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SUMMARY

The boundary layer flow over a cone inclined at a small angle to a
supersonic stream, and over a type of caret (Maikapar, Nonweiler) surface,
as generalized by Townend, is caloulated by an implicit finite difference
method., Prandtl number is arbitrary but viscosity nust follow the
Chapman~Rubesin law. Any (conical) distribution of wall temperature or
heat flux can be covered; the effects of suotion or blowing can only be
included if the normal velocity along a ray varies inversely as distance
from the apex.

Some sample calculetions are made. The method begins to break down
as separation is approached, but it is not difficult to find the separation

line by extrapolation.

*Replaces R.A.E. Technical Report 66347 - A.R.C. 28839,
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1 INTRODUCTION

Vfe shall consider the flow over two types of conical surfaces, The
first 1s an inclined oone in supersonic flow and the analysis is an extension
of eariier work1 which dealt with incompresaible flow over such a cone when
the flow is conical. In that case the real flow is approximately oconical
only near to the vertex but not everywhere, but the main intention then was
to gain experience of a certain method of computation with a view to the
present extension, and to see if one could arrive at the separation line
satisfactorily. In supersonic flow we may expect the external flow to be
really conical, end we find that the equations of motion can be reduced to
forms rather similer to the earlier ones, except that the temperature now
comes in and there is indeed an extra equation to determine the temperature,
We also require to make the Chapman and Rubesin2 assunption that viscosity
is proportional to temperature. We find that the method can be used with
arbitrary Prandtl number or wall temperature, and also if necessary with wall
suction, provided that the presoribed temperature is conical (constant along
generators) and that the suction amount on a ray is proportional to the
inverse square root of distance from the apex.

The second application is to the Townend surface studied in Refs.3 and
L. In this case the apex of the cone is no longer the point furthest upstrean,
but is at the side (at the point O, see Fig.1) and we are considering the flow
on the underside of this body. We shall give more details of this surface in
Seotion 3.2,

No partioular difficulty was found in extending the method of Ref.! to
these cases, and the results of some sample calculations will be given.

2 THE EQUATIONS OF MOTION

We may write the boundary layer equations for flow over e oone in the

form
L3, Y 2U, U v\ _ 3 2 oy (1)
PV s * "2 -F) ° "mrmt®
N V3 oV 3
p(U-é-g-+-£-%+W-é-+-'i_-!> = -3 +aé pSZ) (2)
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In these equations r denotes distance from the apex, © the angle between any
generator and a fixed gensrator (after developing the cone into a plane), %
is distance normal to the surface, and U, V, W are velocity oomponents in the
r, 6 and ¥ direotions. I is the enthalpy, p the density, p the coefficient of
viscosity and Pr the Prandtl number. According to the usual boundary leyer
approximation p is constant across the boundary layer. In oconical flow we
bave 9p/dr = O and we now make the further transformations

L N avE [
= 2
» = (onr) @) 3] e ®
0
UesUuy V=Vy, =z = U%-Z (6)
. 3 2
Q9 = ~5U-V-Vp (7)
- U% sl 2 I = IT (8)
Q=T ("-3 VE) s T e
where
ve 1 aUe 1 aVee 1 aIez
K|=.ﬁ;=ﬁ:-§é—’ M"'“}';'EB"’ N'=-f;?5- (9)

and C is given by the relation
T
{'— = C T (10)
o o

the subscript e denotes values in the external flow, whilst the subscript o
denotes values at some reference station. The details are given in Apnendix A,

The equations of motion become

u_ =-wu -K‘zuv-K'vua+K'2v2=0 (11)
22 z

vzz-wvz-v(Eﬁ'v+K've+u) = ={1+¥)7T (12)
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ai e Uz 2 Ve Vs 2

- - K z -2

T, 7T, K' vTg = I[ - )+(a )] (13)
e 8 8

wz-%K'2v+-g-u+M'v+K've 2 el N Ky (1)

2(y-1)

where ag denotes the "critical velooity" that i1s, the velocity at the place

where the Mach number is unity.

We see that these equations are olosely similar to those of Ref.1, with
an extra equation and other small changes due to the effeot of compressibility.

3 THE EXTERNAL FLOW

3.4 The inclined oone

There is here the usual difficulty in that the external flow passes
through a shock and there is an "entropy layer". However one could argue that
the invisoid flow nearest to the cone surface (which originates at the apex)
must be isentropic. The condition for this in conical flow reduces to

and so in Appendix A we put K' = L', We must indeed use this relation if the
boundary conditions at infinity, namely u = v = 1, u, =u = vz =y = 0 are
to hold in equation (11). If the external flow is rotational then it is not
true that u, = O at the edge of the boundary layer and then K' # L', Ve have
avoided the difficulty by asserting that the flow at the edge of the boundary
layer is irrotational so that we have not followed the tab1e36 in determining
Ve. However, taking it as accepted that the tables give the pressure correctly
(whetever one's view about the entropy near to the surfaoe), we have used them
to finmd Ué (which will give the pressure correctly to the first order in the

incidence @) and we have then found Vé simply by putting it equael to aUe/BB.

Acocording to the tables® (taking 6 = O along the windward generator)

m|mc:

= M? - M; coa ('é‘j‘;%‘é:) (15)

7]

where 90 is the seml-angle of the cone, a the incidence, M: and M; are given
in the tables.
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By differentiation we have

Vé GME 8

-a-; = ——-a-sin N |1in ('m u) (1 6)
whilst the tables give

v, 6

= = » .

s, = M el (mrg) (17)

If the semi-angle of the cone is smell the diff'erence between the two
values of V will not be very great, Thus for M= 3, eo = 7.5° the value of
M*/sin 9 is 3,040 whilst M* )2 from the tables 13 3.042, The correspording
values for M, = 6 are 2, 863 and 2,625, However, each of these values is to
be multiplied by @, so the difference between the values is still small.

The factor on the right hand side of (43) is given by

a2 2 2
8 . aB - 2 _ 2 = 2 (18)
I. ° 2_ 2 ° 2 5 Y2 Z
e o q, (c/a - (qe/a ) ?:T"M¢ 6 - M¥
for ¥ = 1,4, where o 1s the velocity of efflux into a vacuum and M* is the .
Mach number referred to 8gr 9 being the resultant velocity in the extermal
fiow. -

The computation is done in two parts. First we must determine details
of the flow on the attachment line (the most windward generator). Here we
have K' = 0 and so all derivatives with respeot to © disappear from the
equations which are solved to find u, v ard T on the attachment line. These
serve ag starting values for the subsequent calculation in steps of amount
80 from each generator of the cone to the next,

3.2 The Townend surfeaoe

The shepe of this swrface is ghown in Fig.1, and it is described in
Refs.3 and 4. The flow first passes through a plane shock and the aurface
7

i3 at first e "caret" or Nomweiler' or Maikapar8 surface, followed by an

izentropio compression which is reversed Prandtl-Meyer flow in vertical

planes parallel to the flow at infinity. If the Mach number after the shock :
is M,, the external flow to begin with will be uniform and the development
will be identical to that over a flat plate, We shall suppose that there is .

no hea: transfer but shall not assume unit Prandtl number, When the fluid
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reaches the Townend surface proper the Mach number will still be M1. After
this the flow is compressed and the Mach number will fall, but it will be
constant aleng the generators of the cone. If its value along any generator

is M, then following Ref.h we write

0?2 ek, p? o o, 2 - 2.2 (19)
where
a \ 2 2
=[-8y _ M _+z2e s Xt = o

and d is a fixed number depending on the geometry of the surface. We then
have

o =,
a6 = -H-Z-—-E—dm (21)
A° Bt
.I.I_Q—-Keﬁ Ve-...s'.:_.. (22)
8 a 8 K2 A
we also have in equation (13)
ai as 2
- “"”(a_e) - (1K, (23)
Hence
v . 2
K' = £ = -2 , Kv._‘?_ = A 9
U, T_K ¥ 20 MKze'é‘ﬁ
v v 2 .2 2
M? ="I'}""a'6£='ﬁg'g-e'(logV)=Ad§— A%+A22-1
e e € k€ ot 28 K ot
2
T A
N = — (logI ) = = (log X¥) = B
) £ sat KO
so that
A2
LR
N* X 5% .



The solution here falla into two parts. Firstly there is parallel flow
over the initial Nonweiler aurface and the flow will be of Blasius type., (We
ignore the effect of the corner itself, which will only affect the flow very
near to the corner.) The fluid then arrives at the Townend surface and the
computation proper starts. It was here found more convenient to replace the
independent variable 0 by M, which can be done without difficulty since if has
the same value at all points on a genersator. Further detalls of the initlal
flow are given in Appendix B.

L THFE SOLUTION OF TIHE EQUATIONS

The general method of solution has been described in Ref.1 and will not
be given in any detsil. We proceed step by step in the © direction, that is
from one generator to the next, using the Crark-Nicholson method, which is an
implicit method requiring the inversion of a tridlagonal matrix for each
unknown u, v and T at each step in 6., Inversion of such a matrix is quite
simple. It is also necessary to iterate at each step.

If u ., , denotes the values of u at the point (m+1) 86, ndz, it is
»
found af'ter suitable linearization of the equations that the u's are given by

a set of linear equations

2 Unat et b Unt,n * O Y, net T a (1 sn€N) (24)

where 8 bn, °n and dn are dependent on values of u, v end T at the previous
station md® and on values at station (m+1) 88 obtained from the previous
= 1 where N is

iteration, The boundary corditions are L =0, u

1,0 m+t , N+
taken large enough to reach the outer boundary to a sufficient approximation.
There are similar equations for v and T with different coefficients, Ve shall
discuss later the boundary conditions for T. w is fowxd from the finite
difference form of equation (14) using where necessary values of u, v and T
obtained from the previous iteration. w is taken to be zero at the wall, or

to have a prescribed value if there is suoction or blowing.

Iterations over all four equations in succession are required until

there is negligible change from one iteration to the next.

The outer boundary condition for T is Tm+1 N1 = 1 but that at the wall
nust be further considered, We may either fix the wall temperature by putting
T = Tw (say) giving Tw a known value at every station, or we may assume a
prescribed heat transfer, In the former case we simply write

Tm+1,0 = Tw *

Ty
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In the case of zero heat transfer for which dT/9Z = O at the wall, more than
one method of solution was tried, Finally it was found that it was best to

go one step "into" the wall and meke use of Tm For zero wall derivative

+1,~1°
we have in finite central difference terms

Tovt,t = Towpa o

Dropping the subscript m+ 1 for clarity we write the T eguation corresponding
ton =0 in (24) as

a T, +b T +¢ T = d

o ™ o o o -1 o

that is, for zero heat transfer, for which T_1 = T1,
(ao + oo) T, +b T = 4 .

o)

It is fourd that a lnowledge of u_

the u equation for n = Q0 we have

1 and v_, will now also be required., Taking

a U +b u +¢ u = d .
o 1 o o o =~ o

Now u0 = 0 and s0

u__1 =

 can be found from the knowledge of e V_,

Certain details in the method of linearization have been found to be

very important. Thus in equation (12), considered as an equation for v, we

and u is found in a similar way.

have a term v2. I vo is the value found at one iteration and v, is the
value to be found in the next one, then the term is vf and the simplest way

of linearizing it is to write it as v, Vs with error of order Vo and
thig is often satisfactory. It is better, however, to write
2 2
vy o= VvtV (v1 - vo) + (v1 - vo)
« 2% v, -V (25)
o 1 o

with error of order (v1-vo)2.
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Again in equation (12) there is a term Vg A straightforwerd way of linearisz-
ing this is to write it as Vo, V40 but it 1s better to write

Vi Vg = Y, Vye * Vg (v1 - vo) + (v1 - vo) (VHB - voe)
¥ Ve VetV Ve TV Ve 2 (26)

ignoring the last term. Provided the iterations converge the method of
linearization makes no difference to the final answer, but it may make a
considerable difference to the rate of convergence, or may even turn a none
convergent sequence into a convergent one. This method of linearization
has been called "Newtonian guasilinearization".

A main interest is the position of separation. As this line was
aepproached it wes found that more iterations per step were required. 1Then
the number of these became excessive the interval 80 was halved and later
halved again and so on as required. By this means the separation point could
be found with an accuracy of 3 to 4 significant figures. This mode of
approach took considersble machine time; however it was found that the
same point could be arrived at (as in Ref.1) by stopping the computation
earlier amd plotting (tan 3)2 against 8, where B is the angle between limiting
streamline and generators of the cone. Near to separation the points so
plotted fell quite closely on a straight 1line which could be continued on to
the point where B = 0 thus determining the value of © at separation. This
mode of procedure was suggested by the work of Brown10 who investigated the
nature of the singularity at separation in the incompressible case, Further
detsails are given in Ref,1. An illustration of the results of this approach
is given in Fig.3.

5 RESULTS

5.1 Inclined cone

Numerical caloulations were carried out for a cone of semi-angle Bo
of 73° with M_ = 3 and 6 and ) {= o/sin ® ) having values 1 and 2 and with
either T =1 (a highly cooled wall) or zero heat transfer (z,h.t.). One
computation with suction was also carried out. It was found in all cases
that separation could be estimated to three or four significent figures in
6, The values of © at separation are shown in Table 1.

fa



Table 1

!

M A | Wall conditions | ©

oo sep
3 1 zshet, 0.326
3 1 cooled 0.336
6 1 zshat. 0-353
6 1 cooled 0.361
3 2 Z-hoto 0-269
6 2 z-h.t. 0'269

z.h.t,
3 2 ard suction 0.275

For nurposes of easier comparison we will rewrite Table 1 in a group

of sub-tables. Thus to estimate the effect of wall cooling we have

He | M | ¥all conditaons o

sep
5 1 Zahat. Ol326}
3 9 cooled 0.336
6 |1 zohat, 0.353 |
& 1 cocoled |0.361J

and we see that cooling the wall delays separation but not as much as might

have been expected.

To consider the effect of Mach number we have

Moo A | Wall condations | O

sep
3 1 z.hat. 0.326}
6 1 ZIh.t. 0-353J
3 z.h.t. 0.269.;
6 Zehot. 0.269J

11

and so we fird that doubling the Mach number delays separation in one case and

does not change 1t in ancther case,
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Thege results are contrary to those given by Stewartson? for a flat plate
with a continual edverse pressure gradient with zero heat transfer when the
separation point is sarlier for the higher Mach numbers. However in the case
we are now considering there is an initial preasure gradient in such a direc-
tion as to develop a cross=flow which is larger for the higher Mach numbers
and this counteracts the tendency to early separation since a larger cross-flow
has to be destroyed before separation takes place. The effect of increasing
Mach number was shown by Stewar‘tson9 in two dimensions and Cooke11 in three
dimensions to amplify the effective pressure gradient by a factor of anproximate
amount 1 + {y-1) M2, but it does this in the earlier part of the flow as well
a3 the later part and the effects compensate one another. We can see this by
exanining Fig.4 which shows the surface flow angles for M= 3 and M = 6 when

A = 2, with zero heat transfer,

There is a similar compensating feature where we calculate the effects
of wall cooling., Fig.5 shows the surface flow angle for M = 6, A = 1, with
and without wall cooling,

The compensating tendency also shows itself when suction is applied.
Only one such case was considered, in which w was given the value -0.4 at the

wall, which implies that
1
= o 1| 2Y 2 2
(w)W s =0.4 o Cu_p, (Pg) UZ-;%- . (27)

where the subscript w denotes values at the wall. Fig.6 shows the surface flow

angles for M= 3, A = 2 with zero heat transfer with or without suotion,

The correspording table for separation is

| A
B, Vall % ep

3 |2 zZ.het. 0.269
3 2 z.h.t. and suction! 0.273

and once more there is no great change in © en’
sep

For the skin friction components T, and T_ we have
v

i



/U
T o= 1=
u w \dz:'/vr
. U \3/2
= i;{_(1 + 0,2 MZ)“‘/L (;9> (
re ' \%g
where
A = a:uo po)2 5/2 1+ 0.2 M2)7/4
and
Uz
_ A 2\=7/4 [“e\?
T, = I (1 + 0,2 Me) (5-
r< L s
For the displacement thickness commonent 83 we have
[#2=]
6% = .[ ( ~°-E%j:\ dz
v Pe e/
0
1 U -%j -
= B rff:k1 + 0.2 N2)5/L <;E> Agj
e a
5
where
Cwv \‘12‘
B = (14+0.2u)/% (-—9)
) a
a
(=0 0o
Au

= ([ {(1=u) dz + [ (r-1) az .

o o

63 is defined in a similar way, with v instead of u.

For the heat transfer 5 we have

>
i

P

I
Dr ¢

S far
c oz

v

al

w

a

U &
€

{‘(1 + 0.2 Mi)‘*’/h (;_

8

) (

Ez
oz

D@, -

.

]

13

(28)

(29)

(30)



14

where

D = (%) (1 + 0.2 Mf,)”/lF G—,%)é ’ (35)

and k is the heat conductivity.

The results for M = 6, A = 1, have been plotted in detail in Figs.7 ard
8. 1In Figs.7(a) and 8(a) are shown the values of (uz)w’ (vz)w, (Tz)w’ 8u, Gv
and BT where

5 = fo(1-u) dz , av = fo('l-v) dz , ﬁT = fo('r-ﬂdz .
° ° ° ees (36)

In Figs.7(b) and 8(b) are shown the skin friction components, heat
transfer and displacement thicknesses, as given by equations (28) to (35).
Owing to the transformation used Figs.7{a) and 8(a) give somewhat deceptive
results. For instance, in Fig.8(a) examining (Tz)w suggests that the heat
transfer increases at first, whilst Fig.8(b) shows that in fact it is a
maximum at the start. Again Fig.7(a) suggests that the v component of
displacement thickness is negative. This is due to the large overshoot, but
actually, when properly defined, it is positive everywhere as Fig.7(b) shows.

A few sample profiles are shown in Figs.9, 10 and 11 which give profiles
of u, v and T at © = 0,2 {approximately one quarter of the way round the cone)
for M = 6, A = 1 for zero heat transfer and cooled wall. The overshoot for

v oen be geen in Fig.10.

It can be illuminating to show cross-flow profiles, that is of velocity
normal to the external streamlines, and we show these for A = 2, M_ =3 and
M,= 6 at & =0,2 in Fig.,12, and at points fairly near to separation in Fig.13,

the latter illustrating profiles of "cross-over" type.

It was considered of some interest to caleculate the recoveEy factor r in
the case of zero heat transfer. As expected, r was near to (Pr)? in a1l cases

and we show in Fig.14 a few values for M_ = 3, A = 1, zero heat transfer,

It is helpful to show some limiting streamlines or skin friction lines.
These eare the curves which one sees in examining oil-flow patterns. We
imagine the cone to be developed on to a plane and the result is shown in
Fig.15 for the case M_ = 6, A = 2 with zero heat transfer.



Da2 Townend surface

The results here were disappointing in that the adverse pressure
gradient sudaenly imposed along BO (Fig.1) on a boundary layer that 1s already

growing between AO and BO leads almost immediately to separation.

In each case examined the geometry was such that the free stream had a
Mach nurber of 6.8, which was reduced to 4.6174 at the shock. Various values
of the angles € and & (see Fig,2) were tried and the reversed Prandtl leyer
compression led to separation at a Mach number only very slightly lower than

the initial value., The results are given in Table 2,
Table 2

Separation on Townend surface

W = 6.8, My = b.617%

F"_""—T‘__ TTTTT
£ & Y 1

sep

:
23%s5 | 10%8 | 1.4 | 4.602
23%95 | 40518 | 1.3 | L.596
45500 | 62928 | 1.4 | 4,520
15500 | ¢2928 | 1.3 | 4,084
85500 | 87930 | 1,3 1| 4,405

A typical plot of the surface flow angle is shown in Faig.i16, It was
found necessary to take steps in Mach noumoer which were very small indeed,
There 18 an initial rapid fall in surface flow angle, which flattens ocut o
little and then again falls rapidly. The same technique of plotting tanzﬁ
againgt Mach number served to determine the separation line. Tt was expected
that a value of ¥ less than 1.4 might delay separation and for v = 1.3 a
slizhtly later position was indeed found.

One is forced to the conclusion that this type of surface 1s not suitable
for obtaining usefwl compression unless the flow is turbulent or the boundary
layer is bled away. In view of this no further analysis of results was carried

out for this surface.
6 CONCLUSIONS

There appears to be no difficulty in extending to three dimensions the
solution of compressible bourdary leyer equations by implicit finite

difference methods, at least in the case where there are only two independent
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varisbles (8 and z here), even though there are in effect three dependent
variables. Such problems are only quasi three~dimensional, and the addition
of one more irdeperdent variable increases the work enormously and brings
other complicationa in its wake.

Solutions for the inclined ciroular cone have been found and can be
carried far enough to estimate the position of separation. This position
for a given inclination is not changed very much either by cooling the well
or by applying suotion, or even by changing the Mach number. This unexpected
result ic due to the fact that increasing (say) the Mach number leads to an
effective increase in pressure gradient and this increases the cross-flow to
begin with, so that a larger oross-flow has later to be destroyed, thua
counteracting the expected tendenocy to earlier separation.

In the case of the Townend surface all of the ocases tried gave very
early seperation.
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Appendix A
TRANSFORMATION OF THE ENUATIONS OF MOTION

We take dp/dr = O and make the transformation (5), In addition we

follow Moore5 in writing
1
pr U = ¢§ . prV = ¢; , prw = =y ==, (37)

which satisfies (4), and then we put

(&) fomr, 2 e,

1:; -
%
P 2
$= (-}) Jcpopo r3/ g(z,e)
o
so that
U = fz, V = g, o
Ve write
2 - XL
uO IO

and we find that r will drop out from the equations of motion and they reduce
to

£ +éi‘+ +g£gf -g, +g2=0
722 " \2 €o 2p/ “zz ~ Sz ze T 8z

+ 2 £+ + °e - - f =1
€rz2 T \2 8o T E3p) bz T Bz 876" Tz 8 T T P
I 4 RN W S | -2 - gl
Br ‘7z 2 Bg *8%p) z "8z T "5 8yPp T gz Byp e
5

These equations were in effect first obtained by Moore”, The equations

may alsoc be written
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UZZ-QUZ-VU6+v2 = 0
v QV, -« VW, - UV =lp
72 = Wy = Wy 5 Pg
1 v 2 2
Tl - YUV = =5 - [(Uz) *(Vz)}
3 0 _

Next we write

1aUe ve
= L r . _E
L= » W ergwm ¥ =g
e e
and we have
2 2
- - 1 t ) 1 1 - ~
w, - W K' L' uv =K' vug + K'" v = 0O (28)
1
- - 1 ' =
v, WU, v{M v+K va+u) PUevepe (29)
_1_ _ ot Nt _ e - KXK' v _.1_ 2 2
e T, "I, KN YD -K'vT, = -PIepe T (Ueuz) +(vevz)
ses (LO)
Klvp
IR b ' ' 6
w, 2KLv+2u+M v+K vg = 5 (41)
where
ov ol
M? = 3 e Nt = 1 _e
* g W "ITw®

At infinity we have u = v = T = 1, and all derivatives of u, v and T with
respect to z and O are zero. From equation (38) we see that this implies that
K' = L' which is the condition for irrotational externsl flow., This we shall
suppose to be the ocase; we have already discussed this in Section 3.

If we apply the bourndary conditions at infinity in equations (39) and
(40) we £ind
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Py t
——ﬁ—-v— - - (1 + M') R - K I pe = - K' N'
pe e e Pe e

These results cean also be obtained directly from the external isentrcpic flow.

To find the right hand side of equation (41) we use the fact that in
isentropic flow

2 . (™
P, 1
and so
1o o x 2% oy
pPe T T4 IGW Ty *

We also have from the equation of state and the fact that the pressure
is constant through the boundary layer

-P—e.-.—I-—:T.
P =TI

Hence the equations of motion become finally

'2uv-K‘ vue+K'2v2 = Q

u =wu =X
2z 2

v _ -wv -v(M'v-c-K've-i-u) = =-(1 + M) T
1 2 2

—_ - - K LI
== T wl -K' v Ty T {(Ue uz) +(ve vz)]

w—lK'2v+-3-u+M'v+K'v s w—Ye N Ky .
2 2 8
2(y=1)
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AEEendix B
STARTING CONDITIONS ON THE TOWNEND SURFACE

The equationa of motion we have given will apnly everywhere on the

surface but in the initial (Nonweiler) part they can be simplified, since

we have parallel flow here, Nevertheless it may be useful to derive the

simplifiied equations directly from the main equations.

We open out the surface on to a plane as in Fig.2., If U1 is the extermal

velocity after passing through the shock and M1 is the Mach number we have

= - e ; = [
Ue U, cos 8, Xe U, sin ] (L2)
Also
U1 6.1 M1 M,
'a—- — - Y = -.1_-
8 3 Kf

where X, is given by equation (20) with i = M,. Hence

Ue M1 ve M1
;'- = = = C03 0 » -5—- s - sin o .
s Kg s Ky

Now the flow direction everywhere will be parallel to the line AB, and
if* the magnitude is q we have U = -q cos 6, V = g sin 8 and so from equations

(6) we have u = v. Also we have

K* = -tan 8 , MY = -1, Nt = O
and the equations (11) and (12) reduce to one and the same equation. The
resulting equations are (using (23))

u =-wu =-tan@uu, = O
z2%Z 2 0

1 ) - 2 2
o Tzz w Tz tan 0 u TB = - (Y-1) M1 uz

1 2
w. -3 (1 = tan“®) u + tan 6 uy = 0 .
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If we write

w = ftanenu-a—-(lo f)+-§
’ 36 \-08 f

¥)
2 5in © cos 6 (cot € = cot B)}

e
I
M~ Hin

the equations reduce to

W -gut = O

1 2

2
—— - t = o - '
PrT" gT' = (Y1)M1u

u+g! =0

where primes denote differentiation with respect to M. These are the standard
Blasius equations for compressible flow over a flat plate. Also initially

when 8 = € we have f = 0 as in the standard Blasius transformation.

We then use any convenient method of solving these equations in terms of
Te When we come to the later flow where z is to be used its value will be
found from the relation z = f,m where f, is the value of f when 6 = 61,(the
value of © where the Townend surface proper begins), and sc the two solutions

can be Jjoined.

In the case of the Townend surface there are difficulties in the change-
over from the initial flat plate computation to the subsequent one since the
shape of the surface is such that there is a suddenly imposea pressure gradient
at the change-over., Consequently the initial flow used does not satisfy the
new differential equations. The effect is to cause oscillations in the subsequent
steps, The method of dealing with this difficulty is to take a few very small
steps, with 8 = -0.0005. The oscillations are then very much smaller and they
damp out after a few steps (L steps were found to be sdequate). Consequently,
after proceeding a very small distance downstream we have arrived at a solution
which does satisfy the differential equations and then we can proceed by larger
steps and there is no further difficulty. An alternative approach might be to
smooth the coefficients of the differential equations over a short distance so
as to ensure that there are no discontinuities and then proceed by a few very
small steps over the region where the changes are lerge. However the first

methecd described above proved adequate.
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SYMBOLS
A defined by {29)
8s b, 0, d  coefficients in (24)
8 eritical velocity of sound
B defined by (32)
c Chapman~Rubesin constant
D defined by (35)
I enthalpy
k heat conductivity
K defined by (20)

K', L', M', '  defined by (9)

M Mach number

e %%

M2, M3 values from tables used in (15) and (16)
m defined by m66 = O

n defined by néz = z

N number less one of intervals 5z
P pressure

Pr Prandtl number

q resultant velocity

Q defined by (8)

4} rate of heat transfer

r distance from apex of cone
T I/Ie

u, v, w velocity components

V‘_ cross-flow velocity

Uy, v, W defined by (6) ard (8)

z defined by (6)

2 defined by (5)

a incidence of cone

at defined by (19)

B surface flow angle

B (- 1)2

¥ ratio of specific heats
8,5 8, defined by (36)

6;, 6: components of displacement thickness
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Subscripts

e

w
o
00
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STMBOLS (Contd )

defaned by (19)

defined by (28)

see Figas.1 and 2

see Figa.! and 2

angle between generators of the cone when developed into a
plane

semi-angle of cone

distance measured normal to the surface
a/sin 60

viscosity
density
components of skin friction

defined by (37)

denotes values in the main stream

denotes values at the wall

denotes values at some reference oondition

denotes values at infinity upstreanm

denotes values at separation

denotes values Just after the Nonweller surface shock
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SJPERSOMIC LAMINAR BOUNDAR: LAYERS ON COMES

The boundary layer flow over a cone inclined at a small angle to a super-
sonic stream, and over a type of caret (Malkapar, Nonweller) surface, as
generalized by Townend, 18 calculated by an Implicit finite difference
method, Prandtl number is arbitrary but viscosity must follow the Chapman=-
Rubesin law, Any (canical) distribution of wall temperature or heat flux
can be covered, the effects of suction or blowing can only be included ir
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The boundary layer flow over a cone inclined at a small angle to a super-
sonlc stream, and over a type of caret {Malkapar, Nonweiler) surface, as
generalized by Townend, is calculated by an implicit finite difference
method, Prandtl number 1s arbitrary but viscosity must follow the Chapman-—
Rubesin law, Any (conical) distributfon of wall temperature or heat flux
can be covered; the effects of suction or blowing can only be included If
the normal velocity aiong a ray varies inversely as distance frem the apex,
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SUPERSONIC LAMINAR BOUNDARY LA/ERS ON CONES

The boundary layer flow over a cone Inclined at a small angle to a super-
sonic stream, and over a type of caret (Malkapar, Nonweller) surface, as
generalized by Townend, 18 calculated by an implicit finite difference
method, Prandtl number 1s arbitrary but viscosity must follow the Chapman-
Rubesin law, Any {(conleal) distribution of wall temperature or heat flux
can be covered; the effects of suction or blowing can only be inecluded if
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Some sample calculations are made. The method begins to break down as
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