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S-Y 

The problem of diffraction of an oblique shook wave has been 
considered in this paper. The investigations are devoted to the cases when 
the relative outflow behind the reflected shwk before diffraction is 
subsonic and sonio. The distribution of pressure has been obtained for 
finite and infinite shock strengths for both these cases. 

Introduction 

The problem of diffraotion of a plane st sight shock wave past a 
small bend in a plane wall was solved by Lighthill 3 . The problem oonsiderea 
in this paper deals with the owe of diffraction of an oblique shock wave. 
For studying the case of diffraction of an oblique shock wave, lmowledgs of 
the theory of regular reflection frcm * rigid wall is necessary. Inworkon 
shook reflection usually three critical angles of incidence are introduoed5: 

(1) as (sonio angle) is such that for angles of incidence a0 < as 
one gets supersonic relative outflow behind the refleoted shook and, fw 

aoz as subsonic and sonic flows .sre obtainea respectively. 

(2) ae is the theoretical extreme angle beyond which'regular 
reflection Is not possible. 

(3) a;, sanewhat greater than ae, is the limiting angle of incidence 
beyond whioh regular reflectian is not observed experimentally. 

In the present problem the physical constants defining the problem 
will be U the velocity of the point of interseotion of incident and 
reflected shocks, po, p. the pressure and density of the still air, ad 6 
the angle of the bend. The angle uf the bend is assumed to be small and so 
also are the variations of velocity and pressure. For the oblique shook 
diffracticrn problem one has to consider two regions, one region being the 
region between the inoident and refleoted shook and the 

8 ther being the 
region behind the refleoted shock. In an earlier paper it has been 

established/ 

* 
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established that the region between the incident and reflected shock remains 
undisturbed for all incident shock strengths after the shock configuration 
has crossed the corner. In Ref. .5 the work of Ref. 6 has been reviewed and 
it has been arguea there that for 01~ < as, Mach reflection would take place 
after the shock configuration has crossed the corner. A referee of the 
present paper has pointed out that the conclusion about Mach reflection in 
Ref. 5 is incorrect as in this case also one would get a region of 
non-uniform flow enclosed by arc of the unit circle, the rnrall and reflected 
shock, even though the point of intersection of the incident and reflected 
shock is outside the unit circle. The case af diffraction for a0 < as 
therefare remains to be Fnvestigated; Dr. Ter-Minasyants of Moscow University 
Ccmputing Centre, in a private communication, states that he has clone this. 

The oases treated in the present paper refers to subsonic and sonic 
relative cutflows, i.e., one has to be in the range as d a0 d ae. It is 
necessary to discuss the experimental and theoretical results in this range 
in order to make a proper choice of data for carrying out the numerical work. 
Bleakney and Taub' have stated that the theory and experiment are confused 
between sonic angle curve and a: curve but there is a good deal of evidence 
which shows that the theory and experiment are in good agreement (e.g., in the 
prediction of angle of reflection) for angle of incidence up to the 
theoretical extreme angle curve for all incident shock strengths2,4. The 
discrepancy between theory and experiment exists beyond a = ore; in fact, 
between it and another curve (experimental curve a0 = a: for the onset of 
Mach reflection) which is slightly above the theoretioal eztreme angle curve; 
in this region regular reflection appears to continue to take place. 
However, the numerical computation carried cut does not refer to this 
troublesome range but to the range where theory and experiment agree well. 

In the first instance the mthematical solution has been obtained 
for both subsonic and sonic cases. The paper has been divided into three 
parts. Part I and Part II deal with the theoretical solutica for subsonio 
and sonic cases respectively. In Part III pressure distributim along the 
wall has been obtained for infinite and finite shock strengths for both 
subsonic end sonio cases. The angle of the bend has been taken to be 
04 radian. 

Kathematwal FonmiLation 

The shock relations across the inczdent and reflected shock (Fig. 1) 
before diffraction are given by equatxms (1) and (2) of Ref. 5. 

After the shock configuration has crossed the corner, let the velocity, 
press-, density and entropy at any point be <, pi, P: and G. Choose (X,Y) 
axeswzth origin at the cornerandX-axis along the originalvmllproduced. By 
the application of Llghthill's linearisation and by the help of the transfomatlon 

x-et Y 
-+l 
s, 

= x, - = y, - = 1(1 + 4, 4 
St +t e 

I 

! 

. ..(I) 

pa - pa 

a,q.apa 
the/ 
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the equation of cont%nuity and the equations of motion behind the diffracted 
reflected shock give the following equations: 

ap ap au av 
x-+y- = -+- 

ax as ax a 

a~ at2 ap 
x-+y- = - 

ax ay ax 

. ..(2) 

. ..(3) 

av av ap 
x-+y- = -. . ..(4) 

ax rty as 

In the new axes the origin is at a point on the original wd.~. 
produced. The straight part of the reflected shoak lies along a fixed line 
x = k-ycota 

i 
where k = (U - 9,)/a,. The corner is at the point, 

(- Mb.' 0) where s/a. Immediately behind the reflected dif'fracted shook 
the conditions at t pzintawdl be given by the right-hand sides of equation (2) 
of Ref. 5 if U* is replaced therein by the shock velocity normal to itself 
and s', denotes the total velocity in the region between the incident end 
reflected shook. 

Now sFnce the whole field suffers a uniform expansion in time about 
the corner, the velocity on each point of the shook is (X/t, Y/t) in the (X,Y) 
system of cc-ordinates. Henoe the velooity of the shock normalto itself' is 
i: where tg is the vector perpendicular drawn from the corner to the tangent 
to the shook at that point. In terms of z, the boundary conditions at the 
shock are 

where 2 z q, sin(0' + s) sin(a. + s), q, sin(8' 

E being%mdl. 

. ..(6) 

+ E) co&, + E), 

Let the equation of the shock in the new oo-ordinates be 
H = k - y oot as + f(y) where f(y)+ oould be regarded as small as the 
angle of bena is small. In Fig. 2 ON is tx and is denoted by 

(X-*z)sin%J, (X-Y~)sin$cos~ 

where Jr = as + s. Therefore 
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&[(+) sin a, cos cl,(tan aa + 2E), 

(x - Y i) (sin a2 cos a2 + E cos 2Q-J . 

Hence 

ith= Iu + q(Y) - a,yf'(y) + u sin 2aaf'(y)js5m%, 

I OJ + a,f(s) - % JTf'(y))sin aa cos aa + u sin2a2 cos 2aaf'(y)]. 

As f(Y) is small,terms oontaining f(y)f'(y>, y{f'(y)]s have been neglected. 
Now since the tangential velocities are equal, equation (2) of Ref; 5 gives 

. ..(7) 

where 
(3 - ;,, = (v sin aa, v a09 a,J 

V = (IJ sin a 
a 

- qisin 0') 3 l 

. ..(8) 

Now from equations (5), (6) and (7) one obtains after simplification 

u = AF + BP(y) . ..(9) 

v = A,F + B,f'(y) . ..(I01 

p = A," + B=f'(y) . ..(I11 

where F = a,f(y) - a,yf'(y) - q, cos c$f'(y)sin as and A, AI, pa, 

B, B i and B, are constants. At the shock boundary therefore we obtain 

ap B, - A,G au Ba - A=G av 
-= .- = .- . ..(12) 
ay B - AG ay B, - A,G @ 

where G = (sy + q2 cos a, sin (a). Now equations (2), (3) and (4) have 
to be solved under the follming boundary conditions: 

any = 0 v = -6 x>-M, 

v = 0 x< - Id,. 

On the shock boundary x = k - y cot a,, u, v, p are related by equations (12). 
On the remaining boundary between the disturbed flow and uniform flow 
u = v = p = 0. 

Elimination/ 
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Elimination of u and v 

By eliminating u 
single second order partial 

( 

a a 
x-+y- 

ax ity 

and v from equations (2), (3) and (4) we get a 
differential equation in p. The equation is 

)( 

aa P a% 
+1 -+-. . ..(l3) 

a? ap 

This equation is hyperbolic for xa + ya > I and elliptic for xa + 3 < 1; 
its characteristics are all tangents to the unit oircle xa + ya = 1. It 
is, therefore, reasonable to assume that the redon of disturbance will be 
enclosed by an arc of the unit cirale, and by the refleoted shock. 
As in Lighthill's paper we obtain 

(3.) On the wall y = 0, E = 0 exoept at the corner. . ..(14) 

At the oorner 

Lt 
-M,+ c 

3-O I 
a"& 
aY 

= Id,&. 

-Id,-c 

(ii) On the oirole f + $ = I 

P = 0, 9 > 0, xtk - y oot aa. 

(b) Ma > 1 

(I) On the wall 2 = 0. 
as 

(ii) On the.unit ciccle 2 + ya = I 

P 0 = , x,-L. 
Ma 

On the shook boundary x E k - y cot a,, p satisfies the equation 

(k - p act as) 
c 

(k - y cot as) E + y "3 
as 

ap B-AG ap 
= --y - + (k - 

Bi - AIG ap 
-. 

3x Ba - AsG ay 
y cot a,) 

B a - A2G aS 

. ..(15) 

. ..(16) 

. ..(17) 

. ..(18) 

. ..(19) 

NOW,/ 
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NOW, since v = - 6 at (k,O) 

I 
"ay I 

I 

% - A,G 
ap = 6 

b 
. ..(20) 

r Ba - A,G 

where l' denotes the diffraoted partion of the shook starting frcm the wall. 

We have, therefme, to obtain a velue of p which satisfies the 
boundary omditions (lb), (15), (16), (IV) and (20) in the ease Ms < I. In 
the ease Ms > 1 (17), (IE), (19) and (20) hold good on the boundaries. 

Unaer the transfomatifm x = r 00s 0, y = r sin 8 where 

[I - (1 - r+] 
P = 

r 

equation (13) becanes Laplace's equaticm 

a% 1 ap I asp 
-+--+-- z 0 
apa P ap pa sea 

in (p&J) as polar cmxdinates. 

Now the circle r = 1 becanes the oirole p = I. Also we have 
2 

r = P sothattheline x 
(1 + P") 

= k-y oat as becams an aro of the 

circle ’ 
2p sin(6 + as) 

I + pa 
= k sin as. 

Let the initial line be rotated through an angle ( : - a,). 
2~ stile + 4 = k sFn a 

(Fk. 3.) The 

oirole 
(1 + P”) 

a is tFansfmea into the oircle 

2p 00s 8 = k sin a,(1 + pa) whiah outs the oFrole p = I orthogoaally at 

oos 8 = k sin as. 

Following Lighthillwe new have 

Max' K= (I - Pseoae)Sap/an 

dp/ar' = (I - Ka) 
tan 0 + 

(I -m adas 
. ..@I) 

where x', y' refer to new axes, @ is measured from the new initial line, 
K = ksina, and &I ana & are elements normal and tangential to the 
olrculer are 2p 00s 8 = k sin a,(1 + p") respectively towards its centre 

ma away fran the initial line e = 0. 
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ada 1 +ap/axtana 
ap/dy a 

= 
Way Wax tana - - P aday 

Substituting the value of 0 from (19) 
( adad 

and using the faot that 

9 = K[OOS a, + sin a, tan @I we obtain 

(bp/*') Ci+D,tan9+E~tana8+F~t.an3 8 

(aph') = C: +D;tan@+E:tan%+ F:tans 8 

where CI, D,, E,, F,, C:, D:, E: and Pi are lmmn oonstants. 

Fran (21) and (22) 

. ..(22) 

( adad x 
= f 

(adas) 
= f(tan Q) 

( ( 
tan e+aa-- 

2 >) 

where 0 in the seoond expression is measured fran the original position of 
the initial line. The function f is known. Putting & P p 008 8, 
v = p sin 0 the condition holding at the oorner is 

. ..(23) 

The other boundary oonditians are unaltered. 

Conformal Transformation 

Now p is given as a harmonic funoticm satisfying certain boundary 
oondltions in a triangle ABC with AB and BC oirodar ares and AC a straight 
segment as shown in Fig. 4. 

To solve this problem oonfonnal transformatiw is neoessary. The 
transformation introduced is 

C 

2K' 
z = (K+iIc') i - 

G:- (K+iK') 1 
where Ka + Kta = 1 and Z = pei8. 
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On the shook bcundary (pa +l)K = 2~ cos 8 wa get 

4GG-zF 
z = 

[K'oos 8 - K sin e] 

whioh is purely real and inoreases frm 

[&Pa, - Ka]' 

[K'sin a, + K 00s a,] 
to +a. 

Solving (24) we get 

K' (Z" - 1) 
tane = - 

K (Za +I)' 

On the unit olrole X = 0 and Y varies frann 

K+ sin a, 
to +oo. 

1 +Ksinaa-K'oosa, 

The 5d.l gets tram-me.3 into the 0ir0le 

. ..(26) 

. ..@5) 

(K'sin a, + K 00s aa) = [K'sin ap + K 00s as 1". 

The region enclosed inside the triangle In the C-plane goes into the shaded 
region of Z-plans (Fig. 5). 

and 

b= 
K'sF~cz~+Koos~ ? 

K'sin a, - K DOS as 

)i i cot- 
c 

00s a* 
- 
(sin'a, - P)H 3 

. ..(26) 

converts the shaded region in Z-plane into the lower half &,-plans. The 
shook boundary oorresponds to the real z,-axLs with Z~ > 1. The w6l.l 
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beccmes a part. of the real axis with eI < -1. The unit circle becomes the 
part of the real axis dith -1 < .zI <I (Fig. 6). With this transformation 
the shock boundary oonditions transforms to 

C, + D,tan 0+ E,tan= 0 + F,t.sn= 8 P 
tan63 

C: +D~tanB+E~tana~+F~tana @ (1 - P) 

[I - P seoa C3]’ 
x - 

. Cap/%-i1 

(I - x=1 h&xi) 
. ..(27) 

for xi > 1, y, = 0. 

Here tanB where 2 is replaced by zi = xi 

from (26). The wall bmn&my condition is that -% = 
asi 

0 when 

*i < 'I, y I = 0. The disoontinuitg oonc7.ition (23) now beocmes 

-Lt aPdx 

I 

K" 
-y;*o E 1 = 

(1 - h¶y" 
. ..(28) 

and holds at the point 

c 

x 
- cash - tanh-' 

(1 - M$4(sin%, - KS) 

": = xo = 
3 

< -1 
A (MsK + sin a,) 

. ..(29) 

carrespondingto the point 

in the &plane. 

The oondition on the third bound&y can be written * 0 

when 
ax, = 

-f<xl<l. But. when Ids > 1 this must be supplemented. with the 
condition 

Lt 
I 

ap M6 
ax= p 

-ri*o x, i 
(Id; - 116 

which holds at the point 

. ..(M) 

26% 
Bi = x = 00s - 

0 ( > > -f . ..(31) 
A 

where/ 
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where 

A = tan-l 
(sirPa - KS)& 

and e = tan-1 
[I + M,(K sin a, - K'oos as)] 

, 
cos as b[(M,sin aa + K) - K'(@s - I)'] 

oorresponding to the point 

c 

1 
(- sin a,+lcos a,) 

im 
- - II . 5 % 

Solution 

Now we shell find out a f'unctlon which satisfies 
0Cmaitions. The solution is effeoted by the introduction 

all thebcmdary 
of a funotion 

QJ(Zi) 
ap ap 

z -+i- 
ax, asi 

which is regular throughout the lmer half-plane since p 
terms of o the discontinuity condition (28) and (30) oan 

is harmonic. In 
be mitten 

iM,6 
I 

Ol-- 
?c(M; - I)2 

bi - x0) ' 
Ma > 1 

Equation (20) beccmes 
I . . ..(32) 

. ..(33) 

where y = K(oos as + sin a,tan e) from the section on Busemann's 
transfomation and tan 6 is replaoed by its value in terms of 8% by the 
help of (25) and (26). 

We knew that log m(s,) is such a funotion that the value of its 
imaglnarypartis known on the real exls of the s,-plane. In such a case 
an extension aP Poisson's integral fmmula gives the value af log m(z,) as 
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tm-i 
( aPhi 1 

dz,) ’ i” [ 1 log- = -- (adax,) - x,=t at . ..(34 
ci XJ -co t - zr 

where C, is a real constant and II tan-l 
(adad 

( aday, 1 1 
(ap/axl.) 1 meanS that xi in x =t 

tan-i has been replaced by * 
1 

( adax, 1 

Now when the above integral is evaluated for points on the real axis 
due to the discantinuity in the oases M, >I cr IdI, <I at the point 
z1 = x 

0 
we get two other oonstants Cs and D. Finally in the expression 

of m(z,) we will get two oonstants C and D, C being determned by the 
condition (32) and D is detetied frm the condition (33). 

Part II 

( 
u - q2 

Sonio oase = 1 
a2 > 

In this case the boundaries in the &plane are different than in 

(u-d < , 
the ease - . Here in the Z-plane the shock bmn&qy runs fran 0 to 

% 
CO as the point C' of Z-plane (Fig. 5) shifts to the origin, the wall beccmes 

I 1 
the semi-cirole of radius with centre at 

2 sina 
0, and the 

2 sin cra 

unit circle rims fraa ' 
sin aa 

to co on the imaginary axis. The bmndaries 

are shown In Fig. 7. 

Ncm a fresh transformation is to be Introduced for transforming the 
boundaries from the Z-plane to et-plane. 

The transformation introduced is 

This transformation transforms the shaded region in the Z-plane into lower 
half plane in the z,-plane. The shook boundary corresponds to the real 
a-axiswith Zi>l. i The wall becaes the part of the real axis with 

Zi <-I. The unit cirole becomes the part of the real axis with -I< a1 < 1. 

The/ 
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The function ~(2,) defined befors is the same for this oass also. 
Equations (27), (28), (30), (32), (33) and (34) hold good here also. However 
the equations corresponding to (29) and (31) are 

“I= = = 0 - cosh(x cot J ; : ;) < -1, Ma < 1 . ..(36) 

a 
and 

z =x = i 0 - cos b cot a2 p-J > 'I, Ma > 1 . ..(37) 

respectively. 

Fart III 
Numerical Solution 

Subsonic ease 

- 

The calculations have been carried out for two shook strengths. 
The table given helm gives the choice of the data 

aa u - 9, 
*, 

Ma 

0 39'97O 32.97' 0'94699 1-48137 

O-5 4.2' 27' 51° 6' 0.95765 O-67255 

Now for determining the function w(z,), the integral on the 
left hand sids of (3l+) could be broken into three integrals ranging from 
-a) to -1 , -1 to +1 and +1 to +tQ. Then applying the boundary 
aondition on o(zi) and slmpliQ4ng we would obtain 

C 
tan-i 

( adq 1 

CG[D(z, - x0) - I] ,Zi 1 ( adax i) 1 log w(zJ = log xi &l -- J =ax. bi - x,)J(Ba, x o (1 - nil 
. ..(38) 

For/ 
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For zi > I we write 

L- tall-i ( adat 1 

i 
i ( aPhi) I& ax 

0 (1 - ",I 

tan-l 
( aPhi 1 

i 
1 a.x 

C 1 = B o (1 - "J + o i 
i (Wax> x =d-' i x ax 

(I - xzI) 
where p = 

Having done that we find after appradmate numerical evaluation that for 
M P = I*48137 

4%) =exp 
t c 

-" (- I.51698 - a) + 
4(- o*Q779 - a) 2(0.05767 - a) 

12% (1 - 0'258,) + (1 - 0.5~~) 

4(0*18751 - p) ($ - /9) 

+ (I - 0.752,) + (1 - z,) 
(et -If. ? . 

CSID(zl - x0) - I] 

(Zi - x0)- ' 

z, > 1 . ..(39) 

z, 
= exp 

c c 

2(0*05767) 
da 1 -- '(- 1.5l698) + 

4(- 0*05779) 

12-R (1 - 0'25~~) + (1 - 0.583 

4(0*18751) d2 CS[D(Z~ - x0) - I] 

+ (I - o-751.,)+ (I - ZJ l (z, - x0,- 

, Zi<l. 

. ..(40) 

The function s+tisfies all the boundary conditions. The argument of 
the function far z, >I is p which one should get for the shock 
boundarJr condition to be satisfied. ~(2,) is purely imaginary for - 1 i zi < 1 
and is purely real for ZI < -1. The constants C and D em known fxxn 
conditions (32) ati (33). 

The expression far w(z,) far M, = 0.67255 1s 
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4%) zz exp [-c [(- O"83807 - a) + 4’;,o~~;,I,B) + ‘“,;;~-,“’ 

4(- O-78184 - a) ( 5 - p) 
+ (1 - 0.752,) + (I - Zi) n 

e 
l bi 

- 1y eq 
CGID(el - x0) - I] 

(“i 
- x0,- ’ 

Zi > 1 . ..(4l) 

da) = exp [- 2 [- 0'83807 + ;+--‘;-; + ;;-‘;-; 

4(- 0*78184) x/2 

+ (1 - 0.75Si) + (1 - z,) 31 
CG[D(z, - xo) - I] 

l (21 - x,tim ’ 

Zi <I. 

. ..W) 

Pressure Distribution along the Well 

At a point (x, 0) of the wall (- 1 < x < 
co-ordinate is 

'+ ) the xj 

L- 

x 
Xi = - cash -tanh- ('-?)d- 

x (I - kx) - 1 
which satisfies x1 < -1. 

The pressure derivative in this region is obtained frm (4.0) for 
hII, = 1*@137 and from (42) for M, = 0.67255. After integrating the 
pressure derivative for different points of the wall, the pressure distributim 
along the wall has been obtained. In Figs. 8 and 9 the value crf 
(Pi -PJ 

h(P, - P,) 
= *t-p has been plotted for different points of the 

wall. The aisturbed regionhas slso been &mm. In the case M, = l-48137 

the pressure maintains a constant value from the caner to the point of 
intersection of unit circle and wall as it is given by Prandtl-Meyer expansion 
theory. Frm the point of intersection of wall and unit circle to the point 
of intersection of shock and wall we find that. there is a monotonic decrease in 
the value‘s? (pa - pa)/S(p, - p,) (Fig. 8). In the case & = O-67255 the 

value 0f (P; - P,)/S(P, - p,) which is zero at the boundary increase to 
infinit at the corner. 
(Fig. 9f. 

Frm infinity it again decreases and fimlly rises 

(’ - “) = 1 
sa > 

In this case also the numerical work has been carried out for two 
shook strengths. The table given belcw gives the choice of data 
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PC& 
u - 

a "a 
9, 

M 0 % 2 

0 39*5-l" 31°14' l~ooooy 144958 

0.5 42O II' 49 52' 1~00002 O-64616 

The f'unction ~(2,) is determined frm the equation (38). We find 
here for Mb, = 144.9~ 

4(- O-58272 - a) 
+ (1 

( 5 - ,9) CG[D(zi - x0) - I ] 

- 0.752,) + (1 - Zi) n (z, - A,; l P 

(2, - x0 YqTT’ 

w(a) = exp [ -; [- ; + ;ymo;;;t; + %‘--O,r:,T,’ zi ’ ’ 

. . ..(43) 

4(- 0'58272) 42 

+ (1 - 0.752,) + (I - ZJ II 

CS[D(zA - x0) - I] 

* (Zi - xJJ(z: ' 
2% <I. 

. ..(44 

Similarly fcu- M, = 0.64616 

da) = exp [ -; [ (- ; - 8) + 4((10;~:9,z;,8’ + “,“yO; a1 

4(-0.81216-p ( ; - p) 

It 

iz 

+ (I - 0.752,) + (1 - 2,) 
(2% -1y . P. 

CGID(zl - x,) - I] 

(3 - x,1- 
, 

zi > 1 . ..(45) 
. 

4(- 0*812l6) d2 
+ 

(I - 0*75e,) + (1 - z*) 31 
C6[D(z, - x,) - I] 

l (z, - XJd~ ’ 

z1 Cl. 

. ..(46) 

At/ 
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Pressure Distribution along the Wall 

Atapoint (x,0) ofthewall (-I< X-Z 

ccmrdinate is xi = - 

The press- derivative is obtained from (44) for M, = l-44938 
ana from (b-6) fm M, = 0*64616. In Figs. 10 and 11 the value of 

(Pi - P,) 
h(P, - P,) = (;lq:p;l) 

(- t ) has been plotted for different points of the 

Wall. The disturbed region has also been shown. In the case M, = l-44938 

the value of (pi - p,)/@p, - p,) after maintaining a constant value from the 

corner to the point of intersectim of unit circle ana wall decreases 
monotmically to the point of intersection of shock and wall (Fig. IO). In the 
case M = 0*6l+616 the value of (pl, - p,)/6(p, - p,) increases frcm zero at 

the boundary to infinity at the corner. Fran infinity it again decreases and 
finally rise3 (Fig. 11). 
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