 
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SYMBOLS (Contd) 

a 

i B 

r 
8 
8 (xl 

AO 
A 

3' A2 

b 
v1 
v2 
V 

=I 
VC 

2 
P 
a 
0 

mgle of incidence, rad (2 w/V) 

angle of sidesliP, rad (= v/V) 

JK in section 4.2 

gfuma function 

spsnwise parameter, equation (13) 

local apex angle of diamond cross-section at the leading edge 

sweepback tigle of leading edge 

taper ratio 

total damping of longitudinal short-period end Dutch-roll 

oscillations respectively 

relative density parameter, m/p Sso 

frequehiy of longitudinal short-period oscillation, rad/s 

frequency of lateral (Dutch-roll) oscillation, rad/s 
= V,/2% 4s 
=I V2/2% 4s 
air density, slugfd 

sidewash angle, rad 

phase angle (e.g. e rp is phase advance of r relative to p) 

velocity potential 

undamped natural frequency of lateral oscillation, r&/s 

suffixes 

F fin 

R reflected fin 

11 wing contribution 
'II + F wing-plus-fin contribution 

, ;, 

. 
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