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SUMMARY

Improper integrals ocour in theoretical aerodynamics, if one deter-
mines the velocities, induced by a vortex sheet, which e.g. my represent
the influence of a thin wing at incidence. The velodl ty at any point can
be expressed as an integral involving an influence function, which becomes
singular as this point approaches the vortex sheet. As is well known, the
principal value, as defined by Cauchy, is to be taken in this case,

This paper deals with an integral, involving & "principal value of
the order n". It was first introduced by Hadamard and is a generalization
of Cauchy's principal value. It ocours, if one determines the derivatives
of an integral, involving Cauchy's principal value. These integrals can
usefully be applied in many theoretlical problems, in particular in the
" supersonic theory of conical fields {(ref.2).

In order to deal with the singularities as they ocour near the leading
edge of a thin wing due to the vorticity tending to infinity there,
"principal velues of a fractional order" are also introduced. After
Hadamard all these principal values can be interpreted in such a way that
only "the'finite part" of the integral in question has a physical meaning,
The rules for the evaluation, the differentiation and integration by parts
of such an improper integrel are derived snd summarized (Appendix I{
together with a theorem (section 5), which will be useful to workers in
this Jield.
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1 Introduction

In many problems of applied mathematics we encounter certain singu-
larities, which do not directly correspond to physical singularities, but
are due to certain simplifications, introduced in the physical or tech-
nical problem, in order to emphasize ihe most important features of the
problem under oconsideration. Sometimes only such a simplification makes
the theoretical treatment of the problem at all possible,

To give an example, we consider the caloculation of the pressure dis-
tribution over a wing. Here one usually separates the thickness effeots
from the incidence effects by Introducing the conception of a very thin
wing at incidence and adding the thickness effects afterwards, The thin
wing is replaced by a distribution of vortlorty in the plane z =0
(corresponding to zero incidence of the flat wing), the strength of which
must be determined in such a way, that the induced downwash, together with
the undisturbed flow, produces a velocity parallel to the surface of the
thin wing. 4s is well known, the downwash, due to a vortex element, at
an arbitrary point P is proportional to a negative power of the distance
from the vortex, and thus we have to deal with a mathematical singularity,
if this distance tends to zmero, i.e. 1f the point P approaches the vortex.

The three-dimensional downwash condition reduces to a two-dimensional
one in the following i1mportant cases:

(1) The two-dimersional svbsonic theory of a thin wing, as it was
treated by Glavert (ref.1), where the wing section is the chord.

+ (2) The conical field theory for a wing in a supersonic flow, as
treated recently in an extensive paper by Multhopp (ref.2), where the
wing sectlon must be taken spamwise,

In both cases we may write the downwash integral in the form

b
2m w(x,z) = / o(g) —5
! (x-£) Pez®

where the x-coordinate is taken along the section, =z perpendicular to it,
end f(E) denotes the strength of the vorticity for a <& < b, The
function w(x,z) satisfies the Laplace equation. The problem in its usual
form is, that w(x,0) is known along the section a < x < b for z =0
and f£(E) is to be determined erther from w(x,0) or from one of its
derivatives, This leads to

b
2xwix,0) = lim ________f(g) (x-t)

0 (x-E)%r2?
a

dg

In evaluating this integral we clearly have to define a principal value
(i.e. finite value) for the integral

© b
[ r(g) ag
x-£
a

in order to deal with the singularity E= x. The result, due to Cauchy,
is well known, Similarly, in considering its n derivative with respect
to x, we have to defane +the principal value of the order n for the
integral

-3 .
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f r(g) ag
(Xfﬁ)n+1

a

Moreover, 1t 1s well known, that in replacing the rounded nose of a
profile by a sharp leading edge, we must admit an infamite velocity and
so an infinite value for the vorticity at the sharp leading edge. Thus
the integrand in the downwash integral may become infinite not only at 4
E = x, but also at the ends E =a and & =b of the integration

" interval. Thus we have also to define the principal value for integrals

. the same, but .for a profile of a small but finite thickness, we have to

of the form

1

b
f n(g,x) &
(E-—a)aﬂn

a

where & 18 Tractional (usually %) end m 1s.& positive integer. We
shall call them principal values of & fractional order (section 4). They
occur at the ends of an integration interval and are due to a singularity
in the vorticity distribution f£(E), whereas the principal values of
integer order (section 3) occur in the interior of the integration
anterval (£ = x).

Fairly often these prancipal values of higher order can be avoided
by an integration by perts, which reduces their order. Thus the downwash
behind a wing can be determined in the lafting line theory, where the wing
is replaced by a single bound vortex, from the 1ift distribution T(E) by
means of thne influence function (x~E)~¢, although 1t 1s more usual to
determine it from the derivative daU/dE = I'(£) by means of the influence '
function (x~E)~!. But in the theory of the supersonic conical fields the
higher order principal values are very useful, and Hulthopp (ref.2) makes
frequent use of such integrals correctly, but without proof.

)

Thus the technique for working out the finite values of such integrals
becomes increasingly important. In this paper the calculus of integrals
of this kind, which was initiated by Hademard (ref.3), i1s summarised and
extended, together with a theorem (section 5), in a form which may be of
practical use to the worker in this field.

~ It may be mentioned, that Hadamard (ref.3) called the prancipal. value
the "finite part of an infinite integral", a notation, which will become
clearer in section 2. Robinson (ref.4) used the idea of the principel
value, in order to generalize the concept of the subsonic source or. doublet
for a linearized supersonic {low and tc establish some theorems for a
supersonic flow, which are equivalent to Green's formula and Stokes' theorem
in subsonic flow., A number of’ American papers (e.g. Heaslet and Lomex,
ref.5) on the calculation of the pressure distribution over a wing in
supersonic flow are based on this conception of the finite part of an
inflinite integral.

2 A contour integral

In the example of a two~dimensional flow around a profile, which was
mentioned above, we can replace the distribution of sources and sinks
along the profile chord, which wag used by Glavert in order to determine
the disturbance caused by the wing in a parallel flow, by a (different)
distribution of sources and vortices along the profile contour itself.

In the limiting case of thickness ratio. zero both distributions -will be

deal with finite velocities only along theicontour and in:the exterior of
the grofile and therefore with source and vortex distributions, which are
finite aleong the entire contour.

-4 -
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Then the bourndary condition along the contour can be put in the
following form

- UE) + F(B) + F'(B) = O (1)

Here U(P) is the contribution of the undisturbed flow to the normal
component at the point P of the contour and

—

F(P) = ;5 £(s) g(s,P) ds (2)

and K

FYP) = y{ £%(s) g (s,P) as - (3)

are the normal components, induced by the vorticity distribution f£(s)
and the source distribution £*(s) respectively, both given as functions
of the arc length s along the contour. g(s,P) and g°(s,P) are the
normal components, induced in the point P by a vortex or a source
respectively of the strength 4. The integrals have to be taken along the
entire -closed contour of the prorile,

From now on we shall deal only with the integral in (2) since all
the results can easily be extended to equation (337 The integral (2)
contains a singularity at the value of s which corresponds to the
pivotal point P, Here we determine the integral first for a point P
Just cutside the contour and let the point P move on to the contour
after the integration. Ancther possibility 1s, %o consider (see fig.1)
instead of the given contour another contour with a small dent, so that
P 1is outside the now contour and let the dent vanish after the integration
has been performed., We denote the contribution of the dent to the integral

b by IP'

In a similar way we add a bulge to the contour at the nose A and
another one at the trailing edge B, so that in the limiting case of
thickness ratic zero, the profile consists of a flat or cambered plate
with two bulges at each end, Each of these bulges consists of a circle
of' a small radius e, Thelr contribution to the integral may be dempted
by I, and Iy respectively. Thus we have for the thin profile:

F(P) = lim [I, + Ip+ Ipl+ I (%)
e+

where I 13 the remainder of the contour integral.

The contribution of the bulges at A, B, and P ocan be zero in
many cases, e,g., ror the rlat plate at a constant incidence so that the
velocity ¥(P)} = I can be obtained, without corsidering the bulges.

But this is not gemerally truc. In certain cases, e.g. if F(P) in
(4) does not denote an induced velocity, but a derivative of such a velo-
ci1ty, the contributions of the bulges may be infinite, although the physi-
cal quantity F(P) (the velocity derivative) may be finite, In such a
case I is infinite, but the complete sum of equation (&) is finite.

This function F(P) is often called the "finite part" of the integral
I, ‘The integral I, which is infinite, if considcred by itself, rcpresents
The finite physical quantity F(P), if the missing contributrons of the

-5 -
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three bulges A, B and F are added. In other words: The infinite
part of the integral I 1is cancelled by the bulge-integrals, and only
the "finite part" of I has a physical meanirng, We shall prefer the
notation “principal value" of I for the function F(P) in (L), since
for the partlcul&r case of a flat plate amd an influence f‘unctlon
g(s,P) = 1/(s=x), equation (4) reduces to the definition of Cauchy's

prlnclpal value, as will be seen later on (section 3).

Since the vorticity distribution is of an opposite sign on both faces
of a flat plate, we may write

[ P-g
I:limE[ f gds+ 2 ff‘gds (5)
£30 /

Are P+e
In order to obtain from (5) the physically significant quantity F{P)
we have to take the principal value:

B : .

F(P)" = j[ £(s) g(s,P) as (6)
A

which is defined by means of equation (4). (The crossed integral sign
indicates that the "finite part" or the principal value must be taken.)

From our argument, it 1s very likely that operations such as difrcren-
tiation (with respect to PF) or integration by parts {(with respect to s)
are permissible for the integral I uin (5), provided that the principal
value 1s always taken, i.e. the contribution of the bulge integrals is
allowed for. This will be proved 1n the rollowing paragraphs and a number
of' rules for the treatment of such principal-value-integrals will be
- established,

Since the order of the singularitres of g at the point P or of f
at A or B can be altered by integration by parts, we shall esteblish
these rules by starting from lower order singularities and proving the_
rules for higher order singularitics by means of an integration by parts.

3 Principal valves of integer crder .

3.4 Cauchy's principal value

In many riclds of appliled mechan:.c:s we have to deal with an integral
of the form (a < x < b)

: F(X) =

(7)

b

r £(g) ag -
| =
a N

Since the integrand tends to infinity ror £ = x, this integral has no
meaning, if consldered as an integral in the ordinnry sense., Therefore
we have to go back to a more general integral, which contains (1) as a -
limiting case.

In aerodynamics the integral F(x)} usually occurs, if one determines
the x-comporent of the velocity, vhich is induced by a distribution (&)
of sources and sinks slong the 1nterval a < E<b, of the x-axis 1n a
two-dimensional flow. At iy oint (x,z) of the plane this velocity is
given (apart from a factor /g'!t) by the function

-6 =
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b
oy o f @) (x-8) ag
) = / (x=E)%az?

(8)

and P(x}) in equation (7) is the limiting case, if we put 2z = 0 1n
equation (8), Now it is apparently a reascnablc procedure to define the
so far meaningless integral (7} as the limiting case for z~> O of the
integral F(x,z) in (8):

P(x) = Lim F(x,z) (9)
z+0

Physically speaking, the velocity induced by the =mcurce distribution
along the axis 2 = 0 1s a continuous function or z including =z = O.

In order to perform this limiting process z » 0, we divide the
integral (8) from a to b into three parts, In the first part from
a to x-g¢ and the third part from x + ¢ to b the difference u = ~ X
is never zerc and we may safely go to the limit =z » 0. The second part
from x-e to xt+t& oconbains the value £ = x. 1t may be written as

IP'-=

XtE £
] (&) (x-E) d& o / ? (x+u) u du

(0% wPer?
Kmg -

or, expanding f(x+u) in a Taylor series for small values of u = & - x:

- o .
R PRI R I
L _butez

- £

The integrals over the first and third term vanish for symmetry reasons
and we obtain._from the seccnd term

I, = -f (x) (2¢ - 2z tan™]

P )+...

SRR

whnich 1n the limit 2z » 0 +tends 4o a fanite value., All the omitted terms
contain even higher powers of e, '

Since all these considerations hold for any value & » 0 (which is
not too big as to invalidate the expansion of f(E)} in a Taylor series),
we may go to the 1limii e - O and obtain

X=g b
1 - f
P(x) = lim A(x,2) = Lim / 2 ag, / £8) dE[ ()
70 g0 X-g " x=§
. a X+E
since the third ocontribution Ip vanishes for & » 0. This is the well-

known principal value of the integral (7), as first introduced by Cauchy.

For o wing with a finite tnigkness_ 2z = 4+ z,{x) we require the
velocity field only i‘gr Eoints e 2 zo2 outside the profile and on its
surface, where (x~£)%+z“ is always positivc, so that no singularity
cccurs in F(x,z) and no principal value is required.

-7 -



3.2 The derivatives of the functron F(x)

After having repeated all the well-known results for Cauchy's
principal value, we proceed now to determine the derivatives of the
function st) in (7). As before, we have %o go back to the general
functicen F(x,z) in (8), have to determine first the derivatives of .
P(x,z) with respect to x and have to go to the lamit z - 0 after-
wards,

Since in many problems not f(£), but either F(x) in (7) or one

of its derivatives aF(x) is known, and f(£) is the urknown function
dxn

(the vorticity distribution is usually determined by a condition imposed

on the downwash or sidewash), we need a relation between d"F/a&x® which

holds (on the wing surface) for 2z = 0 without going back to the velocity

field outside the wang. This can be achieved by means of a generalization

of Cauchy's idea of the principal value of an integral, as 1t was suggested

first by Hadamard.

A differentiation of (7) under the integral sign would lead to

b
SFr(x) = j{ £(g) 4% (11)
(x-5)2
and a repeated differentiation to
b
("'I)n d%(x) - f f({_,,) dg (a<x< b) (12)
n' dx™ (x-8)PH ’

These integrals have no meaning 1f they are considered as ordinary
integrals. But they lead to a finite result, if we take their "principal
value" (as indicated by the crossed integral sign), which can be defimed

~in the following way: :

b X=-£ b
£(E) dg1 . 'lim £E) da1 + £E) 48+ (-1)P &, (x,¢)
AECE I e R C S L e L
(a <x < b) (13)
where =1

(_. -
Ky (x,8) = Z—f—"ﬁ)— 1G0Tk (ke = o (14)
&% (ng)y e

The function Kp(x,e) depends on the coefficients of the first n terms
of a Taylor series for the function f£(&) = f{x+u) at the point & = x:

$E) = () = £(x) b ui(x) 4. = Z-‘_l‘if(j)(x) (15)
3.
J=0
(£ = x+u)



#)

e

In order to prove the equations (13), (14), we go back to the more
general function F(x,z) as defined in (8) and determine the derivatives

aF(x,z) o
————~ first for 2z +#+ 0 and go aTterwards to the limit z -~ 0. We

dx?
have
(-)* a" (-1)" ; a" xX-E
=y /f(g) e (( 2 2> az
o x-E) T+z

(16)

Il

1 /1'3 2(i) S ( = )dr
4 i z
n. / ag™ (x—§)2+52

We divide the integral from a t b into three parts, integrating
first from a to x-¢, then from x-e to x+s, and finally from x+e

to b. In the farst and 1n the third integral v = E=x is always different

from zero, so that the integration over £, the differentiation with
respect to x or & and the limitation process z -5 0 can be carried
out in any arbitrary order, (¢>0), and we obtain the first two terms in
the bracket of eqation (13). It remsins to be shown that the third
contribution, namely the integral

X+e N € /
2 £(g) & 5 Nagg = 4 [i‘ (x+u) )
n! / (©) dg,n<(x.. 24,52) * dun\u2+22
X—£

tends in the limit z > O to the term (-1)" K (x,e) as defincd in (14).
We introduce the Taylor series (15) and obtain the :Ln‘tegral sum

T (3)
Y TG Gyt - k(e (+7)
— 3l ’d
§=0
where ' i
n-1 ©
A I bowe
L = lim —f ud — du (18)
nsdJ 70 n' av™ 112+z2
-g

We can see, immediately, that L, s 0 for symmetry reasons, if n-=J is
b
an even number or zero, HFurthermere we have

S w N\ 2
L, 0 = limk--z-——g) = - (19)
urz/ L

70

Now we conclude by means of an integration by parts, that



or

n-j
3 1 = (1)

- = . o r——— 20
IJn,J nLn-1,J-1 n ehd (20)

From this reduction formula, we have, remembering (1 9),
1 - ()

(n-g) & °

+
1

, J#nm ] (21)

L = 0

im

Inserting this-result-(21) into equation.(17) we obtain the function

K (x,e), as defined in (14), since it is sufficient to extend the sum

only between 0 and n-1, because for n < j we obtain positive powers

of e, which will vanish in the limit ¢ » O, M
. Thus we obtain a finite result for the derivatives of F(x,z) when

z tends to zero for any arbitrary value of £ > 0, It now remains %o be

shown, that we may go to the limit e » O, as indicated in (13), and shall

obtain a finite result even in the limit & = 0, For this puwrpose we

denote the polynomial, consilsting of the first {(n+1) terms of the Paylor

series (15) for f(&) by f£(g):

v

0 = ) E2 O (22)
1=0

kH
J

Thus-the functions f£(&) and f£,(%) have the first n derivatives at
E = x in common, so that the di?’fermce

= J
28 - £5(8) = z i%f—“)—-f“’(x)
* " g=ne )

e+
can be divided by (x~E) "1 ana the integral

b
[ECECRS
J (x_anﬂ .

- 10 -
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is a regular integral, We introduce the indefinite integrals

£

G(x,g) - / M

(x=)™" =)

1

&,
G-n(x,f‘;‘,) f M

(x-@nﬂ

=1 .
ne vt (J) x Eax J-n '-(n) x )
- 24 f J z( o (Jzn) a nE s el (1)
J:O

(where the log of the modulus of (E-x) must be taken), and have
b

f £(g) - (3 ar = (G(x,b) - Gn(x,b)>

J (x-E_,)nM

4

(25)
—< G(x,a) = G-n(x,a)>

Pl

For the integral over the polynomial, we have to apply our definition (43):

; -—-—-—fn(g) — = 1% [G {x,x~€) - Gp(x,a)
1 = .._~,m X yX~E) ~ : )
T g™ e

+ Go(x,b) - Gpx,xee) + (- Kn(x,e)}

3

aet £ (5
(i J (26)

= lim {Gn(x,b) - G‘n(x,a) + (-1) ' 10g
e=+0 n

£

since the remaining terms cancel each other according to (14) and (24).
This result is independent of € and the limiting process e » 0 1s thus
Justified and leads to a finite answer.

It may be pointed out that Gp(x,b) - Gu(x,2) in gmeral also contains
logarithmic terms, and the result in (26) is correot provided that always
the log of the modulus is taken,

Equation (26) permits the result of the integration (13), (14) to be
written in a shorter way, provided that the indefinite integral (23) is
known. We cbtain by adding (25) and (26) the result:

b
# i(i)f; = [e(x,b) - &(x,2)] (27)
b

*

i.e. the integral may be fomally treated as an ordinary integral, without
any regard to the singularity at & = x, provided that the log~terms are
treated in the way menticned above,

-

- 11 -



Equation (27) explairs, why Hadamard (ref.3) who first introduced
this type ol integral, called the principal value, the "finite part" of
an infinite integral. All the terms, which near the pivotal point & = x
would give an infinite contribution to the integral, are omitted (cf.
equation (13) and (14)). One takes only the "finite part" of the integral.

Thus it has been proved that we can obtain the derivatives of the .
function P(x) in equation (7) by means of equations (13) and (14), using
only values of $£(E) and its derivatives along the axis z = 0 without
either determining the values of F(x) or the values of the function
F(x,z) and its derivatives outside the axis z = 0.

3.3 The 2z derivative of' the function H(x,z)

It may be pointed out that for the applications in aerodynamics only
integrals of the fom

b
P = [ 26) gylx,8e) aE " (28)
. a
with Tt
lim g, (x,E2) = ! = (29)
z-0 (x=E)
will occur, where
K
R ] (50
CE N ) L
and thus F,{x,z) are solutions of the Laplace equation
F 0%
ax2 372 (31)
Since
2
a( x-E. ) 3 (1 ‘ 2 2 )
- = 7 lo X + &
ax (x—E')2+Z2 axz 2 24 [( E,) ]
’ 52 ) s 5
= -——§<%— log [ (x~E)“ + z ])
0z
v C i( Z )
' 02 \ (x-E) %472
he.influence function.may be also of the form
dn-.‘i d
%
gn(x,852) = - = 32
ns-ror axn—'i az<(x_g)2+z|2> (32)

.42 -
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This enables us to express the "normal" derivative -— of -the function

GL
'b -
h d
H(x,z) = / —(E-)%;; (33)
I (x=E) %z
a
along the axis 2 = 0 in the form of a principal value integral
’ (€)
o h (£)a
a

whiclz has to be determined according to the rules given in equations (43)
and (14).

An important spplication of equation (34) is the case of a lifti
surface with a discontinuity of the potential-function H(x,0) = h(ﬁ
(a<x<b) along the axis z = 0, Equation (34) detemmines the downwash

g—I: along the lif'ting surface, or vice versa, since usually the downwash
1s prescribed by the wing plan form, equation (34) can be used as an
integral equation to determine the discontinuity h{x) of the potential

function and the load on the wing.,

Finally, it may be pointed out that all these relations which hold,
if the Tunction gn(x,&;2) is a solution of the Laplace equation, are
not generally true, for any influence function gn(x,Z;2) which satisfies
the conditlon (29).. . This can be seen from the following exemple. The
integral

b b-x
/ (x—&)zd- ¥ az w?i g2 au
= PR
2 292 2472
I () 2ee?) od (529)

_@_( u) 2\.*_1_/ au
u\ g2,z M+ 2| Z2

e l' by =2 . A+1 [

* tan=1 B=X
(bex) 222 (xa)4z? 2z

+ tan™ 3‘-;—?‘—] (35)

tends to infinity for z > 0, if (A+1) # 0, and only for A = -1 does
it tend o the same result, as would have been obtained by putting =z + 0
first and using the rules (13) and (14) for the evaluation of a principal
value integral.

3.4 Integration by parts of a principal value integral

Now we derive the rules, governing the integration by parts of an
integral of the form (12). For this purpose we go back to the function
F(x,z) and obtain there by integrating by parts (n Z 1):

_13_



£(E) a%<f;i)._;:z-§> ag

a1}
|
t
~~
E]
s
S
'l
[=]]
LN
m-‘.._____o,

an-1 "/ ; (-E-x) )b i fl(g (JC-E,) d_‘l
i [(z® i) / ) o

When taking the limit 2z =+ 0, we have

h
£(g) dg
(x_g)nﬂ

b
1]ty _ _£(a) f £' (&) ag

6
D (x-b) (x~a)D (x-g)" (36)

This shows that the rules apply in the same way as for an ordinary proper
integral, provided that the principal values are taken as defined by

equation (13), From (36) ard (13) we have the following rule for the
differentiation of such an integral (n 2 1):

b - b
a 1 o£(g) ag ; £(E) 4k
dx f (x-2)D - n f (x_g)nﬁ

b
#‘ £(g) ag, fla) _ _£(b)
(x-8)"  (x=a)®  (=-)"

(37)

Y.

L. Principal values of fractional order

In most applications the function f(£) which occurs in the integral
equation (7) a (12), is not regular at the ends a and b of the inte-
gration interval. It may be of the form

f(g) - l—'ﬁ-g— near

€-a)® T
P (38)
£E) = —LB-B(E’ near £ = b
. (0-8)

where A(E) and B(E) are regula.r' functions of &, 1i.e., expandsble in a
Taylor series and a and B are not integers. Then the relations (13),

(14), (36), (37) remire certain modifications, which allow for these
singulari ties,
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One way of generalizing the results of section 3 for such integrals
would be to replace the integral (7) or {12) by a contour integral, which
contains the interval a < & < b in its interror and then to go to the
limiting value of the contour, which would consist of twice the interval
a <E < b and three bulges or dents respectively at a, b and P, as
was explained in section 1 {see fig.1). The contributions of the bulges
at a and b have to be allowed for in order to generalize the resultis
of the last section.

Wo shall follow a different and perhaps simpler method by which the
contributions of the bulges at a and b is determined by means of an
integration by parts, which are permissible for the contour integral amnd
thus are still valid in the limiting case.

4.1 Singularity at the lower limit of the integral

If «<41'and B < 1 in equation (38), the rule for the evaluation
of the principal value, as given in equatlom (13) and (14), applies in
the same way as before, provided that the integral is, as uaual defined
as the limit

b b-&
# ) a8 ii = 61im' f £(8) a8 i»i (39)
‘ - >0 -

(x~E) s (x-£)

The limit & + O ocan be taken, if @ < 4, B < 1, and leads to a finite
answer, In order to obtain the contribution of the "bulge"-integrals at
E=a and Z-= b~ for.any (not integer) velue of & and B, we proceed
as follows.

We split the integral from a to b into two integrals, so that
only the first part

CB

/ f(g) dE [G A(E,) ag (10)

n+‘1 (- a) )n+1

is influenced by the singularity at a. We may assume that

a<c<x<hb
i

so that, ror the time being, we may forget about the singularity at
E = x. Then {40) is of the fomrm

- lim n(g) ag
I i l& " (41)

where

£(8) (g-2)" _ _A(g)

h(E) =
(JC--E)HM (x_ ?‘;) k1

is a regular function of E near a. We 1ntroduce

g
H(E) = H(a) +,/ h(g) a&

a
- 15 =



which is a.lso a regular funot:Lon near E = a and obtain by an ‘integration
by parts fron (44): : i . L }

i
s

€ t - I ‘ -
yooe ! L ,[./) H(&;)dEU‘ ’ )

P~ I = llm X \
8+ 0 (€-a)* J :
a+d
w ,‘L ’ o C . ‘ j
AR " 3 E(a+d H )
L lim'a{ / H(g) 2.%1 - (ag'a) + —(_ (c;a (}+2)
50 S8 (£-a) ad” - c-a
For this we write
< . v, b - '
r 1 i H E_. dE_. H(c
Lo a 7[ (&) - (e) (43)
o (E-2) w1 (c-a)"

where the first 1ntegral does not exist in the ardmary sense, since the
exponent oa+1 1is greater than 4. But we obtain a finite answer for I,
if we take the principal value of the integral, which is defined by the
bracket on the right of equation (42).
. . .

" By generalizing this, i.e. by repeating the partial integration in
(42) again and sgain, we armve at the following definition of a principal
value (m = integer number):

e o c m=1
— (2)
H(E) ¢ _ H(E) 4& HY (a) . \
prreii L B et = ()
f (g—a)oﬁ'm 50 {a/;a (?“a)a-l-m J>_;6 3! 5a+m-‘l J(a+m_1_j)}
(0 < aa <)

Here we have used the Taylor series for the function H(E) nesr £ =

t
.

= e |
H(E) = H(a) + (g-a) H'(a) + ... = Z(g-a)a%-‘-—) (45)

The limit as defined by equation (44) is finite, since these terms of
the intégral, which in the limit & » O would tend to infinity, are ocan-
¢elled by the additional terms in the bracket. This cen be seen in the
following way:

We denote the polynomial which comsists of the first (m+1) terms of
ne sorics (15) by Hy(E)s

2

2, 3
H(8) = )_J(-‘?’—gi?-l—ﬁca)@ (16)
520

and obtain:

- 16 =
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4+ o, yotm ]
a+6(€ -a)" (-a) =0 ) atd

a+d

ot

Here the first Integral on the right 1s regular in the ordinary sense,
stnce the factor (£-a)™ ' 1s cancelled ovt, For the second term we have

= (3) 1 gmom © m () i

L A (a)((%—g} ’ ) _ >““ AR (a)(& oo (G-a)”J'“'m)
3! 14 J=0=m e S ., al 4+ Jeot~-m 14 j=0-m

J:O J:O

The first tems in this sum, which (for 3=0,1...m~1) would, in the limit
6+ 0, temd to infinity, are cancelled by the additionsl terms in the
bracket of (44), amd thearefore the result 1s finite.

Now we are going to show, that ihe definition (44) 1s a reasonable
generalization of equation (42)., For m =1 equation (L4) reduces to
cauation ?42)., Now we derive the rule for an integration by parts of the
integral (L44). This will enable us to reduce (i) by a sucecession of
integrations by parts to the form (42) or even (41).

4.2  Integration by parts

The rule for the integration by parts of the integral (44) can be
written down as rollows:

& o]

7[ HE) dg 4 # H'(E) ag  H(e) u7)
1 & ~a)

oAM= (c~a) o+m-1

E-a)" ane
a

It means that the rormal proccdure for the integration by parts applies
also in this case, provided that the principal value of the integrals is
taken as derined in (44) and all terms are omitted, which would formally
give infinity.

In order to prove thie equation (which for m = 1 becomes identical
with equation (42)), we have to go back o the definition (40) of the
principal valuc. We integrate by paris:

H(E) a&  _ [ H(a+b) / H'(E) ag Y 4 H(c)
ad (g-a)™M Latrnd (o)™ J @ome1) (wanen) (o)™

a+d

In the rirst term on the right we replace H(a+8) by its Taylor secries
(comp. equation (45)) and obtain

H(ard) _ H(j)(a) R N B
3. Rm=] =5  @+m-i =
J:O

Here the sccond term in the bracket can be token to the other side, vhich
yields the definitlon for the principal value of the integral on the lef't
of equation (47). The first term in the bracket gives, together with the
integral, the principal valve of the integral on the right of equation (47),
if one replacis J, which runs pow from 1 to m=-1, by (X+1) (K=0,...m=2).
Thus the proof of equation (L7) is camplete,

-7 -



L.3 Differentiation with respect to the limit

Now we can show that the derivative with respect to a limit of an
integral os defined in equation (44) can be obtained by differentiating
the integrand only:

d | H(g) 4 __H(¥) a8
Ey jé ey - f o) (&)

This will be proved by going badk to the definition (44). At first
we have

C

o [ EEar () [ H(E) A€ H(ar)
(

e g+m+l T o M

da .

~-a
a+d

a+ o

We introdice again the expansion (45), this time in the form

_ H(ax8) :’mzH_(K_)(g)_SK'“'mC asm_ K ) ,

& +m K! a+m~K o +m-K

&

K=0

Differentiating the sdditional sum in (L) yields

me1 m
) Z H(J‘i"'l)(a) _ Z H(K) (a)
oL+ T = 3 - K !
;=0 4398 “(emet-3) £, =) s (k)

which cancelsthe second term of the bracket in the last equation but one.
The first term of this bradket yields together with the integral above in
?hg)llm:_t &> 0 the principal value integral on the right of equation
Ld) q.e.d.

L.h  Singularity at the upper limit

t -« For an integral with a singularity at the upper limit b the defi-
niticon of the princlipal value reads

b= m—|
W | [E®@E T 0F ) |
f (b E)ﬁﬂn 5.;10 [ »c{ (b—é)ﬁ+m KZ& Kt ((3+m-—-1 --K) 8]3+m---‘1 —K} (11-9)

and all the rules for dirferentiation and integration by parts can be put
down in a corresponding way.

We may interpret the definitions (44) amd (49) in the following way.
Instead of taking the integral from a to ¢ which would not converge, we
expand the integrand near & = a and retawin only those terms of the series,
which after the 1ntegrat10n yield a finite answer. In other words: We take
only the "finite part" of the integral (Hadamard). It may be mentioned
that the additional terms in (4k4) amd (49), which cancél the "infinite
contributions" to the integral, are, for any given function, determined in
a unigue way, since no term of the order 89, which would g:we a finite
contribution, may ocour because of our assmnpt:t.on that a 1is always between
0 and 1.

- 48 -
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4.5 Representation of the solutions off the laplace equation by
prinoipal value integrals

From now on the "orossed" wintegral sign is to denote the principal
value of the integral in gquestion, in the following sense: At the point
E = x, the principal value must be taken according to equation (13) and
equation (14). At the ends £ = a and E =b of the interval, the
principal value must be taken according to the rules equation (44) and

equation (49). .

We oonsider the integral \
b
(-1)" a"F(x) i{ fE) a&
Fn(X) = = (1 2)
nt axt J (x_g)m'J'

and assume that £(§) is singular, ot the ends of the integraticn
interval, i.,e. the function f(&) is of the form (38) near E = a and
g =b, with a and B denoting any (positive or negative) not integer
number, Thus f£(g) is elther zero or infinity there.

Integration by parts of (12) leads to

b
I e S (50)

In qgrder to prove this we divide the integral into three parts by means
of the two points oy and ep which are chosen in such a way that

a< oy < x< 02<b.

For the middle interval ¢4 < & < cp we apply equation (36), for the two
intervals a < Z < oy amd o2 < £ < b, we apply equation {(47), which
means that the rule l‘or integration by parts applies in the same way ns
for aordinaery integrals, if one omits all the terms which would give the
contribution infinity, Thus we are left with equation (50). We repeat
this argument and obtain:

f E’ E’ ) 11(11-'1 ) f (E’) E; (Il = ) (51 )

(x-g) "1 a g% (x-g)™1
a

or in general

. b : b
r(g) & _ (=) (n-d): ]( a’r(g) __ ag
(x-8) "] n! 18 (x-g)™
a a

(52)

(3 =0,1,2,...n)

By means of equation (52} we are in a position to reduce the higher
order principal values at & = x to Cauchy's principal value (7= rjs, but
then we have to deal with higher order singularities at the limits of the
integral (see equations (44) and (49)).' We may also read equation (52) in
the opposlte direction, i.e. we can use (52) to reduce the singularities
at the emds a and b of the integration interval, but have to deal then
with a higher order principal value at & = x,

-19 -



Since F(x,z) in (8) satlsfles the Laplace equat:.on (31), PF(x) in
(7) represents the boundary values for = 0 of a solution of the Laplace
equation., The same is true for Fp(x) 1n (15). Thus (52) gives (n+1)
possibilities to represent the same solut:n.on Fn(x) by means of a singu-
larity distribution

'

-l

hy(8) = (=) (=) 37 2(8)  (5.0,,...n)

n., daa

fis

in the form

r

; hs(g) ag

e (53)

Fp(x)

where the principal value is to be teken for ¥ = a, £ =x, and § =

By means of a similar argument we can prove that the normal derivative
oH i
55 Oof the function H(x,z) in equation (33) is given along the axis z = 0

by equation (34), even in the case that the function h(g) becomes singu-
lar at both ends £ = a and & = b, provided that the principal value of
the integral is always taken,

4.6 Solution of an interral equation

Fram equation (52) we can draw the follow-.n.ng important conolusion:
If £(E) is a solution of the integral equation

b
f E%}fé = F(x), (a <x <b) (54)

Fa

arr(g

then
agt

is a solution of the equation {(n = 1,2,...)

b
f{ w8 a8 &F®) . (al g ) (55)

dER x=g dx™
] )

Pro(8)

a
Thus we conolude (F = 0), that any derivative —-—gagl-—- of £ (E) 1is a

solution of the equation
b

- ar,(2) a
f_d_;T_;C:‘; = 0, (a <x<b) (56)

a

if £, (E) itself is a solution of §563. Any such solution may be added
to the solution f£(&) of equation (54), Thus a unique solution of an
integral equation of the type (54) or (56) can be obtained only by addi-
tional conditions which specify the type of singularity whmh is admissible
at the ends E=a and E=1b of the interval,
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5 Integration of functions, which involve principal values of higher
order

5.1 A theoram

In the applications (comp. ref. 2) we often encounter an integral
of the fom

X
I,(X) = / h(x) Pn(x) dx, (ay < a< b) (57)
20

Al

where h(x) 1is a regular function of x (2t can be expanded in a Taylor
series at any point of the integration interval) and .

b
(&) d&
Fo(x) = / éjé‘)“m (58)

1s an 1ntegral involving principal values at E = x and possibly at & = a
(or £ = b). In this section we shall always assume that f(Z) is near
£ = a of the form

1
——2~ =111

£(8) = A(§) (E-a)

(m = interger, & = regular),

5N

Ik
Sunce arny function Fu(x), for which (g-a) (g} is a regular
function, can be reduced by means of integration by parts to the form,
where

o L®) ¢,
) £8) AME) = Z é‘“ﬁﬁ(“l (g_,--a)K (59)
&= K=0 '

is a regular function, we may assume that f£(£) has the form (59).

Since Fp(x) is finite for a, $x< a and a<x<b and h(x)
is regular, the integral I,(X) can easily be determined if X< a.
For X a, the integration in (57) cannot be performed immediately
since the integral might be meaningless due to the singularity of F(x)
near X = a,

But the integral I,(X) has a definite meaning if we define it as
the limit for 2z » O of the more general function I,(x,z):

I,(X) = 1im I (x,z) (60)
z~0
where
X
I(x,2) = / h(x,n) Fy(x,z) dx o (61)
ag

- 21 -



with h(x,O)E h(x) and L

b
ey . 2t [ E(E) (xE) af s
Falxa) = Y dxn‘[ R (62)

A1l these integrals have a definite meaning and are regular, if the inte-:
gration is performed alorg a line z = const # 0 and the limit z- 0 1is
taken afterwards, But somebtimes the integrand is known only along the
x-axis and cennot easily be determined for =z # 0. Here the following
theoram is very useful:

. The integral.. In(X% in %57; which 1s defined as the 1imit for z = 0O
of the function In(X,z) in (6%), can be determined for X ¢ a as an
cardirary integral, For X Z a we have to take the principal value of the
integral between the limits ay end a and have to add the integral
between the limits a and X.

5.2 Proof of the theorem

To prove this theorem, we split the integral In(X,z) between the
limits ay and X > a 1into three parts, namely the integral from ag to
a - €, the integral from a - & to a + €; and the integral from
o+ gq to X, In the first and third part we mgy go to the limit 2z - 0
before the 1ntegration, since h(x,z) tends to h(x% and Fp(x,z) tends
to Fp(x), which is regular for x < a, and for a< x <b is defined by
means of a principal value. '

Prom the second part of the integral, namely

a+a1

1,* f h(x,2) Fo(x,2) a (63)

8;51

19

we obtain for n 2 2 by successive partial integrations, using (62) 3

ol P en |
R T E () = Ry b . ~

(=1)" n! L,” (x,z) 3>=_"é (=1)7 |n* (x,2) R [ (5-£)2 4 22

‘ ’ a-s,l
- Mer 7o) (xeB) ac
e e x) {x-
+ (-1) ! / h( 1)(3‘::2 -c%:' / (X-E,)z + 22 dx (64)
a-s.] ! a

where h'9) is the 8 derivative of h with respect to x.

We shall prove later on (see 5.3) that Fy(x,z) temds to a finite
function, which is a reguler function R(x-a) of (x~a) for x < a and
the sum of the same regular functlon R(x~a) ard the product of = fa=xX
times another regular function S(x-a) of (x-a):

FO(X,O) o= FO(X) =

{R(x-a) , x> a, )

R(x-a) + = |/x~a S(x-a), X < a,

- 22
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Assuming for the time beirg that (65) 1s correct, we can see that
Io7(x,z) tends to a regular function Iy (x) and I4%#(x,2) to a regular

function Iﬁ(x) , which depends on Fy(x) = - 5-9- .
X

Since both I(-_,E‘E and

115 are finite they vanish for g4 > 0 and our theorem is proved for

n=0 and n=1.

Since r'or the last integral in (64) the same remarks hold, we can go

to the limit 2z - 0 in (64) and obtain for nz 2:

n-2 .
\ n-J-1
(-1 n! L x) = - 24 (-4)7 h(J)(x) 5;{-(7( a-x S(x-a))

3=0 .
n—2 ' ( J) dn-j—1 a+ 51
Y 0?60 S (e
L axPm 31
J:O =a_€1
a.+81
- ", (n=1) d
e ()™ / B () £ o) ax
a-—a.i

X:&—€1

(66)

The scoond and the third term of this expression are finite and tend

to zero for &4 @ 0, whereas the first term tends to infinity.

the first part of the integral (57), namely

\

a~81
h(x) F,(x) ax

E70)

By adding

which can be integrated by parts 1n the same way, we would, apart from

firite terms, obtaln the same fterms at the upper limit a-gq,

given above in equation (6€), but with the opposite sign.
that "integrating from a-g, to ate

and taking the limit
means "taking away the infinite terms" or in other words "taking the

as are
It follows
- O

principal value of the integral'". Since these "infinite terms" are deter-
mined in a unique way, we may apply the same procedure for determining

this principal value, as was explained in the preceding paragraph on

principal values of' a fractional order (section 4).

Thus we have proved that the integral
(ag < a< b)

In(x) = fh(x) Fy(x) dx,

where Fp(x) is defined by

(57)

(58)



and '

£(g)

v A(E)
(£-2)

is a regular function (m = integer number) gives the limitirg value of
the integral

a=e

Slj.l(!)l / h{x) Pp(x) ax,

if faken in the ordinary sense, and gives the limit

atg

lim /’ h(x) Fy(x) dx

>0
29
if we teke the "principal value" of it, as explained in section &
. ]

5.3 An auxiliary theorem

Finally, we have to prove equation (65). We choose a2 value c¢ between
a+ey and b, sc thatfor-a <. < ¢ a finite number of terms of the
series (59) represents f(E) with sufficient accuraocy.

Then we write

b c b
£(8) (x-%) dg
sz):/ =/+f (67)
O( H (X_E)Z_‘l_ ZZ
a a c
This tends to L(x) + ¥(x) for z- 0, wvhere
. b
M(x) = /
a [
is a regular funotion of (x-a), if x < atgy < ¢, and therefore oon-
tributes to R(x-a) in (65). '

Thus it remins to be-shown that

L(x) = lim [ [ A(g) ——=—= x-8 % da

520 X~E )

c-a (68)
K K2
:fA(gde= A()()f "2 qu

{x=2) -~ u 3
a K:O
(u = -a) has the required properties, as desoribed by (65). The sum in
(68) is extended over a finite number N

&

of terms of the series (59},
which-gives the function with suf'ficient acouragy for a < & < a,

- o -
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It can be seen by differentiating

N-1 K+% " du
% > By u +D/————-—
e 4 (x-a) - u
K=0
5= \ 1
K+ DJu
= Z(K * —g—) By u ® — (69)
K=0

and equating this expression 1o

, 1
) als)(a)
K—:—C’) K: (x-a) - u

that the integral L(x) in (68) can be written as
cma
Yu du

L(x} = p1(x-a) B

+ po(x-a) (70)

where p4 and pz are polynomials in (x~a). Furthermore we have

Yyu du vyu + fx-a .
= =2 fx-a 1 £
./x-a—u M+ -a og\fu T 1 x »a

~

- 2¥u ~ 2/a~x ’t:an”‘]*/ia;&E if x< a
C-a. 1 e ’ X=a
vu du | c-a

-2Jc_.a-|-lrx-—alog-—-—-—————, X > a

and

X=a~1

(71)

It

e -1{
..2\/—aa.+2\{_a—xk tan o—a)’ X< a

where the principal value at £ = x, u = x-a, has been allowed for in the
first_ integral (x > a).

The result for x > a can be ed in a power series which contains
oniy—{not-negative) powers.of (x—a). The same_applies for the difference

O=a

[ Yu du
- | a=x

X=a-

o
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if x < a, amd both series are ldentical as can be seen by comparing the
coefficients or by means of the relation: )

TR [
%ma log ————o = - 2 {a-x ten™] F‘-’i
c-a
1 - [X2
C=8,
Thus we have the result
c-a
" Vu du
/ E—-——)—-—"— = pz(x=a), (x> e)
X-2) - U
(72)
! = p3(x—-a) + 7 ‘Ja—x, (x < a)
where P3 is a regular function of =x-a, and finally
L(x) - Doy + Py P3 = R(x-a), x> a
(73)

= Pp+ Dy Pyt Py T X-as= R(x-a) + S({x-a) mVx-a, x<a

is a regular function R of (x-a) for x> a, and the produot Vx-~a
times a regular function S of (x-ag has to be added to cbtain its -
value for x < a, Thus equation (65) is correct and the proof of our
theorean 1s complete.

6 Some exsmples

In order to illustrate the rules derived in the preceding sections,
we consider the integral

Fo(x)

- f =t (74)
a2 (x-)

The indefinite integral is

&Z“xré"' \/32"32 Ja2_5_’2 ) if x%<¢ g%

_1_ (o]
I «( (€x) Vet

and - -

-1 { 8%
*Smﬂ(e_&> o 22, o2
x%-g? alg-x|

and we obtain (using (13) for x%< a?) the result

- 26 -
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Fo(x) = 0, if x° < &
Fo(x) z | £ >
o X = s 1 x a
(2.2 (75)
Fo(x) = »——, if x<-a
\sz-az

If we replace (Z-x) in the logarithmic term by its modulus |E-x|, we
need not consider the principal value at £ = x. Acocording to equation
(27) it is suffioient to take the imdefinite integral at the limits

E =+ a,

Next, we consider the integral

a
dg
F (x) = - = f (?6)
1
o Va2 (x-p)?
which. by an integration by parts, oan be written as
' a
ag
) = - f s (77)
* -8 (az_EZ)Z
The integral can be evaluated by differentiating equation (75)
Fa;(x) = 0, i x% ¢ az,
UP's (78)
Ry(x) = % if x%5> a2
(x2-07)
Working out equation (76) directly, we have
aE 1 f a2ap2
f - 5 = > o E - x/ (79)
{a?g2 (x-E) ac-x \’a -52 (x

which for x2 > a2 leads, by means of equation (75), directly to the answer
(78). For x° < a® the integral in the bracket vanishes, as shown above
and we are left with .

1 ‘1{ a2 ox? _“\’az—xz . 2 I
a?-x2 ® (-¢) £ l[a-z-:-’-_:aE

(compare equation_(43)). “This result could have been obtained dlreotly
from equation (76) by inserting the limits £ = + a into (79), without
considering the integral near’ £ =
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We may also determine F,(x) from equation (77) The indefinite
1ntegral is

~

E 4 _ 4 K+E

ag
3 222 ;“:”"‘f e
(a2-22)2 (x-E) la? (x-8) 52,

Here the second term yields in the same way as before the answer (equation
(78)). The first temm has to be taken at the limits & = a -6 and E=

~ a+d with the appropriate correotion terms according to equation (L)
end equation (49). We obtain (a =2, m=1)

132

‘1 X+a . a

2_.2 ° Jz_fa i 3

a%=-x a 5 2
12_ & (x-a) (2a)2

1 X8 (-a) '

- +
22 Tl :
atx® W2avs E (2&)%

Thus the result (78) has been confirmed once again.

Another integral, which ocours fairly often in supersoniec aerodyrmamics,
is .the followirng

® : a?-E% ag
Fly) = "i _——(x-g)z (80)

It also represents ihe downwash behind a liiting linc with an eliiptic load
distribution in subsonic flow.

The indefinite integral is

.2 2
f -£ ag = - |eint E. (x+E) || a2-E2 ) (a2_€2)2
Gt 2 @ ) ()

+ X _ dE |
- f (x-8) Ja2-2

where the last 1nte%ral has.been treated above. For x2> a2 wa obtain.by

-

(81)

means of equations {74) amd (75)
22 —
wm ' _
For x2 < 82 we have
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a
FEEEE - (Fea) (8)
Wom

-

gince the last integra,l in (81) vanishes according to (75) and because the
second and third temm in the bracket con‘cmbute nothing at the limits

£ =+ a, and near the pivotal point £ = x, The latter fact follows
either from equation (27) or from eguation {13) by means of

\

1 1
(22-x2)*  (a2-x2)° 2 N P
o

In order ‘to illus trate the theorem in seotion 5, we determine now the
integral (comp. ref, 2):

) .
I(x) = f \/1-:(2 F_](x) dx, (0< a <41; 0 <x <4) (8y)
+1

where Fy(x) 1is given by equation (76). Thus we have with (78)

\,1-}: dx CS
= 5
f ~ 3 )
2
We my integrate by parts and obtain far a< x <

f\l 1-x _(\Jx;‘l 2>dx,

V qex? dx

+ (86)
———— -
x | x2-a? X x2{ 1-x2 \/x2-a2

I(X) N

The second term oan be reduced to the stendard elliptic integral E(k,qﬂ)
of the second kind by means of the substitution

2
a
h-% .
sin ¢ = —mm——, d¢ = —— (87)
\/1 - a2 xﬂx2-a2 \]1-:{2

Vi - o2

which yields

x ﬂ/,Z,
- 7\;/ ’,_,___dx-_ = = _/\/1 - (1-&2) sin®¢ d¢
4 X2 ‘,{1-3[2‘! JC2'-'3.2 & ¢

(88)

4

+ ;’_;.[E (k, 3) - E (k,qzb):l
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Thus for a < x <1 the integral I(x) is given by (86) and (88). The
result tends to infinmity for x -» a.

In order to obtain the value of the integral I(x) for %2 < a2,
we notice that - F4(x) = 0 for x2<. a?, Thus I(x) is constant for

x2 gléz and according to .section 5 is eqial to the principal value of
the integral for x = a,

A :
I(x) = o f@FH (,X) dx
a

= lim
80

+1
2 .
- [ Y1222 5 (x) ax 1‘_______; x
. x -
ok 1 8% (2a)

We introduce (86) end obtain

1

dx
I{x) = + 'nf — (22 < 22)
a xz\"t-xa\fxz—-ag
(89)
= = Efk
a2 )

where E(k) denotes the complete elliptic integral of the second kind
with the parameter k = \{1-&5.

7 Conoluding remarks

The derivatives orf' the integral

b

‘ F(x) = /f%;é (7)
a

are represented in the farm of an integral, involving a principel value of
higher order: :

, b
()" a(x) 4 f£(B) dg
Fn(X) T n! axn - j (X_E-')n'l-‘i (12)

where, following Hademard, the "finite part" of the integral must be taken
according to equaiion i‘13).

This applies only if F(x) is to be understood as the limiting value
for z =0 of a more general function F(x,z)

b

F(x) = lim F(x,z) = lim ff(g) —-—x:é-*--dg (8)
70 20 (x=E) %422
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™

which 1s a solution of the Laplace differential equation in two variables,
Fp(x) yields the limiting values for =z > O of the derivatives of these
functions TF(x,z), which are again solutions of the Laplace equation.
Such a "ecrossed" integral can be integrated in parts according to equation
(36) and can be differentiated according to equation (37).

In the applications, the function f(&), which determines F(x), is
usually singular at the ends a and b of the inbtegration interval, i.e.
£(E) +tends to infinity at one or both enmds., In order to cope with these
cases the “principal value of a fractional order" is defined in equations
(4k) and (49). The integration and differentiation of such an integral
are governed by equations (47) and (48). The rules for an integral Fy(x)
with singularities at both ends of the integration interval become parti-
oulerly simple (e.g. (52)).

Finally, the integral

X

I(x) = / h(x) Fo(x) dx (57)

ag

of the product of a regular function h(x) and a function Fp(x) is
cvaluated, It is proved {seotion 5), that this integral, teken from a
point ap < a up tn x = a gives the value In(a) just outside the
interval a < £ <b, where f(E) is defined. But the finite part of
this integral, teken in the meaning of eauations (44) and (49), gives the
value In%a) just inside this interval. 1In other words: The integration
over a small interval a~e to ate takes out the "infanite part" of the
integral and leads to a finite answer. This is identical with the answer,
which would be obtained if the integration would be performed along a path
z + 0 (with the appropriate values for h(x,z) and Fup(x,z), wvhich tend
to h(x) and Fp(x) for =z - 0), thus avoiding the singularty at x = a,
end the limit 2z » 0 would be taken afterwards. This result is very
wmportant since it only requires the functions h and F to be known
along the axis =z = 0,

The most wimportant rules for dealing with these principal value
integrals are colleoted in Appendax I.
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APPENDIX T

Summary of the important equaftions

1. Principal values of integer order:

P(x) = (~-1)™ an(x) j( gaz g

— n+1 (n=0,1,2,...) (12)

b X= g
j[i@.éi - Lim f £(g) ag P() at
J (x_g)nn £>0 ( F:‘)n+'1 (x gm-‘l
n iy f(J)(x) ] - (=4)07Y ©
+ (=1) > \ Py (135(14)
—_—{’) J . (n=3) ¢
L J=
b
fﬁ@% = &(x,b) = G(x,a) (27)
(x~8)
wi th
£(E)
“-G(x ) = = (23)
dg (x-E,)nH

(Any terms log (E_,—xg , which might ocour in G(x,£) have to be under~
stood as log |g-x| ).

Partial integration:
b b

g ag 1| fk) _ fa) (£ & (36)
(x=2)™!  n | (xd)D (x-e)n (x-g)™
(n=1,2,...)
Differentiation: |

b b

_@_‘3{ E) &g _ M

dxa (x-g)" ) (x-g) 0+
b

(37)
£'(g) ag, f£(a) _ £(b)

(x-g)"  (x-2)"  (x0)"
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2, Principal velues~of fractiomsl order (a'< o < b)y
1

o W .
)™ o (g R i 3 E 0 anay)
B J= ,
| _ . (1)
(0<a<q;us= 1325004)
b p=d ot 3 )
( } T - H b
]{ — gfm = 11::1 / : )gf’m Z_, ae(+:n31 J =
(0-5) (b =K ~(Brmet=
(0C<B<i3m=1,2,...)
‘Partial $ntegretion: - ‘ '
o o
H(E) at 1 H (&) ag (o)
f €)™ amet ) [ (et T [ wa i
: a :
' Differenti ation:
- o K]
£1 - [ H0s w
da (g-a) B0 (E~ al)a"'mH ¥
3. Integrals with singularities at the ends
b
_ﬁﬁ)_é}_ L‘f)'jjn-m)' de(F) dg (52)
(x_g)n-l-‘{ a E‘j (%= g)n-JH
‘4 -
(j 30,1 ,25..‘.,1151’1'“-:1,2,...)
(£(£) is-either zeyo-or infinity at £ =a and at £ = b)
-y
&
~ 3l
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