$N_{1} A_{1} H^{H}$

Tests in the Compressed Air Tunnel on Two Aerofoil Sections hàving a Large Scale Effect on ${ }^{C_{\text {Lmax }} \text { at a Critical }}$ Reynolds Number

By
C. Salter, M. A., Miss H.M. Lee, B.Sc., and Mıss R. C. Owen, of the Aerodynamics Division, N.P.L.

NATIONAL AERONAUTICAL ESTABLISHMEN1
 llbrary

C.P. No. 92.

Tosts in the Compressed Air Tunnel on Two Acrofoil Scctions having a Large Scale Effect on $C_{\text {Imax }}$ at a Oritical Reynolds Number.

- By -
C. Salter, M.A., Miss H. M. Lee, B.Sc, and Miss R. C. Oren of the Aerodynamics Davision, N.P.I.

16th Ficbruary. 1951

Summery

The report gives results of tests on two "constent velocity" aerofoil sections, 9% and 11\% thick rospectively, and of aspect ratio 6, over a range of R of 0.3×10^{6} to 7.5×10^{6}.

In both cases Cinax. is 0.8 at low Reynolds numbers but rises very sharply between $R=1 \times 10^{6}$ and 2×10^{6} to 1.3 or 1.4, ruaching a value of nearly 1.5 at $R=4 \times 10^{6}$. The stall is very sharp at Reynolds numbers above the critical volue and the slopes of the $C_{I}-\infty$ curves arc not very different in the two cases over most of the range. A bove $C_{L}=0.5$ however, the slope for the thin wing appears to increase sonewhat while the tendency for the thacker wing is in, the other direction.
$C_{D_{0}}$ inin. is lower for the 11% than for the 9% section execpt at low Reynolds numbers (where the reverse is found) and at high Reynolds numbers (where the values are nearly equal).
> dC_{m} dC_{L}

the 11%. An appendix gives the results of tufting experinents.

Introduction

Those wing scctions werc exmined as a rosult of prolminary tosts, on an alrcraft model, which made it desirable to check the profile characteristics. The thickness/chord ratio in the original design varied from 12% near the root to 11% at the tip but the outer parts of the wing were later modified to a 9% thick section.

Derivation of Prof'les:

The basic wing sections were designed by the mothod given by Thwaitos in Refs. 1 and 2. The specafication was for constant velocity on the upper surface up to 0.40 chord $(11, \% \mathrm{t} / \mathrm{c}$) and 0.35 chord ($9 \% \mathrm{t} / \mathrm{c}$) at $C_{L}=0.26$ and 0.18 respectively. This was associated with a constant loading type camber line (Ref. 3) which gave constant loading on the 11% wing up to 0.60 chord decroasing linearly to zoro at the trailing edge at a OLopt. of 0.13. The same camber line was used for the 9% section. The rear portions of both sections were slightly cusped. The maximum thicknosscs of the scetions wero locatcd at $0.43 \mathrm{c}(11 \% \mathrm{t} / \mathrm{c})$ and 0.34 c ($9 \% \mathrm{t} / \mathrm{c}$).

```
The
```

Published with permission of the Dircctor, National Physical Laboratory.

The upper and lower surfacc ordinates are rocorded in table I while the profiles are sketched in Fig.1. The ordinatcs were checked by plotting mean slopes at different parts of the outline aganst distance from the leading edge. Some obvious small errors vere found and the figures given in the table thereforc differ slightly from those supplied by the firm.

Wing hodels and Supports

The gi, wing was made of steel and the 11% of hiduminium (R.R.56). Both were rectangular in plan form. the nominal chord was 8 inches and the span 4 ft . but the chord of the 9,6 wing, was actually 7.94 in.. giving an aspect ratio of 6.045 znstead of 6 whilc the 11% rodel t.as slightly bent in the direction of the span. As a result of this curvature the end chords of the 11% wing were nearly 0.08 in . below the centre chord (wing right way up).

The thicker wing was mounted (upside dorm) on the standard end-pin and tail supports. The 9% wing however, was too thin to be held in this way and was thercrore suspended from streamined rods at points $24 \frac{5}{4}$ in. apart and 1.6 in . from the leading edge. The adjustable rear support was located near the centre of the tralling edge in each case.

Range or tests

Tho tests included measurements of lift, drag and pitching moment rangang from negative values of CL_{L} to the stalled rugion. Reynolds numbers varied from 0.3×10^{6} to $7.2 \times 10^{6}(9 \%$ rang $)$ and $7.6 \times 10^{6}(11 \% \mathrm{wing})$.
tables and jigures
A summary of results is given in Trable II and detalls of the observations in Trables III and IV. The sumnary is illustrated in Fig.II and typical curves of C_{L} against a and C_{m} against C_{L} are drawn in Fig. 3.

In addition to the normal tunnel corrcctions for drag and incidence, the aspect ratio corrcctions that have, been used in the calculation of a_{0} are
$-3.52 C_{L}$ degrees (9%) and $-3.55 C_{L}$ degrees (11%)
while the induced drag coefficient has been estinated from the expressions

$$
0.055 \mathrm{C}_{\mathrm{L}}{ }^{2}(9 \%) \text { and } 0.0555 \mathrm{C}_{\mathrm{L}}{ }^{2}(11 \%) .
$$

Results
Lift.
The difforences in Cimax. are small, and except at very low Reynolds numbers, the stall is very sharp in both cases (Fig.3). With R approaching 1.5×10^{6} the maximum lift coefficient begins to rise steeply. At low values of $R, C_{L^{m}}$ max. $1 s 0.8$ and at high values nearly 1.5 (F'ig.2).

The slope of the lift curve is generally much the same in each case. For the $\%$ section the values given in liable II and plotted in Fig. 2 cover a range of C_{L} of -0.12 to +0.5 . There appcars generally to be a slight increase at greater angles of incidence. The values quoted for the 11% section refer to C_{L} ranging from -0.1 to +0.35 up to $R=2 \times 10^{6}$ and -0.1 to +0.75 for R greater than this. In this case the slope decreases at higher angles of incidence.

As mentioned in a previous paragraph, a_{0} has been calculated by the use of the Glaucre "lifting line" formala. The slope of the $C_{I_{4}}$ 'against a_{0} curve honever, is appreciably different if the Bryant-Garner equation,

$$
\frac{A}{a}=\frac{A}{a_{0}}+0.34(1+\tau)+0.064 \sqrt{\frac{r_{0}}{A}},
$$

based on lifting surface theory is enployed.
The calculated values for hich Rcynolas numbers arc rs rollons:

$$
\begin{array}{rccc}
a=\frac{d C_{I}}{d a} & a_{0}=\frac{d C_{I}}{d a_{0}} & a_{0}=\frac{d C_{L}}{d a_{0}} \\
& & \text { Glauert } & \text { Bry nt } \\
9 \% & 4.3 & 5.35 & 6.4 \\
11 \% & 4.4 & 6.04 & 6.6
\end{array}
$$

At zero lift a is -0.6 degrees for the 9% wing and -0.9 degrees for the 11% wing, while at $a=0$, the values of C_{L} are approximately 0.045 and 0.065 respectivcly. The shaft of the curve is illustrated in Fig. 3.

Pitching ioment

The relation between $C_{n}{ }^{\prime}$ ' and C_{I} is also much the same in the aC_{m} wo cascs (Fig.3) but the value of $\frac{\mathrm{C}_{\mathrm{m}}}{\mathrm{d}}$ ((he lover lift coefficients is epprccabily differcnt (Tablc II and $F 1 g .2$). The slopes rocorded cover the range of Li fron -0.12 to +0.35 or 0.4 (9% wing) and -0.1 to roughly $+0.5(11,5 \mathrm{ma})$.
dorients arc civan about the quarter chord line in cach case.

Draf

CD_{p} min. is lo:uer for the 11% than for the 9 section except at low Reynolds numbers, lihere the reverse is found, and at the highest Reynolds nuaber of $7 \frac{1}{2} \times 10^{\circ}$, : here the values are nearly equal and of magnitude approxinately 0.007 (Table II and Hig.2).

The slope of the C_{D} egainst $C_{L}{ }^{2}$ curves at low lift could only be moasured in a f'ew cases and then mith unoertain acouracy. Sufficient masurnents were however, available to shon the usual relatively high values of slope at lov Reynolds nuibers tending to the Glauert value of 0.0555 at high velues of R.
(Note on G_{T} max : A Allowing an inorease of 5% for infinite aspect ratio, $C_{\text {I }}$ max for the 11, rinc Lits roll un tho curves of Multhopp's analysis for cambercd acrofoils (Ros. 4); ror the 9% it is inclined to bo rather high by roughly 0.1.)

Reforences

No.	Author	Title, etc.
1	B. Thraites	A method of aerofoil design. Part I Symetrical aerofoils. R. \& ih. 2166. Niay, 1945.
2	B. Thwaites	A method of aerofoil design. Part II Camberod acrofoils. R. \& M. 2167. Septamber, 1945.
3	E. J. Richards	A family of camber lines for low drag aerofoils gaving on arbitrary pitching moment coefficient. A. R.C. 8277. (Unpublished).
4	H. Lul thopp	On the maximun lift coofficient of aerofoll sections. s.R.C. 12,115. Deceraber, 1948.
5	D. D. Carrow	A note on the boundary layer and stalling charecteristics of aerofoils. A. R.C. 13,424. (Unpublished). 5th October, 1950.
6	A. D. Young	A review of some stalling research. With an lippendux by H. B. Squire and A. D. Young. R. \& $M_{e} 2609$. February, 1942.

- 5 -

Tablo I

Ordanates of Aerofoil Stcetions
(Inches)

X ins.	Acrofonl Profile $11 \% \mathrm{t} / \mathrm{c}$		Aerofoil Profile 90 t/	
	y_{u}	y_{2}	y_{u}	y_{2}
0	L. Di. Raclius	0.088	L. E. Radius	0.084
0.012	0.082	0.075	0.083	0.075
0.06	0.093	0.088	0.099	0.089
0.10	0.122	0.106	0.123	0.108
0.20	0.164	0.137	0.162	0.134
0.40	0.226	0.180	0.216	0.169
0.60	0.274	0.212	0.258	0.195
0.80	0.314	0.238	0.292	0.215
1.20	0.377	0.278	0.345	0.244
1.60	0.426	0.307	0.385	0.264
2.00	0.463	0.329	0.412	0.278
2.40	0.491	0.344	0.429	0.284
2.30	0.509	0.354	0.437	0.282
3.20	0.520	0.359	0.434	0.273
3.60	0.522	0.358	0.423	0.258
4.00	0.515	0.350	0.405	0.239
$4 \cdot 40$	0.497	0.337	0.379	0.218
4.80	0.470	0.318	0.346	0.194
5.20	0.433	0.293	0.303	0.168
5.60	0.385	0.262	0.264	0.14 .1
6.00	0.327	0.224	0.218	0.114
6.40	0.261	0.179	0.171	0.088
6.80	0.189	0.128	0.125	0.064
7.20	0.117	0.078	0.031	0.042
7.40	0.084	0.055	0.062	0.032
7.60	0.053	0.035	0.041	0.023
7.80	0.026	0.018	0.023	0.015
7.90	0.015	0.011	0.014.	0.010
8.00	0	0	0	0

Span	4 ft .	4 ft .
Chord	0.662 l 1t.	0.667 ft.
A.R.	6.045	6.0
Wing Area	$2.645 \mathrm{sq} . \mathrm{ft}$.	2.667 sq. ft.
Sax t/c at	0.430	0.340
$t_{0_{2} \mathrm{OS}}$	0.051	0.048

Trable II

Sumnary of Results

$\stackrel{R}{-7}$	$\log R$	$C_{L} \operatorname{nax}$	Incidence at C_{L} max. (degrees)	$\mathrm{C}_{D_{0}} \mathrm{mmn}$.	$\frac{d C}{-\frac{I}{n}}(a \text { in radians })$	$\frac{d C_{m}}{--\frac{d C_{\mathrm{L}}}{}}$
\% Acrofoll						
0.287	5.46	0.805	12.0	0.0080	4.16	-
0.91	5.96	0.85	12.7	0.0066	4.225	0.017
1.51	6.18	0.995	12.6	0.0061	4.25	0.0096
2.20	6.34	1.385	18.85	0.0061	4.30	0.0095
2.98	6.475	1.433	19.45	0.0063	$4 \cdot 32$	0.0098
3.26	6.515	1.47	20.0	-	,	-
4.05	6.61	1.475	20.15	0.0069	$4 \cdot 32$	0.0102
5.76	6.76	1.475	20.15	0.0069	4.30	0.0103
7.19	6.855	1.43	19.4	0.0070	4.29	0.0097
refers to range of $C_{L}=-0.12$ to +0.5						

Slope generally shows slight increase at high values of C_{L}. $d C_{m}$
$-C_{L}$ refers to range of $C_{L}=\begin{aligned} & -0.12 \text { to }+0.35 \\ & -0.12 \text { to }+0.4\end{aligned}\left(\begin{array}{ll}R & \text { up to } 4 \times 10^{6} \\ R & \text { over } \\ 4\end{array}\right)$

11\% Aerofoil

0.30	5.48	0.80	12.2	0.0106	3.98	0.041
0.65	5.81	0.815	12.5	0.0072	4.21	0.036
1.075	6.03	0.825	12.5	0.0050	4.24	0.0296
1.47	6.165	0.855	12.5	-	-	-
2.08	6.32	1.30	19.0	0.0046	4.30	0.0217
2.91	6.465	1.395	20.5	-	-	-
4.12	6.615	1.485	21.6	-	-	-
5.05	6.705	1.485	21.85	0.0061	4.27	0.0186
5.73	6.76	1.48	21.1	-	-	
6.65	6.825	1.465	20.7	0.0068	4.42	0.017
7.64	6.885	1.455	20.25	0.0068	4.44	0.0144

$\underset{\left(C_{I}\right.}{d a}$ refers to range of $\left.C_{L}=\begin{array}{l}-0.1 \text { to }+0.35\left(\begin{array}{ll}R & \text { up to } 2 \times 10^{6} \\ -0.1 & \text { to }+0.75\end{array}\binom{\text { over }}{d} \times 10^{6}\right.\end{array}\right)$
Slope decreases at hagher values of $C_{I_{L}}$

```
m\mp@subsup{C}{m}{m}
```

$\begin{aligned} & P=1.0 \text { Atinos } \\ & V=72.0 \mathrm{FPS} \end{aligned}$			$\begin{aligned} \mathrm{PV}^{2} & =12.1 \mathrm{lb} . / \mathrm{sqgat} \\ \mathrm{R} & =0.287 \times 10^{6} \end{aligned}$			$\begin{aligned} & P=4.3 \text { Atrios. } \\ & V=53.2 \mathrm{FPS} \end{aligned}$			$\begin{aligned} \mathrm{pv} & =27.91 \mathrm{~b} / \mathrm{kg} \\ \mathrm{R} & =0.91 \times 1 \mathrm{ft} \end{aligned}$			$\begin{aligned} & P=8.0 \text { Atmos. } \\ & V=47.7 \mathrm{FPS} \end{aligned}$			$\begin{aligned} & \mathrm{PV}=41.6 \mathrm{lb} / \mathrm{sg} \\ & \mathrm{R}=1.51-\mathrm{ft} . \\ & \end{aligned}$		
α	C_{L}	D	C_{D}	$\mathrm{C}_{\text {m }}$		α	${ }^{\circ}$	${ }^{\text {C }}$	${ }^{\mathrm{C}_{\mathrm{D}}}$	m	${ }_{0}$	a_{-}	$\mathrm{C}_{\text {I }}$	$C_{\text {D }}$	${ }^{\text {c }}$	C	α_{0}
-2.15	-0.096	0.0122	0.0117	-0.0274	-1.8	-2.15	-0.119	0.0109	0.0101	-0.0232	-1.75	-2.2	-0.121	0.0093	0.0085	-0.0219	-1.75
-0.85	-0.010	0.0091	0.0091	-0.0237	-0.8	-0.9	-0.023	0.0091	0.0091	-0.0218	-0.8	-0.9	-0.025	0.0080	0.0080	-0.0212	-0.8
+0.4	+0.074	0.0091	0.0088	-0.0194	+0.1	+0.35	+0.065	0.0077	0.0075	-0.0198	+0.1	+0.35	+0.068	0.0068	0.0066	-0.0201	+0.1
1.65	0.169	0.0100	0.0084	-0.0182	1.05	1.6	0.159	0.0082	0.0068	-0.0191	1.05	1.6	0.161	0.0075	0.0061	-0.0191	1.05
2.85	0.266	0.0120	0.0081	-0.0182	1.9	2.85	0.249	0.0101	0.0067	-0.0167	1.95	2.85	0.255	0.0101	0.0065	-0.0183	1.95
5.3	0.440	0.0269	0.0163	-0.0151	3.75	5.25 ;	0.433	0.0192	0.0089	-0.0154	3.75	5.25	0.438	0.0188	0.0073	-0.0168	3.7
7.8	0.609	0.0353	0.0151	-0.0114	5.65	7.75	0.617	0.0318	0.0109	-0.0148	5.55	7.75	0.632	0.0310	0.0091	-0.0954	5.55
10.25	0.763	0.0652	0.0332	-0.0066	7.55	9.0	0.709	0.0394	0.0117	-0.0138	6.5	10.15	0.812	0.0475	0.0113	-0.0149	7.3
11.5	0.800	0.108	0.0727	-0.0261	8.7	10.15	0.793	0.0485	0.0139	-0.0128	7.35	11.4	0.906	0.0573	0.0122	-0.0148	8.2
12.8	0.790	0.153	0.119	-0.0626	10.0	11.45	0.826	0.0885	0.0510	-0.0160	8.55	12.65	0.995	0.0685	0.0141	-0.0145	9.15
14.15	0.740	0.181	0.151	-0.0823	11.55	12.75 14.05	0.853	0.132 0.177	$\left\|\begin{array}{l} 0.0918 \\ 0.139 \end{array}\right\|$	-0.0429 -0.0721	9.75 11.15	12.65 14.0	0.995 0.885	सStal1 0.165	0.122	-0.0663	9.15 10.9
												15.3	0.880	0.193	0.150	-0.0808	12.2

9, inn

$\begin{aligned} & \mathrm{P}=11.4 \text { Atinos. } \\ & \mathrm{V}=49.0 \mathrm{FFS} \end{aligned}$			$\left\lvert\, \begin{aligned} & \mathrm{p}^{2}=62.6 \mathrm{Ib} \sqrt{\text { s } q_{0} \mathrm{St}_{0}} \\ & R=2.20 \times 10^{5} \end{aligned}\right.$			$\begin{aligned} & \mathrm{P}=14.7 \text { Atnos } \\ & V=53.3 \mathrm{FPS} \end{aligned}$			$\left\{\begin{array}{l} \mathrm{NV}^{2}=93.61 \mathrm{bo}_{0} / \mathrm{sq}_{.} \mathrm{ft} \\ R=2.98 \times 10^{5} \end{array}\right.$			$\begin{aligned} & \mathrm{P}=18.5 \text { Atnos. } \\ & \mathrm{V}=57.9 \mathrm{KIS} \end{aligned}$			$\begin{aligned} & \mathrm{N}^{2}=133 \mathrm{lb} / \mathrm{sq} \cdot \mathrm{ft}^{2} . \\ & R=4.05 \times 10^{6} \end{aligned}$		
a	$\mathrm{C}_{\text {I }}$	${ }^{\text {C }}$ D	$\mathrm{C}_{\mathrm{D}_{0}}$	C_{n}	${ }^{0}$	a	C_{1}	D				a	C	C_{D}	${ }^{\text {C }}$	C	${ }_{0}$
-2.2	-0.124	0.0090	0.0082	-0.0222	-1.75	-2.2	-0.125	0.0091	0.0082	-0.0223	-1.	-2.2	-0.125	0.0093	0.0084	-0.0220	. 75
-0.	-0.026	0.0075	0.0075	-0.0211	-0.8	-0.9	-0.027	0.0078	0.0078	-0.0211	-0.8	-0.9	-0.028	0.0076	0.0076	-0.0209	-0.8
$+0.35$	$+0.068$	0.0068	0.0065	-0.0202	+0.1	+0.35	$+0.068$	0.0068	0.0066	-0.0202	$+0.1$	$+0.35$	+0.066	10.0073	0.0071	-0.0201	+0.1
1.6	0.165	0.0076	0.0061	-0.0192	1.0	1.6	0.163	0.0079	0.0064	-0.0193	1.0	1.6	0.160	0.0083	0.0069	-0.0191	1.05
2.85	0.256	0.0103	0.0067	-0.0184	1.95	2.85	0.253	0.0108	0.0073	-0.0184	1.95	2.85	0.256	0.0109	0.0073	-0.0480	1.95
5.25	0.435	0.0188	0.0084	-0.0175	3.7	4.05	0.351	-	-	-C.0174	2.85	4.05	0.34 .9	-	-	-0.0176	2.8
7.75	0.629	0.0303	0.0085	-0.0161	5.55	5.25	0.442	0.0192	0.0085	-0.0172	3.7	5.25	0.444	0.0488	0.0030	-0.0169	3.7
9.0	0.727	0.0377	0.0087	-0.0153	6.45	7.75	0.631	0.0303	0.0083	-0.0167	5.55	7.75	0.635	0.0306	0.0034	-0.0164	5.55
10.15	0.818	0.0469	0.0101	-0.0157	7.25	10.15	0.827	0.0459	0.0094	-0.0163	7.25	10.2	0.820	0. 0.0468	0.0097	-0.0163	7.3
12.65	0.986	0.0632	0.0141	-0.0165	9.15	12.65	1.00	0.0681	0.0130	-0.0173	9.15	12.65	1.008	0.0680	0.0120	-0.0168	9.1
13.9	1.085	0.0798	0.0148	-0.0162	10.1	15.15	1.185	0.0927	0.0156	-0.0169	11.0	13.9	1.095	0.0802	0.0144	-0.0172	10.05
15.15	1.165	0.0932	0.0186	-0.0164	11.05	16.35	1.26	0.1065	0.0493	-0.0170	11.9	15.2	1.18	0.0931	0.0162	-0.0176	11.0
16.35	1.238	0.107	0.0228	-0.0166	12.0	17.6	1.33	0.1225	0.0253	-0.0175	12.95	16.4	1.265	10.107	0.0491	-0.0179	11.95
17.6	1.315	0.122	0.0266	-0.0162	12.95	18.9	1.40	-	-	-0.0192	13.95	17.65	1.345	0.1215	0.0220	-0.0177	12.9
18.85	1.385	0.134	0.0283	-0.0166	14.0	19.7	1.435	-Stal 1	-	-	14.65	18.9	1.415	0.1355	0.0250	-0.0172	13.9
18.85	1.385	$4-5 t a l 1$	-	-	14.0	20.5	0.87	0.299	0.258	-0.1042	17.45	20.15	1.275	fstall		-	14.95
19.2	0.805	0.277	0.24 .2	-0.1008								20.5	0.933	0.276	0.228	-0.0858	17.2
20.55	0.815	0.308	0.271	-0.1152	17.7							21.85	0.94	0.310	0.261	-0.1117	18.55

9; ing

$\begin{aligned} & \mathrm{P} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 22.8 \\ & 63.9 \end{aligned}$	Atrios. FPS	$\left\lvert\, \begin{aligned} \rho \mathrm{v}^{2} & =2161 \mathrm{~b} . / \mathrm{sq} \cdot \mathrm{ft}^{2} \\ \mathrm{R} & =5.76 \times 10^{6} \end{aligned}\right.$			$\begin{aligned} & \mathrm{P}=24.6 \text { Atmos. } \\ & \mathrm{V}=78.0 \mathrm{FPSS} \end{aligned}$			$\begin{aligned} \mathrm{OV}^{2} & =3321 \mathrm{~b} / \mathrm{sq}_{0} \\ \mathrm{R} & =7.19 \times 10^{6} \end{aligned}$		
α	\underline{L}	C_{D}	$\mathrm{C}_{\mathrm{D}_{0}}$	C_{II}		α	$\mathrm{C}_{\text {工 }}$		D_{0}	$\mathrm{C}_{\text {m }}$	0
-2.2	-0.122	0.0092	0.0084	-0.0221	-1.75	-2.2	-0.120	0.0093	0.0085	-0.0223	-1.75
-0.95	-0.026	0.0082	0.0082	-0.0214	-0.85	-0.95	-0.019	0.0078	0.0078	-0.0209	-0.85
+0.35	+0.071	0.0081	0.0078	-0.0200	+0.1	+0.35	$+0.071$	10.0078	0.0075	-0.0203	$+0.1$
1.6	0.162	-	-	-0.0192	1.05	1.6	0.164	0.0088	10.0073	-0.0192	1.05
2.85	0.259	0.0106	0.0069	-0.0182	1.95	2.85	0.258	0.0109	0.0072	-0.0183	1.95
5.3	0.445	-	-	-0.0167	3.75	4.05	0.347	-		-0.0176	2.85
$7 \cdot 75$	0.634	0.0304	0.0082	-0.0158	5.55	5.3	0.451	0.0181	0.0070	-0.0168	3.7
10.2	0.822	0.0461	0.0089	-0.0150	7.3	7.8	0.640	0.0300	0.0074	-0.0158	5.5
12.7	1.008	0.0667	0.0110	-0.0156	9.15	10.25	0.828	0.0462	0.0083	-0.0153	7.35
13.95	1.098	0.0782	0.0119	-0.0162	10.1	12.8	1.012	0.0662	0.0100	-0.0154	9.2
15.2	1.180	0.0918	0.0151	-0.0159	11.05	14.0	1.100	0.0787	0.0124	-0.0156	10.1
16.4	1.268	0.1055	0.0170	-0.0156	11.95	15.25	1.185	0.0918	0.0144	-0.0155	11.1
17.7	1.345	0.1205	0.0208	-0.0168	12.95	16.5	1.27	0.1055	0.0165	-0.015	12.05
18.95	1.420	0.136	0.0248	-0.0169	13.95	17.75	1.355	0.1275	0.0265	-0.0155	13.0
20.15	1.475	FStall	-		14.95	19.05	1.415			-0.0154	15.3
-20.45	0.999	0.257.	0.202	-0.1004	16.95	19.4	1.430	*Stall			14.35
21.75	0.903	0.294	0.249	-0.1067	18.55	20.45	1.005	0.258	0.203	-0.1015	16.95

$\begin{aligned} & P=1.0 \text { Atnos } \\ & V=70.95 \mathrm{FPS} \end{aligned}$			$\begin{aligned} & \rho^{2}=12.1 \mathrm{lb} / \mathrm{sq} \cdot \mathrm{f}^{6} t . \\ & \mathrm{R}=0.301 \times 10^{6} \end{aligned}$			$\begin{aligned} & P=2.3 \text { Atmos } \\ & V=67.7 \mathrm{FTSS} \end{aligned}$			$\begin{aligned} \mathrm{VV}^{2} & =24.9 \mathrm{lb} / \mathrm{sq}_{*} \mathrm{ft} \\ \mathrm{R} & =0.65 \times 10^{6} \end{aligned}$			$\begin{aligned} & \mathrm{P}=4.6 \text { Atmos. } \\ & \mathrm{V}=56.6 \mathrm{FIS} \end{aligned}$			$\begin{aligned} \mathrm{pv}^{2} & =34 \alpha_{4} \mathrm{lb} / \text { sq. } \mathrm{ft} \\ \mathrm{R} & =1.075 \times 10^{6} \end{aligned}$		
a	$\mathrm{C}_{\text {I }}$	D	${ }^{D_{0}}$	C_{n}	${ }_{0}$	a	${ }^{\text {C }}$	D		n			C	D	${ }^{\text {D }}$	C_{n}	${ }^{0}$
-1.65	-0.05	0.	. 0110	-0.0278	-1 4.4	-1.7	-0.053	0.0090	0.0088	-0.0279	-1.5	-1.75	-0.051	0.0074	0.0072	-0.0277	-1.55
-0.6	+0.016	0.0107	10.0107	-0.0224	-0.65	-0.6	+0.014	0.0073	0.0073	-0.0238	-0.65	-0.65	+0.018	0.0052	0.0052	-0.024 3	-0.7
+0.4	0.087	0.0114	0.0110	-0.0192	+0.1	$+0.4$	0.090	0.0076	0.0072	-0.0220	+0.1	+0.35	0:093	0.0058	0.0053	-0.0224	0
1.45	0.159	0.0124	0.0110	-0.0166	0.9	1.45	0.166	0.0088	0.0073	-0.0207	0.85	1.4	0.172	0.0066	0.0050	-0,0213	+0.8
2.5	0.232	0.0136	0.0106	-0.0133	1.7	2.5	0.249	0.0106	0.0072	-0.0193	1.6	2.5	0.251	0.0087	0.0052	-0.0200	1.6
5.55	0.450	0.0227	0.0115	-0.0080	3.95	5.6	0.446	0.0213	0.0103	-0.0089	4.0	5.55	0.458	0.0203	0.0086	-0.0122	3.95
8.65	0.638	0.0421	10.0195	-0.0024	6.4	8.7	0.645	0.0383	0.0152	-0.0033	6.4	8.7	0.664	0.0357	0.0113	-0.0066	6.35
9.7	0.690	0.0492	0.0228	+0.0003	7.25	9.75	. 0.706	0.0457	0.0180	-0.0017	7.25	10.75	0.798	0.0499	0.0146	-0.0041	7.9
10.75	0.750	0.0632	0.0320	0.0020	8.1	10.8	0.770	0.0585	0.0246	-0.0005	8.05	11.8	0.824	0.0798	0.0422	-0.0005	3.9
11.75	0.792	0.0879	0.0531	0.0010	8.95	11.85	0.810	0.0809	0.02, 14	$+0.0006$	8.95	12.9	0.824	0.116	0.0787	-0.0129	10.0
12.85	0.785	0.1305	0.0964	-0.0206	10.05	12.95	0.817	0.119	0.0816	-0.0117	10.05	13.95	0.812	0.156	0.119	-0.0375	11.05
13.95	0.746	0.167	0.136	-0.0486	11.3	13.95	0.811	0.1525	0.116	-0.0318	11.05	15.0	0.765	0.187	0.155	-0.0587	12.3
						15.0	0.785	0.184	0.150	-0.0538	12.2	17.15	0.660	0.225	0.201	-0.0780	14.8

11, ${ }^{1} \ln g$

$11 j^{\cdot I_{1 n} g}$

$\begin{aligned} & \mathrm{P}=18.9 \mathrm{Atrsos} \\ & \mathrm{~V}=76.4 \mathrm{FPS} \end{aligned}$			$\begin{aligned} R V^{2} & =252 \mathrm{lb} / \mathrm{sq}_{\mathrm{o}} \mathrm{Pt} \\ R & =5.73 \times 10^{6} \end{aligned}$			$\begin{aligned} & \mathrm{P}=24.6 \text { Atmos. } \\ & \mathrm{V}=68.2 \mathrm{FPS} \end{aligned}$			$\begin{aligned} \mathrm{\rho V}^{2} & =262 \mathrm{lb} / \mathrm{sq}_{0} \mathrm{ft} \\ R & =6.65 \times 10^{6} \end{aligned}$			$\begin{aligned} & P=24.0 \text { Atmos } \\ & V=32.2 \text { FPS } \end{aligned}$			$\begin{aligned} \mathrm{pV}^{2} & =366 \mathrm{lb} / \mathrm{sq}_{.} \mathrm{ft} \\ \mathrm{R} & =7.64 \times 10^{6} \end{aligned}$		
a	$\mathrm{C}_{\text {I }}$	$\mathrm{C}_{\text {D }}$	${ }^{\mathrm{D}_{0}}$	$\mathrm{C}_{\text {m }}$	a_{0}	α	$\mathrm{C}_{\text {L }}$	$\mathrm{C}_{\text {D }}$	${ }^{\text {c }}{ }_{0}$	C_{m}	a_{0}	a	$\mathrm{C}_{\text {I }}$	$\mathrm{C}_{\text {D }}$	$\mathrm{C}_{\mathrm{D}_{0}}$	C	${ }_{0}$
9.25	0.772	2	-	-0.0155	6.5	-1.9	-0.083	0.0075	0.0070	-0.0245	-1.6	-2.0	-0.088	0.0078	0.0074	-0.0246	-1.7
13.7	1.075	-	-	-0.0161	9.9	-0.75	+0.008	0.0072	10.0072	-0.0234	-0.8	-0.8	+0.002	0.0070	0.0070	-0.0231	-0.85
18.0	1.36		-	-0.0163	13.15	$+0.35$	0.091	0.0075	0.0070	-0.0218	$+0.5$	+0.35	0.094	0.0072	0.0068	-0.0219	0
19.1	1.42	-	-	-0.0161	14.05	1.5	0.179	0.0088	0.0070	-0.0204	0.85	1.55	0.186	0.0088	0.0069	-0.0207	+0.9
20.15	1.46	-		-0.0154	14.95	2.6	0.264	0.0107	0.0068	-0.0188	1.65	2.65	0.273	0.0112	0.0071	-0.0188	1.7
21.1	1.48	*Stall	-	-	15.9	5.9	0.516	0.0225	0.0078	-0.0160	4.05	6.15	0.543	0.0237	0.0073	-0.0161	4.2
20.8	0.99	-	-	-0.0649	17.3	9.3	0.768	0.0412	0.0086	-0.0148	6.6	9.6	0.801	0.0447	0.0091	-0.0151	6.75
				,		11.5	0.932	0.0585	0.0105	-0.0148	8.2	13.0	1.05	0.0732	0.0118	-0.0164	9.3
						13.7	1.085	0.0785	0.0132	-0.0152	9.85	16.4	1.28	0.108	0.0176	-0.0177	11.85
						15.85	1.225	0.1008	0.0175	-0.0155	11.5	17.5	1.345	0.120	0.0191	-0.0177	12.7
						16.95	1.305	0.1125	0.0181	-0.0158	12.3	18.6	1.40	0.133	0.0239	-0.0171	13.65
						18.05	1.355	0.125	0.0225	-0.0154	13.25	19.75	1.44	0.161	0.0464	-0.0155	14.65
						19.15	1.41	0.136	0.0258	-0.0143	14.15	20.25	1.455	Estall			15.15
						20.25	-	0.158	0.0899	-0.0096		20.15	1.14	0.234	0.162	-0.0652	16.1
						20.7 .	1.465	fStall	-	- -0776	15.55	21.05	1.04	0.267	0.207	-0.0755	17.35
						20.75	1.08	0.253	0.187	-0.0776	16.9						

Summary

Since the original report was aritten the models have been examaned qualitatively by a visual method using tufts attached to the upper surface.

It was found that these tufts could be placed almost anywhere on the surface of the 9% aerofoil without appreciable effect on the flow conditions, but that the 11% was sensituve to their presence anywhere on the formard half. Nevertheless, by combining balance measuraments with tufting in order to obtain the optimum tuft arrangenent, good correlation was obtained between the flow pattern development and the true $\mathrm{C}_{\mathrm{L}}-$ a curves.

At high Rejnolds numbers the 9% section stalls-sharply by separation fran near the leading edge. This is also true of the 11% excopt that by the time it occurs, turbulent separation has spread well forward from the rear. Bolow the critical R breakdown of the flow pattern is associated with an orrly development of a nose bubble separation.

Out of a number of other profiles having a similar critical scale offect on $C_{\text {Tmax }}$, one has beon selected for comparison and contrast. It is damonstrated that in the case of these three aeroforls (two canbered and each of 8 inch chord and one symnetrical with a chord of 12 inches) the stall occurs when the forward parts (which are similar in form and linear dunensions) of the upper surfaces reach a certain attitude with respect to the wind. This may indicate that separation in the peak suction region dopends to sonc extont on the size as well as the shape of the nose profilc.

Arrangements of Tufts

Tufts on a model in the Compressed Air Tunnel can be viewed through one of the small spyholes after reflection in a mirror and Fig. 4 shows their arrangement on the Vickers wings. They consisted of thin wool streamers affixed to the surface by Araldite 101 and it will be noticed that they were staggered so as to keep the rearward tufts clear of any wake produced by those nearer the leading edge.

In addation to attempting to invostigate the development of the stalled conditions a fow experiments werecarried out to examine whether the tufts thenselves wore causing an appreciable interferenco with the flow pattern. For that roason the lay-out in each case included originally a set parallel to, and half an inch from, the leading edge.

Development of the Stalled Conditions

In spite of the interforence caused by the tufts on the 11% wang which will be discussed later, it is thought that the flow changes can be fairly well defincd as follows:-

Below the Critical R - - In each casc a separation region (nose bubble) forms along tho centre part of the loading edge at an incidence (10° for the 9% and 11° for the 11%), not far short of tho incidence of maximun lift, where the slope of the $C_{L}-a$ curve begins to decrease vory appreciably. On the 9% the boundary layer behind this is turbulent, but on the 11% only a narrow strip along the trailing edge is subject to unsteadincss. In the carly stages reattachment on the latter section does not eppear to be associated with a breakdown of the steady flow.

As the lift coefficzent passes through its maximum with increasing incidence the centre two thards of the wing becomes stalled. In the first case the separation region spreads rearwards and sideways from the nose bubble, and in the second it spreads simultaneously rearwards fron the leading edge and forwards from the trailing edge.

The C_{L}-a curves below the critical R have rounded t ps corresponding to the comparatively gradual'stall. There is, however, no indication to be associated with the pronounced loss of slope for the 11% section above a value of C_{L} of about 0.25 at these Reynolds numbers.

Above the Critical R.- Above the critical Reynolds number the first indration is an unsteadiness at the trailing edge. The 9% wing later stalls suddenly by separation from the leading edge but on the 11\%, turbulent separation first develops at the trazling edge and spreads well forward before a similar breakdown occurs at the leading edge. This fits in wath the shape of the C_{L} - a curve which bends over only very slightly for the 9% but much more so for the 11, (Fig. 3).

On the latter the stall is a race between a sharp leading edge stall and a forward movenent of the rear separation. Presumably the peak suction and the rear separation influence one another. On the 9%, however, it appoars that as regards profile outline the stall is determined entirely by the nosc shape and that it might be possible to jrprove C_{I} max. quite appreciably by increasing the cember.

In the Critical Range of R.- The behaviour in this range is naturally more indef inite. Generally an incipient unsteadiness is set up at the trailing edge at moderate angles of incidence followed later by a very sharp stall, but occasionally at an intermediate stage, a small soparation region develops in the centre of the span and at about $0.2 c$ from the leading edge.

General. - It might be anticipated that the greater slope of the $C_{L}-a$ curves of the 9% aerofoil at fairly high values of C_{L}. compared with that for $C_{L}=0$ would indicate the presence of a nose bubble at low incidence even at high Reynolds numbers. This, however, could not be detected. In the $C_{m}=C_{L}$ curves there were no signifficant peculiarities which could bc linked up with the tuf't indications below the stall.

Interference Effect of Tufts
In order to illustrate the severe interference that can somctines arise when an acrorioil is tufted, or perhaps over-tufted, angles of stalling incidence are plotted in Fig. 4 under various condztions, in relation to the values found previously during the balance measurements.' They refer, of course, only to the range of Reynolds number where the stall is fairly sharp and although the new values are not very precise the errors are not important.

The curves show that the effect of the presence of the tufts on the 9% wing is quite small evon when the leading odge turts are in place. It may be expocted therefore that the flow picture obtained will be a f rly good representation of the development of stalled conditions.

On the 11% wing on the other hand the interference caused by the tufts is quite definite and scems to be independent of whether those at the leading edge are present or not. At the highest Rejnolds numbers the stall of the tufted 11% model was always of a very spasmodic nature and hardly consistent wath the sharp stall obtanned during the balance measurenents. It appears that the soparation at the leading edge is in this case much affected by slight changes in the turbulent separation region further back.

For comparison the corrosponding results for what $2 s$ called the HSA5 B section (symetrical) are also included in Fig. 4. The ordinates of thas section may be defined as being cqual to those of the AN510-009 plus one third of the difference between this and the HSA5. The chord of this aerofoil was 12 inches but the first line of tufts mas still half an anch from the leading edgc. These results show that this line of tufts pitiated the flow pattern completely while the othors had very little influence except possibly at high values of R. This section stalls sharply from near the leading edge without preluminary dasturbance anywhere' in the boundary layer.

Limptations of Tufting Experinents

It is clear that any investigation of flow pattern near the stall by a technique involving the use of strearners wust be undertaken with an acute awareness of its linitations. Tufts ncar the peak suction positions of an aerofeal are very liable to upset the flow completely but are sometimes quate safe. On the other hand, careful tufting of the rear half of the upper surface is usually safe but on some acrofoil sections the flow near the nose appears to be particularly sensitive to what 2 s happenjng 'over the rear half.

Unless the major changes of flow pattern can be correlated with definate changes of lift or moment characteristics the indications must be accepted with some reserve.

The best technique is to approach the surface with a streamer attached to the end of a probe but unfortunately this is often a slow and inconvonient process.

Comparison of Profile Shapes

The similarities and difforences have also been considered from another angle. The symmetrical HSA5 B acrofoil was originally selected out of a number of aerofoils havang a critical rise in ${ }^{C_{I} \max }$ with R first becouse thas critical occurred at nearly the same value as for the Vickers wings and secondly because the theoretical nose shape was somewhat similar. The actual nose profilc was, however, later measured up andfound to be a littlc blunter than is indicated in the derivation given above, i.e. the section was very slightly truncated at the leading edge. The three profiles (HSA5 B as measured) up to one inch from the leading edge are drawn in Fig. 5.

It was found that they could be supermposed as regards the upper surface for a distance of 0.8 inch from the leading edge and it was realized that the stall took place when this part of the three surfaces reached approximately the same attitude with respect to the wind (cf. Fig. 4).

The flow on the HSAS B aerofoil at Chax separates sharply fron near the leading edge with no preliminary disturbance: anywhere in the boundary layer. The conclusion is that in each case the breakdown is primarily due to the suction peak condztions and that at may depend not only on the nose shape but, renembering that the HSA5 B is a 12 inch chord aerofoil, also on the actual linear dinensions.

Conclusions

It has been found that tufts can be placed alnost anywhere on the surface of the 9% aerofoil without appreciable effect on the flon conaitions but that the 11% is sensitive to their presence anywhere in the forward half. Interference effects of surface tufts are so unpredictable that other tests must be applied in order to find their optimum arrangement.

At high Reynolds numbers the 9% section stalls sharply by separation from near the leading edge. This is also true of the 11\% except that by the time this occurs turbulent separation has spread well forward from the rear. It appears that in respect of the former it might be possible to improve $C_{\text {max }}$ appreciably by increasing the camber.

Below the critical R breakdown of the flow pattern is associated with an early development of a nose bubble separation.

Comparing the 8 anch chord cambered Vickers' wangs with one another and wath the 12 inch symmetrical HSNL.B, all of which are similar as regards form and dimensions for a distance of 0.8 inch along the upper surface from the leading edge, it is found that stalling occurs when these portions of the upper surface reach a certain attitude with respect to the wind. It may be an indication that breakdown of the flow in this region depends not only on the profile shape near the leading edge but also on the actual linear dimensions.

Aerofoll Profile $11 \% \mathrm{~T} / \mathrm{c}$

Vickers 9% \& 11% Wings

Vickers 9% and 11% Wings.

Vickers 9% and 11% Wings.

Angles of incidence at the stall - By Balance Observations - Tufted (including LE Tufts) x Tufted (without LE Tufts)

Vickers 9% and 11% Wings

A.RC. Technical Report

CROWN COPYRIGHT RESERVED
PRINTED AND PUBLISHED by her majesty's stationery office
To be purchased from
York House, Kingsway, london, w c. 2423 Oxford Street, london, w 1
P.O. Box 569, London, S.E 1

13a Castle Street, edinburgh, 21 St. Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1952
Price 4 s Od net
printad in great britain

