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SlJMMARY 

Improper integrals occur in theoretical aerodynamics, if one deter- 
mines the velocities, inhtced by a vortex sheet, which e.g. my represent 
the influence of a thin w-i% at inoideuoe. The velooity at any point can 
be expressed as en integral involving an influence function, which becomes 
singular as this point approaches the vortex sheet. As is well knmrn, the 
principal value, as defined by Cauchy, is to be taken in this case. 

This paper deals with an integral, involving a "principal value of 
the order n". It was first introduced by Hademsrd and is a generalisation 
of Cauohy's principal value. It occurs, if one determines the derivatives 
of an integral, involving Cauohy's principal value. These integrals can , 
usefully be applied in many theoretiosl problems, in partiouler in the 

~supersonic theory of oonical. fields (ref.2). 

In order to deal tith'the singularities as they oocur near the leading 
edge of a thin wing due to the vorticity tending to infinity there, 
"principal values of a fractional order" are also introduced. After 
Hadsmard all these principal values can be interpreted in such a way that 
only "the'finite part" of the integral in question has a physical meaning. 
The rules for the evaluation, the differentiation and integration b parts 
of such an improper ral are derived and summxrized (Appendix I 3 
together with a theorem section 5), whi.& will be useful to workers in 
this Yield. 
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1 Introduction 

In many problems of applied mathematics we encounter certain singu- 
larities, which do not directly correspond to physical singularities, but 
are due to certain,simplifioations, introduoed in the physical or tech- 
nical problem, in order to emphasise the most important features of the 
problem under consideration. Sometimes only such a simplification makes 

. the theoretical treaimant of the problan at all possible. 

To give an example, we consider the calculation of the pressure dis- 
tribution over a wing. Here one usually separates the thickness effeots 
from the incidence effects by introducing the conception of a very thin 
wing at incidcnoe and adding the thickness eff'eots afterwards. The tiin 
wing is replaced by a distribution of vortioity in the plane e = 0 
(corresponding to zero incidence of the flat wing), the strength of whioh 
must be determined in such a way, that the induced downwash, together with 
the undisturbed flow, produces a velocity parallel to the surface of the 
thin wing. As is wellknwm, the downwash, due to a vortex element, at 
an arbitrary point P is proportional to a negative power of the distance 
from the vortex, and thus we have to deal with a mathematical singularity, 
if this distanoe tends to zero, i.e. if the point P approaches the vortex. 

The three-dimensional downwash condition reduces to a two-dknensionsl 
one in the following mportant cases: 

(1) The two-dimensional subsonic theory of a thin wing, as it was 
treated by Glauert (ref.l), where the wing section is the chord. 

' (2) The conioal field theory for a wing in a supersonic flow, as 
.treated recently in an extensave paper by Multhopp (ref.2), where the 

3 wing sectionmust be taken spanvise. 

i 
In both oases we may write the downwash integral in the form 

b 

2n W(X,Z) = 
i f(C) 

x- r; 
_'. 

a (x-g)2+z2 
ac 

where the x-coordinate is taken along the section, 
and f(E) denotes the strength of the vorticity for 

7. perpendicular to it, 
a<<< b. The 

function w(x,z) satisfies the Laplaoe equation. The problem in its usual 
form is, that w(x,o) is known along the section 
and i'(E) is tobe determined either from vv(x,o) 
derivatives. This leads to 

b 

a < x c b for z=O 
or from one of its 

2nw(x,o) = lim 
f(E) (x-F,) 

290 i a (x-Fg2+e2 dE, 

In evaluating this integral we clearly have to define a principal value 
( i.e. finite value) for the integral 

1 ‘ b 
I'(E) de 

I i X-E; 
a 

. in order to deal &th the sirgularity E = x. The result, due to Cauohy, 
is well knmn. Similarly, in considering its nth derivative with respect 
to x, we have to define the principal value of the order n for the 
integral 
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Horeover, It 1s well known, that' in replacing the rounded nose of a 
profile by a sharp leading edge, we must ahmt an infinite velocity and 
so'an &finite value for the vortioity at the sharp leading edge. Thus 
the mtegrand m the downwash integralmaybecome infinite not Only at 
5 = x, but also at the ends 5 = a and E; = b of the integration 
interval. Thus we ha&also to define the princi& value for integals 
of the form 

b 

i 
h&,x) aS 

* (&-a)a+m 

mere a 1s ,rractional (usually 6) and m isa positive integer. We 
shall call them~prinoipal values of a fractional order (sedzon 4). They 

'- occur at the ends of an integration interval and are due to a slngularlty 
in the vorticity distributron f(E), whereas the principal values of 
integer order (section 3) occur in the interior of the integration 
interval (E; = x). 

Faarly often these prlnoipal values of higher order canbe avoided 
by s.n inte'gration by parts, which reduces their order. Thus the downwash 
behind a wing csn be determined in the lifting line theory, where the .win@; 
is replaced by a single bound vortex, from the lift distribution T(S) by 
mean3 of t‘ne influence function (x4-*, although it is more usual to 
determine it from the derivative dJ?/& = p(c) by means of the influence 
function (x-E;)-'. But in the theory of the supersonic conical fields the 
higher order principai values are very useful, and Iviulthopp (ref.2) makes 
frequent use of such integrals correctly, but without proof. 

Thus the technique for working out the finite values of such integrals 
becomes increasingly important?. In this paper the calculus of integrals 
of this kind, which was initiated by Hademard (ref.3), is sumnar ised and 
extended, together with a theorem (section 5), in a form which may be of 
pract-ipaluse to the worker in this field. 

It may be mentsoned, that Hademar~ (ref.3) called the principal.value 
: the "finite part of an infinite integral", a notation, which,willbecome 

clearer iqsection 2., Robinson (ref.&) used the idea of the principal 
value, in order to generalize the concept of the subsonic sourbe or doublet 
for a 13nearized supersonic flow and to establish some theorems for a 
supersonic flow, which are equivalent to Green's formula and Stokes' theorem 
in subsonic flow. A number of,American papers (e.g. Heaslet ard Lomax, 
ref.5) on the calculation of the pressure distribution over a wing in 
supersonic flow are based on this conception of the finite part of an 
infinite integral. 

2: A contour inted , 

In the exemple of a two-dimensional flow around a profile, which was 
mentioned above, we can replace the distrlhution of sources and sinks 
along the profile chord, which was used by Glauert in order to determine 
the disturbance caused by the wing in a,parallel flow, by a (different) 
distribution of sources and vortices along the profile contour itself. 
In the limiting case of thickness ratio.sero both distributionswillbe 

,~the same, but.for a profile of a small but finite thickness, we have to 
deal with finite velocities only along the;contqur and inthe exterior of 
the rofile and therefore with source and vortex distributions, which are 
fini e along the entire contour. e 
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Then the boundary condition along the contour can be put in the 
follow& form 

U(P) c F(P) + Fm(P) = 0 (I) 

Here U(P) is the contribution of the undisturbed flow to the norms3 
component at the point P of the contour and 

F(P) = f(s) ds,p) ds (2) 

Pm(P) = 
1 

fqs) gW(s,P) as (3) 

are the normal components, induced by the vortioity distribution f(s) 
and the source distribution f"(s) respectively, both given as functions 
of the arc length s along the contour. 
normal oomponents, 

g(s,p) and g"(s,P) are the 
inducea in the point P by a vortex or a souroe 

respectively of the strength I. The integrals have to be taken along the 
entire-closed oontm of the pror'ile. 

From now on we shall deal only with the intc r-al in (2) since all 
the results oan easily be extended to equation (3 e ' . The integral (2) 
contains a singularity at the value of s which corresponds to the 
pivotal point P. Here we determine the integral first for a point P 
just outside the contour and let the point P move on to the contour 
after the integration. Another possibility is, to consider (see fig.1) 
instead of the given oontour another contour with a small dent, so that 
P is outside the new contour and let the dent vanish after the integration 
has been performed. We denote the contrzbution of the dent to the integral 
F by Ip. 

In a similar way we add a bulge to the contour at the nose A and 
another one at the trailing edge B, so that in the limiting case of 
thiokness ratio zero, the profile consists of a flat or osmbered plate 
with two bulges at each end. Each of these bulges consists of a circle 
of a small radius E. Their contribution to the integral may be denoted 
by IA and IB I-eS~OtiVdy2 Thus we have for the thin profile: 

F(P) = lim [IA + IB t IPI + 1 
E"O 

where I is the remainder of the contour integral. 

The contribution of the bulges at A, B, and P can be zero in 
many cases, e.g. for the flat plate at a constant incidence so that the 
velocity F(P) = I oanbe obtaned, withotit considering the bulges. 

But this is not generally true. In certain oases, e.g. if F(P) in 
(4) doe s not denote an induced velocity, but a derivative of suoh a velo- 
olty, the contributions of the bulges may be infinite, although the physi- 
cal quantity F(P) (the velocity derivative) may be finite. In such a 
case I is infinite, but the complete sum of equation (4) is finite. 

This f+nxtion F(P) is often called the "finite part" of the integral 
I. ,The integral I, which is infinite, if considered by itself, represents 

, the finite physical quantity F(P), if the missing oontributlons of the 

-5- 



. 

three bulges A, B and P are added,. In other words: The infinite 
part of theintegrsl I is cancelled by the bulge-integrals, and only 
the "finite part" or' I has aphysical meanirg. Ne shall prefer the 
notation "principal value" of I for the function F(P) in (4), since 
for the particular case of a flat plate and an influence function 
g(s,P) = '/(s-x), equation (4) reduces to the definition of Cauchy's 
principal value, as will be seen later on (seotion 3). , 

Since the vorticity distribution is of an opposite sign on both faces .' 
of a flat plate, we may write 

i P-E B-e 
fgdst 2 r f g ds 

P!E 
(5) 

In order to obtain from (5) the physically significant quantity F(P) 
we have to take the principal value: 

F(Pj = 

B ' 

f(s) g(s,p) ds (6) 

A 

which is defined by means of equation (4). (lhe crossed integral sign 
indicates that the "finite part" or the principal value must be taken.) 

From our argument, it is very likely that operations such as diffcren- 
tiation (wth respect to P) or integration by parts (with respect to s) 
are permissible for the integral 
value is always taken, i.e. 

I m (5), provided that the principal 
the contribution of the bulge integrals is 

allowed for. This will be proved in the lollwing paragraphs .snd a number 
of rules for the treatment of such principal-value-integrals will be 

- established. 

Sinoethe order of the singularities of g at the point P or of f 
at A or B can be altered by integration by parts, we shall establish 
these rules by starting from lower order sirigularities @proving the- 
rules for higher order singularities by means ,of an integration by parts. 

3 PrincipeJ. values of integer order 

3.1 Cauchy's principal value 

In many fields of applied mechnnios we have to deal with an integral 
of the form (a <x < b) 

a. 

Since the integrsnd tends to infinity for c = x, this integral has no 
meaning, if considered as an integral in the ordinary sense. Therefore 
we have to go back to a more general integral, which contains (1) as a+ 
limitiw case. 

In aerodynamics the integral F(x) usually occurs, if one determines 
the x-component of the velocity, which is induced by a distribution f(c) 
of sources an3 sinks along the interval of the x-axis in a 
two-dimensional flow. At an 
given (apsrt from a factor 

ok (x s$ \j'th"l plane this velocity is 
q,6~) by th: function 
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. 

(8) 

. 

. 

and F(x) in equation (7) is the limltlng case, if we pu% z = 0 In 
equation (8). Now it is apparently a reasonable procedure to define the 
so far meaningless lnte (7) as the limiti% case for z-) 0 of tie 
intcgrdl P(x,z) in (8 

F(x) = km F(x,z) (9) 
Z"0 

physically speakng, the velocity induced by the source distribution 
along the axis z q 0 is a contlnuqus function or' 2, including z = 0. 

In order to perform thus limiti% process z -) 0, we divide the 
integral (8) from a to b into three parts. In the Pirst part from 
a to X-E and the thirdpartfrom x+ E to b the difference u = E - x 
is never zero and. we may safely go to the limit z + 0. The second part 
from X-E to X+E contains the value c,= x. It may be written as 

Ip = x E f(E) (x-c) ac - _ 
i’ 

E 
i 

f (x+u) Ll au 
(x-G2tz2 -E u2+,2 X-E 

or, expanding f(x+u) in a Taylor series for small values of u = 5 - x: 
F: 
; - 

Ip =-- 
i [r(x) _+ u f'(x) + g f"'(X) k . ..I s 

-E 

The integrals over the first and third term vanish for symmetry reasons 
and we obtsin.zkxn,the second term 

Ip = --f'(x) (2& - 22 tan-' ;,+ . . . 

which in the limit z + 0 tends to a finite value. All the omrtted temm 
contain even hwher powers of E. 

Since all these considerations hold for any value E > 0 (which is 
not too big as to invalidate the expansion of f(E) in a Taylor series), 
we may go to the limit E + 0 and obtain 

b -1 

F(x) = lim F(x,z) = 1l.m f(E) dE-+ 
Z+O X-E, . 

X*E 

since the third oontribut~on Ip vanishes for E -t 0. This is the well- 
known principal value of the integral (7), as fxrst introduced by Cauohy. 

For a wing with a finite tni 2 = + z,(x) we require the 
out:ide the profile and on its 

1s always posltivo, so that no singularity 
0OW.WS in F(x,z) and no principal value is rcqulred. 
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3.2 The derivatives a? the functzon F(x) 

After having repeated all the well-known results for Cauchy's 
principal value, we proceed now to determine the derivatives of the 
function F x) 
function F x,z) I 

in (7). 
in (8), 

As before, we have to go back to the general 
have to determine first the derivatives of. 

F(x,e) with respect to x and have to go to the lvnit z + 0 after- 
wards. 

Since in many problems 

-of its derivatives &!.M 

not f(E), but either F(x) in (7) or one 

is known, and f(S) is the unknown function 
ax” 

(the vorticlty distribution. is usually determined by a condition imposed 
on the downwash or sidewash), w need a relation between dnF/dxn which 
holds (on the wing surface) for z = 0 without going back to the velocity 
field outside the wing. This can be achieved by mans of a generdlization 
of Cauchv's idea of the principal value of an integreL, as It was suggested 
first by Hadamard. 

A differentiation of (7) under the Integral sign would. lead to 

b 

- F'(x) = 
J 
a 

and a repeated differentiation to 

b 
(-l)n d%(x) --= 
n ! ax" 

, (acxcb) 

(11) 

These integrals have no meaning lf they are consdered as ordinary 
integrals. 
value" 

But they lead to a finite result, if we take their "principal ' 
(as indicated by the crossed Integral sign), which can be defined 

.inthe following way: 

b b 
f(S) = 'lim 

(x-sY+' e+o s 
fk) aE + (-lyK, (x,e) 

X+E (x-p" 

(a <x < b) (13) 

where 

(14) 

The function Kn(x,~) depends on the coefficients of the first n terms 
of a Taylor series for the function f(E) = f(x+u) at the point 5 = x: 

% 
f(F;) = f(x+u) = f(x) t u f'(x) t.... = 

L 
uj ,(j)(,) (15) .I J. 

j=O 
(c = x+u) 
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In order to prove the equations (IJ), (I&), we go back to the more 
genera funotion F(x,z) as deflned in (8) and determine the derivatives 
d"F(x,e) 

r) 
axn 

first for z * 0 and go alterwards to the limit z + 0. We 

have 

. (-1)" a" 
b 

(-IY 
- ax" F(x,z) = 7 n! 

a 

b (16) 

1 = 
n: I 

a 
f(E) $I( (x-;;:+z2)d, 

We divide the integral fkom a to b into three parts, integrating 
first from a to X-E, then i%om X-E to X+E, and finally from XCE 
to b. In the first and ln the thrrd integrnl u = E-X is al~mys different 
from zero, so that the integration over c, the differentiation with 
respect to x or 5 and the limitation process e i 0 oan be carried 
out in any arbitrary order, (s>O), and we obtain the first two terms in 
the bracket of equation (13). It remains to be shown that tithe third 
contribution, namely the integral 

F X-E 

tends in the limit e + 
We introduce the Taylor 

co 

where 

L n,J = 

0 to the term (-1)" Kn(x,E) as defined in (14). 
series (15) and obtain the integr'sl sum 

f(j)(x) 

J! 
(-ljn Ln,j = K(x,E) (17) 

lim (-IF & 

PO tl! 1 UJ $(&) an 
-E 

We can see, imnedlately, that L, j = 0 for symmetry reasons, if n-j is 
an even number or zero. Furtherdre we have 

(19) 

Nay we conclude by means of an Integration by parts, that 
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L 3 , - (4)n-j 
n,J - ,Ln-l,j-l = n p-j 

From this reduction f'ommJ.a, we have, remanberi~ (IY), 

L n,LJ = 
1 - (-IF- ) j *n 

(e-J) &n-J 

(20) 

(21) 

L n,n =, O 

Inserting this-result-(21) mto equation..(l7) we obtain the function 
Xn(X>E), as defined in (I&), since it is sufficient to extend the sum 
only between 0 and n-l, because for n c j we obtain positive powers 
of E, whioh will vanish 1.n the limit E + 0. 5 

I Thus we obtain a Enite result for the derivatrves of F(x,e) when 
E tends to eero for any arbitrary value of E > 0. It now rennsins to be 
shm-n, that we may go to t?ne limit E + 0, as indicated in (13), and shall 
obtain a finite result even in the limit E = 0. For this put-pose we 
denote the polynomial, consisting Or the first (~1) terms of the Taylor 
series (15) for f(E) by f,(C): 

fJd = z ‘- -% k-XP f(?+x) 
(22) 

j=O " 

Thuwthe functions f(g) and f (E;) have tie first n derivatives at 
& = x in common, so that the &femme 

can be divided by (x-E)~" and the integml , 

b 

s 
a 
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is a regular integral. me intro+ce the indefinite integrals 

‘ i 

, 

i 

G,(G) = 

(23) 

/ 

“4 A j)(,) (+)~-n f(d(x) . 
= (-,p-’ 

L J : (J-n) + n: 1% k-xl (UC) 
J=o 

(where the log of the modulus of (C-x) must be taken), and have 

b 

s 
f(E) - fn(E3 

(x4Jn+' 
a& = G(x,b) - %-,(x,b) J ( 

a 

-\ G(x,a) - G,(v)) 
f 

(25) 

For the integral over the polynomial, we have to apply our definition (13): 

b 

%(x,x-~) - Mx,a) 

+ G,(x,b) - G&,xte) + (-l)n K&c,&) -1 
J 

= lim Gn(x,b) - G,(x,a) + (-1) 
c E-'O 

(26) 

smce the remanning terms oancel each other according to (14) ad (24). 
This resdt is independent of E and the limiting process E -f 0 1s thus 
justified and leads to a finite answer. 

It may be pointed out that Gn(x b) - Gn(x a) ingcneral also aontains 
logarithmic terms, and the result zn t 26) is co&e& provided that always 
the log of the modulus is taken.. 

Equation (2G) permits the result of the integratron (IS), (14) to be 
written in a shorter way, provided that the indefinite integral (23) is 
known. We obtain by adding (25) and (26) the result: 

b 

i 
f(E) dC 

a (x-6)"' 
= [Gb,b) - G(x,a)l (27) 

i.e. the integral may be fonktlji treated as an ordinary integral, without 
. any regard to the singularity at E; = x, provided that the log-terms are 

treated in the way mentioned above. 
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Equation (27) explains, why Hadamsrd (ref.3) who first introduced 
this type ol' integral, called the principal value, the "finite p&-t" of 
an infinite integral. All the terms, which near the pivotal point t; = x 
would give an infinite contribution to the integrsl, are omitted (cf. 
equation (13) and (14)). One takes only the "finite part" of the integrsl. 

Thus it has been proved that we oan obtain the derivatives of the 
fumtion F(x) in equation (7) by means of equations (13) and. (14), using 
only values of f(E) and its derivatives along the axis z = 0 without 
either determining the values of F(x) or tie values of the 0mction 
F(x,z) and its derivatives outside the axis s = 0. 

3.3 The e derivative of the function H x,z 

It may bs pointed cut that fd the applications in aerodynamics only 
integrsls of the form 

b 

F&v) = f&J g&$&,4 ac’ ’ (28) 

with 

will occurt where 

lim .8,(x, 0) = 
2+0 (xl,n 

(29) 

a" 
gJx,W = '- 

I 
x-E2 

a* (x-~~2+E2 I 
(30) 

and thus Fn(x,e) are solutions of %e Laplace equation 

,z,+& = 0 
3x2 a,2 

Since 

(31) 

;( (xw;;;z2)= -g& log ['(x-$ + 21) ' 

a2 = -- 
a2 

g lo;: [ (x-,g2 + 221 

.I 

‘i. 
= - 3 (x-y2+,2) 

-he~influenoe tition.maybe also of the form 

(32) 
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aH 
This enables us to express the "nor&L" derivative z of-the function 

b - 

H(x,z) = 
/ 

h&i) z E 
; (x-&-z2 

(33) 

along the axis e = 0 in the form of a principal value integral 

(34) 

which has to be determined aooordi~ to the rules given in equations (13) 
ad (14). 

An important applioation of equation (34) is the case of a lifti 
surfaoe with a discontinuity of the potential-function H(x,O) = + h(x 
(acx<b) along the axis z = 0. 

7 
Equation (34) determines the &wnwaEh 

!E 
a2 

along the lifting surface, or vice versa, since usually the domwti 
is prescribed by the wing plan form, equation (34) can be used as sn 
integral equation to determine the discontinuity h(x) of the potential 
function and the load on the wing. 

Pinally, it my be pointed out &at all these relations which hold, 
if the function gn(x,5;z) is a solution of the Laplaoe ewation, are 
not generally true, for any itiluenoe function gn(x,<;z) vrhioh satisfies 
the-condition (~)..wThi?~sn be seen from th'e following example. The 
integral 

=h-l c b-x b 
2 (b-x)%& + 

tends to infinity for Z + 0, 
it tend tn the same result &s 
first and using the rules 113) 
value integral. 

if (x+1) 4 0, ark3 only for A. = -1 does 
would have been obtained by putting z + 0 
and (14) fur the evaluation of a principal 

3Jt Intepration by parts of a principal value inte~rel 

NIX we derive the mles, governing the integration by parts of an 
integrsl of the form (12). For this purpose we go back to the mction 
F(x,e) and obtain there by integrating‘by parts (n g 1): 
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a” 
- F(x,z) =, 
ax" 

; 
dn-l 

c 
(f(E) 

(e-4 b b $ (<) 
) i’ 

(x-5) 7 =- 
tin-1 (<-x)2+2 a + a (x-&.2 ag J 

when taking the limit e+ 0, we @we 

b 
0" 5 F(x) z 

Il! 

(36) 

This shows that the rules apply in the szune way as for an ordinary proper 
integral, provided that tile principalvalues are taken as defined by 
equation (I 3) . From (36) erd (13) we have the fallowing rule for the 
differentiation of such an integral (n & 1): 

. . 

b ' b 

-n 

a 

(37) 

4 Principal values of fractional order 

In most appliations the~funotion f(c) which occurs in the integral 
equation (7) or (12), is ndc~regular at the ends a and b of the inte- 
gration int ervd . It may be of the form 

f(S) = L!!fQ- 
(E+da 

near c=a 

(38) 

near 5-b 

where A(5) and B(c) where A(5) and B(c) are regular'finctions of 5, i.e. expandable in a are regular'finctions of 5, i.e. expandable in a 
Taylor series and a and B are not integers. Then the relations (13), Taylor series and a and B are not integers. Then the relations (13), 
(14), (36), (37) require certain mcdifioations, which allow for these (14), (36), (37) require certain mcdifioations, which allow for these 
singularities. singularities. 
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One way of generalmmg the results of section 3 for snob integrals 
would be to replace the integral (7) or (12) by a contour integral, which 
contains tie interval a < E, < b inits intenor and then to go 'cc the 
limiting value of the contour, which would consist of twice the interval 

G a < 5 < b and three bulges or dents respectively at a, b and P, as 
was explained in section 1 (see fig.1). The contributions of the bulges 
at a and b have to be allowed for in order to generalise the results 
of the last section. 

r 
WC shall follow a different end perhaps simpler method by which the 

contributions of the bulges at a end b is determined by means of an 
integration by parts, which are permissible for the contour integral ad 
thus are still valid in the limiting case. 

4.1 Singularity at the lower limit of the integral 

If a<1 'and @<I in equation (38)) the rule for the evaluation 
of the principal value, as given in equations (13) and (I&), applies in 
the same way as before, provided that the integral is, as usual, defined 
as the limit 

b b-6 
f(E) dE; 

(x-c)"*' 
(39) 

The limit 6 + 0 can be taken, if a < 1, p < 1, and leads to a finite 
answer. In order to obtain the contribution of the "bulge"-integrals at 
C .= a and E-G b--for-any (not integer) value of a and P, we proceed 
as follows. 

c 
Ge split the integral from a to b into two integrals, so that 

only the first part 

4! c 
% 

i 
f(5) dE = A(C) dS 

a (x-g)“’ (E-a)a (x-E)“+’ 
(40) 

is influenced by the ,singularity at a. We may assume that 

a<c<x<b 

so that, for the time being, we may forget about the smgulerity at 
s$ = x. Then (40) is of the form 

I y lim 
6 +o 

5 

* f(S) &da = h(S) = A(i) 
(x-u-+’ (x-p’ 

(41) 

is a regular function of F, near a. We introduce 

4; . 
H(E) = H(a) + 

i 
h(E) dS 

a 

- 15 - 



which is also a regular function near 4-z a, and obtain,by an'integration 
by parts frcsl (41): 

I_ I 

;: ,, ,I ', , 
'0 _ .i?,/ 

, I ' e lim'a H(c) 
+ (c-a)' 

i42) 
S+O 

For,,this we write " ,i:, ! ,, 
'. * ':I \,b 

' * 
I ='.a fI(4 

+ (c-a)a 
(43) 

where' the first integral does not exist m the ordinary sense, since the 
eqonent a+1 is grealter than 1. But we obtain a finite answer for I, 
if we take the principal value of the integral, which is definedby the 
bracket on the right of equation (42). 

> 
i.e. by repeating the partial integration in 

at the following definition of a principal 

0 
H(ij dE 

c 

(c-a)a+m 
(44)’ 

(O<a<1) 

Here we have used the Taylor series for the function H(E;) near 

H(c) = H(a) c (c-a) H'(a) i . . . = k-4 
j H(j)(a) 

. , 
3. 

terms of The limit as defined by equation (44) is finite, since these 
theintggral, which in the limit 6 -) 0 would tend to infinity, are asn- 
celled by the additional terms in the bracket. This can be seen in the 
following way: 

4 = a: 

(45) . 

We denote the polynomialwhioh consists of the first (mtl) terms of 
the series (45) by H.,(E): a 

(46) 

and obtain: 

-. 16 - 



Here the first integral. on the right L s regular in the ordinary sense, 
since the factor (E;-a)"" is cancelled out. For the second term we have 

7 

The first terms in this sum, which (for J=O,l...m-I) would, in the limit 
6+ 0, teti to infinity, are cancelled by the additional terms in the 
bracket of (&), snd therefore the result is finite. 

Nowwe are going to show, that the definition (&.!+) 1s a reasonable 
generslization of equation (42). 
equation 4.2). 
integral i 

For m = 1 equation (44) reduces to 

44) ~ 
Now we derive the rule for an integration by parts of the 
This ~~12 enable us to reduce (44) by a suoccssion of 

integrations by parts to the form (42) or even (41). 

4.2 Integration by parts 

The rule for the integration by parts of the integral (44) osn be 
written dawn as follows: 

c 

I 

0 

f 

H(E) dF; 1 H’(E) ac. FI(c) 
= - a (<-a)a+m cE;-a) x+m-1 - (c-a)a+m-l (47) 

a+m-1 

I 

It means that the formal prcr:c&re for the integration by parts applies 
also in this case, provided tint the principal value of the integrals is 
taken as der'incd in (44) and all terms are omitted, which would formally 
give mnflnity. 

In order to prove this equation (which for m = 1 becomes identical 
with equation (42)), we have to go baok to the definition (40) of the 
principdl value. We integrate by parts: 

In the first term on the right we replace H(at6) by its Taylor series 
( camp. equation (45)) and obtain 

3 = m Ii(j)(,) 6~+l-m-a / - j + 
c 

atm-1 
t- 

,J=o J 
\ a tm-1 - ,; aem-1-J > 

. 

Here the second term in the bra&et can be taktzn to the other side, %tiich 
yields the definition for ihe principal value of the integral on the left 

c of equation (47). The first term in the bracket gives, together vrith the 
integrsl, the principal value of the integral on the right of equation (47), 
if one rep&cc-5 j, which runs now from 1 to m-l, by (I~+l)(K=O,...m-2). 
Thus the proor' of equation (47) is complete. 
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4.3 Differentiation with respect to the limit 

Now we can show that' the dcrivativawlth respect to a limit of an 
~ntegrd. as defined in equation (44) can be obtalned by differentiating 
the integrsnd only: 

0 
a 
da (48) t 

!l'hxs will be proved by going back to the definition (4!+). At first 
we have 

0 

LL 
da 

We intro&xe again the expansion (45), this time in the form 

Differentiating the additional 

m-l 

-c 
AJ+')( a) 

a+m-l-j 
j=. j : 6 (a+m-l-j) 

sum in (44) yields 

which cancelsthe second term of the bra&et in the last equation but one. 
The first term of this bra&et yields together with the integral above in 
the limit 6 -) 0 the principal vake integral on the right of equation 
(48) q.e.d. 

4.4 Sin&arity at the upper limit 

I -a For an integrsl with a singularity at the upper limit b tie defi- 
nitionof the principal value reads 

b b-6 m-2 
H(C) dC 
(b-@+m = 6:; 

(-l)K H@)(b) 

K: (ptm-,-K) &P+m-'-K 3 
(491 

0 

and all the ?ules for differentiation and integration by parts oan be put 
down in acorresponding way. 

We may interpret t‘ne definitions (44) ard (49) in the following way. 
Instead of taking the integral from a to 0 which would not converge, we 
expand the intcgrand near F = a end retam only those terms of the series, 
which after the integration yield a finite answer. In otherwords: We take 
only the "finite part" of tie integrsl (Ha&mad). It msy be mentioned 
that the addztiond terms in (L+!+) ati (49), which cancel the "infinite 
contributions" to the integral, are, for any given function, determined in 
a unique way, since no term of the order 6', which would give a finite 
contribution, may ocour because of our assumption that a is always between 
Oand1. 
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4.5 Representation of the solutions of the Laplace equation bx 
prinoipsl value integrals 

From now on the "orossed" integral sign is to denote the principal 
value of the integral in question, in the following sense: At the point 
5 = x, the 
equation (14 P 

rincipal value must be taken accordi% to equation (13) and 
. At the ends 5 : a and 5 = b of the interval, the 

principal value must be taken according to the rules equation (44) and 
equation (49). , 

f We aonsider the integral \ 

b 

F,(x) q - (-1)" dWx) = 
n: d2P 

(1.3 

and assme that f(E) is si the et& of the integration 
is of the form (38) near 5 = a and ' 

denoting any (positive or negative) not integer 
number. Thus f(c) is either zero or infinity there. 

Integration by parts of (12) leads to 

b 

F,(x) = - + (n& 1) (50) 
a 

; 

. ’ 

In order to prove this wedivide the integral into three parts by means 
of the two points oi and c2 whioh are chosen in SJ& a way that 

a< c,< xc c2<b. 

For the ruiddle interval 01 < E: < 02 we apply equation (36), for the two 
intervals a C 5 < c 

h 
and c2<<<b, 

means that the rule 
we apply equation (47), whioh 

or integration by parts applies in the same way as 
for ordinary integrals, if one omits all the terms which would give the 
contribution infinity. Thus we are left with equation (50). We repeat' 
this argument end obtain: 

b b 

i 
f(E) dC = ' 

3E 
d2L.k) a% 

(x-&y+' n(n-1) d E2 (x-c)"-' ' (n ? 2) 

a a 

or in general 

b 

i 
f(S) d5 (-q)j (n-j) ! b dJf(E;) dc 

‘(x-~)n+l z n! jc T$ (x-E;yj+l 
a a 

(J = 0,1,2,...n) 

(51) 

(52) 

By means of ewtion (52) we are in a position to reduoe the h' 
order principal values at 5 = x to Cauohy's primipdl value (J = n 
then we have to deal Mth higher order singularities at the limits 
intcgrsl (see equations (44) and (49)).' We may s&o read equation (52) in 
the opposite direotion, i.e. we can use (52) to reduce the singularities 
at the erds a and b of the integration interval, but have to deal then 
with a higher order principal vslue at E = x. 
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Since F(x,z). in (8) satisfies the Laplace equation (31), F(x) in 
(7) represents the boundary values for s = 0 of a solution of the Laplaoe 
equation. The same is true for Fn(x) in (15). Thus (52) @ves (n+l) 
possibilities to represent the same solution F,(x) by means of a +gu- 
larity distribution 

)n the form 

, b 

F,(X) = f 

hj(U dE; 

a (x-s)n+l-j 

j 

(53) 

where the prFnoipsl value is to be taken for g = a, 5 = x, and E =b. 

By means of a similar argument we osn prove that the normal derivative 

g of the fullotion H(x,s) in equation (33) is given along the axis s LO 
by equation (34)) even in the case that the iunction h(c) becomes singu- 
lar at both ends 'E = a and E = b. omvided that the arincioalvalua of 
the 

4.6 

u If 

integral is alkys taken. - z - 
* - 

Solution of sn integral equation 

Frcm equation (52) we can draw the follovcirlg important conclusion: 
f(S) is a solution sf the integral equation 

b 
' 

.i' 

f(C) dE 
x-E 

= F(x), (a c x c b) 

a 

then m 
d 9 

is a solution of the ewtion (n = 1,2,...) 

b dnfo +$- ; @F(x) 
i d En X-E 

(p- < x < b) 
ax"' / 

a . 

Thus we conclude (F a 0), that aw derivative d"fo( Q of 
d En 

solution of the equation 

,b d+,(C) dE. 

# agn z = " (a < x < b) 

a 

(54) 

(55) 

f,(g) is a 

(56) 

if f,(E) itself is a solution of 56 . 
to the solution f(c) of equation 54 . I 1 

Azy such solution may be added 

integral equation of the type (54) or (56) 
Thus a unique solution of an 

can be obtained only by addi- 
tional ocmditions which specify the bpe of singularity which is admissible 
at the ends 5 = a and 5 = b of the interval. 



5 Integration of functrons, which involve principal values of higher 
order 

5.1 A theorem 
7 

In the applications (camp. ref. 2) we often encounter an integral 
of the form 

. X 

\/ In(X) = 
i' 

h(x) h(x) k, (ao < a < b) (57) 
L 

where h'(x) is a regular function of x (It can be expanded In a Taylor 
series at any point of tie integration interval) and 

b 

Fn(x) = 
P 

f(S) SE 
(X-dn+' 

a 
(58) 

1s an lntegrsl involang princlpsl values at 
(or 5 = b). 

c = x and possibly at 5 = .a 
In this seotlon we shall always assume that f(c) is near 

& = a of the form 

f(E) = A(C) (t;-a)-'d 

(m = interger, A = regular). 
i‘ 

Srnce any function Fn(x), for which (c-a) 
m+ 

f(S) is a regular 
funotlon, can be reduced by means of integration by parts to the form, 
where 

I 

f(E) - = A(C) = 
\IE; 

(59) 

is a regular function,we may assume that f(S) has the form (59), 

Since Fn(x) is finite for ao 2 x < a and a < x < b and h(x) 
is regular, the integral In(X) can easily be determined if X < a. 
For X> a, the integration in (57) cannot be performed inrnediately 
sinoe the integral might be meaningless due to the singularity of dx) 
near X = a. 

But the integral In(X) has a definite meaning if we define it as 
the limit for e + 0 of the more gcnerd fin&ion 1,(x,2): 

In(X) = lim In(x,e) (60) 
WO 

where 

5 X 

I&,4 = 
i 

h(x,z) Fn(x,z) b 

l a0 

(61) 
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vfith h(x,O) s h(x) and ,l 

b 
(-1)n d" 

Fn(x,z) = - - 
f(C) (x-5) aE; 

n ! dx" (x-E)* t z* 
(62) i 

All these integrals have a definite meaning and are regular? if the inte- 
gration is performed along a line s = const * 0 and the limit s+ 0 is 

5 

taken afterwards. But sometimes the integrand is known only along the 
x-axis and cannot easily be determined for z * 0. Here the following 
theorem is very useful: 

57 which IS defined as the limit for 2; -) 0 
or th?ki%%$~] i: [6,] can be determined for X & a as an 
ordinary integral. Fck X & a vf: have to take the principal value of the 
integral between ths limits a0 and a and have to add the integral 
between the limits a and X. 

5.2 Proof of the theorem 

To prove this theorem, we split the integral In(X,z) between the 
limits a0 and X > a into three parts, namely the integral from a, to 
a - El, the integrsl from a - q to a + si and the integrsl from 
a t E, to x. In the first snd third part we msy o to the limit Z + 0 
before the integration, since h(x,s) tends to h(x e 
to F,(x) 9 

and Fn(x,s) tends 
which is regular fdr x < a, and for a < x < b is defined by 

means of a principal value. 

F'rom the seoond part of the integral, namely 

ate, 

1,x z 
J 

h(x,z) Fn(x,z) dx (63) 

a:sl 

we obtain for n 2 2 by successive partial integrations, using (62): 

- R (x,z)’ = nf (-,)j (-l)n n! I, 
JZO 

* 

a+e, 

J a-s, 

where h(J) is the ,lth derivative of h with respect to X. 

We shall prove later on (see 5.3) that Fo(x,z) terds to a finite 
Purotion, which is a regular function R(x-a) of (x-a) for x < a snd 
the sum of the same regular function R(x-a) and the produot of x,EiZ 
times another regular funotion S(x-a) of (x-a): 

Fo(x,O) = F,(x) = [R(x-a) ' 
x > a, 

R(x-a) + x \fi S(x-a), 
(65) 

x < a, 
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Assuming for the time beirg that (65) 1s correct, we can see that 
Iox(x,s) tends to a regular function IO*(x) and Ilx(x,z) 
function 1,x(x), which depends on F,(x) = - 2. 

to a regular 
Since both I," and 

'i II* are finite they vanish for e.1 + 0 and our theorem is proved for 
n=O and n=1. 

. 
Since I'or the last integrsl in (64) the same remarks hold, we oen go 

. to the limit z + 0 in (64) and obtain for n & 2: . 

(-1)" n! 1$(x) = - 

x=a-s, 
dn- j-l 
dxn-3-, R(x-a) 

a+s, 

+ (-l)n-’ 
J 

’ h(n-l)(x) & F,(x) dx (66) 

The second and. the third term of this expression are finite end tend 
i to sero for s, + 0, whereas the first term‘ tends to infmity. By adding 

the first psrt of the 1ntegrs.l (57), namely 

i 
a-q 

i h(x) F,(x) dx 

a0 

which can be integrated by parts in the same way, we would, apart from 
finite terms, obtain the same terms at the upper limit a-s,, as are 
given above in equation (66), but with the opposite sign. It follows 
that "integrating from a-e, to a+E 
means "taking away the infinite terns d 

and taking the limit E, + 0" 
or in other words "taking the 

principal value of the integral". Since these "infinite terns" are deter- 
mined in a uniqe way, we my apply the same procedure for deternuning 
this principal value, as was explained in the preoeding paragraph on 
priucipsl values of a fractional order (section 4). 

Thus we have proved that the integrsl 

a P 
In(x) = J h(x) Fn(d dx, (a,< a-c b) (57) 

$0 

: where Fn(x) is defined by 
b 

i , F,(x) = f(E) 
ac 

(x&y+’ ’ 
a ItI 

(5% 
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and ’ 

f(E) 
(E; -a) -4 

= A(E) 

is aregular function (m = integer number) gives the limiting value of 
tie integral 

if taken in tie ordinary sense, and gives the limit 

a+6 

lim 
1 

h(x) F,(x) dx 
E'O 

a0 

if we take ihe "principal value" of it, as explained in section 4. 

5.3 An auxiliary theorem 

Finally, we have to prove equation (65). We choose a value c between 
a+? end b, SC that-for --a 6.~ c c a finite number of terms of the 
series (59) represents f(c) with suffiolentaccuracy. Then we write, 

b c b 

Fo(x,d = (67) 

a 0 
, 

This tads to L(x) + M(x) for z+ 0, where 

is a ~egul2.r function of (x-a), S x < a+s, <' c, and thersfoks con- 
tributes to R(x-a) in,(65). 

Thus it renains tobe-shcmm ihat 

a 

0 (68) 

s 
. 

= 
,. 

a 
5 

K=O 

pu q-a) has t!l e required properties, as desckbed by (65); The sum in t? 
(68) is extaded over a finite number N of terms of the series (59), 
whic&gives the fur&ion with sufficient aaouraoy for a c & < a. 
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It can be seenby differentiating 

am3 equating this expression to 

-% 

> 
A(h) ca) ,K+6 

Ui K ! (x-a) - u 

that the integral L(x) in (68) can be written as 

L(x) = p,(x-a) c/as t p+-a) 

0 

where p, and p2 are polynomisls in (x-a). Furthermore we have 

s 
Ju au -= - if x>a 
X-S.-U 

\ 

= - z?Ju - 21/a-x tan if ~<a 

and 
c-a 

", x-a-u 

Ii. s 
r 1 - 3 2Jo-a t ,/Fa log , - 

1 -, E 
i 

(69) 

x> a 

(71) 

/n z - 25i+ZfiZc --tan-' 5, xta 
\2 - J) 

where the prinoi al value at 5 = x, u z x-a, h,as been cllmed for in the 
first-integral P x > a). 

The result for x ? a can be sd in a power series which contains 
, mly-(not-negative) powers-of (x-a szzmcapplies forthe differenoe 

i o-a 
Ju au - - 7I a-x d-- 
x-a-u 

. 0 
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‘ 

if x<a, and both series areidentioal as can be seen by aomparing the 
coeffioients or by means of the relation: 

- 

J log 
1+ 2 

J 
, _ ~ = - 2 &ii tan- s 

I- 

’ v o-e. 

Thus we have the result 
c-a 

I 
\Tu au 

o (x-a) - u 
= PJ(X4, lx > 4 

(72) 
= p3(x-a) + x Ja-x, (x < 4 

where p3 is a regular funotion of x-a, and finally 

L(x) -: P2 + PI P3 3 X(x-a), x> a 

= P2 + PI P3 + PI , 5 G-z R(x-a) + S(x-a) K,=, x<a (73) 

is a regular function R of (x-a) for x > a, and the produot Jx-a 
times a regular funotion S of (x-a 
value for x < a. Thus equation (65 is correct and the proof of our 1 

has to be added to obtain its ’ 

theorem is complete. 

6 Some examples 

In order to illustrate the rules derived in the preceding se&ions, 1 
vfe consider the integral 

a 
F,(x) = f 4 

-a is (X-E) 
The indefinite integral is 

and 

f&J log ( 
a2-xc+ Ja2,x2 Ja2,E;2 

(g-x) J2-z 1 if 

-1 a2-x& 
& sin (al<-x,j if 

3 x- > a- 

(74) 

x2< a2 

7 

and we obtain (using (13) for x2 < a2) the result 

- 26 - 



F,(x) = 0 , if 

(75) 

If we replace (C-x) in the logarithmic term by its mdulus 1.5-x\, we 
need not consider the principal value at c = x. According to equation 
(27) it is sufficient to t&e the indefinite integral at the limits 
4 =+a. 

Next, we consider the integral 

a 
m,(x) F,(x)=- dx = 

which. by an integration by parts, osn be written as 

a 

F,(x) = - 

‘i 
The integral can be evaluated by differentiating equation (75) 

k 
F;(x) = 0 , if x2, a2, 

F+(x) = xx if x2, a 2 

(x2-a2) 4 ' 

(76) 

07) 

(78) 

Working out equation (76) directly, we have 

,i ,&(,.g2 

1 ,cq ' 

= - 
I 

-x 
a2-x2 X-t; 1 fE I a2-E2 (x-E.) 1 (79) 

which for x2 > a2 leads, 
(78). For x2 c a2 

by means of equation (75), direotly to the answer 
the integral in tie braaketvanishes, as shown above 

and we are left with 

* (crcmpare equation-(i-3)). -This result could have been obtained direotly 
from equation (76) by inserting the limits 5 = + a into (79), without 
considering the integral near' c = x. 

i 
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We msy also determine F,(x) from equation (77). The indefinite 
Integral is 

Here the second term yields in the same way as before the answer (equation 
(78)). The first term has to be taken at the limits 5 = a - 6 and c= 

a + 6 with tie appropriate oorrection terms according to equation (WC) 
Ld equation (49). We obtain (a = &, m = 1) 

” 1 ‘I x+a 
a2-x2 $52 

+ a 
66 

& 6' (x-a) 
3 

I (2a)" 

t 

! 

1 x-a C-4 ' 

-- .*-x2 JZiJ6 
+ 

=O 3 4 6 (xta) (2a) I 4 

Thus the result (78) has been confirmed once agaxn. 

Another integral, which occurs fairly often in supersonio aerodynamics, 
is -the follm&g 

.It also rcprosents the downwash behind a lilting line with nn elliptic load 
drstribution in subsonic flow. 

The indefinite integral is 

i .’ a.E + x (x-.3g Ja2- ‘(81) 

where the last inte ral 
$ 

has-been treated above. 
74) ard (75) 

For x2 > a2 
means of equations 

we obtG.n.by 

i 
a~/a2-E2 -= -7[ + nx 

64 2 
(x2> a2) 

jX” ’ /~ 
(82) 

-a, 

For x2 < EL* we have 
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since the last integrsl in (81) vamshes according to (75) and because the 
second and third tern in the bracket contribute nothing at the lj,mits 
5 =+a, and near the pivotal pomt c = x. The latter fact follows 

. either from equation (27) or from equation (13) by means of 

(&x2+ _ (a2-x2) 
4 2Ja2-x2 

E (-s) - E = OG 

In order"to illmtt-ate the theorem in section 5, we determine now the 
integrsl (camp. ref. 2): 

I(X) = x 4 x2 
s 

A F,(x) b, (O< a<l;O<xcl) (84) x 
+1 

where F,(x) is,given by equation (76). Thus we have mth (78) 

I(X) = 7T xd 
J' 

l-x2 dx 
2 

(‘85) 

1 (x2-a2)2 

We my integrate by parts and obtain far a< x <q: 

I(x) i -7( 

1 

dT2+x dx 

r---J 
-__ - (86) 

x Vx2-a2 
1 

x2\j 1-x2 ijx2-a2 
1 

The second tm can be reduoed to the standard elliptic integral E(k,$) 
of the second kind by means of the substitition 

u' 
a2 

sin $ = ;,--T2, d# = s--.??=v- (87) 
x\i x2-a2 {l-x2 

k = \I1 - a2 

which yields 
x "4 

s 
I dx 1c 

-?i 
.-__ = ,2 JJ 1 

x2 {!-x?J x2-a2 
- (1-a2) sin2$ d$ 

1 # 

(k, ;) - E (k,d 
I 

(88) 



thus for a c x < 1 the integrsl I(x) is given by (86) and (88). The 
result tends to inflnlty for x -f a. 

In order to obtain the value of the integral I(x) for x2 < a2, 
we notice that. J?,(x) q 0 for x2 <.a2. Thus I(x) is constant for 
x2 s,$ and acoo@ng $p ,sectlon 5 is eq.d. to the principal value of 
th$3 Integral for x = a, 

I(x) = - 
J’ 

I@’ 
F,(x) CJx 

x ’ 
a 

= lim 
s+o 

a+6 

We introduce (86) end. Stein 

1 

I(x) = + T. 
J 

clx 
(x2 < 2) 

a x qxzyx -a 122 

(89) 

where E(k) denotes the corn lete elliptic integral of the second kind 
with the parameter k = l-a . d--+ 

7 Colluding remarlcs 

The derivatives or' the integral 

b 

F(x) = -- 
s 

f(S) aE, 
X-E 

a 

are represented in the form of an integral, involving a principal~vnlue of 
higher order: 

b 
f(S) aE 

(12) 

where, folloting Ha&mad, the "fd.te part of the integral must be taken 
accofiirg to equation). 

This applies only if F(x) is to be understood as the limiting value 
for s = 0 of a more general function F(x,e) 

5 

? 

b 

F(x) = ‘lim F(x,s) = lim 
7dO PO I 

a 
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which is a solution of the Laplace differentisl equation in two variables. 
Fn(x) yields the limiting values for z + 0 of the derivatives of these 
functions F(x,s), which are again solutions of the Laplace equation. 
Such a "crossed" integrsl can be integrated in parts according to equation 

% (36) and can be differentiated according to equation (37). 

In the applications, tie fknotion f'(c), which determines F(x), is 

'i usually singular at the ends a and b of the integration interval, i.e. 
f(C) tends to infinity at one or both ends. In order to cope with these 
cases the "prinoipsl value of a fractional order" is defined in equations 
(44) snd (49). The integration ti differentiation of such an integral 
are governed by eqgations (47) and (48). The rules for an integral Fn(x) 
with singularities at both ends of the integration inter-vsl become parti- 
oulsrly simple (e.g. (52)). 

Pinnlly, the integral 
x 

In(X) 1. h(x) F,(x) h (57) 

of ihe produot of a regular function h(x) and a function F,(x) is 
evaluated. It is proved (seotion 5), that this integral, taken from s. 
point a0 c a up to x = a gives the value In(a) just outside the 
interval a < 5 < b, where f(E) is defined. But the finite part of 
this inte ral, 
value I, a) ? 

taken in the meaning of equations (44) and (49), gives the 
just inside this intervsl. In other words: The integration 

over a small interwit a-s to a+e takes out the "infinite part" of the 
integral and leads to a finite answer. This is identical with the snSwer, 
which would be obtained if the integration would be performed along a path 
z $ 0 (with the sp ropriate values for 
to h(x) and F,(x P 

h(x,z) and F,(x,z), which tend 
f0r z + 0), thus avoiding the singularity at x = a, 

and the limit s + 0 would be taken afterwards. This result is very 
important since it only requires the functions h and F to be known 
along the axis z = 0. 

The most important rules for dealing with these pinoipsl value 
integrals are oolleoted in Appendix I. 
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APPENDIX1 

Summary of the important equations 

1. Principal values of integer order: 

%-i(x) = (i-l=012 ) ’ ’ “” (12) 

n-J 
) 

f(J)(x) 1 - (-I)"'3 
'WJ , 

_ po J ' (n-j) 8-j, 
I 

b 

= G(x,b) - G(x,a) 

with 

2 G(x,5) = f( 5) 
(x-p’ 

03xb4j 

(27) 

(23) 

&-4Y terms 1% (6-X , 
1 

which might ooour in G(x,E;) have to be undo- 
stood as 1% Is-xl * 

Partial integration: 

b 
f(C) aE 
(x-&y*' = (36) 

(n = 1,2,...) 

Differentiation: 

b 

= 
i 

f '(5) ac + f(a) _ f(b) 
(x-t;)" (x-a)" (~-b)~ 

a 

(37) 
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2. Frircipalvalyes-of fractional order (a'< o c b)t 

(-l)j H(J)(b) 

8 +*I- j( @m-l- j) 
I 

0 

NE;) a< 1 

gpy---- 

H(c) 
a+m-I - (z-a)a+m-l 

3. Integrals witi SingularLties at the ads: 

b 

f 
.&i&i3 (-1)' (n-5):. ' d&$1 

a ' (x-p-+? n ! # 

dg 

‘a. 
d &J '(x-gn-J+l 

(3 = od ,~,.A,w n’a 1 ,2 ,...I 

(44) 

(49) 

(47) 

, 

(48) 

(52) 

~‘t.2078.CPS4.K3. 
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FIG. I. 

A P 8 x 
” 

BULGE r DENT BULGE 

i 
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FIG.I.CONTRIBUTIONS OF THE INTEGRALS 
OVER THE DENT AT P AND THE BULGES 
AT A AND B TO THE CONTOUR INTEGRAL 
F (P) IN EQUATION (2) 
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