MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Low-Speed Measurements of Skin Friction on a Large Half-Model Slender Wing

 byL. A. Wyatt and L F. East

LOW-SPEED MEASUREMENTS OF SKIN FRICTION ON
 A LARGE HALF-MODEL SLENDER WING

by
L. A. Wyatt
L. P. East

SUMMARY

Skin-friction measurements have been made on a half-model slender wing of 24 ft root chord at low subsonic speeds. The maximum root-chord Reynolds number was 30×10^{6}. The measurements were made using surface pitot-tubes formed by magnetically attaching razor-blade segments to the model surface. The results show that high levels of skin friction are present beneath the leading-edge vortex and are correlated satisfactorily with previous results obtained at lower Reynolds mumbers.

Ref. 1 describes comprehensive low-speed measurements of the skinfriction distribution over the upper surface of a slender wing (rhombic cone) at incidence, using the razor blade technique with the blades retained by magnets.

During a subsequent investigation of surface pressure fluctuations on a slender wing, a half-model wing of 24 ft root chord was built with the same plan-form as the rhombic cone and the opportunity has been taken to repeat some of the skin-friction measurements at the higher Reynolds number available.

The experiments were made in the R.A.E. Bedford $13 \mathrm{ft} \times 9 \mathrm{ft}$ low-speed wind-tunnel during Spring, 1966.

2 EXPERTMENTAL DETAILS

2.1 Model details

The measurements were made on the plane upper surface of a 'flat-plate' delta half-wing of full aspect ratio unity (leading-edge sweep 76°) with a basic root chord of 24 f t. The model consisted of a steel framework covered by 1 inch thick plywood skins with a smooth matt black finish and had a constant thickness of 6 inches except near the leading and trailing edges which were bevelled on the under-side to sharp edges with an included angle of about 34° (Fig.1). The wing was mounted vertically from the floor turntable of the $13 \mathrm{ft} \times 9 \mathrm{ft}$ tunnel (see Fig. 2) with the axis of rotation at the position of the estimated centre of pressure (60% root chord). Two alternative nose sections were provided. The leading edge apex of nose A was at floor level, whereas the apex of nose B was 3 inches above floor level (see Fig.1) and consequently was outside the 2 inch thick floor boundary layer. The corresponding model root chords and semi-spans were therefore $c_{A}=24 f t$, $s_{A}=6 \mathrm{ft}$ and $c_{B}=23 \mathrm{ft}, \mathrm{s}_{\mathrm{B}}=5.75 \mathrm{ft}$. A nominal clearance of 0.25 inch was left between the root of the model and the tunnel floor: this gap was sealed for nose B but was left open for nose A.

For the skin-friction measurements, two 4 inch wide brass plates each incorporating a row of magnets were flush mounted across the local span of the model in the upper surface. The plates were placed 9 ft and 18 ft back from the basic leading-edge apex, giving non-dimensional positions
$x / c_{A}=0.375,0.750$ and $x / c_{B}=0.348,0.739$ for noses A and B respectively (see Fig.1). There were 18 and 30 measuring points respectively in the forward and rear plates.

2.2 Experimental procedure

The experiments were conducted at nominal wind speeds of 150 and $200 \mathrm{ft} / \mathrm{sec}$, giving a maximum Reynolds number based on root chord of 30×10^{6} (cf. a maximum of 9×10^{6} in previous tests ${ }^{1}$) and at incidences between -2^{0} and 12° (uncorrected for wall constraint).

The skin friction was measured indirectly using small razor blade segments attached magnetically to the model surface. The segments were 0.005 inch high and were aligned with the surface flow direction, which was determined for each incidence by the oil flow visualisation technique. The details of the razor blade method used, including the calibration, are exactly the same as described in Ref.1.

Measurements were made with both nose shapes. In the previous tests ${ }^{1}$, distributed roughness had been applied at the apex to eliminate regions of laminar flow beneath the vortices near the nose of the model and so ensure a conical surface oil-flow pattern. On the half-model, roughness was needed with nose B, but not with nose A - presumably the turbulence level in the 2 inch thick floor boundary layer was a sufficient trigger in the latter case.

3 DISCUSSION OF RESULTS

3.1 0il flow patterns

The oil flow visualisation technique was used to pick out the dominant features of the surface flow beneath the vortex and so give a clear indication as to whether the flow could be regarded as conical or not. The flow tests showed that, at incidences of 0° and below, the leading-edge vortex was stronger over the forward portion of the model and conical flow was certainly not present. This was expected as the model itself was not conical. However at higher incidences there was no detectable influence of the model shape on the surface flow patterns which then appeared to be conical. Although a limited comparison only of the static pressure distributions at the two chordwise stations is available, the flow measurements show that, at least for incidences above 2°, a reasonably conical flow field existed.
$0 i l$ flow patterns were also taken at the wing-floor junction to determine the corner flow with the gap between the wing and floor both open and closed. As nose A was tested with the gap open whereas nose B was used with the gap sealed it is not entirely possible to separate the effects of the gap from those due to the different nose shapes. The oil flow patterns showed that with nose A at incidence, flow through the open gap interacted with the streamwise flow to generate a weak vortex lying in the wing-floor junction (Fig.3). The small vortex formed on the section of leading edge between the apex of nose B and the floor, which had the same direction of rotation as the vortex formed by the gap flow, did not persist far downstream and had no visible effect on the flow in the wing-floor junction which appeared to be parallel to the junction. It is concluded that any difference between the two configurations detected at a point distant from the apex and near the floor is more likely to be due to the gap than to the different apex configurations.

3.2 Static pressure measurements

The static pressure distributions across the model span are shown in Fig. 4 for $a=6^{\circ}$ and 10° and the complete results are tabulated in Table 1 together with the skin-friction coefficients. In both Table 1 and Figs.4, 5 and $6, y$ and s_{x} are measured, with nose B fitted, from the implied centre line of the complete model which passes through the apex (see Fig.1). This 3 Inch shift in zero affects the values of y / s_{x} and it appears that the suction peaks shown in Fig. 4 for different nose shapes and measuring stations line up more closely if the zero shift is ignored. Correlation of the positions of the sucticn peaks can also be achieved between noses A and B by increasing the values of a for nose B by about one degree. This is most clearly seen in Fig. 6 which summarzses the characteristics of the suction and skin-friction peaks. Although the addition of 1° improves the correlation of the position and magnitude of the suction peak for noses A and B, the correlation of the position of the maximum skin friction is little affected and that of its magnitude is worsened. It is probable that the effect of the gap is to lower the loading of the whole wing by an amount equivalent to a reduction of incidence of about one degree, but that changes in the cross flow produced by the gap, upon which the skin friction is strongly dependent, cannot be related in the same simple way.

In addition to the main suotion peak situated at $y / s_{x} \approx 0.7$ a much smaller peak shows up clearly at $j / s_{x} \approx 0.93$ which coincides with the secondary vortex as shown by the oil flow patterns.

3.3 Skin-friction measurements

The spanwise skin-friction distributions are shown in Fig. 5 and are tabulated in Table 1. The skin-friction coefficient C_{f} is based upon the free-stream kinetic pressure. In Fig. 5 the ratio $C_{f} / C_{f_{x}}$ is plotted in which $C_{f_{x}}$ is a two-dimensional skin-friction coefficient based upon the Reynolds number appropriate to the distance, x (see Fig.1), of the measuring station from the leading edge apex. The expression for $\mathrm{C}_{\mathrm{f}_{\mathrm{x}}}$ used is ${ }^{2}$,

$$
c_{f_{x}}=0.288\left(\log _{10} R_{x}\right)^{-2.45}
$$

In Ref. 1 it was found that the quantity $\mathrm{C}_{\mathrm{f}^{\prime}} / \mathrm{C}_{\mathrm{f}_{\mathbf{x}}}$ satisfactorily correlated the data for different Reynolds numbers at a given incidence and Fig. 5 shows that the present results also correlate. The previously established shape ${ }^{1}$ of the skin-friction distribution is confirmed, though for $a \geqslant 6^{\circ}$ the graphs show differences in the skin friction measured over the inboard half of the model which are attributed to the flow through the gap at the root. The higher values of skin friction obtained with the gap open are consistent with the slight divergence of the boundary layer over the inboard area of the model which is induced by the vortex (Fig. 3) at the model root.

Due to the presence of camber on the half model and the different wall constraint corrections for the two models, there is not an exact correspondence between incidences and direct comparison of the present results with those of Ref. 1 is not possible. However, as shown in Fig. 6, if the incidence of the complete model is decreased by 3°, good agreement is obtained as regards the dominant features of the skin friction and pressure distributions. Of this 3° incidence adjustment, about 2° can be regarded as allowing for the no-lift angle of the half-wing and the remaining 1° as a rough mean of the different wall corrections to incidence over the range of incidence covered. In this latter respect, it may be noted that $\mathrm{S} / \mathrm{C}=0.08$ and $\mathrm{c} / \mathrm{h}=0.67$ for the complete model, where $S / C=0.65$ and $c_{A} / h=1.85$ for the half model! (S is the wing area, C is the tunnel cross-sectional area and h is the
tunnel dimension in the incidence plane.) In Fig. 6 , the peak value of $C_{f} / C_{f_{x}}$ and its spanwise location y / s_{x} have been selected as the main features of the skin-friction distribution and are plotted against incidence. The incidences of the present tests have been lef't unchanged and those of Ref. 1 have had 3° subtracted from them. The two sets of data are then in good agreement and a similar comparison of the peak C_{p} and its spanwise location bears out this result. The variation of $\left(C_{f} / C_{f}^{f}\right)_{\max }$ and $\left(C_{f} / C_{f}\right)_{\text {min }}$ with incidence can also be eliminated by basing the skin-friction coefficient on the local kinetic pressure $\left(C_{f_{f}}\right)$ and the resultant values then agree with Ref.1. This agreement for the case of $\left(\mathrm{C}_{\mathrm{f}_{\mathrm{q}}} / \mathrm{C}_{\mathrm{f}_{\mathrm{x}}}\right)_{\text {max }}$ follows from the agreement shown in Fig. 6 since,

$$
\left.\left(c_{f} / C_{f}\right)_{x}\right)_{\max } \approx\left(c_{f} / c_{f_{x}}\right)_{\max } /\left(1-c_{p_{\max }}\right)
$$

Considering the reservations made regarding the precise nature of the half-model flow field and the differing camber and thickness distributions of the two models, the agreement is very satisfactory.

4 CONCLUSIONS

Measured skin-friction distributions on a large half-model of a slender wing at Reynolds numbers up to 30×10^{6} show good agreement with previous results from a complete model of slightly different geometry at lower Reynolds numbers. It is probable that data will be forthcoming from the HP 115 research aircraft which would extend these results to still higher Reynolds numbers.

Table 1

SKIN-FRICTION AND PRESSURE COEFFICIENTS

Nose A $x / c_{o}=0.75 \quad U=200 \mathrm{ft} / \mathrm{sec}$

$\mathrm{y} / \mathrm{s}_{\mathrm{x}}$	$a=0^{\circ}$		$a=2^{\circ}$		$a=4^{\circ}$		$a=6^{\circ}$	
	$10^{3} \mathrm{C}_{\mathrm{f}}$	$-^{-}{ }_{p}$	$10^{3} \mathrm{C}$	${ }_{-}^{-}$	$10^{3} \mathrm{C}_{\mathrm{f}}$	$-{ }_{-}$	$10^{3} \mathrm{c}_{\mathrm{f}}$	${ }_{-c}{ }_{p}$
0.109	$2 \cdot 3$	0.035	$2 \cdot 3$	0.051	$2 \cdot 5$	0.069	$2 \cdot 8$	0.089
$0 \cdot 184$	$2 \cdot 5$	0.037	$2 \cdot 3$	0.053	$2 \cdot 5$	0.070	$2 \cdot 8$	0.090
$0 \cdot 258$	$2 \cdot 6$	0.036	$2 \cdot 5$	0.052	$2 \cdot 8$	0.069	$3 \cdot 0$	0.088
0.332	$2 \cdot 8$	0.038	$2 \cdot 6$	0.053	$2 \cdot 6$	0.070	$3 \cdot 1$	0.089
0.407	$3 \cdot 0$	0.038	$2 \cdot 9$	0.052	$2 \cdot 9$	0.066	$3 \cdot 4$	0.085
0.444	$3 \cdot 1$	0.036	$2 \cdot 7$	0.050	$3 \cdot 0$	0.063	$3 \cdot 3$	0.083
0.481	$2 \cdot 9$	0.034	$2 \cdot 8$	0.045	$3 \cdot 0$	0.057	$3 \cdot 4$	0.084
0.518	$3 \cdot 0$	0.034	$3 \cdot 1$	0.044	$3 \cdot 1$	0.054	$3 \cdot 6$	0.092
0.555	$2 \cdot 7$	0.035	$3 \cdot 1$	0.042	$3 \cdot 2$	0.055	$3 \cdot 6$	0.114
0.592	$2 \cdot 8$	0.036	$3 \cdot 1$	0.037	$3 \cdot 5$	0.063	$4 \cdot 1$	0.157
0.630	$2 \cdot 8$	0.035	$3 \cdot 4$	0.034	$3 \cdot 7$	0.085	$5 \cdot 0$	0.230
0.648	$2 \cdot 9$	0.035	$3 \cdot 6$	0.035	$4 \cdot 1$	0.113	$4 \cdot 7$	0.281
0.667	$2 \cdot 9$	0.035	$3 \cdot 4$	0.039	$4 \cdot 4$	0.143	$4 \cdot 4$	0.336
0.685	$3 \cdot 1$	0.034	$3 \cdot 5$	0.051	$4 \cdot 3$	0.192	$5 \cdot 4$	0.391
0.704	$3 \cdot 1$	0.035	$3 \cdot 9$	0.071	$4 \cdot 6$	0.234	$5 \cdot 9$	0.441
$0 \cdot 722$	$3 \cdot 1$	0.036	$4 \cdot 3$	0.103	$5 \cdot 0$	$0 \cdot 291$	$5 \cdot 6$	0.477
0.741	$3 \cdot 1$	0.037	$4 \cdot 2$	0.139	$5 \cdot 0$	$0 \cdot 340$	$5 \cdot 4$	0.490
0.760	$3 \cdot 2$	0.039	$4 \cdot 2$	0.178	$5 \cdot 2$	0.375	$4 \cdot 9$	0.480
0.778	$3 \cdot 2$	0.046	$4 \cdot 6$	0.215	$5 \cdot 2$	0.383	$4 \cdot 7$	0.445
0.797	$3 \cdot 2$	$0 \cdot 048$	$4 \cdot 3$	0.236	$4 \cdot 7$	0.355	$4 \cdot 0$	$0 \cdot 386$
0.815	$3 \cdot 1$	0.049	$4 \cdot 2$	0.231	$3 \cdot 6$	0.297	$3 \cdot 0$	0.320
0.834	$2 \cdot 8$	0.049	$3 \cdot 5$	$0 \cdot 204$	$2 \cdot 5$	0.237	$2 \cdot 0$	0.290
0.852	$3 \cdot 1$	$0 \cdot 049$	$2 \cdot 9$	0.169	$1 \cdot 8$	0.220	$2 \cdot 1$	0.285
0.871	$3 \cdot 0$	0.060	$2 \cdot 1$	0.149	$2 \cdot 1$	0.218	$2 \cdot 4$	$0 \cdot 284$
0.890	$2 \cdot 9$	0.069	$1 \cdot 9$	0.145	$2 \cdot 1$	$0 \cdot 218$	$2 \cdot 2$	0.282
0.908	$2 \cdot 8$	0.075	$2 \cdot 3$	0.144	$2 \cdot 9$	0.220	$3 \cdot 1$	0.288
0.927	$2 \cdot 6$	0.074	$3 \cdot 0$	0.143	$3 \cdot 2$	0.219	$3 \cdot 4$	0.296
0.945	$2 \cdot 3$	0.073	$2 \cdot 8$	0.138	$3 \cdot 6$	0.210	$3 \cdot 7$	0.284
0.964	$2 \cdot 2$	0.075	$2 \cdot 9$	$0 \cdot 135$	$3 \cdot 1$	0.202	$3 \cdot 5$	0.267
0.983	$2 \cdot 0$	0.075	$2 \cdot 6$	0.132	$3 \cdot 0$	0.196	$3 \cdot 2$	0.258

Table 1 (contd)
Nose A $\quad x / c_{o}=0.75 \quad U=150 \mathrm{ft} / \mathrm{sec}$

${ }^{\prime} / s_{x}$	$a=8^{\circ}$		$a=10^{\circ}$		$a=12^{\circ}$	
	$10^{3} \mathrm{C}_{\mathrm{f}}$	$-^{-}$	$10^{3} \mathrm{C}$	$-\mathrm{C}_{\mathrm{p}}$	$10^{3} \mathrm{C}_{\mathrm{f}}$	${ }_{-}{ }^{\text {p }}$
0.109	$3 \cdot 3$	0.123	$3 \cdot 4$	0.147	$3 \cdot 5$	0.188
0.184	$3 \cdot 4$	0.123	$3 \cdot 5$	0.138	$3 \cdot 5$	0.173
0.254	$3 \cdot 5$	0.121	$3 \cdot 5$	0.141	$3 \cdot 7$	0.184
0.332	$3 \cdot 5$	0.124	$3 \cdot 8$	$0 \cdot 155$	$3 \cdot 9$	0.209
0.407	$3 \cdot 6$	0.129	$4 \cdot 1$	$0 \cdot 181$	$4 \cdot 3$	0.266
0.444	$3 \cdot 8$	0.136	$4 \cdot 3$	0.206	$4 \cdot 6$	0.315
0.481	$4 \cdot 0$	0.155	$4 \cdot 5$	0.251	$5 \cdot 2$	0.377
0.518	$4 \cdot 4$	0.191	$4 \cdot 6$	0.318	$5 \cdot 3$	0.468
0.555	$4 \cdot 6$	0.255	$5 \cdot 2$	$0 \cdot 412$	$6 \cdot 3$	0.586
0.592	$4 \cdot 8$	0.343	$5 \cdot 4$	0.525	$6 \cdot 7$	0.704
0.630	$5 \cdot 6$	0.458	$6 \cdot 5$	0.639	$6 \cdot 8$	0.806
0.648	$5 \cdot 9$	0.519	$6 \cdot 7$	0.691	$7 \cdot 0$	0.846
0.667	$6 \cdot 5$	0.575	$6 \cdot 2$	0.730	$6 \cdot 9$	0.872
0.685	$6 \cdot 4$	0.616	$6 \cdot 5$	0.749	$6 \cdot 9$	0.880
0.704	$6 \cdot 3$	0.645	$6 \cdot 4$	0.753	$6 \cdot 6$	0.866
0.722	$5 \cdot 9$	0.648	$5 \cdot 9$	0.736	$6 \cdot 2$	0.835
$0 \cdot 741$	$5 \cdot 5$	0.628	$5 \cdot 0$	0.694	$5 \cdot 9$	0.788
0.760	$5 \cdot 0$	0.586	$4 \cdot 6$	0.639	$4 \cdot 9$	0.727
0.778	$4 \cdot 5$	0.526	$4 \cdot 4$	0.575	$4 \cdot 5$	0.659
0.797	$3 \cdot 7$	0.456	$3 \cdot 4$	0.506	$3 \cdot 8$	0.590
0.815	$2 \cdot 8$	0.403	$2 \cdot 6$	0.462	$2 \cdot 7$	0.544
0.834	$2 \cdot 0$	0.388	$1 \cdot 8$	0.449	$2 \cdot 0$	0.529
0.852	$2 \cdot 3$	$0 \cdot 382$	$2 \cdot 3$	0.444	$2 \cdot 0$	0.519
0.871	$2 \cdot 5$	$0 \cdot 382$	$2 \cdot 6$	0.446	$3 \cdot 0$	$0 \cdot 522$
0.890	$2 \cdot 2$	$0 \cdot 380$	$2 \cdot 2$	0.444	$2 \cdot 5$	0.522
0.908	$3 \cdot 1$	$0 \cdot 386$	$3 \cdot 1$	0.449	$3 \cdot 1$	0.522
0.927	$3 \cdot 7$	0.398	$3 \cdot 9$	0.464	$3 \cdot 7$	0.537
0.945	$4 \cdot 1$	$0 \cdot 395$	$4 \cdot 0$	0.465	$4 \cdot 4$	0.546
0.964	$4 \cdot 1$	0.369	$4 \cdot 2$	0.441	$4 \cdot 3$	0.528
0.983	$4 \cdot 1$	0.356	$4 \cdot 2$	$0 \cdot 418$	$4 \cdot 2$	0.494

Table 1 (contd)
Nose B $\quad x / c_{0}=0.74 \quad U=150 \mathrm{ft} / \mathrm{sec}$

$\mathrm{y} / \mathrm{s}_{\mathrm{x}}$	$a=2^{\circ}$		$a=4^{\circ}$		$a=6^{\circ}$		$\alpha=8^{\circ}$	
	$10^{3} \mathrm{c}_{\mathrm{f}}$	${ }_{-} \mathrm{C}_{\mathrm{p}}$	$10^{3} \mathrm{C}_{\mathrm{f}}$	${ }_{-}^{-}{ }_{p}$	$10^{3} \mathrm{c}_{\mathrm{f}}$	$-_{\text {- }}$	$10^{3} \mathrm{c}_{\mathrm{f}}$	${ }_{-}^{-}{ }_{p}$
0.056	$2 \cdot 4$	0.061	$2 \cdot 7$	0.080	$2 \cdot 5$	0.099	$2 \cdot 7$	0.122
0.135	$2 \cdot 5$	0.060	$2 \cdot 5$	0.080	$2 \cdot 5$	0.098	$2 \cdot 8$	$0 \cdot 121$
0.214	$2 \cdot 5$	0.060	$2 \cdot 7$	0.077	$2 \cdot 7$	0.097	$2 \cdot 8$	0.121
0.293	$2 \cdot 2$	0.050	$1 \cdot 9$	0.048	$2 \cdot 6$	0.082	$2 \cdot 8$	0.107
0.371	$2 \cdot 9$	0.059	$2 \cdot 6$	0.055	$3 \cdot 0$	0.095	$2 \cdot 9$	0.136
0.411	$2 \cdot 9$	0.056	$3 \cdot 0$	0.071	$3 \cdot 1$	0.095	$3 \cdot 5$	0.148
0.450	$3 \cdot 2$	0.054	$2 \cdot 6$	0.048	$3 \cdot 2$	$0 \cdot 100$	$3 \cdot 9$	0.172
0.490	$3 \cdot 2$	0.052	$2 \cdot 7$	0.047	$3 \cdot 6$	$0 \cdot 114$	$3 \cdot 7$	0.215
0.529	$3 \cdot 2$	0.049	$3 \cdot 6$	0.070	$3 \cdot 7$	$0 \cdot 143$	$4 \cdot 3$	0.283
0.568	$3 \cdot 3$	0.045	$3 \cdot 8$	0.085	$4 \cdot 0$	0.199	$4 \cdot 6$	0.379
0.608	$3 \cdot 4$	0.0.04	$3 \cdot 9$	0.122	$4 \cdot 3$	0.287	$5 \cdot 0$	0.495
0.627	$3 \cdot 6$	0.046	$4 \cdot 3$	0.154	$4 \cdot 9$	$0 \cdot 345$	$5 \cdot 4$	0.553
0.647	$3 \cdot 7$	0.055	$4 \cdot 2$	0.197	$5 \cdot 0$	0.407	$5 \cdot 7$	0.607
0.667	$3 \cdot 9$	0.075	$4 \cdot 7$	0.250	$5 \cdot 6$	0.468	$5 \cdot 9$	0.649
0.686	$4 \cdot 0$	0.104	$4 \cdot 7$	0.311	$5 \cdot 5$	0.519	$5 \cdot 9$	0.668
0.706	$4 \cdot 3$	0.149	$5 \cdot 5$	$0 \cdot 371$	$5 \cdot 5$	0.552	$6 \cdot 0$	0.673
0.726	$4 \cdot 5$	$0 \cdot 191$	$5 \cdot 2$	0.419	$5 \cdot 0$	0.561	$5 \cdot 2$	0.652
0.745	$4 \cdot 3$	$0 \cdot 240$	$5 \cdot 3$	0.444	$4 \cdot 7$	0.540	$4 \cdot 9$	0.608
0.765	$4 \cdot 7$	0.285	$4 \cdot 8$	0.436	$4 \cdot 3$	0.494	$4 \cdot 3$	0.553
0.785	$4 \cdot 7$	$0 \cdot 302$	$4 \cdot 6$	0.392	$3 \cdot 7$	0.427	$3 \cdot 4$	0.479
$0 \cdot 804$	$4 \cdot 4$	$0 \cdot 284$	$3 \cdot 5$	0.323	$2 \cdot 9$	0.359	$2 \cdot 7$	0.422
0.824	$3 \cdot 5$	0.236	$2 \cdot 4$	0.267	$1 \cdot 8$	0.331	$1 \cdot 8$	0.401
0.844	$2 \cdot 5$	0.191	$1 \cdot 8$	0.255	$1 \cdot 9$	0.325	$2 \cdot 1$	0.396
0.863	$2 \cdot 1$	0.154	$2 \cdot 4$	0.221	$2 \cdot 8$	0.284	$2 \cdot 8$	$0 \cdot 348$
0.883	$2 \cdot 1$	0.177	$2 \cdot 3$	0.253	$2 \cdot 0$	0.324	$2 \cdot 0$	0.393
0.903	$2 \cdot 6$	0.179	$3 \cdot 1$	0.259	$2 \cdot 7$	0.330	$2 \cdot 7$	0.398
0.922	$3 \cdot 1$	0.176	$3 \cdot 3$	0.260	$3 \cdot 2$	0.339	$3 \cdot 6$	0.413
0.942	$3 \cdot 1$	0.167	$3 \cdot 5$	0.251	$3 \cdot 4$	0.329	$3 \cdot 9$	0.413
0.962	$3 \cdot 0$	$0 \cdot 162$	$3 \cdot 3$	0.235	$3 \cdot 6$	$0 \cdot 309$	$3 \cdot 9$	0.390
0.981	$2 \cdot 8$	0.159	$3 \cdot 0$	0.230	$3 \cdot 5$	0.298	$3 \cdot 8$	0.370

Table 1 (contd)
Nose B $\quad x / c_{0}=0.35 \quad U=150 \mathrm{ft} / \mathrm{sec}$

y / s_{x}	$a=2^{\circ}$		$a=6^{\circ}$		$a=10^{\circ}$	
	$10^{3} \mathrm{C}_{\mathrm{f}}$	${ }_{-C}$	$10^{3} c_{f}$	${ }_{-c}{ }^{\text {p }}$	$10^{3} c_{f}$	${ }_{-0}$
0.079	$2 \cdot 8$	0.053	$2 \cdot 9$	0.111	$3 \cdot 3$	$0 \cdot 201$
0.163	$2 \cdot 9$	0.051	$2 \cdot 9$	0.109	$3 \cdot 6$	$0 \cdot 203$
$0 \cdot 247$	$3 \cdot 3$	0.046	$3 \cdot 3$	0.105	$3 \cdot 6$	$0 \cdot 210$
0.331	$3 \cdot 1$	$0 \cdot 042$	$3 \cdot 4$	0.101	$4 \cdot 0$	$0 \cdot 232$
0.415	$3 \cdot 5$	$0 \cdot 042$	$3 \cdot 6$	0.108	$4 \cdot 7$	0.303
0.457	3.6	0.040	$3 \cdot 8$	0.116	$6 \cdot 4$	$0 \cdot 365$
0.499	$3 \cdot 7$	0.037	$4 \cdot 2$	0.139	$5 \cdot 5$	0.457
0.541	$4 \cdot 1$	0.029	$4 \cdot 6$	0.180	$6 \cdot 1$	0.573
0.583	$4 \cdot 5$	0.031	$5 \cdot 1$	0.264	$6 \cdot 9$	0.711
0.625	$4 \cdot 5$	0.040	$5 \cdot 7$	0.367	$7 \cdot 0$	0.821
0.667	$5 \cdot 0$	0.088	$6 \cdot 2$	0.509	$7 \cdot 3$	0.881
0.709	$5 \cdot 4$	0.185	$6 \cdot 2$	0.583	$6 \cdot 0$	0.854
0.751	$5 \cdot 8$	0.297	$5 \cdot 4$	0.542	$4 \cdot 7$	0.735
0.793	$4 \cdot 8$	0.274	$3 \cdot 3$	0.413	$3 \cdot 2$	0.613
0.835	$2 \cdot 8$	0.179	$2 \cdot 0$	0.354	$2 \cdot 0$	0.564
0.877	$2 \cdot 4$	0.169	$2 \cdot 1$	$0 \cdot 349$	$2 \cdot 4$	0.558
0.919	$3 \cdot 8$	0.169	$4 \cdot 2$	0.370	$4 \cdot 1$	0.578
0.961	$3 \cdot 8$	0.153	$4 \cdot 2$	0.334	$4 \cdot 8$	0.567

SYMBOLS

$x \quad$ distance behind leading-edge apex
y spanwise distance from wing root
c root chord
s
s_{x}
a incidence
U tunnel free-stream velocity
$C_{p} \quad$ pressure coefficient
$C_{f} \quad$ skin-friction coefficient
$\mathrm{C}_{\mathrm{f}} \quad$ skin-friction coefficient based on local kinetic pressure
S wing area
C tunnel cross-sectional area
h tunnel dimension in incidence plane
()$_{A, B}$ suffices referring to noses A and B respectively

REFERENCES

No.
1

2

Author
L. A. Wyatt
L. F. East

Title, etc.

Low-speed measurements of skin friction on a slender wing.
A.R.C. R. \& M. 3499, 1966
R.J. Monaghan Formulae and approximations for aerodynamic heating rates in high speed flight.
A.R.C. C.P. 360,1956

Fig. I G.A. of slender wing half-model

Fig. 2 Model in 13f1. X 9 ft. tunnel

Not to scale

Fig. 3 Effect of flow through gap at wing root

Fig. 4 Distribution of C_{p} over upper surface at $\alpha=6^{\circ}, 10^{\circ}$

Fig. 5 Distribution of $C_{f} / C_{f x}$ over upper surface at $\alpha=2^{\circ}, 4^{\circ}$

Fig. 5 contd Distribution of $C_{f} / C_{f x}$ over upper surface at $\alpha=6^{\circ}, 8^{\circ}$

Fig. 5 concld Distribution of $C_{f} / C_{f_{x}}$ over upper surface at $\alpha=10^{\circ}, 12^{\circ}$

Fig. 6 Comparison with test results
on Rhombic cone
Printed in England for Her hajesty's Stationery Office by
the Roval Atrcraft Establishment Farnbororbeh. Dd 135845×3

$$
\begin{array}{ll}
\text { A.R.C. C.P. No. } 1007 & 532.526 .7: \\
\text { AUgust } 1967 & 533.693 .3: \\
\text { ryatt, L.A. } & 533.6 .071: \\
\text { East. L.F. } & 533.6 .011 .32 / 34 \\
\text { LOW-SPEED MEASUREIENTS OF SKIN FRICTION ON A LARGE } \\
\text { HALF-MODEL SLENDER WING } \\
& \\
\text { Skin-friction measurements have been made on a half-model slender wing of } \\
\text { 4 ft root chord at low subsonic speeds. The maximum root-chord Reynolds } \\
\text { number was } 30 \times 10^{6} \text {. The measurements were made using surface pitot-tubes } \\
\text { formed by magnetically attaching razor-blade segaents to the model surface. } \\
\text { The results show that high levels of skin iriction are present beneath the } \\
\text { leading-ecge vortex and are correlated satisfactorily with previous results } \\
\text { obtalned at lower Reynolds mumbers. }
\end{array}
$$

```
A.R.C. C.P. NO. }100
August 1967
Wyatt, L.A.
Cast, L.F.
```


LOW-SPEED TEASUREMENTS OF SKIN FRICTI ON ON A LARGE HALF-MOOEL SLENDER WING

Skin-iriction measurements have been made on a half-model slender wing of 24 it root chord at low subsonic speeds. The maximm root-chord Reynolds number was 30×10^{6}. The measurements were made using surface pitotmbes formed by magnetically attaching razor-blade segments to the model surface. The results show that high levels of skin friction are present beneath the leading-edge vortex and are correlated satisfactorily with previous results obtalned at lower Reynolds numbers.

A.R.C. C.P. NO. 1007	$532.526 .7:$
August 1967	$533.693 .3:$
Watt, L.A.	$533.6 .071:$
Cost.	$533.6 .011 .32 / 34$

33.693 .3 :
533.6 .071 :
$533.6 .011 .32 / 34$
532.526.7:
533.693 .3 :
533.6 .071 :
$533.6 .011 .32 / 34$
kJatt, L.A.
53.6.011.32

LOTーSPESD MEASURCMENTS OF SKIN FRICTION ON A LARGE HALF-MODEL SLENDER NING

Skin-friction measurements have been made on a half-model slender wing of 24 ft root chord at low subsonic speeds. The maximum root-chord Reynolds number was 30×10^{6}. The measurements pere made using surface pitot-tubes formed by magnetically attaching razor-blade segments to the model surface. The results show that high levels of skin iriction are present beneath the leading-edge vortex and are correlated satisfactorily with previous results obtained at lower Reynolds numbers.

- Crown Copyrıght 1968

Published by

Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w C 1
423 Oxford Street, London w 1
13A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Farrfax Street, Bristol 1
258-259 Broad Street, Birmingham 1
7-11 Linenhall Street, Belfast 2
or through any bookseller

C.P. No. 1007

