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Some Comments on the Conditions in 

a Local Supersonic Flow Region 

By T. H. Moulden 

The paper sets out to summarise the properties of the flow in a 
local supersonic, two-dimensional, steady potential flow region. Starting 
from the results of the theory of characteristics, the concept of wave strength 
is introduced and used to develop logically the properties of the supersonic 
region. 

The conditions which must be imposed on the flow in order that it 
shall remain irrotational are reviewed. The practical significance of this 
is mentioned. 
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Notation 
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J,j 
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plWS8W.3 

density 

8-a speed 

speed 

flow direction 

Maoh number (= q/a) 

q/a* wh 8x-e a* ia the sound speed when local Id = 1 

StreamlIne ooca-ahates 

general rectangular ootidinates 

characteristic ooordlnates 

Mach an&e (= sin-’ i) 

Frandtl-Meyer angle (see equation (68)) 

ratio of speoifio heats 

e -0 u = e+w 

- (es - co@) s = - (es + OQ 

e+p a = 0-p 

angle betmen streamline and isobar 

90 - E 

transformation Jaoobians 

aooeleration 

. 

Suffices denote partial differentiation 

I./ 
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1. Introduction 
5 

When a mathematical model 1s posed as a representation of a physical 
phenomenon it needs investigating to determlne to what extent this representation 
1s correct. Provided that the model has been correctly posed (i.e., has a 
unique solution, etc.) then Its value is best estimated by comparing its 
predictions with reality. 

In the problem of the transonic flow past an aerofoil the usual 
assumptions made are that the flow 1s two-dimensional, steady and irrotetional. 
The purpose of the present work is to summarize the properties of the flow 
obtained from this model, and to investigate conaltions for flow breakdown. 
There 1s oonsiaerable practical importance associate& with the phenomenon of 
potential flow breakdown (shock wave formation in a real flow) since this 
occurrence results in a large increase of aerofoii drag (wave drag). The need 
exists to understand the mechanism of flow breakdown in order to establish 
optimum operating conditions. 

The basic theoretical concept used in the analysis is the method of 
characteristics from mhich the properties of the flom model follow naturally. 
We should not, however, expect the properties of the flow model to necessarily 
agreewith experimental findings. Where disagreement is found the flow model 
should be modified to improve the agreement. In general, recourse must be made. 
to experiment in order that the deflciencles of the flow model may be rectified, 

i the type of experiment needed being qualitative rather than quantitative. 

For the present a complete compari.son of the flow model with experiment 
; is not undertaken but doubts about its adequacy are raised. 

2. The Theory of Characterlstlcs Applied to a Local Supersonic Flow Redon 

The flow under consideration is one where the local supersonic flow 
region 1s bounded on one side (along a streamline) by a solid surface while the 
rest of the boundary is the subsonic main stream - i.e., the M = I isobar. 
The flow is assumed throughout to be steady, isentropic,~irrotationd and 
two-climensionsl. 

The general theory of the method of charaoteristios IS not repeated 
here since It is adequately treated in such standard works as Refs. 1 and2. 
The pertinent results for the type of flow considered. here are stated below 
and then the concept of a wave strength is developed to give some insight into 
the structure of such a flos region. 

2.1 Results from the theory of characteristics 

2.1.1 Referring to fig. (I), we define the ohare.cteristics g, tl 
to be inclined at the Mach angle b to the streamline '8'; the streamltie is 
at an angle 'e' to the reference direction 'xl0 

If we define ii = q/a*, the equations of motion along the streamline 
. are obtained as follows. 

. 
Expressions/ 
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Express~cns for the normal and tangential accelerations are given 
in Ref. 3 as: 

P = - p&s , n 

P = - p9 9, 9 3 s 

where, as throughout, suffices denote partial differentiation. 

For irrotational flow 

a = 9tJs' 

while contmtity demands that 

. . . (1) 

..* (la) 

; (PSI = -ps en , 

or) on using equation (1) together with the relatlcn Ps = asps, 

q ‘n 
9, = - 

MP-1 - 
. . . (lb) 

In terms of the variable h, equations (lb) and (la) become 

*.. (2) 

For isentropic flow we have, f?ron Berncuilli's equation, 

giving 
1 

83-h = h ad. . . . (34 
M ,+y-lp 

2 

Considering the variation of quantities along the characteristics, 
the following fundamental facts my be noted; they apply to all flows of the 
type under consideration (steady, two-dimensional, potential flow). 

Treating first the & famly, we note that 

t = 
hsCcS~+hnsin~ , 

3 
. . . (4) 

% 
= es cc9 p + en sin p . 

Then/ 



Then since 
1 427 1 

sinp = -, gasp = -, tan P ==j 
. . . (5) 

M M 
and wntig 

&)== a* . . . (6) 
h 

the eqmtzons (4) may be cast in the form 

cg = @y (OS + es) 3 

I 

where use has also been made of the equations (2). 

The result (&a) implies that 

I$-% = 0 ) 

or 

8 -fJj = const e T ) 

along the F; characteristic. 
5 

. . . o&a) 

.DO (7) 

. . . (8) 

-wing 

or 

eq + h+ = 0 

e + 0 = const E c ..O (9) 
along the q characteristic. 

In general d and T will be fknctions of s and n. 

By using equation (3), equation (6) can be integrated to give 

w = JZ t&J- - ta-i .mx ..* (6a) 

thus identifying w with the Prandtl-Meyer function. With o as the variable 
the equations (2) become 

. . . (2a) 
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. 

The following equalities my also be noted 

1 
c$i = - clbf 

bn-7 

l+klP 
= - 

( ) 
2% 

APT h 

I++? 
= - 

( ) 
do. 

hP- I I 

.00 (IO) 

Also, since am = m ad. 

it 

r 
of 

we 

Or 

follows that at M = 1 32 

such figures as fig. (2 Y 

= 0, so that, for Ms finite, ws = 0; hence 

the e + w curves should touch the 8 curve at 
= 1. For a non-zero es this requires T > 0 in fig. (2). The significance 
thm will be seen in section 2.2. 

If a, @ are&he inclinations of the &, l'~ waves to the x direction, 
have 

a = e+p along a & wave ) 

p = e-J.t along a q w*ve , 

drrfferentiating along the stream direction 

0.. (II) 

a 
S = es+ps, 

. . . (Ila) 

PS = es - P, , 

shomng that for a oompress~ve flow on a convex surface, for which 

then 
a s = IhI - I%/ ' 

8, = - lesl -I esi g 
so that 8, < 0 and the ll family converge. 

on the other hand, 
a s ' 0 if lb\ ' 1%)' 

0-. (12) 

a 8 < 0 if 1 %I < I%IJ 

4 
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so that the c waves oan either converge or diverge, depending on the 
particular flow. This point is oonsidered again later. - section (3.2.1). 
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Differentiation of equation (II) along the respective 
characteristios gives for the curvature of the ohsracteristios: 

. . . (lib) 

where the equations (4a), (6) and (IO) have been incorporated. Thus, as shown 
by Laitone in Ref. 7, ac and p,, change sign when hia = & (M = 1 581) - 

it being shown in section 2.2 that hE < 0 and h,, > 0. It is interesting to 

note that this inflexion point, is not-generally related to the Fnflexion point 
in the Prandtl-Me 

d 
er functionb Since, by equations (3a) and (6), 

dw -= 
aM M(1 +pP) 

, equating 
d% - to zero gives: 
aMa 

as the only admissible solution of the resulting quartio equation. Hence 
only at a value of y = Id@0 do the two inflexion points ocour at the same 
Maoh number, i.e., Id = I*581 (or h = A?). 

2.1.2 It is useful to define the strength of the characteristics 
(designated 'lwave strength"). The strength of a wave may be measured by its 
effect on waves of the other family. Thus A (or w) could be taken as 

the strength of a g wave*. However if use i?s made 02 equations (bs) and 
(8) a slightly different, but more useful, definition of wave strength emerges. 

Differentiating equations (7) and (9) along the streamUne gives 

es+ws-l us, 

ec:*- &) L 
Ts l 

3  

s- 9 

. . . (13) 

Combinin$ 

(i .e., quantities such as ‘% 2 cos p 
are oonsidered). 
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Combining equation (13) with equations (48) and (8) gives 

m 

"&= M us* 

m 

5= M Ts* 

Now define 

. . . (14) 

s = - us = - (es + WE) the strength of the rl wave, 

. . . (13a) 
T = - Ts = - (es -us) the strength of the & wave. 

Then from the equations (4a), (6) and (8) 

A 
IF; = -;s, 

a 
A = -T, 

q M 
. . . (144 

JiFT- n ec =- M S, '3,, = - M T. 

With the above sign convention for the wave strength, T > 0 makas 
c an expansion wave and S > 0 makes q a compression wavs. 

The derivative of T along the & aharaoteristio is 

TE; = Tscos @ + Tnsin p 

= (Wss - QCOS P + bsn - esn)sin p f~-om the definition (13a) of T. 

Differentiating equations (Za) to obtain esn, wsn, we find that 

Tc = 
(es - usI . ~~ 

m = 
- T l MEtan p. 

1 

. . . (13b) 

Similarly sn = -S l ustan p. 

Repeated differentiation of equation (ID) (for 
example) gives: 

a% / a4d, 

the e wave 6s 

- = T * f 
a? 

M,Ms,Mss . . . . . - 
as" 

. 

Hence, if T = 0 at some point on the & wave it will be ssro 1 
along the whole wave, since all the derivatives of T along E are then zero. 
(See Lemma of section 2.3.) In other words, an isolated zero of T is not 

I 
possible/ 
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possible in a supersonic flow region (exoept, possibly, at the sonic line). 
Hence, it follows that S and T do not change sign along the respective 
oharacteristios, and, since they are positive at the sonio line (see seotion 2.2), 
they will be positive Woughout the supersonic flow region. 

It follows from equation (ID) that S and T increase or decrease 
along the chemmteristios depending upon the sign of abf/as. 
expanding flow (Ms > 0), T decreases along the & wave while 

For emmple, far 
S decreases 

along the n wave (taking account of the direotion of the elements Z and 
A11 - Fig. (lb). 

Equation (13) shows that, in general, aT/J& (or &3/a?) becanes 
infinite et the sonlo line where p = 90'. The value of T (or S) will, 
In general, remain finite sinoe T = - 0s when M = I. 

We note In passing that equation (lla) may be written: 

a E T 8 Ma - 1 

. . . (110) 

8s ( ya-, es Ii2 - 

4 > 
1 +qti 

h&1- hP-1 
S. 

2.2 The structure of a looal supersonio flow redon 

In the following the properties of a loos1 supersonic flow region - 
as shown In Fig. (la) - are developed In a logical way. It should be noted 
that, in general, the results only hold In regions where the charaoteristics 
end on the sonio line. 

Let E be the inclination of a constant velooity line '8' to the 
streamline - see Pig. (lb) - then 

5 = As 00.9 E + A, sin E = 0, 

so that A 
tans x -9. . . . (15) 

A n 

Cabining equations (2), (28) and (6) with equation (13a) yields 

. . . (16) 
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and 
T+S 

es = - - , 
( > 2 

T-S 
ws =-9 

2 

G 
e = n (T - S). 

2 

Equation (15) beoomes 

. . . (164 

. . . (158) 

lUWlelJ2 
F'rcun equation (15a), Busemann's result - Ref. 5 - can be recovered, 

If T and S (in the present notation) are of the same sign, then 
E -z p, whereas if T and S are of opposite sign then E > p. Busemann 
claims that the fact that this result must be true on the sonio line shows that 
T and S must be of the same sign. This does not follow direotly, as above, 
from equation (Isa) sinoe at the sonio line p = 90'. 

We argue, instead, that in general the sonic line is not 
perpendicular to the streamline, so that fran equation (15a) we must have 

T-S = 0 at the sonic line . . . (17) 

and the sonio line slope is indeterminate fran equation (15a). Busemann's 
result is thus recovered provided that the sonic line is not perpendicular to 
the streamline. If E = 90-J then equation (15a) yields no information 
concerning S and T, Equation (17) also follows from the definitions given 
in equation (13a) and the fact that ws 2 0 at the sonic line. 

With the present ohoioe of axes we must have at the sonic line 

and since T and S are to be of the same sign, it follows frcnn equatian (16) 
that 

T> 0 and S>O. . . . (17s) 

ALO, from equation (16) (using equation (ITa)) it follows that when 

and when 

As> 0, T > S, 

As< 0, T < S. 

Since/ 
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i 

Since both S and T are positive, the & waves are expansion 
waves and the q waves must be oompression waves. With T , 0 we have 
fraan equation (1%) 

Tg( 0 . . . (17b) 

along a streamline. Sinoe ~~ = es - us, and ws = 0 when M P 1 

(see remark after equation (IO)), It follows that Bs < 0 when M = 1. 
Now On Is then zero (equation (2)), so that the rate of ohange of 0 alang 
the sonio line is simply esoos s. But it can easily be shown frcrm 
equation (15) that E must be an acute angle, and it follows at once that the 
flow dlreotion decreases mono oniaally on moving along the sonic lFne, as was 
shown by Nikolski and Taganov i . 

Far T and S to be positive a compression wove must be a 
ocnnpression wave along its whole length and similarly for expansion waves) l 
and 80 a charact ristio 
out by Guderleyg' 2 

oan only have one end on the sonio line, as was pointed 
. 

It is of interest to note that fran equation (17) It follows that 
the two waves that meet on the sonio line must be of the same strength. The 
relative strengths of the two waves meeting on the surface depends on the 
pressure gradient as seen from equation (16); if As > 0 then T > S, i.e., 
th.e outgoing wave is stronger than the inocrming navd. 

5 With both T and S positive, equation (14) shoKs that % < 0 
and wV > 0; and equation (148) gives 

k <o XT> 0 
. . . (18) 

eE < 0 eq< 0 

as indicated by I&tone in Ref. 7 and Nikolski and Taganov in Ref. 8. 

2.3 Simule wave flows 

The general theory of oharacteristioa for two Independent variables 
solves two quasi-linear partial aifferential equations of the form 

Aux+Buy+ Cv*+Dvy+E = 0 

where u,v are the -dCipendent and x,y the independent variables. The 
ooeffioients A . . . E are Motions of (u,v,x,p). If these coefficients 
are functions of (x,y) ' only, the equations are linear. Again if the 
equations are homogenecus (E = 0) and if A . . . D are functions of (u,v) 
only (i.e., reduoible equations) the hodograph transformation may be applied 
to interchange dependent and independent variables; The equations so formed 
willbelineer. 

The/ 
____---__----_---------------------------- 
*The apparent anomaly caused by the presence of a sonic line in the boundary 

layer of a real flew disappears with the introduction of a vortioity term 
in the equations. 
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. 

The hodograph transformation oan only be applied if the Jacobian 

J = a(u,v) # 0 
%Y) * 

The special case of fluid flow, for which the equations are reduoible 
ana J = 0 identically over a region, gives rise to simple wave flow. The 
faot that J = 0 over a region Implies that u and v are not independent 
and the whole of the region in the x,y plane corresponds to a aurve In the 
u,v plane. Fuller details are given in Ref. I. 

When the equations of motion in streamline coor&Lnates are used 
(equations (2)) the relevant Jacobian is 

a(v) 
J= 

ab,d 
giving 

Asen - +les = 0 for simple wave flow. 

From equation (2) it follow that 

A' 
J = (Ma - 1) 2 - Ma = 0, 

A s 
or 

ea = 
w - 1) A' 

S ha ' 

E wi by equation (6). 

On integrating along a streamline it follows that 

e + 0 = constant 

for plane simple wave flow. 

Further properties of simple wave flw are warth noting. 
the results of equations (16) and (16a) Into (19) gives 

s = - A.T.S. 

Henoe for J = 0 we must have either T or S vanishing. 

As an example, aonsider the oase when T = 0. Then from 
equatFon (14a) 

A = 0, e = 0, 
? ‘1 

. . . (19) 

. . . (19a) 

Putting 

. . . (IPb) 

and so from equation (IO) p? = 0, showing that the '1 w&es must be 
straight lines with velooity and flow direction constant along them. we note 
Fn passing that the pressure grakient is locally perpendicuLar to the 
oharaoteristio and that the velooity cauponent in this direction is soda. 

. 
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I  

An important result follcws from the fact that the wave strengths 
are constant along characteristics in simple wave flow (section 2.1.2). 

If et any point in the flow field a weve of one family crosses a 
simple wave of the other family, then all the waves of the second family whhich 
cross the said wave of the first family must be locelly simple waves. 

For: if (say) T = 0 et some point it will be zero along the 
whole of the & wave in question. Similarly far the q family when 
S = 0. 

Distinction should be drawn between a single & wave for which 
T = 0. The farmer implies that the Jacobian J = 0 alcng a line in the 
flow field and this constitutes a branch line in the flow (see Ref. 9 ar 
Ref. 4). Simple weve flow strictly only results in the latter oese when 
T = 0 over a region where the above lemme still applies. 

It should be noted that simple wave flow cannot exist up to e 
sonic line which is of finite length and not in the characteristic direction, 
since such waves are of constant Mach number, end some limiting chereoteristio 
of the other family must exist (see fig. (3) where BC is such a 1imitFng 
characteristic). There is still doubt as to whether simple wave flow can 
exist in the region AB in fig. (3) (where AB is both the final 
chereoteristio end the sonic line - which is thus strai t and perpendicular 
to the streamline), From equations (6), (13) end (14-a P we find for the case 
T = 0 that 

= 
&G-T 

Ac = M AS 

aoif A is fidte )r must approach zero for M + 1. Nikclski and 
Taganov !n Ref. 8 show that the characteristic AB of fig. (3) would have to 
be of infinite length, thus proving that simple weve flew in a finite region 
Is Impossible. A modified form of their proof is given in the Appendix. 

To illustrate a simple weve compression the canpressing flow arcund 
a circular profile (es = ocnst) is shown in fig. (4). In the example the 
flow from a Mech,number of l-2 was taken for a value of es = 04. 

3. Comments on Criteria for Pgtential Flow Breakdown 

In the following section scme ocmments are made concerning the 
ve.rious otiterie that have been proposed for the breakdown of potential flow. 
As far es possible the criteria have been cast in a form to be consistent with 
the notation of section (2) so that any relation between the criteria is more 
easily seen. 

3.1 Conditions for infinite acceleration 

. The finding of an infinite acceleration in the flow field has arisen 
from two different lines of approach, namely treatments in the flow plane end 
solutions by the hodogreph method. 

3.l.d 
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3.1.1 Biokley in Ref. 10 - following Scherberg in Ref. II - found a 
oonditicm for the appearance of an infinite aooeleration in the flow. The 
analysis of Biokley is aummarized below. 

Taking rectangular coordinates with the '9 axis in the dimotion of 
the pressure gradient, so that $ = 0 locally, the equations of motion may 

be manipulated to show that the acoaleratlon f = u e + v G" 
ax as ia given by 

aa ua + Va 
f =- 

T$ l 
. . . 

ua ua - aa 
(22) 

This gives Bickley's result that the acoeleration beoaaes infinite when the 
velocitg component along the direotlon of the pressure gradient beoanes sonio, 
provided that the quantity v 

9 
is non-zero. 

Substituting a I u In Bernudli's equation 

aa u= + vl Y+l 
-+ a+' 
y-1 2 = 2(y-1) 

and noting that * a+' = < 
y-1 

- the maximum possible velooity, gives 

u= va 
-+- P I. 
a*a 4 

Equaticm (23) represents Soherberg's 11 oritioal ellipse in the 
orosses holograph pLane and any flow whose streamline in the hodograph plane 

this ellipse must attain infinite acceleration. 
shown on fig. (5) far a typical case. 

The oritioal ellipse is 
Since the orltioal ellipse la defined 

relative to the direotion of the looal pressure gradient, it is not a Pixed 
ourve in the holograph plane. 

. . . (23) 

On making the substitution 

u = q 00s v, v P qsinv, 

where v is the angle between the streamline and the direotion of the 
pressure gradient, equation (23) can be east in the form 

?d= 002 v I I, . . . (.m) 

where use has been made of equation (3). 

We note that since K ' G sin p equation (23b) shows that 

002 v = sin2 p, 
or since 

V = 900 - f 

that 
6 zl f CI: 

thus the loaal isobar must be in a oharaoteristio direoticm. 
. . . (UC) 

This/ 

‘ 

. 
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This result was obtained differently in the more complete an+rsfs 
of Craggs - Ref. 9. 

Combining equation (23) with the fact that 

xe 
tan Y = -z (frm equations (15) and (2)) 

hs 

gives, when integrated along a streamline 

e = 2 (0 + constant, 

i.e., simple wave flow results if Bioldey's criterion is oontinuously 
realised along a streamline. We may note, in passing, that the Jacobian 
Pa (uv -uv), 

XY Y= 
whioh wouldbe zero for simple wave flow,oan be written 

P qaaa L- 
= 7 ua - a= 

. . . (22a) 

in the present notation. Hence the Jaoobian is infinite when ua = as if 
is non-zero. 

'Y 
The significanoe of the singularity in the Jacobian is 

evident from considerations in the holograph plane. 

3.1.2 Solutions of the flow equations in the hodograph plane are 
only aooeptable if the transformation to the real plane Is non-singular. 
This oondition is satisfied if the Jacobian 

GY) 1 
j = 

( > 
is- 

a(u,v) 3 

is non-zero. It is suggested in the literature that the ooourrenoe j = 0 
leads to the breakdown of potential flow. Lines along whioh j = 0 in the 
holograph plane give rise to the so-called limit line in the flow plane. The 
properties of suoh a limit line are dealt with in Ref. 9, fm example, and 
need not be considered in fill herein. It is noted in passing that at s limit 
line the streamlines have cusps and the acoeleration is infinite. This latter 
faot was shown in equation (22a) which thus provides the link between the limit 
line and Biokley's oriterion for potential flow breakdown (see also Ref. 9). 

lt&mb in Ref. 12 was the first to give my geomdxioal , 
signifioanoe to the-vanishing of the transformation Jacobian. lL&.sn 
oonsidered the Jaoobian 

a(#,$) 
A= = 0, 

a(q,e) 

which reduoes to (I-Mf)$ +.q"pa 5 0 when the equations of motion In the g*:z. 
hodograph plane are u<ed. If' 6. is the angle between the oonstant velooity 
line and the streamline in the hcdograph plane, then 

tan 6/ 
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80 that for j, = 0 we must have tans8 E tan'), and the streamline 
touches the oheracteristio in the hodogrsph plane (see fig. (5)). 

The results of Sections 3.1.1 and 3.7.2 may be summar ised as 
follows: 

(a) Biokley's criterion ImplIes infinite aaceleration when the 
velocity omponent along the pressure gradient is sonic, 
unless v = 0. 

Y 

(b) This condition of infinite acceleration indicates the formation 
of a limit line. 

(0) Biokley's criterion is satisfied by a simple wave flow (but since 

vY 
= 0 here, the aooeleration is finite - exoept where the 

cheraoteristios form in envelope). For a limited region of 
supersonic flow it was shown in Section 2.3 that simple wave 
flow was not possible. Hence Bicldey's oriterlon always implies 
a flow breakdown somewhere In a limited superscdo region, 
although not necessarily at all points at which the criterion 
itself is satisfied. 

3.1.3 Nikolski and Taganov in Ref. 8 developed a oriterion for 
the breakdown of potential flow. The physical background to their method is 
that all outgoing, 
sonio line (i.e., 

F;, characteristics from the surface are to end on the 
none end on a shook wave). 

giving ~/O(orT30) 
The result of equation (In) - 

- then gives a limitation to the velooity 
distribution on the surface whioh may be mitten as 

a?& 
6- 

a(- e) 
A tan p along a streamline, 

sinoe from equations (16) and (16a): 

aa T>O,S > 0. Hence the condition for flow breakdown taken in Ref. 8, is 

aA 

a(- e) = 
-htanp. . . . (25) 

Comparison with the equations of Section 3.1.1 show this criterion 
to be identioal with that of Bickley and thus deserves no further ooment. 

3.2/ 
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3.2 Other considerations* 

The previous section related the limit line formation and the 
Bickley, and Nikolski and Tagenov criteria for potential flow breakdown. 
In essence the criteria demand that the acceleration at some point be 
infinite. 

e 
The criterion of the last paragraph(equaticm (25))shows that if 

s is finite then so will be hs (emept possibly at M = 1). Hence 
the only possibility for the flow past a non-singular boundary to have 
inf'inite aooeleration would be if this wourred on another streamline in the 
flow. 

3.2.1 Several authors have considered the possibility of the 
formation of an envelope of oharaoteristios in the flow field away from the 
SurfaOe. The oonditions for envelope formation, expressed in terms of the 
rate of convergence of the characteristics, are less precise than the results 
disoussed in Section 3.1 since they exe expressed by inequalities of the type 
as z 0, an 6 0. 

To study these conditions we develop sane aspects of the gemetry 
of the oharaoteristios in the local supersonio flow region thus avol.Ung 
the oonfusion evident 3.n the literature (see: 
observation follcm from equation (lla). 

e.g., Ref. 7j. An important 

oonvex surfaoe (OS * 0)~ 
We note that for the flow past 8 

(4 as = 0 is only possible in a oompressing flow; 

(b) as = 0 is only possible in an expanding flow; 

(o) in oompressing flow p, < as, while in expending flow as < p,. 

Henoe we oonolude that for oompressing flow, the q family of 
characteristics converge more rapidly than the c family, i.e., it is the 
incoming family of waves that will tend to form an envelope. For expanding 
flow the families of charaoteristios reverse their roles. This result 
indioates that any criterion for envelope formation of the c waves In 
oompressing flow will be misleading (see Ref. 7 snd16). 

From Bquations (IO) and (II) it follows that for as = 0 we have: 

ad 
- = lfhzz- . . . (26) 
de 

along a streamline. 

Similarly, for the q family of oharaoteristios we find when 

8, 
= 0: 

a?d 
- = -hfmTi. . . . (%a) 
ae 

F-4 
____--------------------------------------. 

. %he analysis presented in this seotion was developed after discussions with 
Mr. G. Y. Nieuwland of the Nationaal Luoht- en. Ruimtevaertlaboratorium, 
Amsterdem. 
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giving: 
For limit line formation we have (Section 3.1) tan E = + tan p, 

aM 
-=k 

M(l+ 9 M") 

ae m 
..* (26b) 

whhich is equivalent to aw = +I. 
a3 - 

That is, the ocdition for limit line 

formation and simple wave flow are given by the same expression. 

The equations (26) and (26b) are presented in fig. 6 . 
11 

The 
following conolusions are evident from consideration of fig. 6 : 

(i) The Mach number gradient, - $, for limit line formation is a 
minjmum at M2 = & (M = I*581 for y = 1~400). 

(ii) If a limit line forms at Ma 4 
= 5' the equations (26), (26a) 

and (26b) show that either as or P see also 3 is eeroJ 

equation (11~) which indicates that czs = 0 when Ma = - 
(Al 

and T = 0 (simple wave), and correspondingly that p, = 0 
when Ma = - 

A 
and S = 0 (simple wave). 

Equation (lie) shows that as (and similar results hold far the 
q waves) can change sign with increasing Mach number for various values of 

es and T. Fig. (6) includes the locus of conditions under which this 
change of sign takes place. This implies that a convergence of characteristios 
can result on either side of the streamline, depending upon the relation 
existing between the parameters. However, the other family of waves always 
forms a limit line first on the concave side of the streamline (since ps < a3 
for compressing flow). This result was obtained differently in Ref. 14 - see 
Section 3.2.2. 

The above remarks are, to some extent, in contradiotion to the 
suggestions of Laitone in Ref. 7 - partioularly in connection with the 

formetion of envelopes and in the significance of the Mach number F -. 
3-Y 

This is due to the fact that in Ref. 7 the results are limited to the special 
case a 3 

x 0 and confusion with generality follows. 

Finally we collect together the following oonditions holding at 
M = I- &: 

(a) The characteristics have an inflexion point (which is not related 
to the inflexion in the Prandtl-Meyer function except for the 
special value I.4 of y). 

(b) In general, the velocity and flow direction vary monotonically ana 
00ntinuou31y. 
then this 

At the special points where as = 0 or ps = 0 
result need not hold - see Ref. 7. 

to)/ 

. 
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(0) The Mach number /- & in no way represents a ma;ldrmun obtainable 
looal Mach number, nor need the cusp of a limit line occur at 
this Msch numberl i.e., the oritical velocity A = Xorit in 
fig. (5) does not need to take the value fl. 

3.2.2 Various attempts have been made to prove that infinite 
aooeleration is mathematically impossible in s local supersonic flow region. 
We deal with two such cases. 

Firstly, Nikolski and Taganov in Ref. 8 gave a long proof which 
attempts to show that if there is no singularity on the surface, (i.e., if hs 
and 8 are finite) there cannot be one on any other stresmltie in the 
local Lpersonic flow region. Using the result of equation (25) we see that 
if e is finite, X 
must ilso be finite 

will be also, along 'the same streamline (h, and en 
&cm equation (2)). Thus follows Nikolski and Taganov's 

first result - that hS etc. are only singular if OS is infinite. (This 
result may not be trve at M = 1; see below.) 

The final part Or the proof of Ref. 8 takes several pages and will 
not be reproduced here. The essenoe of the proof, hcwever, follows fran the 
equations (16) and (16a) where the quantities Xs, OS etc., are written in 
terms of the wsve strengths T and S. Except at M = 1, hs and es 
are only infinite if T and S are infinite. By differentiation along the 
characteristics, Nikolsld and Taganov show that if S and T are finite on 
a bcmding streamline, then they will be finite in the whole superscmio flow 
region. Henoe the result follows. At M = 1 the above argument breaks 

. down and Nikolski and Taganov conclude that if infinite acceleration does arise 
it does so at the scnio line. (This would certainly be in agreement with the 
result of Emons in Ref. 13.) 

This proof is correct and valid only if the conditions under which it 
was formulated hold. One condition is that two characteristics of the same 
family must not cross (the velooity field is single valued)) henoe the above 
result is only true if waves do not cross. The proof does not, however, 
eliminate the possibility of the formation of envelopes of characteristics with 
resulting infinite acceleration. For example, in the case of the supersonic 
flow in a ooncave bend, the equations of Section 2.1 are valid along a 
oharaoteristio only up to the point where two waves crossj but this point is 
not determined by oansidering the variation of quantities along a single wave. 

Mention should also be made of the work of ldorawetz and Kolodner in 
Ref. 14, who, following FriedriOhsl5, attempt to show that the Jaoobian 

w 
With the 

a U,V 
cannot vanish for the type of flow under consideration. 

assumption that the derivatives qee, Jr 
w Jr,, 

exist and am bounded in the 

supersonic flow region of the hodograph plane they prove: 

(a) A limit line cannot appear In a plane continuous flow past an 
aerofoil of finite curvature if the flow depe4.s oontinuously 
on the freestream Maoh number. 

(b) Far a set of flows which depend oontinuously on a parameter, a 
limit line will only form far some value of this parameter if the 
profile simultaneously has infinite curvature at some point. 

This/ 
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This result of Morawetz and Kolodner is significant in that it 
Suggests that limit lines can only enter the flow field through the boundary 
streamline (solid surface). Hence if the boundary is uniform (es finite) . 
at all points the flow ahauld not contain a singularity. However, the theory 
of Ref. 14 does invoke the theory of characteristics and it oculd be that the 
criticisms made above concerning the work of Nikolaki and Taganov are also 
relevant here. Indeed Taienl* made an e uivalent canment concerning the 
original work of Priedriohs. Menwell - 9 Ref. 20) - made similar deductions 
to those of Mcrawete and Kolodner. These writers use quantities which are 
inversely proportional to the wave strengths of the present work. 

In relation to this problem, mention may be made of Ref. 16 where 
Tollmein and Sohiifer ocmatruot flow patterns about convex surfaces which 
contain envelopes of characteristics in the flow field. Certain 
approxlmationa were, however, made in the theory of Ref. 16 and these oould 
lead to doubts concerning the exactness of the flows obtained. In pertioulsr 
the oanmenta made in Section 3.2.1 are relevant. 

In Ref. 17 an attempt was made to use the criteria of l&nit line 
formetion in practice. It was found thet shock waves formed at Meoh numbers 
well below that required far limit 1Fne formation. 

4. Concluaiona 

The first pert of the paper - Eection 2 - obtained the following 
properties of a local auperaon~c flow region in steady, two-dimensional 
potential flow. In general the results are only valid In a region where the 
oharaoterlatica end on the sonic line. 

(a) Waves incident on the sonic line must be expansion waves, while 
those leaving the sonic line must be compression waves. 

(b) A characteristic cannot ohenge from an expansion wave to a 
oompreaaion wave (or the reverse) and hence can have only one end 
on the acolic line. 

(0) Along the expansion wave, the velocity end flow direction 
monotonically decrease towards the aonio line. Along the 
compression wave the velocity monotonically increases and the 
flow direction monotonically decreases away from the aonio line. 

(d) Two wavea which meet on the sonic line are of the seme strength, 
while two whioh meet on the surface are of different strengths, 
the relative magnitudes depending on the sign of the pressure 
gradient. 

(e) The isobar is at a smaller angle to the flow direction then is a 
characteristic. 

(f) The rate of change of velocity along a streamline must be leas 
than that requFred of simple-wave flow. 

(g) Infinite acceleration on a streamline must be accompanied by 
infinite curvature of the atreemline. 

CertairJ 
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. 

Certain restrictions are to be imposed on the flow if it Is to 
remain potential - Section 3. One restriction is that the velooity gradient 
must nowhere exceed that of simple-wave flow, sinoe (as was show0 in 
Section 2.3). simple-wave flow cannot edst up to the sonio Une in a finite 
region. In a real flow there is also a restriction on velwity gradient if 
the boundary layer is to reme3.n unseperated. This question ws.s not 
oonsidered herein but should always be borne in mind in my praoticd 
situation. 

The. other restriction is mom obsoure and demands that the 
streamline in the hodograph plane should not cross the Soherbsrg critioal 
ellipse. When the streamline does or059 this ellipse infinite acceleration 
results in the flow plane and limit lines form. 

The result presented in Section 3.2 muld indicate that a limit line 
can only enter the flow through the boundary strsamline and not by the 
ooalesoenoe of characteristics in the supersonic region. This latter result 
follows only for convex (es < 0) surfaces. However the formation of a 
limit line demands an infinite curvature of the streamline and hence it 
remains a philosophical point as to what happens for inoreasing freestream 
Meoh number in the flow about a given smooth surface; it may well be that 
the simple-wave flow limitation then governs the flow. 

Finally, we note that in praotioe shook waves often form before 
the theoretical prediotion of limit line formation, and so the oonsideration 
of the steady potential flow model of the local supersdo region in 
isolation seems inadequate. 
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Nikolski and Taganov's.proof of the non-realisation of simple wave flow 
111 a fmte supersonic flow region. 

we have 

Assume simple wave flow between two members of the n fsmilv (sav). 
The following flow diagram then holds: 

/I 

Then 

and 

but 

as . i sin A = r dB , 

"* sind = b + 4) ClB ) 

3.3 = (as,-ds,)cosA. 

$L cot AdB. . . . (a) 

Noting that /9 = p-8. . . . (b) 

Since the flow is assumed to be simple wave compression we cm put 

e = 0+43 where e = 0) w = 0. 
Then smce 

w = p + k cot-* (k tan p) -; , k? = s 

[ by equations (6s) and (5) ] 

13 = ; - k cot-l (k tand '~3 

. 
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. 
Appendix (cont'dl 

gLves 

Then putting 

-$ = p-G+* 

ktanp = cot: 

Using 

gives 

cot 2 p = i 7  ts.9 p 

2 tan Ii 

oot2)1 = I!?- co@ 9/k 
2 k cot $/k - 

SC that equation (a) my be integrated to give 

since sonic con&i.tions correspond to 4 = 0 then C + 0 as sonic conditions 
i are reached. 

DS 
HD 

--s-_---__ * _--_ ; t - :  -___---_-_--___________ - -  

* 

Where 'Cn' denotes the natural logarithm. 
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