MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Atmospheric Turbulence and Aircraft Height-Keeping Accuracy

by

B. A. M. Piggott, B.A.

LONDON: HER MAJESTY'S STATIONERY OFFICE
-

4

4

-

ATMOSPFERIC TURBULENCE AND AIRCRAFT HEIGHT-REBPING ACCURACY

by
B.A.M. Piggott, B.A.

SUIMARY

As a contribution to the study of vertical separation standards for use in air traffic control, an examination is made of the possiblility of applying the spectral methods already used in gust load evaluations to the problem of determining the height-keeping errors caused by atmospheric turbulence. Although it is found that the data available on the low frequency components of a mospheric turbulence and on the nature of the control applied by the pilot, whether human or automatic, are not sufficient to allow an accurate estimation of these errors, it is concluded that they do not make a significant contribution to the total errors experienced. It is noted, however, that certain atmospheric phenomena lie outside the soope of the theory used here.

[^0]
1 INTRODUCTION

The magnitude and frequency of the height-keeping errors of an aircraft attempting to fly steadily along a fixed flight path are of interest in the study of vertical separation standards. The experimental approach to their estimation raises severe difficulties of measurement and evaluation of results, but some work has been reported. A theoretical attack on the problem would Involve the study of each of the many factors which contribute to height deviations. In the present work we examine a possible method of assessing the contribution made by one such factor, atmospheric turbulence.

The response to atmospheric turbulence of an aircraft under the control of an autopilot is represented as that of a linear system subjected to a continuous random disturbance. The techniques of spectral analysis are applied in order to determine the characteristics of the resulting motion. The problem is thus resolved into three parts, as follows.

First, the representation of the characteristics of atmospheric turbulence. The object of this work has been to test the applicability in this context of the spectral techniques already used successfully in gust load evaluations ${ }^{2}$. A brief discussion of the method and its scope is given, wath reference to the available data.

Second, the derlvation of the equations of motion of an aircraft flying through turbulence. The standard longatudinal equations of motion are used, with additional terms to allow for the variations, due to turbulence, in the velocity of the relative wind. A simple form is assumed for the elevator control equation, which represents the actions of an autopilot. An appendix summarises the derivation of these equations.

Third, the derivation of the characteristics of the helght errors. An expression is given for the standard deviation of height error of an aircraft in turbulence of a fixed intensity. A method is also proposed for obtaining the distribution of helght errors in routine operations, when turbulence of varying antensity is encountered.

The results obtained from this approach are illustrated by some numerical examples. Comparison with the expermental results shows the calculated height errors to be muah smaller than the total errors experienced in practice, and the reasons for this are discussed.

2 ATMOSPHERIC TURBUIENCE

An extensive discussion of the nature of atmospheric turbulence is beyond the scope of this Report. Lumley and Panofsky ${ }^{3}$ treat the subject fully and some more recent work was described at a meetang in 1966 organised jointly by the Institute of Navigation and the Society of Autamotive Engineers ${ }^{4}$. An earlier meeting at R.A.E. ${ }^{5}$ was also devoted to this topic.

Briefly, we assume atmospheric turbulence to be a random process characterised by certain spectral density functions ${ }^{6}$ and probability distributions. Although it is not truly stationary or hanogeneous, we assume that it can be regarded as such over moderate periods of time and large horizontal regions; its dependence on height, however, c annot be neglected. Not all phenamena which might be classed under the general heading of "atmosfheric turbulence" can be included in this treatment ${ }^{2}$; notable examples which require separate consideration are waves, the single large up-draughts associated with cumulonimbus, and vertical wind-shears ${ }^{8}$.

We describe the variation of each component of the turbulent velocity by means of a spectral density function containing parameters which are assumed to vary slowly with time. This variation is described by means of observed probability distributions, where these are available; otherwise the parameters are assigned values consistent with observed spectra.

For the purposes of this study, we requare expressions for the spectral density functions of the longitudinal and vertical components of atmospheric turbulence. The expressions ${ }^{9}$

$$
\begin{equation*}
G_{u u}(\Omega)=\frac{2 \sigma_{g}^{2} L}{\pi\left(1+L^{2} \Omega^{2}\right)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{w W}(\Omega)=\frac{\sigma_{g}^{2} L\left(1+3 L^{2} \Omega^{2}\right)}{\pi\left(1+L^{2} \Omega^{2}\right)^{2}} \tag{2}
\end{equation*}
$$

respectively, where

$$
\begin{equation*}
\Omega=\omega / \mathrm{U} \tag{3}
\end{equation*}
$$

ω is the frequency of the turbulence component as observed from an aircraft, U is the steady speed of the aircraft, L is the scale of the turbulence (a
measure of the mean eday size) and σ_{g} is the root mean square gust velocity (indicating the intensity of the turbulence), are frequently used in aeronautical work and we shall adopt them as standard spectra. For comparison, we shall also use the "manus fiventhirds law" spectrum ${ }^{3}$ in the form

$$
G_{u u}(\Omega)=G_{w w}(\Omega)=\left\{\begin{array}{cl}
\sigma_{g}^{2} \lambda /(5 \pi) & (\Omega<2 \pi / \lambda) \tag{4}\\
0.4 \sigma_{g}^{2}(2 \pi / \lambda)^{2 / 3} \Omega^{-5 / 3} & (\Omega \geqslant 2 \pi / \lambda),
\end{array}\right.
$$

where λ is the wavelength up to which the law is assumed to hold.
Of the parameters L, σ_{g} and λ, only the root mean square gust velocity σ_{g} has been studied in sufficient detail for probability distributions relating to its behaviour in routine operations to be available. Press, Meadows and Hadlock ${ }^{10}$ have given the three following formulae, oorresponding to the altitude ranges $0-10000 \mathrm{ft}, 10000-30000 \mathrm{ft}$ and $30000-50000 \mathrm{ft}$ respectively:

$$
f\left(\sigma_{g}\right)=\left\{\begin{array}{l}
\frac{0.99}{1.48} \exp \left(-\sigma_{g} / 1.48\right)+\frac{0.01}{2.84} \exp \left(-\sigma_{g} / 2.84\right) \tag{5}\\
\frac{1}{2(0.32)^{2}} \exp \left(-\sigma_{g}^{1 / 2} / 0.32\right) \\
\frac{1}{2(0.29)^{2}} \exp \left(-\sigma_{g}^{1 / 2} / 0.29\right),
\end{array}\right.
$$

where σ_{g} is measured in $\mathrm{ft} / \mathrm{sec}$; the corresponding oumulative probability distributions are shown in Fig. 1. For L and λ, the values 1000 ft and 5000 ft respectively give spectra in good agreement with observations ${ }^{10}$. However, as pointed out in Ref. 10, at low frequencies (gust wavelengths $2 \pi / \Omega$ greater than 3000 ft) the spectra are not yet adequately defined, although the available measurements suggest a flattening of $G_{w w}(\Omega)$ in this region.

3 EQUATIONS OF MOTION OF AN ATRCRAPT

We consider an airoraft which, in still air, would be flying steadily along a straight flight path. Axes are fixed in the airoraft, with origin at the centre of gravity. In the steady flight condition, $O x$ is directed forwards in the drection of the relative wind, making an angle γ above the horizontal; Oy is horizontal and to starboard, and Oz is downwards in the vertical plane containing $O x$ (Fig.2(a)). It is assumed that there is no coupling between the motions of the aircraft in and normal to the vertical plane containing $0 x$, and
that the latter do not make any contribution to the variations in height; thus only forward, vertical and pitching motions need be considered, together with changes in the elevator angle η, which is controlled by the autopilot. A control equation representing an idealised autopilot height lock is used, no account being taken of time-lags or non-linearities, or of errors in the signal fed to it ${ }^{11}$. We also assume that the aircraft is rigid; Dobrolenskii ${ }^{12}$ has shown that this may lead to underestimation of the effects of turbulence.

Let the disturbed velocity of the aircraf't relative to the steady wind have components $U+u$ along $O x$ and w along $O z$ (FIg.2(b)), the undisturbed values being U and 0 , and the angle between $O x$ and the steady relative wind being θ. We assume that the only effect of atmospheric turbulence on the motion of the aircraft is to add a gust velocity with components u_{g} and w_{g} (Fig.2(c)) to the otherwise steady wind; variations of this velocity over the length and span of the aircraft are neglected. The components u_{g} and w_{g} and hence u and w, are assumed small compared to U and the equations of motion are linearised on this basis. It is shown in an appendix that the resulting equations, written in terms of non-dimensional variables, take the form

$$
\begin{array}{rlrl}
\left(D-x_{u}\right) \hat{u} & -x_{w} \hat{w}+k \theta & & x_{u} \hat{u}_{g}+x_{w} \hat{w}_{g} \\
-z_{u} \hat{u}+\left(D-z_{w}\right) \hat{w}+\left(\kappa_{1}-D\right) \theta & & z_{u} \hat{u}_{g}+z_{w} \hat{w}_{g} \\
k \hat{u}+(x D+\tilde{\omega}) \hat{w}+\left(D^{2}+\nu D\right) \theta+\delta \eta & =-x \hat{u}_{g}-\tilde{\omega} \hat{w}_{g} \\
-G_{\theta} D \theta+D \eta-\left(\hat{G}_{h} D+\hat{G}_{\hat{h}}\right) \hat{h} & =0 \\
(\cos \gamma) \hat{w}-(\cos \gamma) \theta & +D \hat{h} & =0
\end{array}
$$

where $\hat{u}=u / J, \quad \hat{w}=w / U, \quad \hat{u}_{g}=u_{g} / J, \quad \hat{w}_{g}=w_{g} / \sigma$,
$D=\frac{d}{d \tau}, \tau=$ time in airsecs
G_{θ}, \hat{G}_{h} and \hat{G}_{h} are constants of the autopilot,
$x_{u}, x_{w}, z_{u}, z_{w}, k, k_{1}, k, \tilde{w}, x, \nu$ and δ are constants of the aurcraft, (dimensionless aerodynamic derivatives), and $\hat{\mathrm{h}}$ is the dimensionless vertical deviation of the aircraft from its undisturbed flight path.

From these equations we also derive in the appendix the airaraft's transfer functions $Y_{\text {long }}(p)$ and $Y_{\text {lat }}(p)$ for response to the longitudinal and lateral components of atmospheric turbulence.

4 CALCULATION OF THE HEIGHT ERRORS

. We have obtained the transfer functions for an airoraft's height response to the longitudinal and lateral components of the turbulent gust velocity. For simplicity we shall now assume the flaght path angle γ to be small, so that these components can to first order be identified with the longitudinal and vertical components of atmospheric turbulence referred to in section 2; for large values of γ the transfer functions relating to the latter components would be

$$
\begin{equation*}
Y_{\text {long }}(p) \cos \gamma+Y_{\text {lat }}(p) \sin \gamma \tag{12}
\end{equation*}
$$

and

$$
Y_{\text {long }}(p) \sin \gamma+Y_{\text {lat }}(p) \cos \gamma
$$

respeotively.
The dimensionless frequency corresponding to the units introduced in the appendix is

$$
\begin{equation*}
\hat{\omega}=\frac{m}{\rho S} \Omega \tag{13}
\end{equation*}
$$

and, from the spectral density function $G(\Omega)$ of a component of atmospheric turbulence, we can likewise derive the corresponding dimensionless form

$$
\begin{equation*}
\hat{G}(\hat{\omega})=\left(\frac{\rho^{S}}{m_{J}{ }^{2}}\right) \quad G(\Omega) \tag{14}
\end{equation*}
$$

The dimensionless spectral density function of the height response of an aircraft to this component is then given ${ }^{6}$ by

$$
\begin{equation*}
|Y(i \hat{\omega})|^{2} \hat{G}(\hat{\omega}), \tag{15}
\end{equation*}
$$

where $Y(p)$ is the appropriate transfer function; the variance of the height response is

$$
\begin{equation*}
\int_{0}^{\infty}|Y(i \hat{\omega})|^{2} \hat{G}(\hat{\omega}) d \hat{\omega} \tag{16}
\end{equation*}
$$

Assuming the two somponents of the turbulence to be independent, we obtain for the standard deviation of the helght response

$$
\begin{equation*}
\sigma=\frac{m}{\rho S}\left[\int_{0}^{\infty}\left\{\left|Y_{\text {long }}(i \hat{\omega})\right|^{2} \hat{G}_{u u}(\hat{\omega})+\left|Y_{\text {lat }}(i \omega)\right|^{2} \hat{G}_{w w}(\hat{\omega})\right\} d \hat{\omega}\right]^{\frac{1}{2}} \mathrm{ft} \tag{17}
\end{equation*}
$$

Since the turbulence spectra given in section 2 are proportional to σ_{g}^{2}, their use in conjunction with equation (17) will make σ proportional to σ_{g}.

On the further assumption that the turbulence-induced height errors of an aircraft flying in turbulence of a given intensity (i.e. fixed root mean square gust velocity) have a Gaussian distribution with mean zero and standard deviation σ given by equation (17), the probability of the height error being between x_{1} and x_{2} feet during routine operations is

$$
\begin{equation*}
\operatorname{prob}\left(x_{1}<|h|<x_{2}\right)=2 \int_{0}^{\infty} \hat{f}\left(\sigma_{g}\right) \int_{x_{1}}^{x_{2}}\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} x^{2} / \sigma^{2}\right) d x d \sigma_{g} \tag{18}
\end{equation*}
$$

We may identafy this probability wath the proportion of flight time which the aircraft spends between x_{1} and x_{2} feet above or below its planned flight path, assuming atmospheric turbulence to be the only source of exror.

5 NUMERICAL EXAMPLES

We use equation (17) to calculate the root mean square height response
corresponding to unit root mean square gust velocity in a number of casese Results for different intensaties of turbulence may be calculated by maltiplying the value of σ thus obtained by the appropriate value of σ_{g} Except where otherwise stated, we use the standard turbulence spectra, equations (1) and (2), wath $L=1000$ feet.

We consider first a medium bomber cruising at 40000 feet. The aerodynamic data are given in Table 1; Figs. 3 and 4 show the longitudinal and lateral transfer functions together with the corresponding turbulence spectra. From equation (17) we obtain in this case $\sigma=2.43$ feet (this and subsequent results were calculated on the R.A.E. Mercury computer) . Setting $Y_{\text {Iong }}=0$, we obtain $\sigma=2.37$ feet, showing that the response to the vertical component of the turbulence domanates that due to the longitudinal camponent; therefore in all subsequent calculations we neglect the latter.

We now examine how the computed value of σ depends on the accuracy of the data used. Table 2 shows the effect on σ of varying the aerodynamic derivatives $x_{u}, x_{w}, z_{u}, z_{w}, k, \tilde{\omega}, \chi, \nu$ and δ; we conclude that $x_{w}, k, \tilde{\omega}, x$ and ν may be neglected altogether and that only z_{w} has a great effect on σ. For subsequent cases, we set $x_{w}=\mu=\tilde{\omega}=\chi=\nu=0$ and $\delta=100$; with the remaining data as in Table 1, we obtain $\sigma=2.35$ feet.

Table 3 shows the effect of varying the autopilot constants; σ is insensitive to changes in G_{h}, but changes by 5% for a 10% change in G_{θ} or G_{h}. Fram equation (9), it can be seen that multiplying δ by a given factor is equivalent to multiplying all the autopilot constants by the same factor; hence the insensitivity of σ to δ could be deduced fram the results gaven in Table 3.

Table 4 shows the effect of varying the scale L used in defining the turbulence spectrum and also results obtained using the minus five-thirds law spectrum, equations (4), with varcus values of the cut-off wavelength λ. We see that use of the minus flve-thards law, with $\lambda=5000$ feet, gives a result daffering little from that obtaned with the standard spectrum. However, σ is shown to be strongly dependent on the value ahosen for L or λ and this underlines the need for more information on the low frequency part of the turbulence spectrum; Figs. 3 and 4 show that the major part of the response corresponds to gust wavelengths greater than 3000 feet, where the shape of the spectrum is not well established.

As a second example we conslder a large turboprop aircraft in a range of flight configurations: cruase, climb, lozter and approach. Table 5 shows the data used and the results obtained, which indzcate that the aurcraft is least susceptible to height errors when in the cruise configuration and most susceptible during approach. It must be noted, however, that the same values of the autopzlot constants were used in all these cases. The values are typical of those which would apply to a cruising aircraft under automatic control; in other circumstances the aircraft would be controlled differently.

Thardly, we consider subsonic and supersonic jet transport aircraft (see Table 6). The standard deviations of height error calculated for the subsonic jet are slightly smaller than those obtained for the turboprop. The supersonic jet, however, shows a markedly smaller response in the cruise configuration, though it may be doubted whether the assumptions made about the aerodynamic derivatives hold in this case.

Finally, equation (18) is used to calculate the distribution of heightkeeping errors of the subsonic jet, referred to above, in the cruise configuram tion at 40000 feet. The resulting histogram is show in Fig.5, together with the experimental results of Gracey and Shipp ${ }^{1}$. It is apparent that, according to the present calculation, height errors of more than 100 feet due to turbulence occur far less frequently than do observed errors of the same magnitude.

CONCLUSTON

We have described an aircraft flying under an autopilot height-lock as a linear system with a random input representing the effect of atmospheric turbulence and with the resulting height variation as output. In this way a formula has been developed for the standard deviation of helght errors due to atmose pheric turbulence and some numerical examples have been computed. An expression has also been given for the distribution of these heighterrors, and a comparison made between the calculated distribution for a subsonic jet transport aircraft and the distribution of observed height errors reported by Gracey and Shipp ${ }^{1}$. This comparison is illustrated an Fig.5, whlch shows the calculated errors due to atmospheric turbulence to be much smaller than the observed errors.

A major difficulty in the procedure described above is the representation of the autopilot; further information is needed on this and on the still more difficult problem of representing the behaviour of a human pilot. The numerical examples given in section 5 indicate that another drawback of the method is the absence of adequate data on the longer-wavelength components of atmospheric turbulence; these are comparatively unimportant for the purpose of gust load evaluations, but are almost enturely responsible for the height errors caused by the turbulence.

Several other factors contribute to the difference between the calculated and observed height errors. Firstly, the variation in the velocity of the relative wind $1 s$ probably not the only way in which turbulence affects heightkeeping - e.g. the static pressure altimeter reading used by the autopilot may be affected. Secondly, some atmospheric phenomena which cause considerable height-keeping errors cannot be desoribed by the spectral methods used in the present work. Thirdly, there are the effects of the various approxamations, such as the linearisation of the aircraft equations of motion and representation of atmospheric turbulence as a homogeneous, isotropic, stationary random process, which were necessary in order to set up a tractable mathematical model. Finally, the errors described by Gracey and Shipp are not entirely due to atmospheric turbulence; andeed we may conclude that those components of the turbulence which can be represented by the spectral theory make no appreciable contribution to these errors.

Thus the conclusion of this Report is that atmospheric turbulence, excluding such phenomena as weves, single large up-draughts, and wand-shears,
which cannot be treated by the speotral method used here, does not make a significant contribution to airoraf't height-keeping errors, but that the accuracy to which this contribution can be calculated is limited by the lack of
(i) sufficiently accurate data on the characteristics of a tmospheric turbulenoe, particularly as regards the longer-wavelength components;
(ii) adequate representation in the aircraft equations of motion of the influence of control by the pilot, whether human α autamatic; and,
(iii) consideration of the effects of turbulence on the equations of motion of the aircraft other than those resulting from the varlation in the velocity of the relative wind.

Appendix A

DERIVATION OF THE ALRCRAFT EQUATIONS OF MOTION ${ }^{13,14}$

(see section 3)
Consider a rigid aircraft which, in still air, would be flying steadily with speed U along a straight flight path making an angle γ above the horizontal. Axes are fixed relative to the aircraft, with origin 0 at the centre of gravaty, such that in the steady flight condition (Fig.2(a)) 0x is direated forwards along the flight path, Oy 1 s horizontal and to starboard, and Oz is downwards in the vertical plane containing Ox. Only forward, vertical, and pitching motions of the aircraft are considered; thus Oy remains horizontal, while $0 x$ in general makes an angle θ above the steady flight path, where θ is the patching angle (Fig.2(b)). Writing $U+u$ and w for the components of veloclty along $O x$ and $O z$ respectively, and assuming $u / U, w / U$ and θ to be small, we have the following equations of motion:

$$
\begin{align*}
m \frac{d u}{d t} & =X-m g \sin (\gamma+\theta), \tag{A-1}\\
m\left(\frac{d w}{d t}-U \frac{d \theta}{d t}\right) & =Z+m g \cos (\gamma+\theta), \tag{A-2}\\
B \frac{d^{2} \theta}{d t^{2}} & =M, \tag{A-3}
\end{align*}
$$

where $m=$ mass of the aircraf't,
$B=$ moment of inertia about $0 y$,
$(X, Z)=$ components along $O x$ and $O z$ respectively of the aerodynamic force (in which we include the engine thrust),
and $M=$ moment of the aerodynamic force about $0 y$.
The vertical deviation h from the steady flught path is given by

$$
\frac{d h}{d t}=(U+u) \sin (\gamma+\theta)-w \cos (\gamma+\theta)-U \sin \gamma,
$$

and the elevator angle η by

$$
\begin{equation*}
n=G_{\theta} \theta+G_{h} h+G_{h} \int \text { hdt }, \tag{A-5}
\end{equation*}
$$

where G_{θ}, G_{h} and G_{h} are the autopilot constants.

The variation of the relative wind (FIg.2(c)) is composed of the variation of the velocity of the aircraft and of the wind itself. The camponents along Ox and Oz of the latter variation are the longitudinal and lateral gust velocities u_{g} and w_{g} respectively; thus the components of the relative wand are $U+u+u_{g}$ and $w+w_{g}$. We assume that if u_{g} and ∇_{g} are small compared to U, then u, w, θ and η remain small and the variation of the aerodynamic foroe can be represented by the linear expressicns

$$
\begin{gather*}
X-X_{0}=\left(u+u_{g}\right) X_{u}+\left(w+w_{g}\right) X_{w} \tag{A-6}\\
Z-Z_{0}=\left(u+u_{g}\right) Z_{u}+\left(w+w_{g}\right) Z_{w} \tag{A-7}\\
M-M_{0}=\left(u+u_{g}\right) M_{u}+\left(w+w_{g}\right) M_{w}+\frac{d w}{d t} M_{F}+\frac{d \theta}{d t} M_{q}+\eta M_{\eta},(A-8) \tag{A-8}
\end{gather*}
$$

where $X_{u}, X_{w}, Z_{u}, Z_{w}, M_{u}, M_{w}, M_{\dot{w}}, M_{q}$ and M_{η} are constants (aerodynamic derivatives of the aircraft) and X_{0}, Z_{0} and M_{0} are the values of X, Z and M respectively in steady flight. From equations (A-1) to ($A-3$), we obtain in the steady flight condition

$$
\begin{align*}
& X_{0}=m g \sin \gamma \tag{A-9}\\
& z_{0}=-m g \cos \gamma \tag{A-10}\\
& M_{0}=0 . \tag{A-11}
\end{align*}
$$

Substituting the values of X, Z and M given by equations ($A-6$) to ($A-11$) into equations $(A-1)$ to ($A-4$) and neglecting squares and products of small quantities, we obtain

$$
\begin{align*}
& m \frac{d u}{d t}+g \theta \cos \gamma \quad=\left(u+u_{g}\right) x_{L}+\left(w+w_{g}\right) X_{w} \quad(A-12) \tag{A-12}\\
& m \frac{d w}{d t}+g \theta \sin \gamma-U \frac{d \theta}{d t}=\left(u+u_{g}\right) z_{u}+\left(w+w_{g}\right) Z_{w} \quad(A-13) \tag{A-13}\\
& B \frac{d^{2} \theta}{d t^{2}}=\left(u+u_{g}\right) M_{u}+\left(w+w_{g}\right) M_{w}+\frac{d w}{d t} M_{w}+\frac{d \theta}{d t} M_{q}+\eta M_{\eta}(A-14) \\
& \frac{d h}{d t}=(U \theta-w) \cos \gamma . \tag{A-15}
\end{align*}
$$

It is usual and convenient to rewrite these equations in non-dimensional form, using the following units of mass, speed and time:

$$
\begin{array}{ll}
\text { the mass of the aircraft } & \mathrm{m} \mathrm{lb}, \\
\text { the speed of steady motion } & \mathrm{Uft} / \mathrm{sec}, \\
\text { the airsec } & \hat{t}=m /(\rho S U) \mathrm{sec},
\end{array}
$$

where p is the local air density in slugs/ ft and S is the aircraft's wing area in ft^{2}. We therefore write

$$
\begin{align*}
\hat{\mathbf{u}} & =u / U, \text { etc } \tag{A-16}\\
\dot{x}_{u} & =x_{U} /(\rho S U), \text { etc } \tag{A-17}\\
\mathbf{k} & =(m g \cos \gamma) /\left(\rho S U^{2}\right)=\frac{1}{2} G_{L}, \tag{A-18}
\end{align*}
$$

where C_{L} is the lift coefficient of the aircraft,

$$
\begin{align*}
& k_{1}=k \tan \gamma \tag{A-19}\\
& \mu_{1}=m /(\rho S \ell), \quad i_{B}=B /\left(m \ell^{2}\right), \tag{A-20}
\end{align*}
$$

where ℓ is the tail arm of the aircraft,

$$
\begin{align*}
& \hat{G}_{h}=\mathbb{m i}_{h} /(\rho s), \quad \hat{G}_{\bar{h}}=m^{2} G_{\bar{h}} /\left(\rho^{2} S^{2} U\right) \\
& m_{u}=M_{u} \text { (SUE), } \quad \kappa=-\mu_{1} m_{u} / i_{B} \\
& \text { (A-21) } \\
& \text { (} \mathrm{A}-22 \text {) } \\
& \mathrm{m}_{\mathrm{w}}=M_{W} /(\rho S U \ell), \\
& \tilde{\omega}=-\mu_{1} m_{w} / i_{B} \\
& \text { (A-23) } \\
& m_{\dot{w}}=M_{\dot{w}} /\left(m_{l}\right), \quad x=-\mu_{1} m_{\dot{w}} / i_{B} \\
& \text { (} \mathrm{A}-24 \text {) } \\
& m_{q}=M_{q}\left(\text { (SUE }{ }^{2}\right), \quad \nu=-m_{q} / i_{B} \tag{A-25}\\
& m_{\eta}=m M_{n} /\left(\rho^{2} S^{2} v^{2} l^{2}\right), \quad \delta=-m_{\eta} / i_{B} \tag{A-26}\\
& \tau=t / \hat{t}, \quad D=\frac{d}{d \tau}=m /(\rho S U) \frac{d}{d t}, \quad \hat{h}=(\rho S / m) h \cdot(A-27)
\end{align*}
$$

Equations ($A-12$) to ($A-15$) and ($A-5$) can then be written in the form

$$
\begin{align*}
& \left(D-x_{u}\right) \hat{u} \quad-x_{w} \hat{w} \quad+k \theta \quad=x_{u} \hat{u}_{g}+x_{w} \hat{w}_{g}(A-28) \\
& -z_{u} \hat{u}+\left(D-z_{w}\right) \hat{w}+\left(k_{1}-D\right) \theta \quad=z_{u} \hat{u}_{g}+z_{w} \hat{w}_{g}(A-29) \\
& x \hat{u}+(\chi D+\tilde{\omega}) \hat{w}+\left(D^{2}+\nu D\right) \theta+\delta \eta \quad=-x \hat{u}_{g}-\tilde{\omega}_{g}(A-30) \\
& (\cos \gamma) \hat{w}-(\cos \gamma) \theta \quad+D \hat{h}=0 \tag{A-31}\\
& G_{\theta} D \theta=D m+\left(\hat{G}_{h} D+\hat{G}_{\hat{h}}\right) \hat{h}^{=}=0 \tag{A-32}
\end{align*}
$$

Solving these equations for \hat{h}, we obtain

$$
\begin{equation*}
F(D) \hat{h}=F_{\text {long }}(D) \hat{u}_{g}+F_{\text {lat }}(D) \hat{w}_{g}, \tag{A-33}
\end{equation*}
$$

where

$$
\begin{align*}
& F(D)=D^{6}+a_{3} D^{5}+a_{2} D^{4}+a_{1} D^{3}+a_{0} D^{2}+a_{-1} D+a_{-2} \text {, } \tag{A-34}\\
& F_{\text {long }}(D)=-\left(D^{4}+x_{3} D^{3}+x_{2} D^{2}\right) z_{u} \cos \gamma, \tag{A-35}\\
& F_{\text {lat }}(D)=-\left(D^{4}+z_{5} D^{3}+z_{2} D^{2}+z_{1} D\right) z_{w} \cos \gamma \text {, } \tag{A-36}\\
& a_{3}=K_{3} \tag{A-37}\\
& a_{2}=K_{2}+G_{\theta} \delta \tag{A-38}\\
& a_{1}=K_{1}+N_{1} G_{\theta} \delta \tag{A-39}\\
& a_{0}=K_{0}+P_{1} G_{\theta} \delta+\left(N_{1}-Q_{1}\right) \hat{G}_{h} \delta \cos \gamma \tag{A-40}\\
& a_{-1}=\quad\left(P_{1}-R_{1}\right) \hat{G}_{h} \delta \cos \gamma+\left(N_{1}-Q_{1}\right) \hat{G}_{h} \delta \cos \gamma \\
& a_{-2}= \\
& \left(P_{1}-R_{1}\right) G_{\bar{h}} 0 \cos \gamma \quad(A-42) \\
& \mathrm{K}_{3}=\mathrm{N}_{1}+\nu \quad+x \\
& K_{2}=P_{1}+\nu N_{1}+\chi Q_{1}+\tilde{\omega} \\
& K_{1}=\nu P_{1}+x R_{1}+\tilde{w} Q_{1}-k S_{1} \\
& K_{o}=\quad{\tilde{\omega} R_{1}}_{1}-K T_{1} \tag{A-46}\\
& N_{1}=-\left(x_{u}+z_{w}\right) \tag{A-47}\\
& P_{1}=x_{u} z_{w}-x_{w} z_{u} \tag{A-48}\\
& Q_{1}=-\left(k_{1}+x_{u}\right) \tag{A-49}\\
& R_{1}=k_{1} x_{u}-k z_{u} \tag{A-50}\\
& S_{1}=k-x_{w} \tag{A-51}\\
& T_{1}=k_{1} x_{w}-k z_{w} \tag{A-52}\\
& x_{3}=x+\nu \tag{A-53}\\
& x_{2}=\tilde{\omega}+G_{\theta} \delta+\kappa\left(N_{1}-Q_{1}\right) / z_{u} \tag{A-54}\\
& z_{3}=x+\nu-P_{1} / z_{w} \tag{A-55}\\
& z_{2}=G_{\theta} \delta+\left\{\tilde{\omega} k_{1}-P_{1}(x+\nu)\right\} / z_{w} \tag{A-56}\\
& z_{1}=\left(\kappa T_{1}-\tilde{\omega} \mathbb{R}_{1}-P_{1} G_{\theta} \delta\right) / z_{w} . \tag{A-57}
\end{align*}
$$

The longitudinal and lateral transfer functions are

$$
\begin{align*}
Y_{\text {long }}(p) & =F_{\text {lang }}(p) / F(p) \tag{A-58}\\
Y_{\text {lat }}(p) & =F_{\text {lat }(p) / F(p)} \tag{A-59}
\end{align*}
$$

Table 1
DATA FOR A MEDITM BOMBER CRUISING AT 40000 FT

x_{u}	-0.02	x	-0.849
x_{w}	0.011	$\tilde{\omega}$	19.5
z_{u}	-0.365	χ	3.15
z_{w}	-2.56	ν	4.50
C_{L}	0.274	δ	165.6
S	$960 \mathrm{ft}^{2}$	G_{θ}	1.0
W	40620 Jb	G_{h}	$0.01 \mathrm{deg} \mathrm{ft}^{-1}$
U	$726 \mathrm{ft} \mathrm{sec}^{-1}$	G_{h}	$0.0002 \mathrm{deg} \mathrm{ft}^{-1} \mathrm{sec}^{-1}$

Table 2
SENSITIVITY OF COMPUTED HEIGHT ERROR TO CHANGES IN THE
AERODYNAMIC DERIVATIVES

Aerodynamic der ivative with value different from that in Table 1		$\sigma(\mathrm{ft})$
	ne	2.37
$\begin{aligned} & x_{u} \\ & x_{w} \\ & z_{u} \\ & z_{w} \\ & { }_{\mathrm{k}} \\ & \tilde{\omega} \\ & x \\ & \nu \\ & \delta \\ & \delta \\ & \delta \\ & \delta \end{aligned}$	$\begin{array}{r} -0.02 \times 10^{-2} \\ 0.011 \times 10^{-2} \\ -0.365 \times 10^{-2} \\ -2.56 \times 10^{-2} \\ -0.849 \times 10^{-2} \\ 19.5 \times 10^{-2} \\ 3.15 \times 10^{-2} \\ 4.50 \times 10^{-2} \\ 50 \\ 100 \\ 200 \\ 500 \end{array}$	$\begin{aligned} & 2.34 \\ & 2.37 \\ & 2.43 \\ & 0.32 \\ & 2.37 \\ & 2.37 \\ & 2.36 \\ & 2.36 \\ & 2.42 \\ & 2.39 \\ & 2.37 \\ & 2.36 \end{aligned}$

Table 3
SENSITIVITY OF COMPUTHD HEIGHT ERROR TO CHANGES IN THE AUTOPIIOT CONSTANTS

G_{θ}	$\mathrm{Ceg}_{\mathrm{h}} \mathrm{ft}^{-1}$	$\mathrm{deg} \mathrm{ft}^{-1} \mathrm{sec}^{-1}$	σ ft
1.0	0.01	0.0002	2.35
0.9	0.01	0.0002	2.23
1.1			2.46
1.0	0.009	0.0002	2.47
	0.011		2.24
1.0	0.01	0.00018	2.35
		0.00022	2.35

Table 4
SENSITIVITY OF COMPUTED HEIGHT ERROR TO THE FORM OF THE TURBULENCE SPECTRUM

Standard spectrum		Minus five-thirds law	
\mathbf{L}	σ ft	ft	λ
ft	σ ft		
500	1.65	2000	1.46
1000	2.35	5000	2.30
2000	3.29	10000	3.20

Table 5

STANDARD DFVIATION OF HETGHT ERROR OF A LARGE TURBOPROP AIRCRAFT IN VARYOUS FLIGHT CONFIGURATIONS

Configuration	$\begin{aligned} & \text { Helght } \\ & \text { (ft) } \end{aligned}$	x_{u}	m_{4}	${ }^{2}$	c_{L}	$\begin{gathered} W \\ (1 \mathrm{~b}) \end{gathered}$	$\binom{\mathrm{U}}{\sec ^{-1}}$	$\stackrel{v}{(f)}$
Cruise	20000	-0.030	-0.327	-3.71	0.327	120000	615	2.8
	30000	-0.038	-0.540	-3.71	0.540	120000	571	3.0
Climb	0	-0.040	-0.575	-3.71	0.575	120000	338	4.8
	10000	-0.040	-0.575	-3.71	0.575	120000	394	4.2
	20000	-0.040	-0.575	-3.71	0.575	120000	463	3.6
Loiter	0	-0.040	-0.590	-3.71	0.587	110000	321	5.0
	10000	-0.040	-0.590	-3.71	0.587	110000	374	4.4
Approach	0	-0.150	-1.30	-2.87	1.30	105000	211	5.6

| In all |
| :--- | :--- | :--- | :--- | :--- |
| cont 1gurations |$\quad \mathrm{S}=1529 \mathrm{ft}^{2} \delta=100 \quad G_{\theta}=1 \quad G_{h}=0.01 \mathrm{deg} \mathrm{fi} \quad G_{h}^{-1}=1.667 \times 10^{-4} \mathrm{deg} \mathrm{ft}^{-1} \mathrm{sec}^{-1}$

Table 6
STANDARD DEVIATLON OF HEICHT ERRCR OF A SUBSONIC AND A SUPERSONLC JET TRANEPRT

Aircraft type	Configuration	Height (ft)	x_{u}	z_{u}	z_{W}	C_{L}	$\begin{gathered} \text { W } \\ \text { (lb) } \end{gathered}$	$\left(\begin{array}{c} \mathrm{U} \\ \left.\sec ^{-1}\right) \end{array}\right.$	$\underset{\left(f t^{2}\right)}{s}$	$\begin{gathered} \sigma \\ (\mathrm{ft}) \end{gathered}$
Subsonic	Cruise Lolter	$\begin{aligned} & 40000 \\ & 20000 \end{aligned}$	$\begin{aligned} & -0.019 \\ & -0.019 \end{aligned}$	-0.478 -0.3	$\begin{aligned} & -2.36 \\ & -2.36 \end{aligned}$	$\begin{aligned} & 0.478 \\ & 0.301 \end{aligned}$	200 180 000	$\begin{aligned} & 767 \\ & 623 \end{aligned}$	$\begin{aligned} & 2430 \\ & 2430 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.7 \end{aligned}$
Supersonic	Cruise climb	$\begin{aligned} & 60000 \\ & 30000 \end{aligned}$	$\begin{gathered} 0.00653 \\ -0.012 \end{gathered}$	$\begin{array}{r} 0.034 \\ -0.142 \end{array}$	$\begin{aligned} & -0.813 \\ & -0.969 \end{aligned}$	$\begin{aligned} & 0.105 \\ & 0.143 \end{aligned}$	$\begin{aligned} & 270 \\ & 23000 \\ & 230 \end{aligned}$	$\begin{array}{r} 2130 \\ 848 \end{array}$	5040 5040	0.8 2.0
In all cases	$\delta=100$	${ }^{G} \theta=$	G_{h}	. 01	${ }^{-1}$	$\mathrm{G}_{\mathrm{h}}=1.667 \times 10^{-4} \mathrm{deg} \mathrm{ft}^{-1} \mathrm{sec}^{-1}$				

SYMBOLS

$$
\begin{aligned}
& a_{-2}, a_{-1}, \cdots, a_{3} \\
& B \\
& C_{L} \\
& D \\
& \hat{f}
\end{aligned}
$$

P, $\mathrm{F}_{\text {lat }} \mathrm{F}_{\text {Iong }}$ g

G
\hat{G}
$G_{u u}, G_{w w}$
G_{θ}, G_{h}, G_{h} \hat{G}_{h}, \hat{G}_{h}
h
\hat{h}
i_{B}
k
k_{1}
$K_{0}, K_{1}, K_{2}, K_{3}$
ℓ
L
m
$m_{u}, m_{w}, m_{w}, m_{q}, m_{\eta}$ \mathbf{K}
M_{0}
$M_{u}, M_{w}, M_{k}, M_{q}, M_{n}$
N_{1}
0
P_{1}
Q_{1}
R_{1}
S
s_{1}
t
coefficients in $F(D)$, see $(A-34)$ and $(A-37-42)$
moment of inertia of aircraft about Oy
Iift coefficient of aircraft
$d / d \tau$
probability distribution of σ_{g} for routine operations, see (5)
operators in height response equation, see ($A-33-36$)
acceleration due to gravity $32.2 \mathrm{ft} / \mathrm{sec}^{2}$
power spectral density function of a component of
atmospheric turbulence
dimensionless farm of G, see (14)
power spectral density functions of longitudinal and vertical components of atmospheric turbulence
autopilot constants, see ($A-5$)
dimensionless autopilot constants, see (A-21)
vertical deviation of aircraft from steady flight path
dimensionless form of h, see ($A-27$)
$B /\left(m e^{2}\right)$
$\frac{1}{2} C_{L}$
$k \tan \gamma$
constants, see ($A-43-16$)
tail arm of aircraft
scale of turbulence
mass of the aircraft
dimensionless aerodynamic derivatives, see ($A-22-26$)
moment of aerodynamic force about $O y$
value of M in steady flight
aerodynamic derivatives, see ($A-8$)
$-\left(x_{u}+z_{W}\right)$
centre of gravity of aircraft
$x_{u} z_{w}-x_{w} z_{u}$
$-\left(k_{1}+x_{u}\right)$
$k_{1} x_{u}-k z_{u}$
aircraft wing area
$k-x_{W}$
time in seconds

SYMBOLS (Contd)

x_{2}, x_{3}
x_{u}, x_{w}
X
x_{0}
X_{u}, X_{W}
y
$Y_{\text {Iat }}, Y_{\text {long }}$
z
z_{1}, z_{2}, z_{3}
Z
Z。
z_{u}, z_{w} γ
δ
η
θ
$\mathrm{m} /(\mathrm{pSU}) \mathrm{sec}=1$ airsec
$k_{1} x_{w}-k z_{w}$
component along $0 x$ of difference between steady and unsteady velocity of aircraft
u / J
longitudinal gust velocity
$\mathrm{u}_{\mathrm{g}} \mathrm{J}$
steady relative wind speed
component of aurcraft velocity along Oz
w/U
lateral gust veloczty
$\mathrm{w}_{8} / \mathrm{J}$
$m g=$ weight of aircraft
co-ordinate in direction fixed in aircraf't and, in steady flight, durected forwards along flight path ocefficients in $F_{\text {long }}(D)$, see ($A-35,53,54$) dimensionless aerodynamic derivatives, see ($\mathrm{A}-17$)
component of aerodynamic force along $0 x$
value of X in steady flight
aerodynamic derivatives, see ($A-6$)
coordinate in direction fixed in aircraft and, in steady flight, horizontal and to starboard
transfer functions of height response to lateral and longatudinal gust velocities respectively, see (A-58,
59)
co-ordinate in direction fixed in aircraft and, in steady flight, directed downwards, perpendicular to flight poth
coefficients in $F_{\text {lat }}(D)$, see ($A-3 \Gamma, 55-57$)
component of aerodynamic force along Oz
value of Z in steady flight
aerodynamic derivatives, see (A-7)
angle of steady flight path above horizontal
$-m_{r} / i_{B}$
elevator angle
pitching angle, see Fig.2(b)

SYMBOLS (Contd)

K
λ
.
μ_{1}
ν
ρ
σ
$-\mu_{1} \mathrm{~m}_{\mathrm{d}} /{ }_{\mathrm{I}}^{\mathrm{B}}$
cut-off wavelength in minus five-thirds law spectrum
$m /(\sqrt{3 p S L})$
$m /(p S L)$
$\operatorname{ma}_{q} / i_{B}$
local air density
rms height deviation due to turbulence
Intensity of turbulence $=$ rms gust velocity
$t / \hat{t}=$ time in airsecs
$-\mu_{1} \mathrm{~m}_{\mathrm{w}} / i_{B}$
frequency of turbulence observed from alrcraft
$(\mathrm{m} / \mathrm{ps}) \Omega$
$-\mu_{1} m_{W} / i_{B}$
ω / U

REFERENCRS

No.	Author	Title, etc
1	W. Gracey J.A. Shipp	Randam deviations from cruise altitudes of a turbojet transport at altitudes between 20000 and 40000 feet. NASA TN D-820 (1961)
2	J.K. Zbrozek	Airoraft and atmospheric turbulence. R.A.E. TN Aero 2790 (A.R.C. 23396) (1961)
3	J.L. Lumley H. A. Panof sky	The structure of atmospheric turbulence. Inter science (1964)
4	-	National air meeting on clear air turbulence. Soclety of Automotive Enganeers (1966)
5	-	Atmospheric turbulence and its relation to aircraft. H.M.S.O. (1963)
6	S.O. Rice	Mathematical analysis of random noise. Bell System Technical Journal, Vol. 33 No. 3 (1944) and Vol. 34 No.1. Reprinted in Ref. 7 (1945)
7	N. Wax (Ed.)	Selected papers on noise and stochastic processes. Dover (1954)
8	J.K. Zbrozek	Aircraft behaviour in a vertical gradient of wind velocity. R.A.E. TN Aero 2810 (A.R.C. 23904) (1962)
9	J.K. Zbrozek D.M. Ridland	A measured power spectrum of the vertical component of atmospheric turbulence. $\text { A.R.C. C.P. } 522 \text { (1960) }$
10	H. Press M.T. Meadows I. Hadlook	A re-evaluation of data on atmospheric turbulence and airplane gust loads for application in spectral oalculations. NAGA Report No.1272, Langley Aeronautical Labaratory (1956)
11	M.R. Watts D.E. Fry	The longitudinal response of an ayreraft with autopilot including an incidence term in the height control equation. $\text { A.R.C. C.P. } 396 \text { (1957) }$

REFERRENCES (Contd)

No.
Author
Title, etc
12 Yu. P. Dobrolenskii The effect of an autopilot on the dynamics and
(Trans. J.W. Palmer) flight safety of a non-rigid aircraft in a turbulent atmosphere.
R.A.E. Library Translation No. 1096 (1965)

13 A.J. Duncan

14 S. Neumark

Principles of the control and stability of aircrafto Cambriage University Press (1952)

The disturbed longitudinal motion of an uncontrolled aircraf't and of an aircraf't with automatic control.
ARC R\&EM No. 2078 (1943)

Fig. 1 Cumulative probability distribution of rms gust velocity for routine operations

a Axes in steady 1 light condition

b Velocity components relative to steady wind

C Velocity components relative to wind

Fig. $2 \mathrm{ab} \& \mathrm{c}$ Axes and aircraft velocity components

Fig. 3 Longitudinal transfer function of medium bomber and longitudinal turbulence spectrum

Fig. 4 Lateral transfer function of medium bomber and vertical turbulence spectrum

Full line

- calculated histogrom Dotted line - observed histogram (figure $2(d)$ of reference 1)

Fig. 5 Percentage of cruise time spent by a subsonic jet within each altitude increment from cruise altitude, 4000 ft

A.R.A. C.P. No. 1009	$629.13 .076:$
Angnst 1967	$551.51:$
Figgott, B.A.M.	$656.7 .052 .1:$

Figgott, R.A.M.
551.51 :
$519.21_{1} 2$
ATMOSPYERIC TURBULEICE AND AIRCRAFT HEIGHT-KEEPING ACCURACY

As a contribution to the study of vertical separation standards for use in air traffic control, an examination is made of the possibility of applying the soectral methods already used in gust load evaluations to the problem of determining the height-keeping errors caused by atmospheric turbulence. ilthough it is found that the data available on the low frequency components of atmospheric turbulence and on the nature of the control applied by the pilot, whether human or automatic, are not sufficient to allow an accurate estimation of these errors, it is concluded that they do not make significant contribution to the total errors experienced. It is noted, however, that certain atmospheric phenomena lie sutside the scope of the theory used here.

A.R.C. C.P. No. 1009	629.13 .076
August 1967	$551.51 \cdot$
Piggoti. B.A.M.	$656.7 .052 .1:$

AMOSPHERIC TURBULENCE AND AIRCRAFT HEIGHT-XEEPING ACCURACY

As a contribution to the study of vertical separetton standards for use in air traffic control, an examination is made of the possibility of applying the spectral methods already used in gust load evaiuations to the roblem of determining the height-keeping errors caused b. -tinospheric turbulence. Although it is round that the data available or the low frequency components of atmospheric turbulence and on the nature of the control applied by the pilot, whether human or autamatic, are not sufficient to allow an accurate estimation of these errors, it is concluded that they do not make significant contribution to the total errors experienced. It is noted, however, that certain atmospheric phenomena lie outside the scope of the theory used here.

ATMOSPHERIC TURBULENCE AND AIRCRAFT HEIGHT-KEEPING ACCURACY
As a contribution to the study of vertical separation standards for use in alritrafic control, an examination is made of the possibility of applying the spectral methods already used in gast load evaluations to the problem of determining the heignt-keeping errors caused by atmospheric turbulence. Although it is found that the data available on the low frequency components of atmospheric turbulence and on the nature of the control applied by the pilot, whether human or automatic, are not sufficient to allow an accurate estimation of these errors, it is concluded that they do not make significant contribution to the total errors experienced. It is noted, however, that certain atmospheric phenomena lie outside the scope of the theory used here.

$$
+
$$

$$
-2
$$

$$
5
$$

\author{

- Crown Copyrıght 1968
}

Published by
Her Majesty’s Stationery Office
To be purchased from
49 High Holborn, London w c 1
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Farrfax Street, Bristol I
258-259 Broad Street, Bırmıngham 1
7-11 Linenhall Street, Belfast 2
or through any bookseller

[^0]: * Replaces R.A.E. Techncal Report 67195 - A. R.C. 29841

