The Influence of Elevator Movement on the Normal Accelerations Experienced by a Transport Aircraft in Moderate Turbulence
by
D. J. Eckford

Structures Dept., R.A.E., Farnborough

THE INFLUENCE OF ELEVATOR MOVEMENT ON THE NORMAL ACCELERATIONS EXPERIENCED BY A TRANSPORT AIRCRAFT IN MODERATE TURBULENCE

by
D. J. Eckford
Structures Dept., R.A.E., Farriborough

Abstract

SUMMARY Some excerpts from a revord of data obtaned in an encounter with moderate turbulence during routine operations by a transport alrciaft are analysed in order to assess the contribution to the cg normal accelerations from the elevator movement produced by the automatic control system. It is found that thas contribution is quite small and does not have a consistent effect on the amplitudes of the accelerations.

The anfluence of an autostabiliser on the response an turbulent condations is duscussed for du idealised situation. From the analytacal and numerical results obtained it is seen that the effectiveness of an autostabiliser will usually be strongly frequency-dependent. However, it is suggested that for the case considered here an autostabilıser wath a pitch-rate law could give a useful reduction in the cg normal accelerations experienced in turbulence: the most suitable value of the gearing appears to be that which produces a value of about 0.7 for the relatıve damping of the aircraft's short-perıod longatudanal mode.

[^0]
CONTENTS

Page
1 INTRODUCTION 3
2 THE COMPONENTS OF THE RESPONSE DURING FLIGHT THROUGH TURBULENCE 4
3 METHOD FOR CALCULATING THE RESPONSE TO ELEVATOR MOVEMENT 5
4 RESULTS OF RESPONSE CALCULATIONS FOR ENCOUNTERS WITH TURBULENCE 7
5 THE EFFECT OF AN AUTOSTABILISER ON THE RESPONSE TO VERTICAL GUSTS 8
5.1 General considerations 9
5.2 Method for calculating the response to vertical gusts 13
5.3 Results of calculations of response to harmonic vertical gusts 14
5 CONCLUDING DISCUSSION 17
Acknowledgement 18
Symbols 19
References 22
Illustrations 1-13
Detachable abstract cards

When an arcoraft encounters moderate to severe atmospheric turbulence there are large and rapid changes in its normal acceleration. Associated with these changes is a considerable amount of activity in elevator movement as the autopılot, or the human pilot, reacts to the response of the aurcraft. Such elevator movements contribute to the accelerations experienced by the aircraft and the question of the magnitude and nature of this contribution therefore arises. The problem can be solved if the complete histories of elevator angle and normal acceleration are known and a reliable mathematical model of the aircraft is established. This state of affacs exists all too rarely since most detanled records of input and output parameters result from experiments of short duration in which encounters with turbulence are unlikely to occur.

Since October 1962 the Civil Alrcraft Alrworthiness Data Recording Programme (CAADRP) ${ }^{1}$ has furnished data, recorded during routine airline operations, on a varıety of parameters relevant to airworthiness, zncluding elevator angle and normal acceleration. The histories of thesc parameters have been recorded as continuous analogue traces on photographic paper. Unfortunately, the need to record data from a large number of flying hours and the unpracticality of frequent changes of the cassettes of photographzc paper have dictated a choice of paper speed for crulsing flight that is too low to allow the full analogue records of rapidly changing parameters to be recovered and only peak values can be determined. However, during both the take-off and clumb-out and the descent and landzng phases of flight a higher paper speed is used and this permits the complete histories to be read with facr accuracy. Due to a fault in a switch, the whole of one cassette in a large turbojet transport aircraft was run at the higher speed of about $40 \mathrm{~mm} / \mathrm{min}$ as against $10 \mathrm{~mm} / \mathrm{min}$. During the comparatively short time (about 25 hr) for which the recorder operated with this fault, the aurcraft happened to encounter in cruising flight a patch of turbulence of moderate intensity and long duration, such as is met by this alrcraft, on average, only once in about 500 to 1000 hours. It was decided to take advantage of this fortunate colncidence by using the data acquired to examine the influence which elevator movements, produced by the automatıc control system, had on the normal accelerations experienced.

The general subject of the possibilities which exist for modifying the response of an aircraft to turbulence by employing autostabilisation was also considered, albeat within a restricted framework.

Three excerpts from the CAADRP record are selected for analysis. The normal accelerations due to the recorded elevator movements are computed by the method described in section 3 and their contribution to the total normal accelerations is determined; these results are presented in section 4. The discussion then turns to an assessment of the influence of an idealised autostabiliser on an aircraft's response to harmonic vertical gusts.

This topic is furst consldered in general terms (section 5.1); next the analysis employed for the case chosen here of a pitch-rate autostabiliser law is developed (section 5.2) and the results obtained are presented and duscussed (section 5.3).

2 THE COMPONENTS OF THE RESPONSE DURING FLIGHTT THROUGH TURBULENCE

If the aurcraf't behaves as a linear system then the response to any combination of disturbances is the sum of the responses due to each disturbance alone. From a symmetrical initial flight condition where turbulence* has negligible influence the subsequent response, measured relative to sustaned level fllght, may be expressed as
(total response) $=$ (response due to turbulence)

+ (response due to non-zero initial values of w and q)
+ (response due to dıfference between η and η_{t}),
where it is assumed that for sustained level flight the z component of the velocity (w) is zero (1.e. aerodynamic-body axes ${ }^{2,3}$ are employed) and that the elevator angle (η) has the value η_{t}.

By calculating the sum of the second and third terms on the right-hand side of the above expression and subtracting this from the left-hand side the contribution of turbulence alone to the disturbance from level filight may be found.

The elevator angle history durng flight through turbulence has not only a component assoclated with the disturbance due to the turbulence but also a component assoclated with any required changes in the overall flight path.

[^1]Structly, because these two components cannot be separated, it is not correct to speak of the thard term on the raght-hand sade as 'the contribution of elevator movement to the response in turbulence' since part of this, together w. th the preceding term, should be regarded as the response in a manoeuvre. In moderate to severe turbulence the changes in normal acceleration and elevator angle assoclated with the turbulence are considerably larger and more rapıd than those associated with any superımposed manoeuvre; the latter may therefore be disregarded for the present purpose of assessing, in largely qualitative terms, the influence of elevator movements on the normal accelerations experienced.

The extent to which the elevator movements exert a favourable or unfavourable anfluence on the varlous structural loads experienced or the comf'ort of the crew and passengers is not considered: it could be determined only from a much more detalled analysis than is carried out here, backed up by the recording of a number of additional parameters.

3 METHOD FOR CALCULATING THE RESPONSE TO ELEVATOR MOVEMENT

The response of the aurcraft to elevator movement is assumed to be governed by the equations of short-period longıtudinal motion for a rigid alrcraft (which may also be employed when, as here, aeroelastic effects are considered only on a quasi-static bas ls), viz

$$
\begin{equation*}
\hat{z}_{e}+\left\{\left(1+\hat{z}_{\dot{w}}\right) \hat{D}+\hat{z}_{w}\right\} \hat{w}+\left\{\hat{z}_{\dot{q}} \hat{D}+\hat{z}_{q}-1\right\} \hat{q}^{1}+\hat{z}_{\eta} \eta=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{m}_{e}+\left\{\hat{m}_{\hat{w}} \hat{D}+\hat{m}_{w}\right\} \hat{w}+\left\{\left(1+\hat{m}_{q}\right) \hat{D}+\hat{m}_{q}\right\} \hat{q}+\hat{m}_{\eta} \eta=0 \tag{2}
\end{equation*}
$$

The notation is that of Refs. 2 and 3; note in particular that the various coefficients in the aerodynamic force and moment expressions are dynamıc-normalised concise quantitıes and not the 'stabilıty coefficients' of Bryant and Gates.

The incidence (here to be identifled with \hat{W}) and elevator deflection may be measured from any convenient origins. In the present work the origan for η was determined by the CAADRP instrumentation. For each case the value, η_{t}, of η for sustained level fllght could be found from a neighbouring portion of the filight record. The origin for \hat{w} was taken to correspond to this condition.

The aero-normalised derivatives ${ }^{2,3}$ were supplied by the manufacturers of the aircraft and are appropriate in each case to the recorded values of airspeed, altitude, mass and cg position. (The last was deduced from the recorded tailplane angle.) All the derivatives incorporate allowances, on a quasl-static basis, for the effects of aeroelasticıty: the derivatives $Z_{\dot{q}}$ and $M_{\dot{q}}$ arise entirely from aeroelastıcity.

In accordance wath the above choices of the origins for \hat{w} and η, \hat{z}_{e} and \hat{m}_{e} were derıved from

$$
\begin{equation*}
\hat{z}_{e}=-\hat{z}_{\eta} \eta_{t} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{m}_{e}=-\hat{m}_{\eta} \eta_{t} \tag{4}
\end{equation*}
$$

At any instant when the contribution of turbulence to the total aircraft response was negligible the values of \hat{w} and \hat{q} could be found, under certain simplifyzng assumptions, from the recorded variations in η and $n(o g$ normal acceleration) an conjunction with equations (1) to (4). The equations of motion were solved by a marching method, using the recorded elevator angle as the input $\eta(t)$.

In order to gain an Idea of the valldaty of the mathematical model thus definned It was decided to calculate the responses to the measured elevator movements in symmetric manoeuvres in calm alr and compare these with the measured responses. From the cruise portions of the CAADRP record two peraods which seemed to cover such manoeuvres were identified: these were designated cases 1 and 2. The flight conditions for these are given in Table 1 below (section 4).

The results of computing the alrcraft's response in the two manoeuvres are showm in the dashed-line graphs of Figs. 1 and 2. It will be seen that in both cases the agreement with the recorded response (solid-line graph) is generally good. It is as well to point out that, in the present context, a calculated normal acceleration is that of the actual cg whereas a measured nornal acceleration is that experienced by an accelerometer attached to a part of the alrcraf't's structure which is close to the cg for some datum mass distribution. However, since attention is being concentrated on faırly lowfrequency (below about 1 Hz) variations, the two quantities may justifiably be compared durectly.

As a partial check on the accuracy of the estimated cg positions, which would be affected by, for example, a change in datum for the taclplane angle, the responses in the two manoeuvres were also calculated for arbitrarily chosen cg positions of 0.3 smc and 0.4 smc . From the results obtazned it was seen that, although in elther case some umprovement in the agreement of certain features could be obtained by suitably repositioning the cg, there was no evidence that the overall agreement would be amproved by any systematic repositioning. The origanally deduced cg positions for the manoeuvre and the turbulence cases were therefore taken to be correct.

All in all, the results give a high degree of confidence in the mathematscal model.

4 RESJLTS OF RESPONSE CALCULATIONS FOR ENCOUNTERS WITH TURBULENCE

The flyang covered by the CAADRP record included one fairly long period of fllght through a region containing moderate turbulence and three excerpts from this were chosen for anvestigation. These were designated cases 3 to 5 . As is indicated in Table 1 below, the flight conditions for these cases were not the same as for case 1 or case 2; however, they do not differ sufficiently for there to be any reason to doubt that the mathematical model is as valıd here as in the manoeuvre cascs.

Table 1
Flight conditions for manoeuvres and turbulence encounters

	Case 1 (manoeuvre)	Case 2 (manoeuvre)	Cases 3-5 (turbulence encounters)
Airspeed (V) m/s	234.1	237.0	242.0
Altatude km	11.13	9.51	10.21
Mach number	0.793	0.786	0.809
Mass (m) kg	100400	97100	132400
cg position \% standard			
mean chord (sinc)	37.0	36.5	34.3

The recorded historses of elevator angle (η) and cg normal acceleration (n) are given by the solud-lıne graphs in Figs. 3 to 5.

Cases 3 and 4 start at times when the effects of turbulence are negligable. It was therefore possible to find the initial values of \hat{w} and \hat{q} and to calculate the response due to these initial conditions and the subsequent elevator movements. The results of these calculations are shown by the dashed-line graphs in Figs. 3 and 4. The dotted-line graphs were produced by differencing the corresponding values on the other two graphs and referring this difference to a datum of 1 g . They represent the response due to turbulence alone of an aurcraft with a fixed elevator which is initially in level flight.

At the start of case 5 there is already conslderable response due to turbulence and therefore the 'turbulence alone' component cannot be deduced by the above techncque. It was decided in this case to subtract from the total response only the contribution due to elevator movement. This contribution and the result of subtracting it from the total response are shown by the dashed- and the dotted-line graphs, respectively, in Fig.5. The neglect of the influence of non-zero inztial values of w and q will have a noticeable effect only during the first 1 sec of the response.

In all three cases the contributions from elevator movement to the largest increments (from the 1 g level) in cg normal acceleration are mostly small. Increments of lower magnitude are neither consistently increased nor consistently decreased by elevator movement. It is clear that the general character of the history of eg normal acceleration in this period of flight through turbulence has not been significantly influenced by the actions of the autostablizser.

It may be asked whether or not there is any scope for obtainung a useful reduction in the response to turbulence by employing an autostabiliser. A partial answer to this question is provided by the following sections.

5 THE EFFECT OF AN AUTOSTABILISER ON THE RESPONSE TO VERTICAL GUSTS

In recent years great strides have been taken in the design and implementation of autostabilisation systems for controlling various features of the dynamic motions of flexible alrcraft. An idea of the scope of these developments can be obtained from the relevant papers in Ref. 4 . The purpose of the following discussion of the influence of an autostabilisation system on the response to gusts is not to analyse the effect of any particular system over a wade range of flight conditions, let alone to determine the best types
of system to employ. Rather, It is limited to setting out the principles which govern the performance of idealised autostabilisers in turbulence of a particular form and illustrating these by assessing the scope for reducing the normal-acceleration response by means of a pitch-rate autostabiliser. It is hoped that by this approach it will be possible to gain some insıght into the basic problem of modıfying the response to gusts by employing autostabılisatzon.

In the following sections all quantities are defined relative to thear level-fllight values.

5.1 General considerations

It is assumed that the aircraft is flying through a region in which the vertical velocity of the air, the 'gust velocity', varies sinusoldally with the distance along the flıght path. That 1 s , if s denotes the flıght-path distance, the gust velocity w_{W} (posituve downwards) is given by

$$
\begin{equation*}
w_{W}=\bar{w}_{W} \sin \Omega s \quad *, \tag{5}
\end{equation*}
$$

where $\Omega=2 \pi / L$ and L is the wavelength of the gusts. If the speed of flight is constant the variation of the gust velocity at a typical station along the aurcraft is given by

$$
\begin{equation*}
w_{W}=\bar{w}_{W} \sin \omega t \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=\mathrm{V} \Omega=2 \pi \mathrm{~V} / \mathrm{L} \tag{7}
\end{equation*}
$$

The forced-oscillation response in a quantity δ, which is in general a linear combination of w, q and their derivatives and integrals, may be expressed as

$$
\begin{equation*}
\frac{\delta_{G}}{\bar{w}_{W}}=\bar{\delta}_{G} \sin \left(\omega t-\phi_{\delta_{G}}\right), \tag{8}
\end{equation*}
$$

or, considorang the response to the complex $\operatorname{nnput} \bar{w}_{W} \exp (i \omega t)$,

$$
\begin{equation*}
\frac{\delta_{G}}{\bar{w}_{W} \exp (1 \omega t)}=\bar{\delta}_{G} \exp \left(-i \phi_{\delta_{G}}\right) . \tag{9}
\end{equation*}
$$

[^2]$\phi_{\delta_{G}}$ is the phase angle, which is defined to lie in the interval $(-\pi, \pi]$, and is ${ }^{G}$ positive for the output lagging the input.

Similarly, let the forced-oscillation response in δ to a sinusoidal elevator motion of frequency ω, i.e. $\eta=\bar{\eta}$ sin ωt, be expressed as

$$
\begin{equation*}
\frac{\delta_{E}}{\bar{\eta}}=\bar{\delta}_{E} \sin \left(\omega t-\phi_{\delta_{E}}\right) \tag{10}
\end{equation*}
$$

or, c.f. (9)

$$
\begin{equation*}
\frac{\delta_{E}}{\bar{\eta} \exp (i \omega t)}=\bar{\delta}_{E} \exp \left(-i \phi_{\delta_{E}}\right) . \tag{11}
\end{equation*}
$$

It is now assumed that the elevator is moved according to the law

$$
\begin{equation*}
\eta=G_{\varepsilon} \varepsilon \tag{12}
\end{equation*}
$$

where ε is a linear combination of w, q and their derivatives and integrals. This represents the action of an autostablliser, idealised by neglecting all lags in the system. The stabilised aurcraft can be represented by the block diagram below.

This differs from most systems with feedback in that the feedback term (η) cannot simply be added to the input (w_{W}) since these two terms produce response of the aurcraft in essentially different ways.

From the above block diagram it may be seen that the response of the stabilised alrcraft to gusts is expressible as
(response of stabilised alrcraft to gusts) $=$ (response of unstabilısed aırcraft to gusts)

+ (response of unstabillsed azrcraft to induced elevator movement).

Now the induced elevator movement 1s, by the autostabiliser law (12) above, proportional to a quantity ε in the response of the stabilısed aircraft. Then, if quantities relating to the unstabılised aircraft are distinguished from the corresponding ones for the stabilised aurcraft by the addztion of the suffix \circ to their symbols, the response of the stabılised aircraft is given by

$$
\begin{aligned}
& \frac{\delta_{G}}{\bar{w}_{W} \exp (I \omega t)}= \bar{\delta}_{G} \exp \left(-I \phi_{\delta_{G}}\right) \\
&= \bar{\delta}_{G O} \exp \left(-i \phi_{\delta_{G O}}\right)+G_{\varepsilon} \bar{\varepsilon}_{G} \exp \left(-i \phi_{\varepsilon_{G}}\right) \bar{\delta}_{E O} \exp \left(-1 \phi_{\delta_{E O}}\right) \\
& \ldots(13) \\
&= \exp \left(-i \phi_{\delta_{G O}}\right)\left[\bar{\delta}_{G O}+G_{\varepsilon} \bar{\varepsilon}_{G} \bar{\delta}_{E O} \exp \left\{-I\left(\phi_{\delta_{E O}}+\phi_{\varepsilon_{G}}-\phi_{\delta_{G O}}\right)\right\}\right] . \\
& \ldots(14)
\end{aligned}
$$

Write

$$
\begin{equation*}
\phi_{\delta_{E O}}+\phi_{\varepsilon_{G}}-\phi_{\delta_{G o}}=e^{\prime} \tag{15}
\end{equation*}
$$

and define

$$
\begin{align*}
& e^{\prime \prime}=e^{\prime}-\pi \operatorname{sign}\left(e^{\prime}\right)\left\langle e^{\prime}, \pi\right\rangle, \tag{16a}\\
& e^{*}=e^{\prime \prime}-\pi \operatorname{sign}\left(e^{\prime \prime}\right)\left\langle e^{\prime \prime}, \pi / 2\right\rangle, \tag{16b}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma=\exp \left\{-i\left(e^{\prime}-e^{*}\right)\right\}, \tag{16c}
\end{equation*}
$$

where $\langle a, b\rangle \equiv$ integer part of $|a / b|$.
Then

$$
\begin{equation*}
\frac{\delta_{G}}{\bar{w}_{W} \exp (i \omega t)}=\exp \left(-i \phi_{\delta_{G O}}\right)\left[\bar{\delta}_{G o}+\sigma G_{\varepsilon} \bar{\varepsilon}_{G} \bar{\delta}_{E o} \exp \left(-I e^{*}\right)\right] \tag{17}
\end{equation*}
$$

e^{*} is termed the 'phase error' and is in the interval $[-\pi / 2, \pi / 2]$ while σ takes the va'ues +1 and -1 .

Only when the phase error is zero can the autostabiliser produce the same proportional change in δ throughout a cycle, and in general it is likely that attempts to achieve a satısfactory response in δ by employing an autostabiliser will be successful only if the phase error is fairly small.

From (17)

$$
\begin{equation*}
\bar{\delta}_{G}^{2}=\bar{\delta}_{G O}^{2}+2 \sigma G_{\varepsilon} \bar{\varepsilon}_{G} \bar{\delta}_{G O} \bar{\delta}_{E O} \cos e^{*}+\left(G_{\varepsilon} \bar{\varepsilon}_{G} \bar{\delta}_{E O}\right)^{2} \tag{18}
\end{equation*}
$$

Hence $\operatorname{lf} G_{\varepsilon}$ is positıve (and not too large) the amplıtude of the response in δ is reduced if σ is negative, and vice versa.

Forasmuch as the expressions derived above contain on their right-hand sides symbols relating to the response of the stabilised aircraft, it could be argued that they have little practical value since they do not permit one to draw conclusions about the effect of an autostabiliser before performing a full analysis. However, as as shown below, it is possible through them to preduct the effects of small changes in the gearing from values for which a full analysis is avallable. Also, they are useful in alding one's interpretation of the results from such an analysis and they will be employed in this role when the results presented in section 5.3 , whach were obtaned by the method described in the next section, are discussed.

Suppose that the gearing is small enough for $\bar{\varepsilon}_{G}$ and $\phi_{\varepsilon_{G}}$ to differ little from $\bar{\varepsilon}_{G O}$ and $\phi_{\varepsilon_{G O}}$ respectively. Then from (18)

$$
\begin{equation*}
\bar{\delta}_{G}^{2}-\bar{\delta}_{G O}^{2} \bumpeq 2 \sigma G_{\varepsilon} \bar{\varepsilon}_{G O} \bar{\delta}_{G O} \bar{\delta}_{E O} \cos e_{o}^{*}+\left(G_{\varepsilon} \bar{\varepsilon}_{G O} \bar{\delta}_{G O}\right)^{2} . \tag{19}
\end{equation*}
$$

If G_{ε} is sufficiently small the second term on the right-hand side may be Ignored and the left-hand side approxamated by $2 \bar{\delta}_{G O}\left(\bar{\delta}_{G}-\bar{\delta}_{G O}\right)$.

Then

$$
\begin{equation*}
\bar{\delta}_{G}-\bar{\delta}_{G O} \bumpeq \sigma G \varepsilon \bar{\varepsilon}_{G O} \bar{\delta}_{E O} \cos e_{o}^{*}, \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\bar{\delta}_{G}-\bar{\delta}_{G O}}{\bar{\delta}_{G O} G_{\varepsilon}} \bumpeq \frac{\sigma \bar{\varepsilon}_{G O} \bar{\delta}_{E O} \cos e_{0}^{*}}{\bar{\delta}_{G O}}=P_{o}, \text { say } \tag{21}
\end{equation*}
$$

Now the aircraft with any particular amount of autostabilisation may be consldered in place of the unstablised aircraft as constituting the 'datum' system. More generally, then, if the gearing is changed by a small amount ΔG_{ε},

$$
\begin{equation*}
\frac{\Delta \bar{\delta}_{G \ell}}{\bar{\delta}_{G \ell} \Delta G_{\varepsilon}} \bumpeq \frac{\sigma \bar{\varepsilon}_{G \ell} \bar{\delta}_{E \ell} \cos \mathrm{e}_{\ell}^{*}}{\bar{\delta}_{G \ell}}=\mathrm{P}, \text { say } \tag{22}
\end{equation*}
$$

where the suffix ℓ denotes that the amplitudes and phase angles are 'local. quantities, i.e. appropriate to the aircraft with an autostabılıser gearing of G_{ε}. It may be noted that a previously unconsidered response, that of the stabılısed aircraft to harmonic elevator movement, has been introduced.
P, which is termed the 'pay-off function', is a measure of the effectiveness of a change in gearing of the autostabiliser in modifying the response in . The magnitude of P for a single combination of frequency and fearing is not very slgnificant but the variation of P with frequency and/or gearing is, as will be seen in section 5.3, a useful pointes an predicting the benefits of a change in gearing.

Since

$$
\bar{\delta}_{G}^{2}=\bar{\delta}_{C \ell}^{2}+2 \sigma L G{ }_{\varepsilon} \bar{\varepsilon}_{G \ell} \bar{\delta}_{G \ell} \bar{\delta}_{F \ell} \cos e_{\ell}^{\alpha}+0\left(\Delta G_{\varepsilon}^{2}\right),
$$

$P=0$ corresponds to a turning point of $\bar{\delta}_{G} \cdot \bar{\varepsilon}_{G \ell}$ will not usually be zerc for practical frequencies and therefore the turning points of $\bar{\delta}_{G}$ occur when $\left|e_{\ell}^{*}\right|=\pi / 2$.

5.2 Method for calculating the response to vertical gusts

Consider an arrcraft flying at constant speed V through a region where the vertical velocit, f of the air w_{W} varzes al ong the filght path. Now if a length I which is sharact,erıstıc of the spatial variation of W_{W} is large in comparison with the tall arm of the aircraft it may be assumed that the vertacal velocity of the air is constant along the length of the airoraft. If, furthermore, the characteristic temporal frequency of the variation of w_{W}, $2 \pi \mathrm{~V} / \mathrm{L}$, Is small $1 t$ may be assumed that quası-steady aerodynamics, as used in the analysis of the alrcraft's behaviour in still air, are appropriate to this case. Then the equations of motion become

$$
\begin{equation*}
\left\{\left(1+\hat{z}_{\hat{w}}\right) \hat{D}+\hat{z}_{w}\right\} \hat{w}_{K}+\left\{\hat{z}_{\dot{q}} \hat{D}+\hat{z}_{q}\right\} \hat{q}^{+}+\hat{z}_{\eta} \eta-\left\{\hat{z}_{\hat{w}} \hat{D}+\hat{z}_{w}\right\} \hat{w}_{W}=0 \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\hat{m}_{\mathrm{w}} \hat{\mathrm{D}}+\hat{\mathrm{m}}_{\mathrm{w}}\right\} \hat{\mathrm{w}}_{\mathrm{K}}+\left\{\left(1+\hat{m}_{\dot{q}}\right) \hat{\mathrm{D}}+\hat{\mathrm{m}}_{\mathrm{q}}\right\} \hat{q}+\hat{m}_{\eta} \eta-\left\{\hat{m}_{\mathrm{w}} \hat{\mathrm{D}}+\hat{m}_{\mathrm{w}}\right\} \hat{\mathrm{w}}_{\mathrm{W}}=0, \tag{24}
\end{equation*}
$$

where the suffix K denotes that w_{K} is measured relative to the earth.
If the aurcraft is fitted with a simple pitch-rate autostabiliser, for which the control law is

$$
\begin{equation*}
\eta=G_{q} q \tag{25}
\end{equation*}
$$

then the equations of motion for flaght through vertical gusts finally become

14

$$
\begin{equation*}
\left\{\left(1+\hat{z}_{\dot{W}}\right) \hat{D}+\hat{z}_{w}\right\} \hat{W}_{K}+\left\{\hat{z}_{\dot{q}} \hat{D}+\hat{z}_{q}+\hat{G}_{q} \hat{z}_{\eta}\right\} \hat{q}^{+}+\hat{z}_{\eta} \eta-\left\{\hat{z}_{\dot{W}} \hat{D}+\hat{z} \underset{W}{ }\right\} \hat{w}_{W}=0 \tag{26}
\end{equation*}
$$

and

$$
\left\{\hat{m}_{\mathrm{w}} \hat{\mathrm{D}}+\hat{\mathrm{m}}_{\mathrm{w}}\right\} \hat{\mathrm{w}}_{\mathrm{K}}+\left\{\left(1+\hat{m}_{\mathrm{q}}\right) \hat{\mathrm{D}}+\hat{\mathrm{m}}_{q}+\hat{G}_{q} \hat{\mathrm{~m}}_{\eta}\right\} \hat{\mathrm{q}}+\hat{m}_{\eta} \eta-\left\{\hat{\mathrm{m}}_{\mathrm{w}} \hat{\mathrm{D}}+\hat{\mathrm{m}}_{\mathrm{w}}\right\} \hat{\mathrm{w}}_{W}=0 \text {, (27) }
$$

where

$$
\begin{equation*}
\hat{G}_{q}=\frac{G_{q}}{\tau} \tag{28}
\end{equation*}
$$

From the above equations the acceleration derivatives attached to \hat{w}_{W} were omitted since it was convenient to employ equations of the same form to describe elther the response to elevator movement or the response to vertical gusts. This further approximation, which can introduce only quite small errors at the frequencies consıdered, was thought to be justified in the present exploratory investigation.

The amplitude and phase angle of the forced-oscillation normal-acceleration response to a harmonic variation of either η alone or w_{W} alone were obtained from the particular-integral part of the analytical solution of equations (26) and (27).

5.3 Results of calculations of response to harmonic vertical gusts

The aerodynamic data used in these calculations were the same as for the turbulence encounters (cases 3, 4 and 5). The use of these data does not mean that the results obtained are necessarily valld for the actual aircraft since, although its autostabiliser law contains what is nominally a pitch-rate term, the assumed simple pitch-rate law, free from lags, is not followed. Also, the results obtained do not by themselves indicate whether or not a patch-rate autostabiliser law would be desirable for this aircraft since any such law has to be chosen to give the stabilised aircraft good flying characteristics in a variety of situations.

The variation of the natural period, frequency and relative damping of the aircraft's short-period longltudinal mode with varlations in the gearing of the autostabiliser are shown in Fig.6. For gearings up to about 1.5 the natural perlod is not greatly altered: for hlgher values the perıod increases rapidly and becomes infinite (corresponding to critical demping) for a gearing of about 2.2. Since large increases in the natural period are unacceptable from a general handling standpoint it may be deduced that the practical range of gearings extends to about 1.5 at most.

[^3]The amplıtudes of the cg normal-acceleration response to harmonce vertical gusts of $1 \mathrm{~m} / \mathrm{sec}$ amplıtude, for gearings of $0,0.25,0.5,1.0$ and 2•0, are shown in Fig.7. For the unstabilısed aurcraft ($G_{q}=0$) the graph of amplıtude versus frequency has a pronounced peak at about 0.3 Hz , at which the amplıtude exceeds the unfinite-frequency value, to which all the graphs tend asymptotically, by 54\%. (Since the analysis employed is invalıd for hlgh frequencies this infinite-frequency value has no physical meaning but merely serves as a convenient datum.) The overshoot is reduced markedly for quite low gearings - a gearing of 0.5 reduces $1 t$ to 23% - and $1 t$ is clear that lıttle is gained by increasing the gearing above about $\hat{i} \cdot 0$.

At low frequencies \vec{n}_{G} is ancreased by increasirg G_{q} : these low-frequency results are not very meanngful, however, finstly because the phugoid mode has been neglected, and secondly because a pltch-attitude term would probably be
 The autostabıliser is almost ineffectual at frequencies above about 0.75 fiz.

It is of interest that the greatest amplatude of gust response, for a glven gust amplıtucie, occurs at a higher frequency than the natural frequency of the shcrt-period mode and that the difference between these frequencies increases as the autostabılıser gearıng is increased. The recorded hastories of n in cases 3,4 and 5 support the first of these results since the dominant period of oscillation appears to be an the range 2 to 3 sec . Also, they seem to andicate that the contribution of elevator movement to normal acceleration dropped as the frequency of the response increased (compare, for instance, Figs. 3 and 5).

Corresponding results for the normal-acceleration response at a point 23 m ahead of the cg , roughly the position of the pllot, are presented in Flg.8. (Because of the closeress of the graphs only those for $G_{q}=0,0.5$ and 1.0 are shown.) The autostabillser slightly increases the response at this position except in a narrow band of frequencies surrounding the frequency for peak response. Ralsing the gearing above about 0.5 is of lıttle benefıt.

From Fig. 6 it is seen that for $G_{q}=1.0$ the relative damping is just below $0 \cdot 7$, which is of ten regarded as being near to the optimum value from the general handling standpoint. It would seem, then, that a pitch-rate autostabliser with a gearing of 1.0 could improve the longitudinal shortperiod handling of the aircraft and also produce a useful, though hardiy
dramatic, decrease in the cg normal-acceleration response to turbulence in the frequency band where this response is highest.

The above results for the cg normal-acceleration response may now be considered in the light of the analysis of section 5.1. For the moment attention is concentrated on the performance of an autostabiliser with a very low gearing. Here the phase error e_{o}^{*} and the pay-off function P_{0}, as defined In section 5.1, are given by

$$
\begin{equation*}
e_{o}^{\prime}=\phi_{\mathrm{n}_{\mathrm{Eo}}}+\phi_{\mathrm{q}_{G o}}-\phi_{\mathrm{n}_{\mathrm{Go}}}, \tag{29}
\end{equation*}
$$

together with equations (16), and

$$
\begin{equation*}
P_{o}=\frac{\sigma \bar{q}_{G O} \bar{n}_{E O} \cos \mathrm{e}_{0}^{*}}{\bar{n}_{\mathrm{GO}}} . \tag{30}
\end{equation*}
$$

The three component pars of amplitude and assoclated phase angle are shown in Figs. 9 to 11. The resultant values of e_{0}^{*} and P_{0} are shown in Fig.12. The graph of P_{0} is very peaky, indicating that, as was seen from Fig.7, the autostabliser is most effective only over a small range of frequencies. (The low-frequency results which indicate large positive values of P_{o} are omitted for convenience - as noted earlier, they are of little significance.) Examination of the various factors in P_{o} shows that a rapid change of $\cos e_{o}^{*}$ is the major cause of the steep slope of P_{o} at low frequencies. At the higher frequencies the phase error becomes quite large but the main reason for the sharp decrease of P_{0} is a decrease in the product $\bar{q}_{G O} \bar{n}_{E O} / \bar{n}_{G O}$. The contributory effects may be seen to be first the rapld decrease, with increasing frequency, of $\bar{q}_{G O}$ compared with that of $\bar{n}_{G O}$ (compare Figs. 10 and 11) and second the relatively poor performance of the elevator in producing normal acceleration at the higher frequencies (see Fig.9). With the aid of Fig. 12 It may be deduced that for any frequency above 0.145 Hz the minlmum amplıtude of the response occurs for some positive value of G_{q} : for lower frequencies, a positive value of G_{q} increases the amplitude.

Since the phase angles for patching velocity and pitching acceleration differ by an odd multiple of $\pi / 2$ the graph of e_{o}^{*} indicates that an autostabilıser with a pitch-acceleration law would be largely 1 neffective, for low gearings anyway, since the phase error would be large over the most important
range of frequencies. It can be shown that such an autostabiliser with a higher gearng would produce the unacceptable result of a large increase in the natural period accompanied by only a slight increase in the relative ' damping. Therefore the possibility of deriving much benefit from including a pitch-acceleration term in the autostabiliser law can be dismissed.

Attention is now turned to the question of the effects of further increases in G_{q} by considering the graphs of the pay-off function for gearings of $0.25,0.5,1.0$ and 2.0 which are presented in Fig.13. At the frequencies where the graph of P_{0} indzcated that sizeable benefits could be obtanned by employing autostabilisation, these graphs show that as G_{q} is increased a given (small) increment in G_{q} produces a progressively smaller reduction (expressed as a proportion of the 'Iocal' value) in the magnitude of the response. No parameter can be singled out as playing the dominant role in causing this decline of the pay-off.

Flg. 13 indicates that a consideration of P may be useful when trying to f^{\prime} ix the gearing of an autostabiliser. For instance, if analyses had been carried out for geamngs of $0,0.25$ and 0.5 It would already be obvious from a conszderation of the graphs of P for these cases that further increases of gearıng would perhaps not be worthwhile. Used together with the values of the relatıve damping for these gearings, extrapolation from which is quite relable, as can be seen from Fig.6, these graphs could have led to the conclusıon that a sultable value to choose for the gearing would be between 0.5 and $1 \cdot 0$.

Finally, it may be remarked that sance the pay-off function depends on three amplitudes and three phase angles, all of which are frequency-dependent, It would indeed be fortunate if the response quantity ε could be chosen such as to make the pay-off sensibly andependent of frequency; therefore, worthwhile benefits will often be obtained over only a narrow band of frequencies.

6 CONCLUDING DISCUSSION

The normal accelerations experienced by modern transport alroraft in crul.sing flight through turbulence contain a component due to the elevator movements produced by the automatic control system and it is of ten asked what is the magnitude and nature of this component. Usually one cannot answer this question since the data which would enable one to do so are elther not recorded at all or not recorded in sufficient detall. However, data which
permitted the calculation of the elevator-induced normal accelerations during a period of fllght through moderate turbulence became available, through fortultous circumstances, from the Civil Aircraft Airworthiness Data Recording Programme. In this Report the results of calculations for three excerpts from thas period of flight are presented. The validity of the mathematical model used was checked using data from the same source.

It is found that the influence of the elevator was quite small and was such that it neither consistently increased nor consistently decreased the amplitudes of the excursions in cg normal acceleration.

In order to explore the reasons for the above findings and to assess in more general terms the scope for modufying the response of an aurcraft by employing autostabilısation, the influence of an idealısed autostabilıser on the response to harmonic vertical gusts was considered. From the analysis and results presented it is seen that an autostabiliser may well be of practical benefit over only a small range of frequencies. However, for the particular aircraft and flıght condıtions considered here a pitch-rate autostabiliser is effective in reducing the amplitude of the cg normal-acceleration response at the frequencies where it is largest. It appears that a useful reduction in amplitude could be obtained by using such an autostabiliser with a gearing of $1 \mathrm{deg} /(\mathrm{deg} / \mathrm{sec})$; for this gearing the relative damping of the aırcraft's shortperiod longitudinal mode is 0.7 .

Acknowledgement

The author acknowledges the help given by Mr. G. E. King of Structures Department, R.A.E. in the preparation of the CAADRP data used herein.

SYMBOLS

etc. which existed in the present numerical work and are not necessarily generally valud defintions of dynamic-normalised quantities. It is assumed that it is unnecessary to reproduce here the definitions of a certain number of standard symbols

$$
c_{z}=\frac{z}{\frac{1}{2} \rho v^{2} S} \quad c_{m}=\frac{M}{\frac{1}{2} \rho v^{2} S \ell}
$$

Iy aircraft moment of inertia in pitch: $\mathrm{kg} \mathrm{m}{ }^{2}$
$i_{y}=\frac{I}{m} \frac{l^{2}}{m}$
$\hat{D} \equiv \tau \frac{d}{d t}$
$\hat{G}_{q}=\frac{G_{q}}{\tau}$
$\hat{q}=\tau q$
$\hat{w}=\frac{W}{V}$
$\hat{z}_{e}=-C_{z}$
$\hat{m}_{e}=-\frac{\mu}{i_{y}} C_{m}$
$\hat{z}_{w}=-\frac{\partial C_{z}}{\partial \hat{W}}$
$\hat{m}_{w}=-\frac{\mu}{i_{y}} \frac{\partial C_{m}}{\partial \hat{w}}$
$\hat{z}_{\dot{w}}=-\frac{\partial C_{z}}{\partial(\hat{D} \hat{w})}$
$\hat{m}_{\dot{w}}=-\frac{\mu}{i_{y}} \frac{\partial C_{m}}{\partial(\hat{D} \hat{w})}$
$\hat{z}_{q}=-\frac{\partial C_{z}}{\partial \hat{q}}$

$$
\tilde{m}_{q}=-\frac{\mu}{i} \frac{\partial C_{m}}{\partial \hat{q}}
$$

SYMBOLS (Conta.)

$$
\begin{aligned}
& \hat{z}_{\dot{q}}=-\frac{\partial C_{z}}{\partial(\hat{D} \hat{q})} \\
& \hat{z}_{\eta}=-\frac{\partial C_{z}}{\partial \eta} \\
& \mu=\frac{m}{\frac{T}{2} \rho S l} \\
& \tau=\frac{\mu l}{V}
\end{aligned}
$$

$$
\hat{m}_{\dot{q}}=-\frac{\mu}{r_{y}} \frac{\partial C_{m}}{\partial(\hat{D} \hat{q})}
$$

$$
\hat{m}_{\eta}=-\frac{\mu}{i_{y}} \frac{\partial C_{m}}{\partial \eta}
$$

No.
1 The CAADRP Technical Panel
The Civil Aircraft Airworthiness Data
Recording Programme.
R.A.E. Technical Report 64004 (1964)
Engineering sciences data. Aeronautical Series. Dynamics sub-series. Items 67001, 67002
London, Royal Aeronautical Society (1967)
3 H. R. Hopkin

4 Various authors

A scheme of notation and nomenclature for alrcraft dynamics and associated aerodynamics.
R.A.E. Technical Report 66200 , Parts 1 to 5 (1966)
To be published as A.R.C. R \& M 3562, Parts 1 to 5

Stability and control.
AGARD Conference Proceedings No. 17 (1966)

————— Calculated

Fig.l Comparison of calculated and recorded responses in monoeuvres. Cose 1

Fig. 2 Comparison of calculated and recorded responses in manoeuvres : Case 2

Fig. 3 Components of the response in turbulence : Case 3

Fig. 4 Components of the response in turbulence: Case 4

Fig. 5 Components of the response in turbulence: Case 5

Fig. 6 Variation of natural period, frequency and damping with gearing of pitch-rate autostabiliser

Fig 7 Amplitude of cg normal-acceleration response to $1 \mathrm{~m} / \mathrm{sec}$ amplitude harmonic vertical gusts

Fig. 8 Amplitude of normal acceleration response 23 m ahead of cg to $1 \mathrm{~m} / \mathrm{sec}$ amplitude harmonic vertical gusts

Fig. 9 Amplitude and phase angle of cg normal-acceleration response to 1 deg amplitude harmonic elevator movement $-G_{q}=0$

Fig. 10 Amplitude and phase angle of pitch-rate response. to $\mathrm{Im} / \mathrm{sec}$ amplitude harmonic vertical gusts $-G_{q}=0$

Fig. II Amplitude and phase angle of cg normal-acceleration response to $\mathrm{Im} / \mathrm{sec}$ amplitude harmonic vertical gusts $-\mathrm{G}_{\mathrm{q}}=0$

Fig. 12 Phose error and pay-off function for $G_{q}=0$

Fig. 13 Pay-off function for $G_{q}=0 \cdot 25,05,10: 2.0$

The Royal Aircraft Establishment, Farnborough. Dd.146915. K.3.
-
-

DETACHABLE ABSTRACT CARD

A.R.C. C.P. No. 1060
 Jamuary 1969
 Eckford, D. J.
 the inflence of elevator moverent on the normal accelerations experienced by a transport aircraff in MODERATE TURBUEENCE

533.6.013.47: 551.551: 533.694. 533 : 629.13 .014 .3
A.R.C. C.P. No 1060

January 1969
Eckfard, D. J.
533.6.013.47
551.551:
533.694.533:
629.13 .014 .3

Sane excerpts from a recard of data obta ined in an encounter with moderate turbuience during routine operations by a transport aireraft are analysed In order to assess the contribution to the og normal accelerations from the elevator movement produced by the automatic control systen. It is found that this contribution is quite small and doas not have a consistent effect on the ampiltudes of the accelerations.

THE INFLIENCE OF EIEVATOR ROVETENT ON THE NORMAL ACCELERATIONS EXPERIENCED BY A TRANSPORT AIRCRAFT IN moderate turbitence

Sone excerpts from a record of data obtained in an encounter with moderate turbulence during routine operations by a transport aircraft are analysed in order to assess the cantribution to the eg normal accelerations from the elevator movement produced by the autonatic eontrol system. It is found that this contribution is quite small and does not have a consistent effect on the amplitudes of the accelerations.

zoncing inl zlvyaiow

:155*15S

- 7° ® $10^{\circ} 9^{\circ}$ そ乌

The influence of an autostabiliser on the response in turbulent conditions is discussed for an idealised situation. From the analytical and ymerical results obtained it is seen that the effectiveness of an autostabiliser will usually be strongly frequency-dependent. However, it is suggested that for the case considered here an autostabiliser with a pitch-rate law could give a useful reduction in the cg normal accelerations experienced in turbulence: the most suitable value of the gearing appears to be that which produces a value of about 0.7 for the relative damping of the aircraft's short-period longitudinal mode.

The influence of an autostabiliser on the response in turbulent conditions is discussed for an idealised situation. Fram the analytical and numerical results obtained it is seen that the effectiveness of an autostabiliser will usually be stragly frequency-dependent. However, it is suggested thet for the case considered here an autostabiliser with pitch-rate law could give a useful reduction in the cy nonnal accelerations erperienced in turbulence. the most suitable value of the gearing appears to be that which produces a value of about 0.7 for the relative damping of the aircraft's short-period longitudinal mode.
－

$$
\%
$$

C.P. No. 1060

© Crown copyright 1969

Published by
Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w.c. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardıff CFI 1rw
Brazennose Street, Manchester 2
50 Farfax Street. Bristol BS1 3DE
258 Broad Street, Brmungham 1
7 Linenhall Street, Belfast bT2 8AY or through any bookseller

[^0]: * Replaces R.A.E. Technical Report 69008 - A. R.C. 31270

[^1]: * Within this Report the word 'turbulence' is used to mean any departure of the atmosphere from rest, on such a scale that the motion of an aurcraft is affected.

[^2]: * All amplıtudes, l.e. quantıties with a superscribed bar, are positıve.

[^3]: TThe terms $\hat{\mathbf{z}}_{\eta} \eta$ and $\hat{\mathrm{m}}_{n} \eta$ have been retained to allow for an elevator input in addition to that produced by the autostabiliser.

