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SUMMARY

The discrete element displacement method 1s applied to the prediction
of the natural frequencies of lateral vibration of rectangular plates which
may be subjected to arbitrary systems of in-plane loading. Numerical results
are given for several problems in which the applied stress system is uniform

and these results are shown to be in good agreement with available solutions,

*Replaces R.A.E. Technical Report 68233 - A.R.C. 31065.
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1 INTRODUCTION

The prediction of the natural frequencies of transverse vibration of
thin rectangular plates and the estimation of their buckling loads under
systems of middle-surface forces has received considerable attention. The
combined problem of transverse vibration in the presence of in-plane loading
has, however, been studied by relatively few authors1-6. It 15 well-known
that the frequency of a particular mode of wvibration tends to zero as the
corresponding critical buckling load 1s approached, and that the membrane
stress level is linearly related to the square of frequency in cases in which

the vibrational mode shape is exactly the same a3 the buckled shape.

In general, however, no such relationship can be deduced and the combined
problem must be analysed at various siress levels. An application of the dis-
crete element displacement method to rectangular plates under these conditions
1s described in this paper, which uses a non-conforming type of rectangular
element employed previously by the author in investigations of the limating
cases mentioned above7’8. A computer program has been prepared which i1s
applicable with any system of membrane loads but, because of the lack of
comparative results for more complex stress distributions, the examples given
1n this paper are restricted to problems in whach the in-plane stresses are
uniforms  The displacement method results are shown to be 1n close agreement

with exact or accurate approximate values.

2 ANALYSIS FROCEDURE

The plate 1s divided for purposes of analysis into a number of rectangular
regions or elements (shown in Fig.1) within each of which a polynomial
expression 18 assumed for the lateral deflection such that the latter can be
defined explicatly by the generalised displacements at the four corner nodal
points of the element. The elements are deformed under the combined action
of a distributed lateral inertia loading, an applied membrane stress distribu-
tion and shear forces and moments transmitted by adjacent elements. If a
typical element is vibrating harmonically with a circular frequency p and an
amplitude w(x,y), the maximum element flexural potential energy, V, 13 given
by

v = U -W -W 1
S (1)
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and L represents the potential of shear forces and moments distributed along

the element edges. The corresponding maximum kinetic energy is

ba
T =%pp2[f wzdxdy. (&)

«b =g

Here p 1is the mass density per unit area, h is the plate thickness, E is
Young's modulus, y 1s Poisson's ratio and D[= E h}/12(1 - vg)] is the plate
flexural rigidity; Ty? G&y
whose sign convention 1s such that direct stresses are positive in compression

and.ciy are the components of in=-plane stress

and shear stress is positive when acting towards corners 2 and 4 of the plate

element illustrated in Fig.1.

In the above expression for the element potential energy, Ub is the
strain energy of bending whilst Wg represents the work done by the midplane
loads during bending deformation. This latter term arises from the need, in
the presence of significant membrane stress, to include rotational terms in

the middle-surface strain-displacement equations,

The lateral deflection of the element is a linear function of N
generalised displacements, g3 5 and the expressions for U, Wg and T are
consequently quadratic functions of these displacements; the remaining
term, Wy, can be expressed as the sum of the products of the generalised
displacements and the corresponding generalised forces, The appropriate
values of the generalised displacements are those which make the energy
(V-1T)a minimum”. This minimisation procedure leads to the following

linear system of equations for the element:

1 ..., (5)

1]

2
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which may be expressed in the form



(K, -2 K -2 a3 = Q. (6)

Here g and Q are the column vectors of the generalised displacements and
forres respectaively at the corners of the element; §5 is the elastic bending
st2ffness matrix; ‘58 is the geometric or initial-siress stiffness matrix
which reflects the influence of membrane streas on bending behaviour and which

corresponds to a unit value of the load factor A; M 1s the consistent mass

matrix,

The energy expressions for the complete plate are simply summations of
the energies of the discrete elements, provided that the localised displacement
patterns are such that the overall displacement of the assembled structure is
kinematicelly admissible. Similarly, the complete-plate matrices, 5%*, gg*
and M*, which relate the vectors of generalised force and displacement, Q%
end g*, for the complete structure, are appropriate summations of element
matrices with rows and columns deleted which correspond to displacements that
are prescribed zero. In the absence of static normal forces the vector of
those complete-plate generalised forces corresponding to the unprescribed
displacements 1s null and equation (6) can then be rewritten for the complete

plate in the standard eigenvalue equation form,

(?) g* = (K'b* - Kﬁg*yﬂ M g* (7)

from which the natural frequencies of vibration may be found for a given
value of .

The accuracy of the displacement method results is dependent upon the
suitability of the assumed localised displacement patterns. In the plate
bending problem such patterns should maintain both lateral deflection and slope
continuity with corresponding patterns in adjacent elements if a bound on the
total erergy is to be obtained. A conflorming expression of this type may be
generated?for the rectangular element based on the product of cubic expressions
ir x and in y and involving four generalised displacements at each node.
However, numerical convergence with decreasing grid size may be achieved using
elements which permit small normal slope discontinuities at element boundaries
and whose assumed deflected forms may be expressed in terms of only three

generalised displacements at each node.  Although the energy of the complete



plate composed of such non-conforming elements is not given strictly by the
sum of the discrete element energies, convergence to true energy levels will
occur if the assumed displacement pattern is capable of representing arbitrary
states of uniform strain10; such idealisations do not, however, give a bound
on the total energy.

A non-conforming element of this type which has demonstrated excellent
7,8

convergence characteristics in previous applications has been adopted in the
present work. The nodal generalised displacements are the lateral deflection,

w, and the two slopes ¢ = ow/9Y and € = ow/0X, and the deflection pattern is

given by,
I
1
W=7 Z([(‘H X, X)(1+Yi Y){o+ X5 x(1-xi X)+Yi Y(‘I-Yi Y)} +2p X, Y. XY} W,
i=1

- [(-Yl){(1+Xi X)(1+Yi Y)2 (1-3{i Y)+p.'Xi ){(1+3{i 1] s

+ [(-Xl){(1+Xi x)2 (1-Xi x)(1+_3ri Y)+p Y, ¥{1 +X. x1] ei) . (8)

Here pu = C(1 + X)(1 - X)(1+Y){(1 - Y), C being a constant taken as 1/3 in all
numerical examples; X = x/a and ¥ = y/b, where Xi, Yi are the non-dimensiocnal
co-ordinates of a typicel nodal point i; 2z and 2b are the length and width

of the element as shown in Fig.1

3 NUMERICAL STUDIES

A computer program has been written in the Atlas dialect of Fortran to
calculate the natural frequencies and mode shapes of uniform rectangular plates
in the presence of in-plane loading. Because of the agbsence of comparative
data the results given below concern plates subjected to uniform stress systems
only. The program includes, however, operations to calculate the approximate
membrans stress distribution corresponding to a prescribed system of loads and
based on the assumption of linearly varying membrane displacements between
nodesa; the solution to the plane stress problem, which is, of course, exact

for uniform stress systems, 13 used directly in the vibration analysis.

In all applications the value of FPoisson's ratio i1s taken to be 0-3.
The results are presented in terms of a frequency parsmeter, a, and a stress

parameter, k, where

CIw:"—L and k=c.Bh'
I 2D
7w’ D %



Here o is the value of a direct or shear stress component used for reference

purposes and B is the length of the plate edge parallel to the y axis.

Simply supported sqguare plate, uniform uniaxial stress

The mode shapes of free lateral vibration of a square simply-supported
plate are identical to the corresponding buckled shapes when the plate 1s
uniformly compressed in one direction. Consequently the square of frequency

varies linearly with the intensity of streas in such a way that

2 2 4 - k-
@ = 4 k ’
or

where, for a given mode shape, o 1s the value of the frequency parameter
at a stress o, k 1s the corresponding stress parameter, a, 18 the
frequency parameter at zero stress and qu 1s the stress parameter cories-

ponding to zero frequency, i.c. kcr iz the buckling stress parameter.

In the application of the displacement method to this doubly symmetrin
problem only a gquarter of the plate was considered, this guadrant being
idealised as twenty five equal square elements. Frequencies of vibration
were calculated for the fairst ten modes at zero stress and at stress levels
(in the x-direction) of +0*5, +0+99 and -1:0 times the lowest buckling stress;
in addation, the corresponding buckling stress parameters were calculated
directly using a plate stability program based on the same assumed displace-
ment form and plate idealisation. TFor each modal pattern the five points thus
obtained are linearly related to an accuracy of gbout six significant figures.
The calculated parameters R and kor are given in Table 1 together with
the comparative exact values?1:12; 1t can be seen that all calculated
parameters are within half a per cent of the corresponding exact values. The
mode shapes are defained in the table in the form m/n where m and n are the
numbers of half-waves in the x and y directions respectively. The calculated
mode shapes are sensibly constant at all stress levels and agree with the
exact sinusoidal patterns to four figure accuracy.

Simply=-supported sgquare plate with central point support, uniform uniaxial
stress

Nowackia

has considered the variation, with increase in uniform uniaxial
compreasive stress, of the fundamental frequency of a square plate simply-
supported around the edges and point-supporied at the centre in such e way

that the deflection and the slopes are zerc at this point. The unusual



prescribed displacements present no difficulty to the displacement method which
has been applied to this problem using, in turn, nine, sixteen and twenty-five
square elements in the quarter plate. The results obtained are presented

along with the comparative values in Table 2,

Clemped square plate, uniform biaxial siress

Using twenty-five equal elements in the quarter-plate the first ten
frequencies of the clamped square plate subjected to a uniform biaxial stress
system, Oy = c&y = o, have been calculated for a range of stress intensities
between k = +5 and k = -5. Fig.2 shows that the variation of the square of
frequency with stress is, in this range, practically linear for all modes;
correspondingly any given mode shape changes little with stress. The accuracy
of the discrete element results may be judged by comparison of the calculated
natural frequencies at zero stress with accurate approximate values13 as in
Table 3 where very close agreement is demonstrated. Furthermore, linear
extrapolation of calculated values of a2 at k=4 and k =5 shows that
the fundamental frequency becomes zero at k = 5°301 whereas a direct discrete
element stability calculation gives the critical stress parameter as k = 5-298

1
and an accurate comparative solution is %k = 5+30 2.

It is interesting to note that the discrete element results indicate that,
as the membrane stress becomes increasingly tensile, the percentage daifference
between the frequencies of the modes m/n + n/m and m/n - n/m is reduced for
both pairs of normal modes of the type m/n * n/m which are depicted in Fig.2.
For the first pair of modes (modes 3/1 * 1/3) the difference in the squares
of the calculated frequencies reduces steadily from about two per cent at
k = +5 to half per cent at k = -5 and at a very high tensile stress corres-
ponding to k = -200 this difference is only about one part in ten thousand.

5

Weinstein and Chien” have calculated upper and lower bounds for the
fundamentel frequency of the clamped square plate under a uniform biaxial
tension varying from k = =5 to k = -200 and consider that their lower bound
solutions are much closer to the true frequencies than the upper bounds. The
bound solutions are listed in Table 4 together with corresponding displacement
method results based on idealisation of the guarter-plate into G, 16 and 25
elements in turn; all the latter values lie within the given bound limits.
Although some small decline in the rate of convergence of the numerical

results is evident for very large tensions, the results obtained in the present



investigation compare closely with the lower bound solutions. By far the
greatest difference corresponds to a stress level of k = =-100; if, however,
the lower bound values of the square of frequency are plotted against the
stress parsmeter, 1t appears probable that this lower bound solution is

anaccurate,

Rectangular plate, uniform iongitudinal stress

The variation of the natural frequencies of a rectangular plate of aspect
ratio three, with the long edges simply supported and short edges clamped
(see Fig.}),has been studied for values of longitudinal compressive stress
ranging from zerc to the lowest buckling stress. An exact solution to this
problem is known which demonstrates that the variation in the square of
frequency with intensity of stress is considerably non-linear for certain modes
of vibration, This theoretical variation is shown in Fig.h for the first five
modes along with comparative displacement method results, and the highly non-
linear region of this figure is shown in more detail in Fig.5. The discrete
element results are based on an idealisation of the quarter-plate into 27
elements, as shown in Fig.3, and accurately predict the true behaviour of the

plate,

The effect of change in the intensity of compreszsive stress on the modal
patterns of the vibrating plate is 1llustrated in Fig.6 which shows, for the
first two symmetric-symmetric modes, the deflected shapes predicted by the
displacement method of the longitudinal centre line (C - D of Fig.3) corres-
ponding to specified values of the stress parameter k. As expected, the
patterns vary little with stress intensity in regions where the relationship
between the square of frequency and stress is almost linear, but change
rap1dly in regions of considerable non-linearity. In the exsct solution™ the
deflected shape of the first symmetric-symmetric mode is wholly positive (in
the sense of Fig.6) for values of k wup to k = 3+111 and in the second mode
the deflection becomes wholly positive at k = 3778, The corresponding limit-
ing values obtained from the discrete element results are k = 310 (neglecting
areas within a distance of 0+002 A of the clamped edges, A being the plate
length) for the first symmetric-symmetric mode and k = 3,55 for the second

mode.
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Clamped rectanzular plate, uniform shear stress

The fainal problem considered is the effect of uniform shear stress on the
natural frequencies of a rectangular plate of aspect ratio 3/2 with all edges
clamped. So far as 1s known by the guthor no comparative solutions exist for
this combined problem but bounded values for the first two buckling stresses
have been calculated by Budiansky and Connor1h
for the lower natural frequencies may be deduced from the work of Claassen and

13

Thorne ~.

and accurate approximate values

The variation in the square of frequency for the first two modes, as
calculated by the displacement method using both 36 and 49 equal elements in
the complete plate, 1s shown in Fig.7 for i range of shear stress from zero
The closeness of the 36-element and 49-element
This

to the second buckling level.
solutions suggests that errors in the present analysis are small.
opinion is strengthensd on checking the accuracy of the end points of the two

curves. The first two calculated frequency-parameters at zero stress, %y s

13

and the comparative values based on a Fourier series solution ” are given in
the following table.

polation of results given for plates with aspect ratios of 100/66 and 100/68.

The latter values have been obtained by linear inter-

Displacement method value,aO Comparataive
Mode
value
3 element 49 element
1 2+735 2+735 2-736
2 L4232 4229 4226

The buckling stress parameters, kcr’ have been calculated here by a linear

Just to either side of the zero frequency line

14

and are listed below with comparative bound solutions .

interpolation of values of «

Displacement method value, k Comparative values
Mode er
36 element 49 element Lower bound { Upper bound
1 1145 11443 11045 11-56
2 11-85 1180 11+79 1208
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& CONCLUDING REMARKS

It has been shown that the natural frequencies of rectangular .plates
subjected to uniform membrane stress systems can be calculated to a high degree
of acecuracy by the discrete element displacement method using a particular
rectangular element. In the light of previous work on plate stabilitye
there is little doubt that problems involving stress systems of increased
complexity can be solved to an acceptable degree of accuracfﬂusing the

existing computer program.
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Table 1

FREQUENCY AND STRESS PARAMETERS OF THE SIMPLY-SUPPORTED SQUARE PLATE

Frequency parameter

at zero stress, a

Buckling stress parameter, kcr

Mode | Shape 2
Discrete| p 11 | Brror as o Diserete | p o112 | grror as a
ijc;iﬁi;tn solution | percentage zgii :I:;n solution | percentage
1 1/1 1-999 2 -0+ 05 3+ 996 k4 ~0+10
2 | 2/1 4996 5 -0+08 6240 6+25 -0+ 16
3 1/2 1 L49% 5 -0+08 2+ 96 25 =016
L | 2/2 1 798 8 -0-20 15+ 9l 16 -0- 37
5 | 31| 9995 10 ~0+05 11410 11411 -0+ 10
6 1/3 9-995 10 -0-05 99+ 90 100 -0+10
7 | 372 | 12097 13 ~0+ 23 18+69 18:77 -0-46
8 2/3 | 12:97 13 -0+ 23 4.2+ 06 42+ 25 -0+ 45
9 | 4/1 | 17-01 17 +0° 06 18-08 18+0625 +0- 10
10 1/4 | 1701 17 +0-06 289+ 2 289 +0:07
Table 2

VALUES OF THE FUNDAMENTAL FREQUENCY PARAMETER FOR THE SIMPLY-

SUPPORTED SQUARE PLATE WITH CENTRAL POINT SUPPORT

Stress Digerete element solutions Comparative
paraieter 6« 6 8 « 8 10 x 10 solutiont*
grid grid grid
0 5 404 5+ 369 5 354 533
1 5+ 219 5+ 186 5171 516
L 4538 4509 4497 L+ L8
9 2+ 29 2+ 269 24263 2+ 27




Table 3

VALUES OF THE FREQUENCY PARAMETERS AT ZERO STRESS,

o s FOR THE CLAMPED SQUARE PLATE

Mod Discrete Series Percentage
e | element €
solution | solution” | difference
1 364 | 3e6U6 -0-05
2 7043k 74436 0-03
5 10-954 | 10°965 ~0-10
4 13+336 13+332 +0+03
5 13-398 | 13395 +0-02
6 16702 | 164718 ~0-10
7 21370 | 21-330 +0+ 19
8 22+ 259 - -
2 20566 | 240535 +0+ 0k
10 | 24637 - -
Table 4

VALUES OF THE FUNDAMENTAL FREQUENCY PARAMETER FOR THE

CLAMPED SQUARE PLATE UNDER LARGE BIAXIAL TENSION

Discrete Element Solutions

Comparative Solutions?

Stress
parameter | ¢ . ¢ 13 i 8 10 x 10 | Lower Upper
k grid grid grid bound bound
-5 5:026 | 5-024 5024 5:024 5-051
-10 6078 | 6-073 6072 6071 6-119
=15 6+ 961 6+ 95, 6951 6+949 7018
=20 77361 7725 7721 7713 7-811
-30 9077 9-057 9051 9045 9:185
=h0 11265 | 11+231 11-248 11207 11438
=100 15+ 389 | 15319 15+ 288 15022 15- 702
=200 21-3281 21197 21134 21054 21854

13
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