C.P. No. 1038

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Loads Experienced in Turbulence by a Central African Airways Viscount Without and With Cloud Warning Radar

by

N. I. Bullen and Judy E. Aplin

LONDON HER MAJESTY'S STATIONERY OFFICE

SEVEN SHILLINGS NET

U.D.C. 533.6.048.1 : 551.551 : 629.135.2 : 621.396.969.3 : 539.388.1 : 629.13.097

C.P. 1038: March 1968

LOADS EXPERIENCED IN TURBULENCE BY A CENTRAL AFRICAN AIRWAYS VISCOUNT WITHOUT AND WITH CLOUD WARNING RADAR

by

N.I. Bullen Judy E. Aplin

SUMMARY

Counting accelerometer records were obtained from a Central African Airways Viscount. After a year's recording, cloud warning radar was fitted to the aircraft and data for a further three years were obtained. A comparison is made between the loads experienced during the two periods and it is concluded that the carrying of radar has little effect on fatigue damage, but considerably reduces the frequency of high loads, at 1 g the reduction being by a factor of six.

* Replaces R.A.E. Technical Report 68065 - A.R.C. 30708,

CONTENTS

Page

1	INTE	RODUCTION	3
2	THE	COUNTING ACCELEROMETER	3
3	DETH	REGINATION OF EQUIVALENT GUST VELOCITIES	4
4	BASI	IC DATA	5
5	DISC	JUSSION OF RESULTS	5
6	ACCI	LERATION FREQUENCY DISTRIBUTIONS	8
7	CONC	CLUSIONS	10
Ackno	wled(genent	10
Append	lix		11
Table	1	Routes flown	13
Table	2	CAAC Viscount (without cloud warning radar) accelerations recorded	14
Tuple	3	CAAC Viscount (without cloud warning rader) gusts encountered	15
Table	4	CAAC Viscount (with cloud warning radar) acceleration recorded	16
Table	5	CAAC Viscount (with cloud warning radar) gusts encountered	17
Table	6	Summary of acceleration and gust frequencies	19
Refer	ence	S	21
Illu3	trat:	lons Figures	1-6
Detac	hable	e abstract cards	

1 INTRODUCTION

τ

As part of the programme for recording aircraft accelerations in flight, a counting accelerometer was carried on a Viscount type 748 of the Central African Airways Corporation. During the period covered by the observations, cloud warning radar was fitted, so that it is possible to make a direct assessment of the value of this aid. The period ocvered without radar was approximately one year, from September 1956 to August 1957, and the period with radar from September 1957 to September 1960. The periods of useful recording were, without radar, 358 hours and with radar, 1322 hours.

The present work is considered to carry more weight than earlier comparisons of this nature. A comparison with Comet aircraft¹ involved different operators, B.O.A.C. and R.A.F. Transport Command, and it is likely that operational factors contributed to the observed differences. An American paper² makes the comparison using both V-g-h and V-g data, but as the period without radar extended only from October 1955 to April 1956 while the period with radar covered a whole year, seasonal variations are likely to affect the results.

However, the indications were that the large loads were considerably reduced (about 25% in magnitude), but that there was no significant change in the frequency of the small loads. There was no apparent effect upon the airspeed practices.

The present analysis suffers from neither of these drawbacks, the leta being acquired from the same operator, flying with the same route structure, for periods of one year and three years, respectively.

2 THE COUNTING ACCELEROMETER

The counting accelerometer is an instrument designed specifically for operational recording^{3,4}. Basically, it is an accelerometer which actuates a series of counters at preset acceleration levels. On exceeding a given increment of acceleration, the counter is cocked, and the count is completed when the acceleration returns to a second preset lower level. For the Mk.IV instrument used in the present investigation, these values are given in the table below.

Accelera	ation	incr	ements	required
to	recor	d an	occura	rence

Counter cocked	<u>Count</u> Completed
0.2 g	0.0 g
0.3 g	0.0 g
0•4 g	0 .1 g
0.6 g	0•2 g
0.8 g	0.3 g
1 ₊0 g	0.4 g
1.2 g	0.6 g
1•4 g	0.8 g
1.6 g	1.0 g

A further property of the accelerometer which is worth bearing in mind is that it has two degrees of freedom, so that by a careful choice of parameters, its response is more at the disposal of the experimenter than is the case with an instrument having a single degree of freedom.

In the present instrument the response is fairly flat up to 10 Hz and then falls away rapidly, inversely as the fourth power of the frequency. The response is shown diagrammatically in Fig.1.

The accelerometer is mounted rigidly near the centre of gravity of the aircraft and the counter readings are photographically recorded at time intervals of approximately 10 minutes, together with the time and the height and speed of the aircraft. The information from the film is subsequently transferred to punched cards for analysis.

3 DETERMINATION OF EQUIVALENT GUST VELOCITIES

When comparisons between the turbulence encountered by different types of aircraft are required, it is convenient to convert the accelerations to equivalent gust velocities. This procedure, described by Zbrozek⁵, assumes an arbitrary gust shape, and that the aircraft is rigid and does not pitch, account being taken of the unsteady lift for a finite aspect ratio wing. The gust profile assumed is ramp-shaped with a gradient distance of 100 ft. The computer programme employed in the analysis is described by Heath-Smith⁶. For the purpose of the present comparison, in examining the effect of the radar on aircraft loads and the discomfort of the occupants, it is preferable to consider the accelerations themselves. In a comparison of the turbulence actually encountered by the aircraft in the two cases, the derived gust velocities are the more appropriate. A convenient empirical formula for aircraft response is derived in the Appendix.

4 BASIC DATA

The routes flown by the aircraft are shown in Fig.2, and their frequencies for the periods without and with radar are given in Table 1. It will be seen that there is no appreciable difference in route structure for the two periods.

The recorded accelerations and derived gust velocities for the two periods are presented in Tables 2-5 in the standard format used for these investigations. The category "initial climb" comprises information from the first intervals after take-off, and "final descent" comprises information from the final interval before landing. "Climb" and "descent" are intervals during which the altitude, rounded to the nearest 1000 ft, has changed by more than 1000 ft in the appropriate direction; "cruise" comprises the remainder.

For the purposes of the present comparison the classification in Tables 3-6 spreads out the data rather too thinly, and it has been decided to reduce the classes to four, namely:

- (i) all flying below 3500 ft,
- (ii) all flying from 3500 to 9500 ft,
- (iii) climb and descent above 9500 ft, and,
- (iv) cruise above 9500 ft.

Furthermore, the up gusts and down gusts have been added. The result of ones is given in Table 6 which also includes the frequencies per mile of flight and the mean speeds in knots eas.

5 DISCUSSION OF RESULTS

The information is presented diagrammatically in Figs.3-6, Figs.3 and 4 being based on the accelerations and 5 and 6 on equivalent gust velocities (only points based on five or more occurrences are shown).

It will be seen that for the lower accelerations of about 0.2 g, the frequencies with and without radar are almost identical. What differences

there are in the flying below 9500 ft for accelerations of about 0.4 g show small increases when carrying radar. Larger loads are only encountered with significant frequency above 9500 ft and here the benefit from the radar becomes considerable, particularly in the cruise.

The diagrams for equivalent gust velocities, as might be expected, show much the same trends. However, at the low gust velocity of 10 ft/sec there is a slight reduction with radar in the frequency of encounter. This reduction is almost entirely counteracted by the small increases in speed shown in Table 7, so that the accelerations of 0.2 g, as already seen, are practically unchanged.

The increase in speed is probably due to the increased confidence given by the use of radar (the small change in average height is due to a reduction in permitted differential cabin pressure).

The reduction of speed when in turbulence may be examined in the following way. By taking points corresponding to equal frequencies on the acceleration and gust velocity curves, we can find the acceleration corresponding to a given gust velocity. If we now assume an average height and weight for the given flight condition, we can determine the corresponding speed from the expression for aircraft response derived in the Appendix.

The fact that an average height and weight are assumed does, of course, introduce an experimental scatter so that the method is not particularly reliable at the highest gust velocities. However, the method has been applied at 10 ft/sec and 20 ft/sec with the results shown in the following table.

	Flight condition	<u> </u>		l.ean speed knots eas	Speed of encountering gusts of 10 ft/sec or more knots eas	Speed of encountering gusts of 20 ft/sec or more knots eas
	All flying below	3 500 :	ft	150	146	141
Without	All flying from to			150	143	140
radar	Climb and descent above	9500 ft		160	154	157
	Cruise above	950 0 :	ft	182	171	131
	All flying below	350 0 :	ft	159	154	152
With	All flying from to			159	155	152
radar	Climb and descent above	95 00 a	ft	173	165	171
	Cruise above	9500	ſt	194	182	175

Without radar there is a reduction in the speed of encountering 10 ft/sec gusts or greater, of from 4-11 knots; and below 9500 ft the reduction is much the same for 20 ft/sec gusts or greater.

Above 9500 ft and particularly during cruise, the speed of encounter for 20 ft/sec gusts or greater is not significantly lower than the mean speeds. This implies that the majority of the larger loads are unexpected and therefore probably not associated with the lower intensity turbulence for which a reduction in speed is observed.

With radar the general picture is much the same with one rather striking exception. In cruise for the 20 ft/sec gusts and greater, a reduction in speed of 19 knots is indicated compared with 1 knot without radar, and this presumably is an indication of adequate warning.

It is rather surprising that the speeds for climb and descent above 9500 ft do not show the same trend but remain very similar to the differences observed without radar.

These inferences are of a tentative nature as the averaging process hay have introduced appreciable errors. However, it seems that reductions of speed in turbulence are facilitated by the use of radar, although not necessarily taking place in all cases. This conclusion would be in agreement with the findings of King⁷. After examining over 3000 hours of a V-g-h recording on current passenger transports carrying radar, he concludes:-

"Nine of the 24 patches of turbulence examined occurred without warning as to their severity. Thus, although the technique of reducing airspeed in turbulence benefits fatigue life and passenger comfort, it cannot ensure that the largest gusts are always met at the reduced airspeed."

6 ACCELERATION FREQUENCY DISTRIBUTIONS

In the majority of studies of gust loads on aircraft, it is found that their frequency distributions can be well represented by the sum of two exponential terms, one representing a light turbulence component and the other a severe turbulence component, usually identified with cumulus or storm disturbance. Such distributions have been fitted to the accelerations* recorded in both flight conditions over 9500 ft, the expression being:-

$$N = A_{1} e^{-n/a_{1}} + A_{2} e^{-n/a_{2}}$$
(1)

where N is the number of accelerations per mile of flight exceeding ng and A_1 and A_2 , a_1 and a_2 are constants. A_1 and A_2 have dimensions "number per mile" and a_1 and a_2 are accelerations in g units.

The values of A_1 and A_2 can be taken as measures of the times spent in turbulence of each intensity and a_1 and a_2 as measures of the intensity. Since the acceleration data contain only significant numbers of counts at the first four levels and expression (1) contains four parameters, the expression is fitted over this range exactly. Little or no information remains for testing "goodness of fit".

The values of the parameters so determined are given in the following comparison table.

8

^{*} Accelerations rather than gust velocities are chosen for this fitting as the gust frequencies are already an interpolation from the data, and as the lowest value of gust velocity, 10 ft/sec, for which a frequency is given corresponds almost always to an acceleration above 0.2 g, the information would not be used to the full. It also seems possible that a slight bias has been introduced by the method of analysing the "tails" of the distribution as the experimental points of Figs.5 and 6 at the higher gust velocities show small deviations from the smooth curve.

		Without radar	With radar
Mean take-c	off weight, lb	54410	54980
Mean landir	ng weight, lb	49470	50540
Mean weight	t, lb	51940	52760
Climb and descent above 9500 ft	Mean height, ft Mean speed knots, eas A_1 per mile A_2 per mile a_1 "g" units a_2 "g" units	14320 160.0 0.1127 2.014 0.1089 0.04319	13560 173.1 0.0870 2.870 0.1018 0.04225
Cruise above 9500 ft	$\begin{cases} \text{Mean height, ft} \\ \text{Mean speed knots, eas} \\ \text{A}_1 \text{ per mile} \\ \text{A}_2 \text{ per mile} \\ \text{a}_1 \text{ "g" units} \\ \text{a}_2 \text{ "g" units} \end{cases}$	17650 182.0 0.02811 0.4154 0.1370 0.04685	16540 193.7 0.02638 0.8216 0.1109 0.04336

During cruise the time spent in severe turbulence is very slightly reduced when carrying radar (about 6%), but the time spent in light turbulence is doubled. The intensity of the loads in severe turbulence however, is very much reduced, about 19%, although the reduction in intensity when in light turbulence is much smaller, about 7%.

Similar but generally smaller trends are observed in climb and descent above 9500 ft. With radar the time spent in severe turbulence is about 25% less, for the light turbulence 40% more; the intensity in severe turbulence 7% less, and in light turbulence 2% less.

These results again show that the use of radar increases the time spent in turbulence of a light nature but leads to a general reduction in the intensity of turbulence encountered which becomes particularly marked for the most severe turbulence.

Extrapolating the distributions, assuming it to be justified, we find that the frequency of loads at 1 g during cruise, is six times as frequent without radar.

7 CONCLUSIONS

The use of cloud warning radar leads to an increased confidence resulting in slightly higher operating speeds and some increase in the amount of light turbulence encountered. Heavy turbulence is slightly reduced in amount and considerably reduced in intensity. For the most damaging fatigue loads, the frequencies are practically unchanged so that there is little effect on fatigue life but there is considerable reduction in the frequency of high loads.

During cruise, if the aircraft carries radar, passengers are just as likely to spill their coffee, but only one-sixth as likely to hit the cabin roof if not wearing seat belts.

Acknowledgement

We are pleased to have this opportunity to acknowledge with thanks the kind cooperation of Central African Airways Corporation in collecting the data and for their helpful comments.

10

Appendix

A convenient empirical formula for aircraft response to the rampshaped gust can be derived as follows. We have

$$\mathbf{n}\mathbf{W} = \frac{1}{2} \rho_0 \mathbf{S} \mathbf{U}_e \mathbf{V}_e \mathbf{a} \mathbf{K}$$
 (A-1)

where n is the aircraft normal acceleration in g W is the aircraft weight in lb ρ_0 is air density at sea level, slugs/ft³ S is the wing area, ft² U_e is the gust velocity eas, ft/sec V_e is the aircraft forward speed, eas ft/sec a is the slope of the lift curve per radian

K is the gust alleviation factor and is a function of aspect ratio and mass parameter μ_g . The mass parameter is given by

$$\mu_{g} = \frac{2W}{\rho \, Scag} \tag{A-2}$$

where the quantities not already defined are

- ρ the air density, slugs/ft³
- c the mean chord, ft
- g acceleration of gravity, ft/sec².

For a given aircraft, over the range of μ at which it operates, it is usually found that the relationship between $\frac{g}{K}$ and $\frac{1}{\mu_g}$ is approximately

linear, so that K may be written as

$$K = \frac{p \mu_g}{\mu_g + q}$$
(A-3)

where p and q are constants.

Substituting the expression given by (A-2) for μ_g in (A-3), and substituting the resulting expression for K in (A-1) and re-arranging gives finally

$$U_{e} V_{e} = n \left(\frac{2W}{p\rho_{o} Sa} + \frac{q\sigma cg}{p} \right)$$
 (A-4)

where σ is the relative density, ρ/ρ_{o} .

For the Viscount discussed in the main text S = 963 ft², c = 10.24 ft, a = 4.6 per radian. It is found that

$$K = \frac{0.969 \ \mu_g}{\mu_g + 6.7} \tag{A-5}$$

and

$$U_e V_e = n (0.1959 W + 2280 \sigma) . (A-6)$$

Such an empirical formula is very useful when considering the effects of small changes in height, weight or speed, when interpolation between several sets of curves is likely to introduce errors of the same order as the differences under examination.

Table 1

.

ROUTES FLOWN

Route (or return)	Miles	Number without radar	Number with radar	Total number
Benina	Khartoum	1 3 8 5	2	-	2
Benina	Wadi <u>Halfa</u>	983	4	14	18
Blantyre	Dar-es-Salaam	684	2 1	13	15
Blantyre	Lusaka	458	1		1
Blantyre	Salisbury	320	3	64	67
Bulawayo	Johannesburg	407	_	21	21
Bulawayo	Lusaka	305	1		1
Bulawayo	Salisbury	224	1	87	88
Dar-es-Salaam	Nairobi	410	2	14	16
Durban	Lourenço-Marques	288	2 5 2 6 5 1	14	19
Durban	Salisbury	780	2	22	24
Elisabethville	N'Dola	124	2	10	12
Entebbe	Khartoum	1058	6	13	19
Entebbe	N'Dola	930	5	13	18
Entebbe	Salisbury	1232	1	-	1
Johannesburg	Livingstone	576	4	13	17
Johannesburg	Salisbury	599	22	75	97
Kariba	Lusaka	71		1	1 1
Kariba	Salisbury	170			3
Khartoum	Wadi Halfa	455	4	3 13 9 8	3 17
Livingstone	Lusaka	232	4	9	13
Livingstone	N'Dola	385	·	8	13 8 5 16
Livingstone	Salisbury	356		5	5
Lourenço-Marques	Salisbury	520	5	11	16
Lusaka	N'Dola	184	58	144	202
Lusaka	Salisbury	232	52	134	186
Nairobi	N'Dola	995	52 6	44	50
Nairobi	Salisbury	1219		1	
N [®] Dola	Salisbury	368	12	37	49
Benina	Rome	800	6	16	22
London	Marseilles	629	1		1
London	Rome	890	5	18	23
Marseilles	Rome	367	1		1
	TOTALS		217	817	1034

Mean route length without radar 417 miles Mean route length with radar 418 miles

	Table 2	
CLAC VISCOUNT (WITHOUT C	LOUD WARNING RADAR)	ACCELERATION J RECORDED

	Altitude	Mean	Recorded time		Number of times each acceleration increment was exceeded										
Flight Condition	band	altitude		Jtatute miles			DQ1	3		UP					
concerte con	feet	feet	minutes		0.8 g	0.6 g	0.4 g	0.3 g	0.2 g	0.2 g	0.3 g	0.4 g	0.6 g	0.8 g	1.0 g
Initial	0 - 1500	1000	34	103				2	26	52	9	1			
climb	1500 - 3500 3500 - 5500	2800 4000	493 226	1 <i>5</i> 01 691		1	3 3	26 10	274 132	391 198	38 20	4 1			
TOTAL			753	2295		1	6	38	432	641	67	6			
Final descent	0 - 1500 1500 - 3500	700 2500	51 26	140 71				4	52 19	67 21	9	1			
	3500 - 5500 5500 - 9500	4600 6300	232 48	658 1 50			1	11 3	211 48	253 52	44 9	5			
TCTAL	+		357	1019			2	18	330	393	62	6			
Climb and descent	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500 9500 - 13500 13500 - 17500 17500 - 21500 21500 - 25500	1 5200 1 8700	14 83 212 1648 2189 2384 522 43	37 242 632 5300 7953 9354 21 7 2 182		1 1 2	9 9 14 8	4 7 58 35 38 18	20 28 73 395 167 155 56	17 38 86 435 151 144 66	2 4 12 55 33 41 14	1 8 9 12 8	2 2 1	1	1
TOTAL			7095	25872		4	40	160	894	937	161	38	5	1	1
Crui se	$\begin{array}{r} 0 & -1500 \\ 1500 & -3500 \\ 3500 & -5500 \\ 5500 & -9500 \\ 9500 & -13500 \\ 13500 & -17500 \\ 17500 & -21500 \\ 21500 & -25500 \\ 25500 & -29500 \end{array}$	1 6000 18800 22800	13 17 96 207 658 4971 6623 672 11	35 46 276 2790 2791 22571 30741 3315 58	2	1 7	2 5 4 25	5 4 6 24 18 63 1	38 14 45 47 58 107 187 5	61 18 52 58 52 124 195 6	11 12 10 12 18 36 67 1	1 2 10 14 37	1 3 9	2	
TOTAL		+	13268	60623	2	8	36	121	501	566	167	65	13	3	

• •

• •

<u>--</u> -7

• •

	Altitude	Mean	Recorded		Number of times each gust speed was exceeded. Vertical gust speed in ft/sec eas													
Flight	band feet	altitude feet		Statute miles		DOWN							UP					
		1000	minuvea		35	30	25	20	15	10	10	15	20	25	30	35	40	45
Initial climb	0 - 1500 1500 - 3500 3500 - 5500	1000 2800 4000	34 493 226	103 1 501 691		1	2	3 3	4 22 9	30 236 126	83 342 187	12 33 18	2 4 1	1				
TOTAL			753	2295		1	2	6	35	392	612	63	7	2	<u> </u>			
Final descent	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500	700 2500 4600 6300	51 26 232 48	140 71 658 150				1	4 1 19 2	70 24 261 36	84 22 289 42	12 45 5	2 10	2				
TOTAL			357	1019		t		1	26	391	437	62	12	2	1			
Climb and descent	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500 9500 - 13500 13500 - 17500 17500 - 21500 21500 - 25500	1000 2600 4700 7800 11900 15200 18700 22600	14 83 212 1648 2189 2384 522 43	37 242 632 5300 7953 9354 2172 182		1	1 3 4 1	7 7 9 4	5 8 51 27 26 10	24 24 87 371 123 118 29	19 33 105 393 109 104 26	3 4 13 50 23 26 9	1 8 7 5 3	2 4 1 1	2 1 1	1	1	
TOTAL			7095	25872		1	9	27	127	776	789	128	24	8	4	1	1	
Cruise	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500 9500 - 13500 13500 - 17500 17500 - 21500 21500 - 25500 25500 - 29500	800 2200 4700 7200 12000 16000 18800 22800 26000	13 17 96 207 658 4971 6623 672 11	35 46 276 790 2791 22571 30741 3315 58	1	2	1 4	1 1 2 10	7 8 5 9 5 26	46 16 54 40 39 37 96 3	73 18 66 50 35 61 100 3	14 12 13 9 11 17 37	2 1 3 3 5 14	1 1 2 5	2	1		
TOTYL			13268	60623	1	2	5	14	60	331	406	113	31	10	3	1		

Table 3											
CAAC VISCOUNT	(WI THOUT	CLOUD	WARNING	RADAR)	GULTS ENCOUNTERED						

.

.

. .

.

.

<u>Table 4</u>

CAAC VISCOUNT (WITH CLOUD WARNING RADAR) ACCELERATIONS RECORDED

	Altitude	Mean	Recorded	Statute miles	Number of times each acceleration increment was exceeded										
Flight condition	band feet	altitude feet	time minutes		DOWN						ሙ				
					0.8 g	0,6 g	0.4 g	0.3 g	0.2 g	0.2 g	0.3 g	0.4 g	0.6 g	0.8 g	1.0 g
Initial climb	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500	1000 2800 4000 7000	87 1567 1054 14	287 5100 3553 48		1	32 9	3 202 96 1	38 1476 809 5	52 1852 808 6	7 278 111	36 8	2		
TOTAL			2722	8988		1	41	302	2328	2718	396	44	2	}	
Final descent	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500	700 2600 4700 6200	131 165 824 378	369 489 2488 1209			2 7 3	5 13 52 34	55 97 384 261	67 159 466 300	13 23 65 32	3 15 2			
TOTAL			1498	4555			12	104	797	992	133	20			Į
Climb and descent	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500 9500 - 13500 13500 - 17500 17500 - 21500 21500 - 25500	15000 18700	36 234 777 6005 10430 6857 899 54	104 705 2504 20711 41631 28618 4069 258	1	2 8	1 2 47 41 32 5	10 28 292 161 95 24	5 50 222 2063 890 480 90 3	12 73 299 2017 763 471 94 1	6 37 318 118 100 19	3 8 44 27 29 10	1 6 3 1	1	
TOTAL			25292	98600	1	10	128	610	3803	3730	598	121	11	2	
Cruise	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500 9500 - 13500 13500 - 17500 17500 - 21500 21500 - 25500 25500 - 29500	900 2800 4700 7600 11900 15700 18700 22600 26000	35 51 253 311 1102 33725 13867 412 35	101 159 790 1164 4832 162159 67091 1895 164	1 2	2 7 2	8 5 9 54 31	53 29 27 189 95	4 0 261 161 147 966 432 6 4	8 1 325 201 127 846 415 7 1	70 32 33 184 81 1	11 6 13 49 32	3 6 8	2 1	
TOTAL			49791	238 35 5	3	11	107	391	1 981	1931	501	111	17	3	

.

	Altitude	Mean	Recorded		Num	ber of	times	each	gust sp	eed wa	s exce	eded.	Vertic	al gus	t spee	d in i	t/sec	eas.	
Flight condition	band feet	altitude feet	time minutes	Statute miles	DOWN							UP							
					35	30	25	20	15	10	10	15	20	25	30	35	40	45	
initial climb	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500	1 000 2800 4000 7000	87 1567 1054 14	287 5100 3553 48			6 1	24 5	3 142 55	36 1141 514 2	56 1499 549 1	7 195 52	26 3	6	1		-		
TOTAL			2722	8988			7	29	200	1693	2105	254	29	6	1				
Final descent	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500	700 2600 4700 6200	131 165 824 378	369 489 2488 1209			1	2 5 3	6 10 34 25	58 89 297 205	66 146 366 241	16 19 49 18	3 10 2	1					
TOTAL			1498	4555			1	10	75	649	819	102	15	1					
Climb and descent	0 - 1500 1500 - 3500 3500 - 5500 5500 - 9500 9500 - 13500 13500 - 17500 17500 - 21500 21500 - 25500	1000 2500 4700 7900 12000 15000 18700 23500	36 234 777 6005 10430 6857 899 54	104 705 2504 20711 41631 28618 4069 258		1	1 8 4 1	3 33 17 9 2	7 28 181 78 43 12	6 47 218 1463 495 228 43	10 59 289 1524 410 243 43	4 43 197 58 38 14	2 9 26 12 9 5	1 4 3 3 2 1	1	1	1	1	
TOTAL			25292	98 600		1	14	64	349	2500	2578	354	63	14	1	1	1	1	
Cruise	0 = 1500 1500 = 3500 3500 = 5500 5500 = 9500 9500 = 13500 13500 = 17500 17500 = 21500 21500 = 25500 25500 = 29500	900 2800 4700 7600 11900 15700 18700 22600 26000	35 51 253 311 1102 33725 13867 412 35	101 159 790 1164 4832 162159 67091 1895 164		1	1 1 6 2	5 2 4 14 12	38 12 13 47 39	2 0 205 96 57 301 172 1 1	4 270 122 55 295 170 1	48 16 13 49 41	9 1 6 13 16	1 1 4 5	1				
TOTAL			49791	238355		2	10	37	149	835	919	167	45	11	2	f			

Table 5 CAAC VISCOUNT (WITH CLOUD WARNING RADAR) GUSTS ENCOUNTERED

. .

. .

.

.

<u>Table 6</u>

SUMMARY OF ACCELERATION AND OUST FREQUENCIES

WITHOUT CLOUD WARNING RADAR

Flight condition	Distance miles	hean height feet	Hean speed knots eas		Acceleration increments exceeding					Gusts exceeding								
					0,2 g	0.3 #	04 g	0,6 g	0_8 g	1.0 g	10 ft/m c	15 ft/mc	20 ft/ sea	25 ft/ #0	30 ft/ma	35 ft/ and	40 ft/ sec	45 ft/sec
All flying below 3500 ft	2175	2472	149.5	Number No. per mile	1136 5,223,+1	126 5 .7 93,-2	10 4.598,3				1144 5.260,-1	133 6,115,-2	14 6_437,-3	2 9.195,-4				
All flying from 3500 ft to 9500 ft	8497	6830	149.8	Number No. per mile	2085 2.4541	261 3.072,-2	34 4.001,-3	1 1,177,-4			2107 2,480,-1	255 3.0012	39 4.590,-3	9 1.099,-3	1 1,,177,,-4			
Climb and descent above 9500 ft	19661	14,320	160,0	Number No. per mile	739 3.759,-2	179 9 . 104 3	60 3.052,-3	9 4-578,-4	1 5.086,-5	1 5 .086,- 5	509 2 .5 89,-2	121 6,154,-3	35 1 . 780,-3	14 7.121,-4		1 5.086, -5	1 5,086,-5	
Cruise above 9500 ft	59 4 7 6	176lµ8	182 0	Number No. per mile	734 1,234,-2	228 3 833,-3	95 1.597,-3	21 3.531,-4	5 8,407,-5		374 6,288,-3	105 1 .7 65 3	34 5-717,-4	13 2,186,-4	5 8,407,-5	2 3.363,-5		

WITH CLOUD WARNING RADAR

All flying below 3500 ft	7314	2529	159.2	Number No. per mile	3949 5.3991	560 7 657,-2	77 1.053,-2	4 5.469,-4	1 1.3674	3220 4.403,-1	409 5.592,-2	57 7 . 7 93 3	13 1,777,-3	2 2,734,-4	1 1.367,-4	1 1 .3 67,-4	1 1.367,-4
All flying from 3500 ft to 9500 ft	32467	6828	158.9	Number No, per mile	8584 2 .644 1	1250 3 850 ,- 2	175 5.390,-3	2 6.160,-5		6362 1.960,-1	796 2,452,-2	116 3.573,-3	21 6 468,-4				
Climb and descent above 9500 ft	74576	13557	1 73.1	Number No, per mile	2792 3 744,-2	517 6 933 ,-3	144 1.931,-3	18 2.414,-4	2 2 682,-5	1462 1 960,-2	243 3 258,-3	54 7.241,-4	11 1 475,-4	1 1 .3 41,-5			
Cruise above 9500 ft	236141	16537	193.7	Number No, per mile	2951 1 250,-2	608 2.575,-3	189 7.961,-4	28 1.186,-4	6 2,541,-5	1054 4 463,-3	202 8.554,74	65 2 753,-4	19 8.046,-5	4 1.694,-5			

REFERENCES

<u>No</u> .	Author	Title, etc
1	Judy E. Aplin	Atmospheric turbulence encountered by Comet 2 aircraft carrying cloud collision warning radar. A.R.C. Current Paper 713 (1963)
2	M.R. Copp W.G. Walker	Analysis of operational airline data to snow the effects of airborne weather radar on the gust loads and operating practices of twin-engine short-haul transport airplanes. NACA Tech. Note 4129 (1957)
3	J. Taylor	Accelerometers for determining aircraft flight loads. Engineering, 11 and 18 April, 1952
4	J. Taylor	Design and use of counting accelerometers. A.R.C. R&M 2812 (1950)
5	J.K. Zbrozek	Gust alleviation factor (Parts I, II, and III). A.R.C. R&M 2970 (1953)
6	J.R. Heath-Smith	The estimation of atmospheric gust frequencies from counting accelerometer records using the DEUCE computer. A.R.C. 20921 (1958)
7	G.E. King	Civil aircraft airworthiness data recording programme study of severe turbulence encountered by civil aircraft. R.A.E. Tech. Report 67106 (1967)

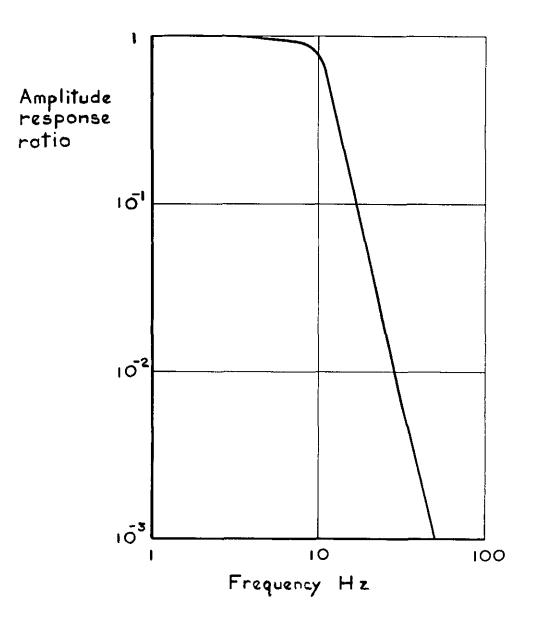


Fig.I. Accelerometer response

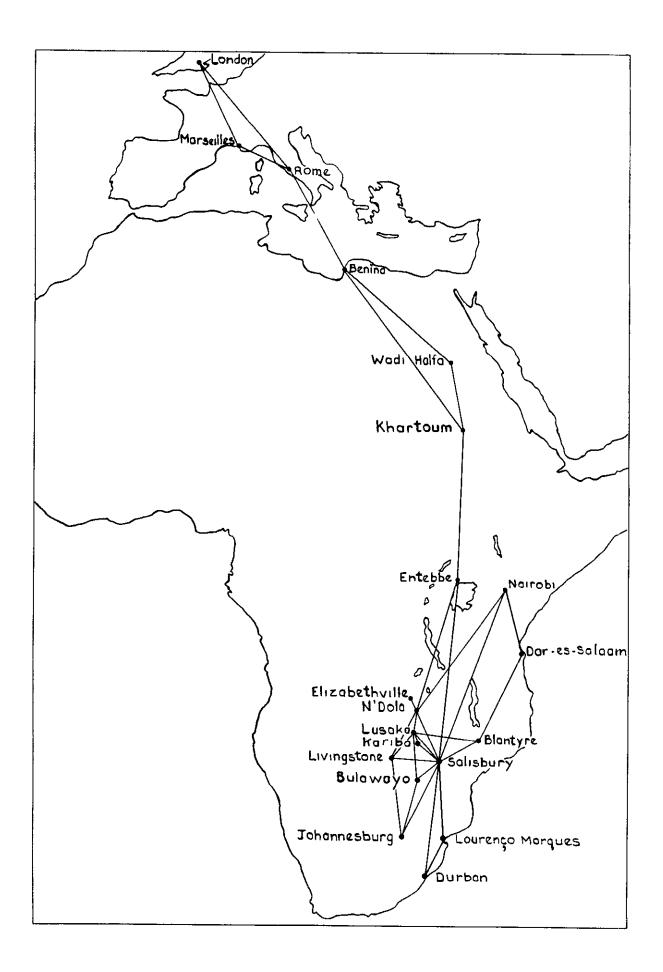


Fig 2 Routes flown

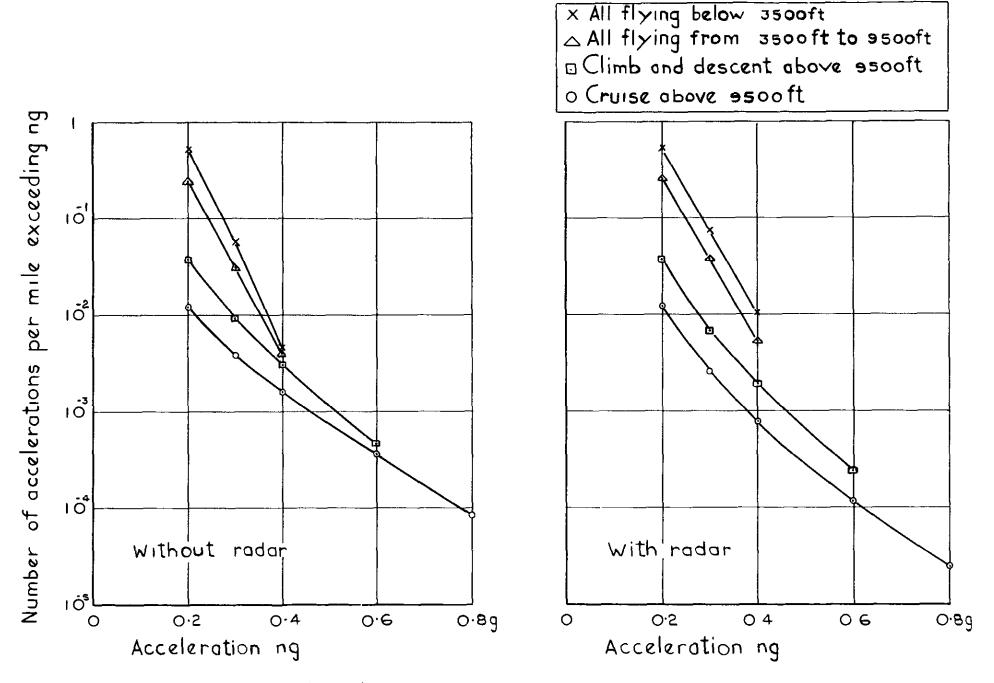
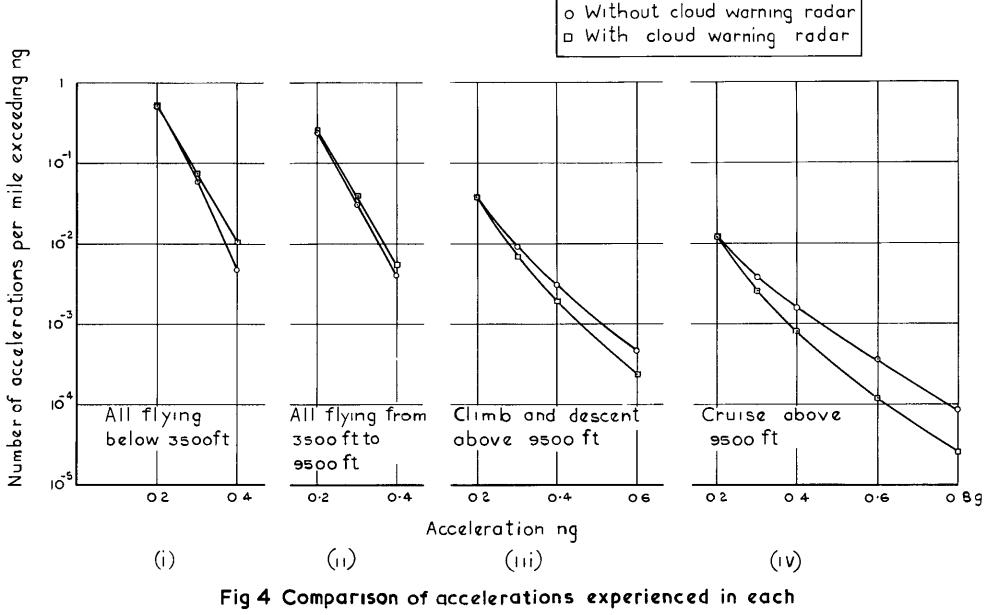
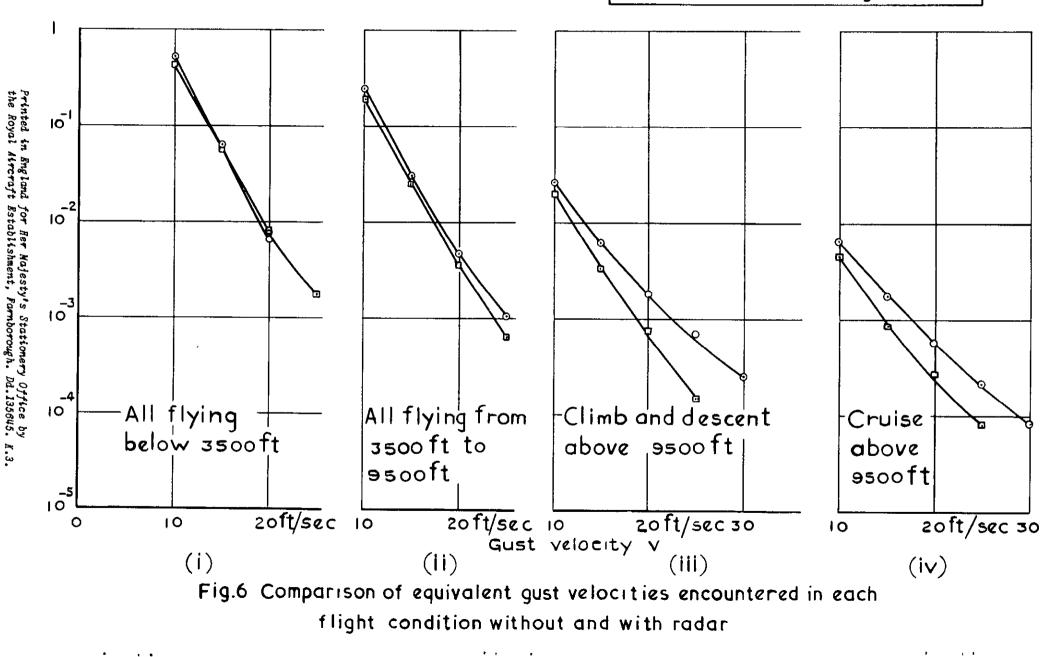



Fig.3 Accelerations experienced without and with radar



flight condition without and with radar

Fig 5 Equivalent gust velocities encountered without and with radar.

o Without cloud warning radar • With cloud warning radar

A.R.C. C.P. 1038 March 1968 Bullen, N.I. Aplin, Judy E. LOADS EXPERIENCED IN TURBULENCE BY A CENTRAL AFRICAN AIRWAYS VISCOUNT WITHOUT AND WITH CLOUD WARNING RADAR	533.6.048.1 : 551.551 : 629.135.2 : 621.396.969.3 : 539.388.1 : 629.13.097 March 1968	A.R.C. C.P. 1038 March 1968 Bullen, N.I. Aplin, Judy E. LOADS EXPERIENCED IN TURBULENCE BY A CENTRAL AFRICAN AIRWAYS VISCOUNT WITHOUT AND WITH CLOUD WARNING RADAR	533.6.048.1 : 551.551 : 629.135.2 : 621.396.969.3 : 539.388.1 : 629.13.097 March 1.968
---	---	---	--

Counting accelerometer records were obtained from a Central African Airways Viscount. After a year's recording, cloud warning radar was fitted to the aircraft and data for a further three years were obtained. A comparison is made between the loads experienced during the two periods and it is concluded that the carrying of radar has little effect on fatigue damage, but considerably reduces the frequency of high loads, at 1 g the reduction being by a factor of six.

Aplin, Judy E.	539.388.1 :
LOADS EXPERIENCED IN TURBULENCE BY A CENTRAL AFRICAN AIRWAYS VISCOUNT WITHOUT AND WITH CLOUD WARNING RADAR	629 .13.097 March 1 968
Counting accelerometer records were obtained from a Cer Airways Viscount. After a year's recording, cloud warr fitted to the aircraft and data for a further three yes A comparison is made between the loads experienced dur!	ning radar was ars were obtained.

periods and it is concluded that the carrying of radar has little effect on fatigue damage, but considerably reduces the frequency of high loads, at 1 g the reduction being by a factor of six.

A.R.C. C.P. 1038	533.6.048.1 :
March 1968	551.551 :
Bullen, N.I. Aplin, Judy E.	629 .135.2 : 621 .396.969.3 : 539 . 388 .1 :
LOADS EXPERIENCED IN TURBULENCE BY A CENTRAL AFRICAN	629.13.097
AIRWAYS VISCOUNT WITHOUT AND WITH CLOUD WARNING RADAR	March 1968

Counting accelerometer records were obtained from a Central African Airways Viscount. After a year's recording, cloud warning radar was fitted to the aircraft and data for a further three years were obtained. A comparison is made between the loads experienced during the two periods and it is concluded that the carrying of radar has little effect on fatigue damage, but considerably reduces the frequency of high loads, at 1 g the reduction being by a factor of six.

© Crown copyright 1969 Published by Her Majesty's Stationery Office

To be purchased from 49 High Holborn, London w C 1 13A Castle Street, Edinburgh 2 109 St Mary Street, Cardiff CFI 1JW Brazennose Street, Manchester 2 50 Fairfax Street, Bristol BS1 3DE 258 Broad Street, Birmingham 1 7 Linenhall Street, Belfast BT2 8AY or through any bookseller

.

C.P. No. 1038

SBN 11 4701c5 2