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1 INPRODUCTION 

The predxtion of the natural frequencxes of transverse vlbratlon of 
thin rectangular plates and the estlmatlon of their buckling loads under 
systems of mrddle-surface forces has received considerable attention. The 
combined problem of transverse vlbratlon in the presence of In-plane loading 
has, however, been studled by relatively few authors 1-6 . It 1s well-known 
that the frequency of a particular mode of vlbratlon tends to zei-c as the 
ccrrespondlng crltlcal buckling load 1s approached, and that the membrane 
stress level is linearly related to the square of frequency in cases in which 
the vibrational mode shape 1s exactly the same as the buckled shape. 

In general, however, no such relationship can be deduced and the combined 
problem must be analysed at various stress levels. An appluatlon of the dis- 
crete element displacement method to rectangular plates under these conditions 
IS described in this paper, which uses a non-conforming type of rectangular 
element employed previously by the author in uwestlgations of the limltxg 

cases mentioned above 718 . A computer program has been prepared whxh 1s 
applicable wth any system of membrane loads but, because of the lack of 
ccmparatlve results for more complex stress dlstrlbutlons, the examples given 
in this paper are restrxted to problems in which the in-plane stresses are 
unlfonn. The displacement method results are shown to be in close agreement 
wrth exact or accurate approzmate values. 

2 ANALYSIS PROCEDURF 

The plate 1s dlvxded for purposes of analysis into a number of rectangular 
reg~cns or elements (shown in Flg.1) mthn each of which a polynomial 
expression 1s assumed for the lateral deflectIon such that the latter can be 
defined explxltly by the generaLsed displacements at the four corner nodal 
points of the element. The elements are deformed under the combuxed action 
of a distributed lateral inertia loadmg, an applxed membrane stress distribu- 
tion and shear forces and moments transnltted by adJaCent elements. If a 
typical element is vibrating harmonically rnth a circular frequency p and an 
smplltude w(x,y), the maximum element flexural potential energy, V, 1s given 

by 

’ = ‘b - “g - ‘1’ (1) 
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where Ub = 4!“p[(~+~~+2(l-i[(~~-~~]]~~, 

-b -a 
. . . . (2) 

wg = ~p~~qg2++$+2~v~ qlx4Y, (3) 

-b -a 

and w1 represent8 the potent&l of shear forces and moment8 distributed along 
the element edges. The corresponding mtimum kinetic energy is 

ba 
T = $p2 w2axay. 

-b-a 

Here p is the mass density per unit area, h is the plate thickness, E is 
Young' 8 m0au1u3, y IS Poisson's rat.10 and D[= E h3/12(1 - v2)] is the plate 
flexural rigidity; Cm, c anda 

YY xy 
are the components of in-plane stress 

whose sign convention ~8 such that direct stresses are positive in ccmpress~~n 
and. shear stress is positive when acting towards ccrners 2 and 4 of the plate 
element illustrated in Flg.1. 

In the above expression for the element potential energy, Ub is the 
strain energy of bending whilst W 

g 
represents the work done by the midplane 

loads during bendlng deformation. This latter term arises from the need, in 

the presence of sigrufioant membrane stress, to include rotational terms in 
the middle-surf'ace stran-displacement equations. 

The lateral deflection of the element is a linear fun&Ion of N 
generaLsed displacements, qi, and the expressions for Ub, W and T are 

g 
consequently quadratic finctions of these displacements; the remauxhg 

term, yv1, can be expressed as the sum of the products of the generalised 
displacements and the corresponding generalised forces. The appropriate 
values of the generalised displacements are those which make the energy 

(V - T) a minimum 
11 

. This minimuatlon procedure leads to the following 
linear system of equations for the element: 

= 0, i = 1 . ..N. (5) 

which may be expressed in the form 
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@b -g -hK -P*Mh = 9. (6) 

Here CJ and 4 are the column vectors of the generalised displacements and 
forcesrespcctlvely at the corners of the element; $, is the elastic bending 
skffness matrix; K 

-g 
is the geometric or initial-stress stiffness matrix 

whxh reflects the influence of membrane stress on benting behaviour and which 
corresponds to a unit value of the load factor h; 4 1s the consistent mass 
matrix. 

The energy expressions for the complete plate are simply summations of 
the energies of the discrete elements, provided that the localised displacement 
patterns are such that the overall displacement of the assembled structure is 
kinematlcally admissible. Similarly, the complete-plate matrices, -C, I&* 
and &*, which relate the vectors of generaksed force and displacement, Q* 
and A*, for the oomplete structure, are appropriate suimnstu3ns of element 
matrices with rows and columns deleted which correspond to displacements that 
are prescribed zero. In the absence of statlo normal forces the vector of 
those complete-plate generaLsed forces corresponding to the unprescribed 
displacements 1s null and equation (6) can then be rewritten for the complete 
plate in the standard eigenvslue equation form, 

(-$l* = (%* -Aq-‘NI*Li*, 

from which the natural frequencies of vibration may be found for a given 
value of h. 

The accuracy of the displacement method results is dependent upon the 
suitability of the assumed localued displacement patterns. In the plate 
bending problem such patterns should maintain both lateral deflectionand slope 
contuuity with corresponding patterns in adJacent elements if a bound on the 
total emrgy is to be obtslned. A conformug expression of this type may be 
generategfor the rectangular element based on the product of cubic expressions 
im x and in y and involving four generalised displacements at each node. 
However, numerical convergence wxth decreasing grid size may be achieved using 
elements which permit smsll normal slope discontinuities at element boundaries 
and whose assumed deflected forms may be expressed in terms of only three 
generalised dzsplacements at each node. Although the energy of the complete 



plate composed of such non-conforming elements is not given strictly by the 

sum of the discrete element energies, convergence to true energy levels will 
occur if the assumed displacement pattern is capable of representing arbitrary 

states of uniform strain 10 ; such idealisations do not, however, give a bound 
on the totsl energy. 

A non-confcrrmng element of ths type &ch has demonstrated excellent 
convergence charaoterlstics in previous applications 798 has been adopted in the 
present work. The nodal generelised displacements are the lateral deflection, 
w, snd the two slopes $ = dw/aY end 8 = aw/aX, and the deflection pattern is 
given by, 

4 
w =- ii CC 

[(i+xix)(l+YiY)~2+xix(1-xix)+YiY(1-YiY)j+2~xiYixy] wi 

i=l 
+ [(-Y,)I(l+xi x)(l+Yi Y12 (l-Yi yl+p.xi x(I+Yi Y)11 +i 

+ [(-xl){(l+xi xl2 (l-xi X)(l+.Yi Y)+p Yi ycl+xi x)11 ei . (8) 

Here p = C(l + X)(1 - X)(l+Y)(l - Y), C being a constant taken as l/3 in ell 

numerical examples; X = x/a and Y = y/b, where Xi, Yi are the ncn-3.imensional 

co-ordinates of a typlcsl nodal point i; 2a and 2b sre the length and width 
of the element as shown in Flg.1 

3 NLIMERICAL STUDIES 

A computer program has been written in the Atlas tislect of Fortran to 
calculate the natural frequencies and mode shapes of uniform rectangular plates 
in the presence of In-plane loabng. Because of the absence of comparative 
data the results given below concern plates subJected to uniform stress systems 

only. The program includes, however, operations to calculate the approtimate 
'membrane stress distribution corresponding to a prescribed system of loads and 

based on the assumption of linearly varying membrane displacements between 
a nodes j the solution to the plane stress problem, whxh is, of course, exact 

for udform stress systems, 1s used directly in the vibration analysis. 

In all applications the value of Po~son's ratio 1s taken to be O-3. 

The results are presented in terms of a frequency parameter, a,, and a stress 

parameter, k, where 

s=---E 

J- 

and k = cB2h . 
,4D x2 D 

P B4 
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Here o is the value of a direct or shear stress component used for reference 
purposes and B is the length of the plate edge parallel to the y axis. 

Sunply supported squsre plate. uniform uniaxlsl stress 

The mode shapes of free lateral vibration of a square simply-supported 
plate are identical to the corresponding buckled shapes when the plate 1s 
uniformly compressed In one direction. Consequently the square of frequency 
varies linearly with the Intensity of stress in such a way that 

2 
a = CL,’ I-$- , 

( ) cr 

where, for a given mode shape, a is the value of the frequency parameter 

at a stress c, k I.S the corresponding stress parameter, ao 1s the 
frequency parameter at zero stress and kzr IS the stress parameter coxes- 

pondlng to zero frequency, i.e. kcr is the buckllng stress parameter. 

In the application of the displacement method to this doubly symmetric 
problem only a quarter of the plate was considered, this quadrant being 
ideallsed as twenty five equal square elements. Frequencies of vibration 
were calculated for the fust ten modes at zero stress and at stress levels 
(in the x-direction) of +0*5, +O*yy and -1-O times the lowest buckling stress; 
in adbtion, the corresponding buckling stress parameters were calculated 
directly using a plate stabdlty program based on the ssme assumed displace- 
merit form and plate ideslisation. For each modal pattern the five points thus 

obtained are linearly related to an accuracy of about six significant figures. 
The calculated parameters ao and kor are given In Table 1 together with 

the comparative exact vslues11,12; It can be seen that all calculated 

parameters are wlthln half a per cent of the corresponding exact values. The 
mode shapes are defined in the table In the form m/n where m and n are the 

numbels of half-waves In the x and y directions respectively. The calculated 
mode shapes are sensibly constant at al.1 stress levels and agree with the 
exact sinusodal patterns to four figure accuracy. 

SimPly PP -,%I orted square plate with central point support, uniform uniaxial 
stress 

Nowacki' has considered the variation, with increase in uniform uniaxul. 
compressive stress, of the fundamental frequency of a square plate simply- 
supported around the edges and point-supported at the centre in such a way 
that the deflection and the slopes.sre zero at this point. The unusual 
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prescribed displacements present no difficulty to the displacement method which 

has been applied to this problem using, in turn, nine, sixteen and twenty-five 
square elements in the quarter plate. The results obtained are presented 
along with the comparative values in Table 2. 

Clamped square plate, uniform biaxial stress 

Using twenty-five equal elements in the quarter-plate the first ten 
frequencies of the clamped square plate subJected to a uniform biaxial stress 
system, an = cr = o, have been calculated for a range of stress intensities 

between k = +5 ,"d k = -5. Fig.2 shows that the variation of the square of 
frequency with stress is, in this range, p ractically linear for all modes; 
correspondingly any given mode shape changes little with stress. The accuracy 

of the discrete element results may be pdged by comparison of the calculated 

natural frequencies at zero stress with accurate approtiste values 13 8s m 
Table 3 here very close agreement is demonstrated. Furthermore, linear 
extrapolation of calculated values of a2 at k = 4 and k = 5 shows that 

the fundamental frequency becomes eero at k = 5'301 whereas a direct discrete 
element stability calculation gives the critical stress parameter ask = 5.298 
and an accurate comparative solution is k = 5.30 12 . 

It is interesting to note that the discrete element results indicate that, 
as the membrane stress becomes increasingly tensile, the percentage difference 
between the frequencies of the modes m/n + n/m and m/n - n/m is reduced for 
both pairs of normal modes of the type m/n + n/m which are depicted in Fig.2. 
For the first pair of modes (modes 3/l + l/3) the difference in the squares 
of the calculated frequencies reduces steadily from about two per cent at 
k = +5 to half per cent at k = -5 and at a very high tensile stress corres- 
ponding to k = -200 this difference is only about one part in ten thousand. 

Weinstein and Chien5 have calculated upper and lower bounds for the 
fundamental frequency of the clamped square plate under a uniform biaxial 
tension varying from k = -5 to k = -200 and consider that their lower bound 
solutions sre much closer to the true frequencies than the upper bounds. The 
bound solutions are listed in Table 4 together with corresponding displacement 
method results based on idealisation of the quarter-plate into 9, 16 and 25 
elements in turn; all the latter vslues lie within the given bound limits. 

Although some small decline in the rate of convergence of the numerical L 

results is evident for very large tensions, the results obtsaned in the present 



9 

investigation compare closely with the lcwerbcundscluticns. By far the 

greatest difference corresponds to .s stress level of k = -100; if, however, 

the lower bound values of the square of frequency are plotted against the 
stress parameter, It sppesrs probable that this lower bound solution is 

inaccurate. 

Rectangular plate. uniform icngitudinsl stress 

The variation of the natural frequencies of .s rectangular plate of aspect 

ratio three, with the long edges simply supported and. short edges clamped 
(see Fig.3),has been atu&ed for values of lcngitudinsl compressive stress 
ranging from zerc to the lowest buckling stress. An exact solution to this 

6 problem is known which demonstrates that the variation in the square of 
frequency with intensity of stress is ccnslderably non-1lnee.r for certain modes 
of vibration. This theoretical varxation is shown in Fig.4 for the first five 
modes along with ccmparatlve tiaplacement method results, and the highly non- 
linesr region of this figure is shown in mere detail In Fig.5. The discrete 
element results are based on an ideallsaticn of the quarter-plate into 27 
elements, sa shown in Flg.3, and accurately predict the true behaviour of the 
plate. 

The effect of change in the intensity of compressive stress on the modal 
patterns of the vibrating plate is dlustrated in Fig.6 whxh shows, for the 
first two symmetric-symmetno modes, the deflected shapes predicted by the 
displacement method of the longitdinsl centre line (C - D of Pig.3) ccrres- 
ponding to apeclfied values of the stress parameter k. As expected, the 
patterns vary little mth atross intensity in regions where the relationship 
between the square of frequency and stress is almost linear, but change 
rapidly in regions of considerable non-linearity. In the exact sclutlon6 the 
deflected shape of the fxrst symmetrx-symmetric mode is ticlly positive (in 

the aenae of Fig.6) for values of k up to k = 3.111 and in the second node 
the deflection becomes wholly pcsltive at k = 3.778. The corresponding limit- 
ing values obtained from the cjiscrete element results are k = 3.10 (neglecting 

aresa within s distance of O-002 A of the clamped edges, A being the plate 
1engtQfcr the first aymm-etric-symmetric mode and k = J'(3.5 for the second 
mode. 
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Clsm~ed rectatlFcular plate. uniform shear stress 

The final problem considered is the effect of uniform shear stress on the 

natural frequencies of a rectangular plate of aspect ratio 3/2 with all edges 
clamped. So far as 1s known by the author no comparative solutions etist for 
this combined problem but bounded values for the first two buckling stresses 
have been calculated by Budxnsky and Connor 14 and accurate approximate values 
for the lower natural frequencies may be deduced from the work of Claassen and 
Thorne13. 

The variation in the square of frequency for the first two modes, as 
calculated by the displacement method using both 36 and 49 equal elements in 
the complete plate, 1s shown in Fig.7 fop 2 range of shear stress from zero 

to the second buckling level. The closeness of the s-element and I++element 
solutions suggests that errors in the present analysis are small. This 
opinion is strengthened on checking the accuracy of the end points of the two 
curves. The first two calculated frequency.parameters at zero stress, ao, 
and the comparative values based on a Fourier s'eries solution 13 are given in 

the following table. The latter values have been obtained by linear inter- 
polatlon of results given for plates with aspect ratios of 10~3/66 and 100/68. 

Displacement method value,ao 
Comparative 

36 element 49 element 
value 

2.735 2.735 2.736 

4’232 4.229 4.2% 

The buckling stress parameters, kcr, have been calculated here by a linear 

xderpolat~on of values of a 2 Just to either sde of the zero frequency line 

and are l&cd below with comparative bound solutions 14 . 

Displacement method value,kcr Comparative values 
MO& 

3 element 49 element Lower bound Upper bound 

1 11.45 11.43 11.45 II*!56 

2 II.85 II.80 11.79 12.08 



.4 CONCLUDING IWARE 

It has been shown that the natural frequencies of reotangular.plates 
subjected to uniform membrane stress systems can be calculated to a high degree 
of aoauracy by the discrete element displacement method using a particular 
reotangular element. In the light of previous work on plate stability* 
there is little doubt that problems involving stress systems of increased 
complexity can be solved to an acceptable degree of accuracy using the 
existing computer program. 
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Table 1 

FREQUENCY AND STRESS PARAKEZERS OF THE SIMPLY-SUPPORTED SQUAKE PLATE 

Mode 

1 

2 

3 
4 
5 
6 

7 
a 

9 
10 

I s: 

- 

- 

l/l 
2/l 

l/2 

2/z 

3/l 
v3 
3/2 
2/3 
4/q 
v4 

- 

T Frequency parameter 
at zero stress, a, 

Discrete 
element 
solutlor: 

l-999 
4.996 
4.9% 
7.984 
Y-995 
Y-995 

12.97 
12.97 
17.01 
17.01 

I 

Exact 11 

solution 

2 

5 

5 

a 

10 

10 

13 
13 
17 
17 

3 
Error as i 
percentage 

-0.05 

-0.08 

-0.08 

-0.20 

-0.05 
-0.05 
-0.23 

-0.23 

+0-c& 
+o-c4 

Table 2 

t 

Buckling stress parameter, kcr 

Discrete 
element 
solution 

3.996 

6-24c 

a96 

15.94 

II*10 

99.90 

18.69 

42.06 

18.08 
Lay. 2 

E kact 
12 

solution 

4 

6.25 

25 

16 

II-Ii 

100 

qa.7j 

42.25 

18.0625 

289 

E 
E 

i 

kror a.9 a 
lercentage 

-0.10 

-0.16 

-0.16 

-0.37 

-0. IO 

-0.10 

-o-l&L 

-0.45 

+o- 10 

+0*07 

VAIlJES OF MEFUNDAMENTALFREQUENCY PARAMETERFORTh? SIMPLY- 
SUPPORTED SQUARE PLATE WITH CENTRAL POINT SUPPORT 

Stress Discrete element solutions Compaatlve 

parameter 
k 6x6 8x8 10 x 10 solution4 

grid grid grid 

0 5.404 5*%9 5.354 5.33 

1 5.219 5.186 5.171 5.16 

4 4.538 4.509 4.497 4-48 

9 2.294 2.269 2.263 2.27 
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Table 3 

VALUES OF THEFREQUENCYPARAMETERS AT ZERO STRESS, 
ao, FOR THE CLAMPED SQUARE PLATE 

Discrete 
Mode element Series 13 percentage 

solution solution difference 

1 3.644 3.646 -0.05 

2 7.4% 7.4% -0.03 

3 10.9% 10.965 -0.10 

4 A3.336 13' 332 +o-03 

5 13.398 13.395 +0*02 

6 16.702 16.718 -0.10 

7 21.370 21.330 +0*19 

a 22.259 - 

9 UC*546 24.535 +o*ol+ 

IO 24.637 - 

Table 4 
VAIK%ES OF THEFUNDAMENTAL FREQUENCY PAWtiT&FOR THE 

CLAMPED SQUARE PLATE UNDER LARGE BIAXIAL TENSION 

Stress Discrete Element Solutions Comparative Solutions5 
pe.rmeter 

k 
6 x 6 Bxa IO x 10 Lower Upper 
grid grid grid bound bound 

-5 5.026 5'024 5.024 5.024 5.051 

-10 6.078 6.073 6.072 6.071 6.119 

-15 6.961 6.954 6.951 6.949 7.018 

-20 7.736 7.725 7.721 7.713 7.811 

-30 9.077 9.057 9.051 9.045 9.185 

-50 11.265 11~231 11.218 ii.207 Il.438 

-100 15.389 15.319 15.288 15.022 15"702 

-200 21.328 21.197 21.134 21.054 21. a54 
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