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sumARY 

The boundary layer flow over a cone inolined at a small angle to a 
supersonic stream, and over a type of caret (Maikapar, Nonweiler) surface, 
as generalieed by Townend, is oaloulated by an implicit finite difference 
methcd. Prandtl number is arbitrary but viscosity must follow the 
Chapman-Rubesin law. Any (ooniod) distribution of wall temperature or 
heat flux can be oovered; the effeots of suotion or blowing can only be 
inolded if the normal velocity along a ray varies inversely as distance 
from the apex. 

Some sample caloulations are made. The method begins to break down 
as separation is approached, but it is not diffioult to find the separation 
line by extrapolation. 

*Replaces R.A.E. Technical Report 66347 - A.R.C. 28839. 
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I INPRODUCTION 

We shall consider the flow over two types of oonioal surfaces. The 
first is an inclined oone in supersonic flow and the analysis is an extension 
of esriier worki which dealt with incompressible flow over such a cone when 
the flow is conical. In that oase the red flow is approximately conical 
only near to the vertex but not everywhere, but the main intention then was 
to gain experience of a oertain method of computation dth a view to the 
present extension, and to see if one oould arrive at the separation line 
satisfactorily. In supersonio flow we may expect the external flow to be 
really oonicel, ad we find that the equations of motion oan be reduoed to 
forms rather similar to the earlier ones, except that the temperature now 
comes in and there is indeed an extra equation to determine the temperature. 
We also require to make the Chapman and Rubesin* assumption that viscosity 
is proportional to teqerature. We find that the method can be used with 
arbitrary Prandtl number or wall temperature, and also if necessary with wall 
suction, provided that the prescribed temperature is ooniod (oonstsnt along 
generators) and that the suction amount on a rsy is proportional to the 
inverse square root of distsnoe from the apex. 

The second application is to the Townend surface studied in Refs.3 and 
4. In this case the apex of the oone is no longer the point furthest upstream, 
but is at the side (at the point 0, see Fig.1) and we are considering the flow 
on the tierside of this body. We shall give more details of this surface in 
Seotion 3.2. 

No psrtioulsr difficulty was found in extending the method of Ref.1 to 
these oases, ad the results of some sample calculations will be given. 

2 THE EQUATIONS OF 7IOTION 

We may write the boundary lsyer equations for flow over a oone in the 
form5 

p UTG ( au v2 au+zg+wy, ) = -g+qq (1) 



$z (pru) +g+j (ev)+&(prw) = 0 . (4) 

In these equations r denotes distanoe from the apex, 0 the angle between any 
generator and a fixed generator (after developing the cone into a plane), G 
is distsnoe normal to the surface, au3 U, V, W are velooity oomponents in the 
r, 8 and r; direotions. I is the enthslpy, p the density, P the ooeffioient of 
viscosity and pr the Prandtl number. According to the usual boundary layer 
approdmation p'is oonstant aoross the boundsry l.aVer. In oonioal flow ws 
have War = 0 and we now make the further transformations 

where 

Qz = PO +J-ve-v- 
2P 

Q I=IeT 

V 
Iv=+ ’ 

au 
=F=* MI 

I mTe I a1e 
e 

=pp N’=;ag 

and C is given by the relation 

(5) 

(6) 

(7) 

(8) 

(9) 

the subscript e denotes values in the external flow, whilst the subscript o 
denotes values at some reference station. The details are given in Appendix A. 

The equations of motion become 

u -*II -K'*uv se e - K' v ue + K' * v* = 0 

. 

v es -wv - s v (M’ v + K’ ve + u) = - (I + IA’) T (12) 
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T -nT ss s - K' v Te = 

ws - 
N’ K’ v 

5 

(13) 

(14) 

where as denotes the "critical velooity" that is, the velocity at the place 
where the Mach number is unity. 

We see that these equations are closely similar to those of Ref.1, with 
sn extra equation and other small changes due to the effeot of compressibility. 

3 THE EXTSXNAL FLOW 

3.’ The inclined oone 

There is here the usual difficulty in that the external flow passes 
through a shock and there is an "entropy layer". However one could argue that 
the invisoid flow nearest to the cone surface (which originates at the apex) 
must be isentropic. The condition for this in conical flow reduces to 

and so in Appendix A we put IC' = L'. Ne must indeed use this relation if the 

boundary conditions at infinity, namely u = v = I, uss = us = vs = ue = 0 are 
to hold in equation (Ii). If the external flow is rotational then it is not 
true that us = 0 at the edge of the boudary layer ad then K' * L'. 17e have 
avoided the difYiculty by asserting that the flow at the edge of the boundary 
layer 19 irrotational so that we have not followed the tables6 in determeg 

V,. However, taking it as accepted that the tables give the pressure correctly 
(whatever one's view about the entropy nesr to the surfaoe), we have used them 
to find IJ, (which will give the pressure correctly to the first order in the 
incidence CL) and we have then found Ve simply by putting it equal to aU$ae. 

Aooording to the tables6 (taking 0 = 0 along the windward generator) 

u 
e 

a, 
= MT (15) 

where B. is the semi-angle of the clone, LX the inoidence, Mu and M* are given 
1 2 

in the tables. 
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By differentiation we have 

whilst the tables give 

(16) 

If the semi-angle of the cone is small the difference between the two 
values of Ve will not be very great. Thus for G = 3, e. = 7.5’ the value of 
Id;/ain Bc is 3.040 whilst MC 2 from the tables la 3.042. The con-espording 
values for t$,, = 6 are 2.863 &-xl 2,625. However, eaoh of these values is to 
be multiplied by a, so the differenoe between the values is still small. 

The factor on the right hand aide of (13) is given by 

a2 
Tf = o2 

22 

-< = (o/a,)2 _' (qJaJ2 
(18) 

for y = 1.4, where o is the velocity of efflux into a vaouum and MO is the 
Mach number referred to as, qe being the resultant velocity in the external 
flow. 

The computation is done in two parts. First we must determine details 
of the flow on the attachment line (the most windward generator). Here we 
have K' = 0 and so all derivatives with reapeot to 8 disappear Prom the 
equetiona which are solved to find u, v and T on the attachment line. These 
serve as starting values for the subsequent oalculation In steps of amount 
68 from eaoh generator of the cone to the next. 

3.2 The Townend surface 

The shape of this surface is shown in Fig.1, ani it is described in 
Refa.3 ad 4. The flow first passes through a plane shook and the aurfaoe 
is at first a "caret" or Nonweiler7 or Maikapar8 surface, followed by an 
i3entropio oompresaion whioh is reversed Praldtl-Meyer flow in vertical 
planes parallel to the flow at infinity. If the Mach number after the shook 
is M,, the external flow to begin with will be uniform and the development 
will be identical to that over a flat plate. We shall suppose that there is 
no hes> transfer but shall not assume unit Prandtl number. When the fluid 

. 
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reaches the Townend surf'aoe proper the Mach number will still be M,. After 
this the flow is oomyressed and the Mach number will fall, but it will be 
oonstant alcng the generators of the cone. If its value along any generator 
is M, then following Xef.lc we write 

co* = M* d* + p 8 fit2 I 8 - I , A* 3 d* + K*' (19) 

where 

and d is a fixed number depending on the geometry of the surface. We then 
have 

de = - ii 9-i a’ dM 
A* P' 

‘e 

$ 
i: -KE, ‘e a’ 

A a, 
=-; 

K= A 

we also have in equation (13) 

a2 
f P (y-i ) > 2 

0 = (Y-1 1 K . 

Hence 

K’+-& a A* a 
e K P' K' x =px 

A* d* A* A* 
= KE--+>-a’2 

so that 

(21) 

(22) 

(23) 

A2 
N’K’ = -3 . 

6K 
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The solution here falls into two parts. Firstly there is parallel flow 
over the initial Nonweiler eurf'aoe ati the flow will be of Blasius type. (We 
ignore the effect of the corner itself, which will only affeot the flow very 
near to the aorner.) The fluid then arrives at the Townend surface ad the 
oomputation proper starts. It was here found more oonvenient to replace the 
independent variable 8 by M, whioh oan be done without difficulty since id has 
the same value at all points on a generator. Further details of the initial 
flow are given in Appendix 33. 

4 THE SOLRl'ION OF TIE EQUATIONS - 
The general method of solution has been desoribed in Ref.1 and will not 

be given in any detail. IJe proceed step by step in the 0 direction, that is 
from one generator to the next, using the Crank-Nicholson methcd, which is an 
implicit method requiring the inversion of a tridiagonal matrix for eaoh 
unknown u, v and T at each step in 8. Inversion of such a matrix is quite 
simple. It is also necessary to iterate at each step. 

Ip Yn+l n denotes the values of u at the point (m+l) 68, n6z, it is 
found afier s&table linearisation of the equations that the u's are given by 
a set of linear equations 

a u n m+l,n+l +b u n m+t,n co n um+i ,n-I = an (I 6 n 6 N) (24) 

5 

where a n’ bn’ on and d, are dependent on values of u, v and T at the previous 
station 1~84 ad on values at station (m+l) 88 obtained from the previous 
iteration. The boundary oondltions are urn+, o = 0, urn+, N+, = I where N is 
taken large enough to reaoh the outer bound& to a sufficient approximation. 
There are similar equations for v and T with different ooeffioients. Ve shall 
discuss later the boundary conditions for T. w is found from the finite 

difference form of equation (14) using where necessary values of u, v and T 
obtained from the previous iteration. w is taken to be eero at the wall, or 
to have a prescribed value if there is suction or blowing. 

Iterations over all four equations in succession are required until 
there is negligible change from one iteration to the next. 

The outer boundary condition for T is Tm+,,N+, = 1 but that at the wall 
must be further considered. We may either fix the wall temperature by putting 
T = T, (ssy) giving Tw a known value at every station, or we rnsy assume a 
prescribed heat transfer. In the former case we simply write 

. 

T T 
mcl ,o = w l 
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In the case of sero heat transfer for which aT/aZ = 0 at the wall, more than 
one method of solution was tried. Finally it was found that it was best to 

go one step "into" the wall and make use of Tu+, 
9-f 

, For zero wall derivative 

we have in finite central difference terms 

T 
In+1 , -1 = Tm+l 1 l , 

Dropping the subscript m+l far clarity we write the T equation corresponding 
to n = 0 in (24) as 

a0 T, + b. To + co T -1 
= do 

that is, for eero heat transfer, for which T-, = T,, 

(a0 + oo) T, + b. To = do - 

It is foti that a knowledge of u-, and v-, will now also be required. Taking 
the u equation for n = 0 we have 

a 0 I u + b. u. + o. u-, = a 
0 l 

Now u. = 0 and so 

d 
0 - a0 "I 

u-1= o 0 

and u-, can be found from the knowledge of u,. v-, is found in a similar may. 

Certain details in the method of linearisation have been fouml to be 
very important. Thus in equation (12), considered as an equation for v, we 
have a term v'. If v. is the value found at one iteration and v, is the 
value to be found in the next one, then the term is vi and the simplest msy 
of linearising it is to write it as v 0 vls with error of order v -v I 0' and 

this is often satisfactory. It is better, however, to write 

2 
v, = Y. v, + v 0 (Y - vo) + (v, - YJ* 

a 2 v. v, - v', (25) 

with error of order (v,-v012. 
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Again in equation (12) there is a term we. A straightforward cpay of lineariz- 
ing this is to write it as v v o ,8 but it is better to write 

Vi VI e = YlJ vie + Voe b, - vo) + (v, - vo) $0 - v&J 

LI v v 0 10 + vd “oe - Vo Voe ’ (26) 

ignoring the last term. Provi&d the iterations oonverge the method of 
linearisation makes no differenre to the final answer, but it may make a 
considerable difference to the rate of convergence, or may even turn a non- 
convergent sequence into a convergent one. This method of linearization 
has been called "Newtonian quasilinearisation". 

A main interest is the position of separation. As this line was 

approached it was founi that more iterations per step were required. 17ben 
the number of these became excessive the interval 66 was halved and later 
halved again and so on as required. By this means the separation point could 
be found with an eccuracy of 3 to 4 significant figures. This mode of 
approach took considerable machine time; however it was founi that the 
same point oould be arrived at (as in Ref.1) by stopping the computation 
earlier ati plotting (tan P)2 against 8, where B is the angle between limiting 
streamline ad generators of the oone. Near to separation the points so 
plotted fell quite olosely on a streight line which could be continued on to 
the point where B = 0 thus determining the value of e at separation. This 

IO mode of procedure was suggested by the work of Brown who investigated the 
nature of the singularity at separation in the incompressible case. Further 
details are given in Ref.1. An illustration of the results of this approach 
is given in Fig.3. 

5 REKJLTS 

5.1 Inolined oone 

Numerical calculations were carried out for a oone of semi-angle Be 
of 74' with M, = 3 and 6 and X (= a/sin eo> having values 1 and 2 and with 
either T RI = I (a highly oooled wall) or eero heat transfer (e.h.t.). One 
oomputation with suction was also carried out. It was found in all oases 
that separation oould be estimated to three or four signifioant figures in 
0. The values of 6 at separation are shown in Table I. 

. 



Table 1 

r 

. 

. 

,%a 
- 

3 

3 

6 

6 

3 

6 

3 
- 

I 
t 

-7 

h i, 
- 

1 

1 
t 

I 

1 

2 

2 

2 

- - 

z.h.t. 
cooled 
e.h.t. 
cooled 
z.h.t. 
z.h.t. 
z.h.t. 

ard suction 

8 
sep 

0.326 

0.336 

0.353 

0.361 

0.269 

0.269 

0.273 

Por Purposes of easier oomparison we ~111 rewrite Table 1 in a group 
of sub-tables. Thus to estunate the effect of wall coo1ln.g we have 

8 
sep 

0.326 

0.336 I 

0.353 1 
0.36i] 

and we see that cooling the wall delays separation but not as much as might 
have been expected. 

To consider the effect of Maoh number we have 

I k I A I A Wall oondltlons Wall oondltlons 

z.h.t. 
z.h.t. 

z.h.t. 

z.h.t. 

8 
w 

0.326 ‘i 0.353J 

0.269’ \ 
0.269j 

and so we find that doublin,: the Mach rubcr delays separation in one case ati 
does not change It in another case. 



12 

These results are contrary to those given by Stewartson' for a flat plate 

with a continual adverse pressure gradlent with sero heat transfer when the 
separation point is earlier for the higher Mach numbers. However in the case 

we sre now considering there is an initial pressure gradient in such a direc- 
tion 8s to develop a cross-flow which is larger for the higher Mach numbers 
and this counteracts the tendency to early separation since a larger cross-flow 
has to be destroyed before separation takes place. The effect of increasing 
Mach number was shown by Stews&son9 in two dimensions and Cooke II in three 

dimensions to amplify the effective pressure gradient by a factor of approximate 
amount 1 + gy-I ) h?, but it does this in the earlier part of the flow ss well 

as the later part and the effects compensate one another. We can see this by 

examining Fig.4 which shows the surface flow angles for M, = 3 and M, = 6 when 
'A = 2, with serc heat transfer. 

There is a similar compensating feature where we calculate the effects 
of wall cooling. Fig.5 shows the surface flow angle for M = 6, h 
and without wall cooling. 

= I, with 

The compensating tendency also shows itself when suction is 
Only one such case was considered, in which w was given the value 
wall, which implies that 

(!V& = -0.4 6 JC(f-ju$ . 

applied. 
-0.4 at the 

(27) 

where the subscript w denotes values at the xall. Fig.6 shows the surface flow 

angles for f& = 3, X = 2 with zero heat transfer with or without suction. 

The corresponding table for separation is 

Mall e 
sep 

3 2 z.h.t. 0.269 

3 2 a.h.t. and suction 0.273 

and cnce iacre there is no great change in 8 sep' 
For the skin friction components "u and "v we hsve 
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i 

. 

where 

and 

where 

kr 
q 3 / (1 + 0.2 liE)-7’4 

A = (C p, p,) 
$ j/2 

aa’ (I + 0.2 ‘6z)7i4 , 

For the dxsplacement thickness comynent b: we have 

b" = 
u 

= B ,J 
C (1 + 0.2 $3~4 ae -+ *u- 

(3 1 a3 

B = cl + o 2 n42)3/4 . ‘0 

w 00 

Au r 
.i 

(1-u) de + 
i 

(T-1) de . 
0 '0 

6; is defined in a sinilnr way, with v instead of u. 

For the heat transfer (?' we have 

(23) 

(291 

(30) 

(31) 

(32) 

(23) 
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where 

D = , (35) 

. 
and k is the heat conductivity. 

The results for Et-= 6, h q I, have been plotted in detail in F1gs.7 ard 
8. In Figs.T(a) and 8(a) are shown the values of (us),, (v,),, (Ts)w, hu, 6, 
snd 6T where 

m m m 
6 = ” I 

(i-u) dz , bv = 
J 

(l-v) dz , 6T = 
i 

(T-i) ds . 
0 0 0 

. . . (36) 

In Figs.T(b) and 8(b) are shown the skin friction components, heat 
transfer and displacement thicknesses, as given by equations (28) to (35). 
Orrring to the transformation used Figs.T(a) end 8(a) give somewhat deceptive 
results. For instance, in Fig.a(a) examining (Ts)w suggests that the heat 
transfer increases at first, whilst F&8(b) shows that in fact it is a 
maximum at the start. Again Fig.T(a) suggests that the v component of 
displacement thickness is negative. This is due to the large overshoot, but 
actually, when properly defined, it is positive everywhere as Fig.T(b) shows. 

A few sample profiles are shown in Figs.9, 10 and ii which give profiles 

of u, v snd T at 0 = 0.2 (approximately one quarter of the wey round the cone) 
for M, = 6, X = I for zero heat transfer and oooled wall. The overshoot for 
v can be seen in Flg.10. 

It oan be illuminating to show cross-flow profiles, that is of velocity 
normal to the external streamlines, and we show these for h = 2, M, = 3 and 

Ir, = 6 at 8 = 0.2 in Fig.12, and at points fairly near to separation in Fig.13, 
the latter illustrating profiles of "cross-over" type. 

It was considered of some interest to calculate the recovey factor r in 
the oase of zero heat transfer. As expected, r was near to (Pr)Z in all oases 
and we show in Fig.14 a fern values for M, = 3, 1 = I, zero heat transfer. 

It is helpful to show some limiting streamlines or skin friction lines. 
These are the curves which one sees in examining oil-flow patterns. We 
imagine the oone to be developed on to a plane and the result is shown in 
Fig.15 for the case c = 6, X = 2 with zero heat transfer. , 



5.2 Townena surface --- 

The results here were disapoointing in that the adverse pressure 
gradient sudaenly imposed alon, m BO (Fig.lj on a boundary layer that is already 

growing between A0 and DO leads almost immediately to separation. 

In each case examined the geometry was such that the free stream had a 
Mach number of 6.8, which was reduced to 4.6174 at the shock. Various values 
of the angles E and ?J (see Fig.2) were tried and the reversed Prandtl I:eyer 
compression led to separation at a Mach number only very slightly lower than 
the initial value. The results are given in Table 2. 

. 

Table 2 

Separation on Townend surfaoe -- 
Mm = 6.6, M, = 4.6174 

r---7----l----r-- 
E j 6 / y 1 lfsep 

LjgzJ$i::: 

45%0 62f28 I.4 / 4.520 

45E)oo t'.2:28 1.3 

I 

4.484 

e5kJ 37:30 4.3 4.405 
1 - -- - 

A typical plot of the surface flom angle is shown in Fig.16. It was 

found necessary to take steps in Wach n~xmxr which mere very small indeed. 
There is an initial rapid fall in surface flow angle, whioh flattens out a 
little and then again falls rapidly. The same technique of plotting tsn2p 
against Mach number served to determine the separation line. It was expeoled 
that a value of y less than I.4 might delay separation and for y = 1.3 a 

slightly later position was indeed found. 

One is forced to the conclusion that this type of surface 1s not suitable 
for obtaining useful compression unless the flow is turbulent or the boundary 
layer is bled awy. In view of this no further analysis of results was carried 
out for this surface. 

6 CONCLUSIOrJS 

There appears to be no difficulty in extending to three dimensions the 
solution of compressible boundary layer equations by implioit finite 

difference methods, at least in the case where there are only two independent 
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variables (0 and s here), even though there are in effect three dependent 
variables. Such problems are only quasi three-dimensional, and the addition 
of one more idepetient vsriable increases the work enormously ad brings 
other oomplications in its wake. 

Sdutions for the inolined ciroular cone have been found and can be 
carried far enough to estimate the position of separation. This position 
for a given inclination is not changed very muoh either by oooling the wall 
or by applying suotion, or even by changing the Mach number. This unexpected 
result ic due to the fact that increasing (say) the Mach number leads to an 
effective increase in pressure gradient and this increases the oross-flow to 
begin with, so that a larger cross-flow has later to be destroyed, thus 
oounteraoting the expected tendenoy to earlier separation. 

In the ease of the Townend surface all of the oases tried gave very 
esrly separation. 



. 
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Appendix A 

TFWWFORKkTION OF THE EQUATIONS OF MOTION 

We take dP/ar = 0 and make the transformation (5). In addition we 
follow Moore5 in writing 

which satisfies (4), and then we put 

1 
l$ = 

0 - 
+ 2 Jcp, p, a2 f(Z, 0) 

so that 

(37) 

u = fZ, v = gz . 

We write 

f. = c+ 

0 0 

ana we find that r will drop out from the equations of motion and they reduce 

to 

+ $f+s,+gq ( 
% 
) 

I 
gZZZ ezz - gz gze - fZ gz = i; Pe 

11 Pr ZZ + ;f+ge+gg 
( > 

Iz -gzIe = - $ gz Pe - f',, - gzz * 

These equations were in effect first obtained by Moore5. The equations 
may also be written 
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%z - QU, - we + v2 = 0 

vzz - Qv, - we - w = $ pe 

45 Izz - QIZ - VI, = - $pg - 
c 

(UZ)' + (VZ)' 
3 

QZ ++l+ve+v~ 00 . 

Next we write 

u = U,“, V=Vev, Z=U$Z, Q E Ij$ w- 
( 

; K' L' vs 
> 

dU V 
I=IeT, L'+$, K'=$ 

e e 
CLdW.ShaW3 

u -wu - K' L' u-f se e - K' vue + KW2 v* = 0 (38) 

V v (M' v + K' ve + u) E I -wu - 22 e PUeVe pe 
(39) 2 

-wT K' v 
e - IC' N' v T - K' v TO I - - 

P Ie *e - + . 
e c 

cue uJ2 + (Ve vzJ2 
3 

. . . (40) 

K'vpg 
W z -;K'L'v+; u + M' v + K' vB 3 - 

*P (41) 

Atinfinitywe have u = v ST = I, and all derivatives of u, v and T with 
respect to e and 0 are eero. From equation (38) we see that this implies that 
K' = L' which is the oondition for irrotational external flow. This we shall 
suppose to be the oase; we have already discussed this in Section 3. 

If we apply the boundary conditions at infinity in equations (39) and 

(40) wefti 
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Appendix A 

% 
P, u, v = -(i+M'), -+-pe = - K' N' . 

e e e 

19 

These results can also be obtained direct157 from the external isentrcpic flow. 

To find the right hand side of equation (41) we use the fact that in 
isentropic flow 

IL= Ie $r 
PO 0 T- 

and so 

=LN' . y-l 

We also have from the equation of state and the fact that the pressure 
is constant through the boundary layer 

Hence the equations of motion beoome finally 

u - MT u es Q - Iv2 uv - K’ vl.le + Iv2 v2 f 0 

v -wv - zs s v (M' v + K' ve + u) = - (I + M') T 

-wT -2 -K'vTe I 
e c 

cue usI2 + (v, Ye)2 
3 

w e -~K'2v+~u+M'u+K'vg I -. N' K' v . 
2(Y-1) 

. 
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Appendix B 

STARTING COPJJITIONS ON THE TOWNEND SURFACE 

The equations of motion ore have given will ap$y everywhere on the 
surface but in the initis3 (Nonweiler) part they can be simplified, sx~ce 
we have parallel flow here. Nevertheless it may be useful to derive the 
simplified equations directly from the main equstlons. 

We open out the surface on to 8 plane as in Fig.2. If U, is the extcrnsl 
velocity after passing through the shock and M 1 

is the Mach numher we have 

u, = - u, co9 e , Ye = u, sin 8 . (42) 

AlSO 

ul al Ml 9 .- = -- = y 
a a S 3 K; 

where K, is given by equation (20) with M = N,. Hence 

‘e Ml ‘e M, 

as 

q - y cos e , 

K; 
a, 

= T sin 0 , 

Ki’ 

Now the flow direction everywhere will be parallel to the line AB, and 
Ff t!le magnitude is q we have U = -q cos 8, V = q sin e snd so fron equations 
(6) ne have u = v. Also we have 

K’ = -tall e , Id q -1 , N’ = 0 

and the equations (14) and (12) reduce to one and the same equation. The 
resulting equations are (using (23)) 

U -WU sz z -taneuue = 0 

w T 2 2 
s - tan e u Te = - (y-l ) M, us 

w -- 
.z ; (1 - tan2e) u + ta e uR =o. 
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If we write 
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. 

rl = z 
f’ w 

= ftan gvu$ (log f) +$ 

f = c Q 
2 sill e 008 8 (Cot E - OOt e> 3 

the equations reduce to 

U” -gu’ = 0 

& T" -gT' L: - (y-l) Mf d2 

u+g’ = 0 

vrhere primes denote differentiation with respect to ri. These are the standard 

Blasius equations for compressible flow over a flat plate. Also i,nitially 
when C : E we have f = 0 as in the standard Blasius transformation. 

We then use any convenient method of solving these equations in terms of 
q. When we oome to the later flow where s is to be used its value will be 
found from the relation s = f,n where f, is the value of f when g = C,,(the 
value of 0 where the Townend surface proper begins), and so the two solutions 
can be joined. 

In the case of the Townend surfaoe there are difficulties in the change- 
over from the initial flat plate computation to the subsequent one sinoe the 
shape of the surface is such that there is a suddenly imposed pressure Crsdient 
at the change-over. Consequently the initial flow used does not satisfy the 
new differential equations. The effect is to cause oscillations in the subsequent 
steps. The method of dealing with this difficulty is to take a few very small 
steps, with 6M = -0.0005. The oscillations are then very much smaller and they 
demp out after a fev steps (4 steps were found to be adequate). Consequently, 

after proceeding a very small distance downstream we have arrived at a solution 
which does satisfy the differential equations and then we can proceed by larger 

steps and there is no further diffioulty. An alternative approach might be to 
smooth the coefficients of the differential equations over a short distance so 

as to ensure that there are no disoontinuities and then proceed by a few very 
small steps over the region where the changes are large. However the first 

method described c~oove proved adequate. 
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‘SYMBOLS 

A 

9 bns On' an 

a 8 
B 
C 
D 
I 
k 
K 
K', L', M', V 
M 
w 

defined by (29) 
coefficients in (24) 

critical velocity of sound 

defined by (32) 
Chapman-Rubesin constant 

defined by (35) 
eehalpy 
heat oonduotivity 
defined by (20) 
defined by (9) 
Maoh number 

+.9 

values from tables used in (15) and (16) 

defined by mbB = '3 
defined by n6e = z 
number less one of intervals Sz 
pressure 
Prandtl number 
resultant velocity 
defined by (8) 
rate of heat transfer 
distance from apex of cone 

I/I, 

velocity components 
cross-flow velocity 
defined by (6) and (8) 
defined by (6) 
defined by (5) 
incidence of cone 
defined by (19) 
surface,flow angle 
(M2-I)1 
ratio of speoific heats 
defined by (36) 

components of displacement thickness 
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SYMBOLS (Co&l) 

h 
Au 
6 
E 

e 

defmed by (IT) 
defined by (28) 
see Figs.1 and 2 
see Figs.1 and 2 
angle between generators ofthe cone when developed into a 
phle 
semi-angle of cone 

distanoe measured normal to the surfaoe 
a/sin Be 

visoosity 
density 
components of skin friction 

defined by (37) 

denotes values in the main stream 
denotes values at the wall 
denotes values at some reference condition 
denotes values at infinity upstream 
denotes values at separation 
denotes values just after the Nonweiler surface shock 
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