COYAL AIBRARARY
BEDFORD.

MINISTRY OF TECHNOLOGY
aERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Approximate Solutions of the

 Three-Dimensional Laminar Boundary Layer Momentum Integral EquationsBy

PD Smith and AD Young
Queen Mary College, University of London

LONDON HER MAJESTY'S STATIONERY OFFICE

APPROXIMATE SOLUTIONS OF THR THRRB-DIMENSIONAL LAMINAR

boundary laykr momenium Integrai bquations **

by
P.D. Smith and A.D. Young (Queen Mary College, University of London)

SURMARY

Six methods for the approximate solution of the three-dimensional Iaminar boundary layer momentum integral equations are presented and compared with three knom exact solutions. These methods all invalve the Pohlhausen teahnique of specifying velooity profiles in terms of one or two unknown and substituting these expressions for the profiles into the two momentum integral equations to render them determinate.

Comparison of these methods with the exact solutions shows that the assumption of small cross-flow velocity in the boundary layer is generally adequate in cases involving favourable pressure gradients but introduces aignificant errors in oases involving adverse pressure gradients. In cases of moderate adverse pressure gradient the accureoy of the approximate solution may be improved to some extent by the adoption of an extension of the Luxton-Young technique. However, for large adverge gradients adequate acuracy may only be obtained by including the cross-flow terms in the momentum integral equations, and the method described here is then shown to lead to very satisfactory results in all the cases examined.

It appears that provided the maximum value of the angle β between the limiting and external streamines is less than about 10° the small

[^0]* Now at R.A.E. Bedford.
cross-flow assumption is of adequate accuracy for most engineering purposes.

1. INTHODUCTION

It is not intended that this paper should serve as a comprehensive review of the subject of three-dimensional laminar boundary layer theory, a full review and associated bibliography will be found in reference 1. However, a brief introduction to the subject is first presented as a preliminary to a discussion of the authors' work on approximate methods of solution to the three-dimensional, laminar, incompressible momentum integral equations. The boundary layer equations in curvilinear coordinates are initially presented and these lead to the momentum integral equations in streamline coordinates. The approximations associated with the assumption of small cross-flow velocity which lead to what hesbecome known as the "axially aymmetric analogy" ${ }^{2}$ are then developed and this leads in turn to a discussion of approximate methods of solution of the momentum integral equations. The Pohlhausen ${ }^{3}$ type of approach is considered and a comparison is made between a method due to Cooke ${ }^{4}$ and a method based upon Pohlhausen ${ }^{3}$ quartic type velocity profiles devised by Young. The results given by both these methods for three cases involving favourable and unfavourable pressure gradients are compared with known exact solutions as are the results given by a method which involves an extension of the Luxton-Young 5^{5} technique to the threedimensional case. Finally, a method is presented which is not restricted to the case of amall cross-flow velocity and includes all the terms in the momentum integral equations and its results are also compared with the exact solutions. It is shown that only the last method gives adequate sccuracy for large adverse pressure gradients, but in general where the pressure gradients are less severe the small cross-flow assumption leads to results that are very satiafactory.
2. THE BOUNDARY LLAYER ANVD MOMENTYM INTEGRAL EQUATIONS

A system of orthogonal curvilinear coordinates $(\xi, \eta, \mathcal{Y}$) is used. The
surface on which the boundary layer lies is denoted by $\mathcal{Y}=0$ and \mathcal{Y} measures the distance from the surface along a normal. On the surface $\varphi=0$ are two families of coordinate curves ξ - constant and η - constant orthogonal to one another. In this system an element of length ($d a$) within the boundary layer ia given by

$$
d s^{2}=h_{1}^{2} d \xi^{2}+h_{2}^{2} d \eta^{2}+d \xi^{2}
$$

where h_{1} and h_{2} are length parameters which may be taken as functions of ξ and η only, provided that the surface curvature does not change abruptly and that the boundary layer thickness is amall compared with the prinoipal radil of curvature of the surface. Subject to these provisions the coordinate system can be taken as triply orthogonal within the boundary layer although it does not necessarily remain so further away from the surface.

In this coordinate system the boundary layer equations and the continuity equations are
$\rho\left[\frac{u \partial u}{h_{1} \partial \xi}+\frac{v}{h_{2}} \frac{\partial u}{\partial \eta}+w \frac{\partial u}{\partial y}-k_{2} u v+k_{1} v^{2}\right]=-\frac{1}{h_{1}} \frac{\partial P}{\partial \xi}+\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right)$,
$\rho\left[\frac{u \partial v}{h_{1} \partial \xi}+\frac{v}{h_{2}} \frac{\partial v}{\partial \eta}+w \frac{\partial v}{\partial y}-k_{1} u v+k_{2} u^{2}\right]=-\frac{1}{h_{2}} \frac{\partial p}{\partial \eta}+\frac{\partial}{\partial y}\left(\mu \frac{\partial v}{\partial y}\right)$,

$$
0=\frac{\partial P}{\partial Y},
$$

$\frac{\partial}{\partial \xi}\left(\rho h_{2} u\right)+\frac{\partial}{\partial \eta}\left(\rho h_{1} v\right)+\frac{\partial}{\partial y}\left(\rho h_{1} h_{2} w\right)=0$,
where u, v, w are the velocity components in the direction of the $\boldsymbol{\xi}, \eta, \boldsymbol{y}$ axes respectively. P is the pressure, ρ the density, μ the viscosity and k_{1}, k_{2} are the geodesio curvatures of the curves ξ - constant $\eta=$ constant respeotively, i.e.

$$
k_{1}=-\frac{1}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \xi}, \quad k_{2}=-\frac{1}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}
$$

The equations for incompressible flow were first given by Howarth ${ }^{6}$ who used a system of coordinates which were triply orthogonal everywhere and hence were convenient for the direct application of vector analysis but strictly required that the coordinate system on the surface consisted of the lines of principal curvature. Square ${ }^{7}$ showed, however, that Howarth's boundary layer equations apply with the usual boundary layer approximations for the coordinate system used here. Timman gave a derivation of the equations from an argument based upon first principles.

The values $\partial P / \partial \xi, \partial P / \partial \eta$ are obtained from the flow at the edge of the boundary layer. Denoting values at the edge by the subscript "e" we find from 2.1 and 2.2

$$
\begin{align*}
& P_{e}\left[\frac{u_{e}}{h_{1}} \frac{\partial u_{e}}{\partial \xi}+\frac{v_{e}}{h_{2}} \frac{\partial u_{e}}{\partial \eta}-k_{2} u_{e} v_{e}+k_{1} v_{e}^{2}\right]=-\frac{1}{h_{1}} \frac{\partial P}{\partial \xi} \\
& P_{e}\left[\frac{u_{e}}{h_{1}} \frac{\partial v_{e}}{\partial \xi}+\frac{v_{e}}{h_{2}} \frac{\partial v_{e}}{\partial \eta}-k_{1} u_{e} v_{e}+k_{2} u_{e}^{2}\right]=-\frac{1}{h_{2}} \frac{\partial P}{\partial \eta} .
\end{align*}
$$

The momentum integral equations are obtained by integrating 2.1 and 2.2 term by term across the boundary layer and using 2.4, 2.6 and 2.7 to eliminate w and P. If we write $U_{e}^{2} \cdot u_{e}^{2}+v_{e}^{2}$ and, restricting ourselves to incompressible flow, define the various momentum and displacement thicknesses

$$
\begin{aligned}
& \delta_{1}=\int_{0}^{\infty} \frac{\left(u_{e}-u\right)}{u_{e}} d \varphi, \delta_{2}=\int_{0}^{\infty} \frac{\left(v_{e}-v\right)}{u_{e}} d \varphi_{1}, \theta_{11}=\int_{0}^{\infty} \frac{\left(u_{e}-u\right) u}{u_{e}^{2}} d \rho \\
& \theta_{21}=\int_{0}^{\infty} \frac{\left(v_{e}-v\right) u}{u_{e}^{2}} d \varphi, \theta_{12}=\int_{0}^{\infty} \frac{\left(u_{e}-u\right) v}{u_{e}^{2}} d \varphi, \theta_{\lambda 2}=\int_{0}^{\infty} \frac{\left(v_{e}-v\right) v}{u_{e}^{2}} d \varphi,
\end{aligned}
$$

where

$$
\tau_{01}=\left(\mu \frac{\partial u}{\partial y}\right)_{\rho=0} \text { and } \tau_{0 \alpha}=\left(\mu \frac{\partial v}{\partial y}\right)_{f=0} \text {, }
$$

the momentum integral equations become

$$
\begin{aligned}
& \frac{1}{h_{1} u_{e}^{2}} \frac{\partial}{\partial \xi}\left(u_{e}^{2} \theta_{n}\right)+\frac{1}{h_{2} u_{e}^{2}} \frac{\partial}{\partial \eta}\left(\theta_{12} u_{e}^{2}\right)+\frac{1}{h_{1} u_{e}} \frac{\partial u_{e}}{\partial \xi} \delta_{1} \\
& +\frac{1}{h_{2} u_{e}} \frac{\partial u_{e}}{\partial \eta} \delta_{2}-k_{1}\left(\theta_{11}-\theta_{22}-\frac{v_{e}}{u_{e}} \delta_{2}\right)-k_{2}\left[\left(\theta_{12}+\theta_{22}\right)+\frac{v_{e}}{u_{e}} \delta_{1}\right]=\frac{\tau_{01}}{\rho_{e} u_{e}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{h_{1} u_{e}^{2}} \frac{\partial}{\partial \xi}\left(\theta_{21} u_{e}^{2}\right)+\frac{1}{h_{2} u_{e}^{2}} \frac{\partial}{\partial \eta}\left(\theta_{22} u_{e}^{2}\right)+\frac{1}{h_{1} u_{e}} \frac{\partial v_{e}}{\partial \xi} \delta_{1} \\
& +\frac{1}{h_{2} u_{e}} \frac{\partial v_{e}}{\partial \eta} \delta_{2}-k_{1}\left(\theta_{21}+\theta_{12}+\frac{u_{e}}{u_{e}} \delta_{2}\right)-k_{2}\left(\theta_{22}-\theta_{11}-\frac{u_{e}}{u_{e}} \delta_{1}\right)=\frac{\tau_{02}}{\rho_{e} u_{e}^{2}}
\end{aligned}
$$

3. THE MOMENTUM INTEGRAL ERUATIONS IN STREAMLINE COORDINATES

If the ourves $\eta=$ constant $\eta=$ constant on the surface $\rho=0$ are taken to be the projection of the external streamlines on to the surface and their orthogonal trajectoriea respectively, we then have $v_{e}=0$ and $U_{e}=u_{e}$. The momentum and displacement thicknesses are then given by

$$
\begin{aligned}
& \delta_{1}=\int_{0}^{\infty}\left(1-\frac{u}{u_{e}}\right) d \rho, \delta_{2}=-\int_{0}^{\infty} \frac{v}{u_{e}} d \varphi, \theta_{u}=\int_{0}^{\infty}\left(1-\frac{u}{u_{e}}\right) \frac{u}{u_{e}} d \rho \\
& \theta_{12}=\int_{0}^{\infty}\left(1-\frac{u}{u_{e}}\right) \frac{v}{u_{e}} d \rho, \theta_{21}=-\int_{0}^{\infty} \frac{u v}{u_{e}^{2}} d \varphi, \theta_{2 \lambda}=-\int_{0}^{\infty} \frac{v^{2}}{u_{e}^{2}} d \rho,
\end{aligned}
$$

and the momentum equations become
$\frac{1}{h_{1} u_{e}^{2}} \frac{\partial}{\partial \xi}\left(\theta_{11} u_{e}^{2}\right)+\frac{1}{h_{2} u_{e}^{2}} \frac{\partial}{\partial \eta}\left(\theta_{12} u_{e}^{2}\right)+\frac{1}{n_{1} u_{e}} \frac{\partial u_{e}}{\partial \xi} \delta_{1}$
$+\frac{1}{h_{2} u_{0}} \frac{\partial u_{e}}{\partial \eta} \delta_{2}-k_{1}\left(\theta_{11}-\theta_{22}\right)-k_{2}\left(\theta_{12}+\theta_{21}\right)=\frac{\tau_{0}}{\rho u_{e}^{2}}$
$\frac{1}{n_{1} u_{e}^{2}} \frac{\partial}{\partial \varphi}\left(\theta_{21} u_{c}^{2}\right)+\frac{1}{n_{2} u_{e}^{2}} \frac{\partial}{\partial \eta}\left(\theta_{22} u_{e}^{2}\right)-2 k_{1} \theta_{21}-k_{2}\left(\theta_{22}-\theta_{11}-\delta_{1}\right)=\frac{\tau_{02}}{\rho u_{e}^{2}}$
If the external flow is irrotational a velocity potential exists which may be put equal to ξ so that $h_{1}=1 / u_{e}$. Then the momentum integral equations become
$\frac{\partial \theta_{11}}{\partial \xi}+\frac{1}{n_{2} u_{e}} \frac{\partial}{\partial \eta}\left(\theta_{12}\right)+\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial \xi}\left(2 \theta_{11}+\delta_{1}\right)-\frac{1}{u_{e}} k_{1}\left(\theta_{11}-\theta_{22}\right)=\frac{\tau_{01}}{\rho u_{e}^{3}}$
$\frac{\partial \theta_{21}}{\partial \xi}+\frac{1}{h_{2} u_{e}} \frac{\partial}{\partial \eta}\left(\theta_{N_{2}}\right)+\frac{2}{u_{e}} \frac{\partial u_{e}}{\partial \xi} \theta_{21}+\frac{1}{h_{2} u_{e}^{2}} \frac{\partial u_{e}}{\partial \eta}\left(\theta_{11}+\theta_{22}+\delta_{1}\right)-\frac{2}{u_{e}} k_{1} \theta_{21}=\frac{\gamma_{02}}{\rho u_{e}^{3}}$

4. CROSS-FLOWS

The component of the flow in the boundary layer which is at right anglea to the direction of the external atreamines is defined as a cross flow. Along a normal to the surface the cross-wise velocity component varies in magnitude from zero at the surface to some maximum and then to zero at the edge of the boundary layer. In streamline coordinates the cross-wise velocity is v.

The physical explanation for the existence of cross-flows is described In Reference 1. Briefly if the streamlines at the edge of the boundary layer are curved there must be a cross-wise pressure gradient to balance the centrifugal force. Now 2.3 shows that this pressure gradient will not vary s.long a normal to the surface so that in the boundary layer where the fluid elements have been retarded by viscosity they must, to provide the same centrifugal force, follow a more highly curved path than that of the element at the outer edge of the boundary layer. The resultant direction of the flow will clearly then be different at different levels in the boundary layer. The limit of this direction as the surface is approached is known as.the direction of the limiting streamine. The angle β between the external streamline and the limiting streamline may be defined as

$$
\tan \beta=l \operatorname{mit}_{\varphi \rightarrow 0} \frac{v}{u}=\frac{\tau_{02}}{\tau_{01}}
$$

With the sudden imposition of a cross-wise pressure gradient the crossflow will immediately start to grow until the cross-wise viscous forces balance the cross-wise pressure and centrifugal forces. When the pressure gradient is removed the cross flow does not immediately disappear but because of the cross-wise shear stresses its reduction to zero is gradual.
5. THE AXIALLY SYMIETRIC ANALOGY

It has been long established that if the cross-wise velocities and crosswise gradients are small the streanwise flow may be calculated independently
of the cross-flow. Having done this the cross-flow may then be calculated from a linear first order differential equation. Eichelbrenner and Oudart 9 pointed out that this simplification leads for the streamwise flow to an analogy with axially symmetric flow. This is readily demonstrated for the equations of motion but we shall confine our attention to the momentum integral equation.

Consider equation 3.2, neglecting the cross-flow terms we have

$$
\begin{equation*}
\frac{1}{h_{1} u_{e}^{2}} \frac{\partial}{\partial \xi}\left(\theta_{11} u_{e}^{2}\right)+\frac{1}{h_{1} u_{e}} \frac{\partial u_{e}}{\partial \xi} \delta_{1}-k_{1} \theta_{11}=\frac{\tau_{a l}}{\rho u_{e}^{2}} \tag{51}
\end{equation*}
$$

Writing $\left(1 / h_{1}\right)(\partial / \partial \xi)$ as $\partial / \partial s$ and $h_{2}=r$ so that $k_{1}=-\left(1 / h_{1} h_{2}\right)\left(\partial h_{2} / \partial \xi\right)=-(1 / r)(\partial r / \partial s)$ we find 5.1 becomes

$$
\frac{\partial \theta_{11}}{\partial s}+\theta_{11}\left[(H+\lambda) \frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s}+\frac{1}{r} \frac{\partial r}{\partial s}\right]=\frac{\tau_{01}}{\rho u_{e}^{2}}
$$

where $H=\delta_{1} / \theta_{11}$. This is the momentum integral equation for the boumdary layer flow over an axially symmetric body of cross-sectional radius r. Now $k_{1}=-(1 / r)(\partial r / \partial s) \quad$ is the geodesic curvature of the orthogonal trajectories of the streamlines. It is thus a measure of the amount these streamlines diverge or converge. If $\partial r / \partial s$ is positive the streamlines diverge just as in axially symmetric flow.

With the assumption of small cross flow velocity the cross-wise momentum equation 3.3 becomes

$$
\frac{\partial \theta_{\lambda 1}}{\partial s}+2 \theta_{21}\left(\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s}+\frac{1}{r} \frac{\partial r}{\partial s}\right)+k_{2}\left(\theta_{11}+\delta_{1}\right)=\frac{\tau_{02}}{\rho u_{e}^{2}}
$$

where

$$
k_{2}=-\frac{1}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}=\frac{1}{u_{e} r} \frac{\partial u_{e}}{\partial \eta}
$$

in irrotational flow if we put $h_{1}=1 / u_{e}$.

6. THE DETERMINATION OF x

The parameter r isafunction of the geometry of the body and of the external flow. Cooke ${ }^{2}$ has shown how r may be determined. If the equation of the surface in Cartesian coordinate is $z=z(x, y)$ and if U
and V are velocity components parallel to the axes x and y then r is given by

$$
u_{e} \frac{\partial}{\partial s}\left(\log \frac{u_{0}^{2} r^{2}}{g}\right)=2\left(\frac{\delta U}{\delta x}+\frac{\delta V}{\delta y}\right)
$$

where

$$
\begin{aligned}
& u_{e} \frac{\partial}{\partial s}=\frac{u \delta}{\delta x}+\frac{v \delta}{\delta y} \\
& \frac{\delta}{\delta x}=\frac{\partial}{\partial x}+\frac{\partial z}{\partial x} \frac{\partial}{\partial z}, \frac{\delta}{\delta y}=\frac{\partial}{\partial y}+\frac{\partial z}{\partial y} \frac{\partial}{\partial z} \\
& g=1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2} .
\end{aligned}
$$

If $\partial z / \partial x$ and $\partial z / \partial y$ are small (i.e. If the surface is nearly flet) equations 6.1 simplify to

$$
\begin{align*}
& u_{e} \frac{\partial}{\partial s}\left(\log u_{e} r\right)=\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y} \\
& u_{e} \frac{\partial}{\partial s}=\frac{u \partial}{\partial x}+\frac{V \partial}{\partial y} .
\end{align*}
$$

It should perhaps be mentioned, as r arose in connection with the axiaily symmetric analogy, that r is a function of the body geometry and the extermal flow and in no sense ia small cross flow implied in 6.1 and 6.2 above.

7. APPROXINATE SOLUTION OF THE MOMENTUM INTEGRAL EQUATIONS

As argued in reference 1 the choice of a atreamline coordinate syater is encouraged by the result obtained from various studies of the vel ooity profiles of the known exact solutions for three-dimensional laminar boundary layers that the atreamwise velocity profiles are virtually identical to the velocity profiles in corresponding two-dimensional boundary layere. Turning to approximate methods of solution and dealing only with the Pohlhausen ${ }^{3}$ type of approach one has two momentum integral equations and hence two parameters may be introduced into the description of the velooity profilen

$$
\begin{align*}
& u / u_{e}=f\left(M_{1}, N, \xi, \eta, \varphi\right) \tag{71}\\
& v / u_{e}=g\left(M_{2}, N, \xi, \eta, \varphi\right)
\end{align*}
$$

where M_{1} and M_{2} are not independent but are related by the external flow. It has been found that the streamwise flow cannot be adequately represented by a singly infinite family of velocity profiles when the streamwise pressure gradients are large or rapidly changing; a two-dimensional boundary layer requires a doubly infinite family in corresponding circumstances. However, in what follows we shall adopt the usual approach of representing the streamwise profiles by a single parameter M_{1}.

If we consider the momentum integral equations in the case of small cross-flow (5.2 and 5.3) and in the description of the streamwise velocity profile take M_{1} to be the usual Pohlhausen parameter $\lambda=\left(\delta^{2} / \nu\right)\left(\partial u_{e} / \partial s\right)$, the streamwise equation may be solved in a manner which follows closely the Pohlhausen ${ }^{3}$ technique in two dimensions. Here δ is a parameter related to the boundary layer thickness. We then obtain all the unknowns in equation 5.2 as known functions of λ, i.e.

$$
\frac{\theta_{11}}{\delta}=f_{1}(\lambda), \frac{\delta_{1}}{\delta}=f_{2}(\lambda), \frac{\tau_{01}}{\rho u_{2}{ }^{2}}=\frac{\nu}{u_{e} \delta}\left[f_{3}(\lambda)\right],
$$

for then u / u_{e} is expressed as a specified function of ρ / δ plus λ times another specified function of φ / δ, these two functions being determined by an appropriate number of boundary conditions and their specified form. If we now substitute these expressions in 5.2 we get

$$
\frac{\partial\left(\delta f_{1}\right)}{\partial s}+\frac{1}{r} \frac{\partial r}{\partial s} \delta f_{1}+\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s} \delta\left(f_{2}+2 f_{1}\right)=\frac{\nu}{u_{e} \delta} f_{3}
$$

which after a little algebra may be written
$\left(\frac{1}{2} f_{1}+\lambda \frac{\partial f_{1}}{\partial \lambda}\right) \frac{\partial\left(\lambda\left(\frac{\partial u_{e}}{\partial s}\right)\right.}{\partial s}=\frac{1}{u_{e}}\left(f_{3}-\lambda f_{2}-\lambda \lambda f_{1}\right)-\frac{\partial f_{1}}{\partial \lambda}\left(\frac{\delta^{2}}{v}\right)^{2} \frac{\partial^{2} u_{e}}{\partial s^{2}}-f_{1}\left(\frac{\delta^{2}}{v}\right) \frac{1 \partial r}{r \partial s}$
and this apart from the last term on the right-hand side is identical with the equation obtained by Pohlhausen in two dimensions.

For the cross flow momentum integral equation with small cross flow, 5.3, we take $M_{2}=-\left(\delta^{2} / \mu\right)\left(1 / u_{2}\right)(\partial P / r \partial \eta)$. The choice of M_{λ} in this form arises naturally, as will be shown below, from the boundary condition imposed upon the aross-flow velocity profile by the second equation of motion (2.2) at the wail. In the case of irrotational flow it will be seen from equations 2.7 and 2.5 that M_{2} becomes $M_{2}=\left(\delta^{2} / v\right)\left(\partial u_{e} / r \partial \eta\right)$ but we retain the more general form here as we wish to consider comparisons with exact solutions in which the external flow is rotational. If the assumed velooity profile for v / u_{e} is also in the form of a specified function of ρ / δ times M_{2} plus another specified function of φ / δ times N we then find as shown in the example below that $\theta_{21} / \delta=f_{4}(\lambda) N+f_{5}(\lambda) M_{2}$ and that

$$
\tau_{02} / \rho u_{e}^{2}=\frac{\nu}{u_{e} \delta}\left(C_{1} M_{2}+C_{2} N\right)
$$

where $f_{4}(\lambda), f_{5}(\lambda)$ and the constants C_{1} and C_{2} are determined by the speoified forms of the functions chosen to describe the cross-flow velooity profile. Substituting in 3.3 and assuming small cross-flow yielde
$\frac{\partial \theta_{\lambda 1}}{\partial s}+2 \theta_{21}\left(\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s}+\frac{1}{r} \frac{\partial r}{\partial s}\right)+\frac{\nu M_{2}}{\delta u_{e}}\left(f_{1}+f_{2}\right)=\frac{v}{u_{e} \delta}\left[C_{1} M_{2}+C_{2} N\right]$
but

$$
N=\left(\theta_{21} / \delta-f_{5} M_{2}\right) / f_{4}
$$

and therefore
$\frac{\partial \theta_{21}}{\partial s}+2 \theta_{21}\left(\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s}+\frac{1}{r} \frac{\partial r}{\partial s}\right)+\frac{v M_{2}}{\delta u_{e}}\left(f_{1}+f_{2}\right)=\frac{\nu}{u_{e} \delta}\left[C_{1} M_{2}+\frac{C_{2}}{f_{4}}\left(\frac{\theta_{21}}{\delta}-f_{2} M_{2}\right)\right]$
$0 \times$

$$
\begin{align*}
\frac{\partial \theta_{21} / \delta}{\partial s}+\frac{\theta_{21}}{\delta} \frac{v}{2 \delta^{2}} \frac{\partial\left(\delta^{2} / v\right)}{\partial s} & +2\left(\frac{\theta_{21}}{\delta}\right)\left(\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s}+\frac{1}{r} \frac{\partial r}{\partial s}\right)+\left(f_{1}+f_{2}\right) \frac{M_{2} \nu}{u_{e} \delta^{2}} \\
& =\frac{\nu}{u_{e} \delta^{2}}\left[C_{1} M_{2}+\frac{C_{2}}{f_{4}}\left(\frac{\theta_{21}}{\delta}-f_{s} M_{2}\right)\right]
\end{align*}
$$

Equation 7.4 is linear in θ_{21} / δ and may be solved by a step by tep
process once we heve the streamwise solution and hence $\partial\left(\delta^{2} / v\right) \partial s$ and δ^{2} / v We now give two examples of this type of approximate solution. The firgt involves the use of Pohlhausen ${ }^{3}$ quartics for the desoription of the velocity profiles and the second, which is Cooke's method ${ }^{4}$, involves profiles auggeated by Timman ${ }^{10}$.

For the first example the streamwise velocity profile is represented by the well-known Pohlhausen quartic in $\mathrm{j} / \mathrm{\delta}$ 1.e.

$$
\begin{gathered}
\frac{u}{u_{2}}=F(\rho / \delta)+\lambda G(\varphi / \delta) \text { where } F(\varphi / \delta)=2 \rho / \delta-2(\varphi / \delta)^{3}+(\varphi / \delta)^{4} \\
G(\varphi / \delta)=\frac{1}{6} \frac{\rho}{\delta}\left(1-\frac{\gamma}{\delta}\right)^{3}
\end{gathered}
$$

And therefore

$$
\begin{aligned}
& \frac{\theta_{11}}{\delta}=f_{1}(\lambda)=\frac{37}{315}-\frac{\lambda}{945}-\frac{\lambda^{2}}{9072} \\
& \frac{\delta_{1}}{\delta}=f_{2}(\lambda)=\frac{3}{10}-\frac{\lambda}{120} \\
& \frac{\tau_{01}}{\rho u_{e}^{2}}=\frac{v}{u_{e} \delta}\left(f_{8} \lambda\right)=\frac{v}{u_{e} \delta}(2+\lambda / 6) \cdot
\end{aligned}
$$

Por the cross flow velocity profile we assume

$$
\frac{v}{u_{2}}=a_{2} \bar{y}+b_{2} \bar{y}^{2}+c_{2} \bar{y}^{3}+d_{2} \bar{\rho}^{4}
$$

where $\bar{\varphi} \cdot \varphi / \delta$.
The boundary conditions for v / u_{e} are

$$
\bar{y}=1, \frac{v}{u_{e}}=0 \quad \text { and } \frac{d}{d \bar{\varphi}}\left(\frac{v}{u_{e}}\right)=0
$$

From the second equation of motion (2.2) at the wall

$$
\mu\left(\frac{\partial^{2} v}{\partial S^{2}}\right)_{0}=\frac{1}{h_{2}} \frac{\partial P}{\partial \eta}
$$

and hence from 7.5

$$
\frac{\mu u_{e}}{\delta^{2}} 2 b_{2}=\frac{1}{h_{2}} \frac{\partial P}{\partial \eta} \text {, therefore } b_{2}=\frac{\delta^{2}}{2 \mu u_{e}^{2}} \frac{1}{h_{2}} \frac{\partial P}{\partial \eta}=-\frac{M_{2}}{2}
$$

From the boundary conditions

$$
a_{2}+b_{2}+c_{i}+d_{2}=0, a_{2}+2 b_{2}+3 c_{\lambda}+4 d_{\lambda}=0, b_{2}=-M_{2} / 2
$$

hence
iso.

$$
a_{2}=\frac{M_{2}}{4}+\frac{d_{2}}{2}, \quad c_{2}=\frac{M_{2}}{4}-\frac{3 d_{2}}{2}
$$

$$
\begin{aligned}
\frac{v}{u_{e}} & =\frac{M_{2}}{4}\left(\bar{y}-2 \bar{y}^{2}+\overline{\mathcal{Y}}^{3}\right)+\frac{d_{2}}{2}\left(\overline{\mathcal{Y}}-3 \bar{y}^{3}+2 \bar{J}^{4}\right) \\
& =M_{2} F_{2}(\bar{Y})+d_{2} G_{2}(\bar{y}) \text { say }
\end{aligned}
$$

oi writing $d_{2} \geq N$

$$
\frac{v}{u_{e}}=M_{2} F_{2}(\bar{Y})+N G_{2}(\bar{Y})
$$

Hence

$$
\frac{\theta_{21}}{\delta}=-\int_{0}^{1}\left(F_{1}+\lambda G_{1}\right)\left(M_{2} F_{2}+N G_{2}\right) d \bar{\varphi}=-\left[M_{2} I_{1}+\lambda I_{2}+N\left(I_{3}+\lambda I_{4}\right)\right]
$$

where

$$
\begin{gathered}
I_{1}=\int_{0}^{1} F_{1} F_{2} d \bar{J}=3 / 24-4, I_{2}=\int_{0}^{1} G_{1} F_{1} d \bar{Y}=1 / 4032, I_{3}=\int_{0}^{1} C_{2} F_{1} d \bar{J}=\frac{263}{5040} \\
I_{4}=\int_{0}^{1} G_{1} G_{2} d \bar{J}=5 / 6048
\end{gathered}
$$

1.e.
$\frac{\theta_{2}}{\delta}=f_{4} N+f_{5} M_{2}=N\left(-\frac{263}{5040}-\frac{5}{6048} \lambda\right)+M_{2}\left(-\frac{3}{224}-\frac{1}{4032} \lambda\right)$.
Also
$\left(\frac{\partial v}{\partial \varphi}\right)_{\varphi=0}=\frac{u_{e} a_{2}}{\delta}=\frac{u_{e}}{6}\left(\frac{M_{2}}{4}+\frac{N}{2}\right)$ and $\frac{v}{u_{e}^{2}}\left(\frac{\partial v}{\partial y}\right)_{\rho=0}=\frac{v}{\delta u_{e}}\left(\frac{M_{2}}{4}+\frac{N}{2}\right)$
ie.

$$
\frac{\tau_{02}}{\rho u_{e}^{2}}=\frac{\nu}{u_{e} \delta}\left(C_{1} M_{2}+C_{2} N\right)=\frac{\nu}{\delta u_{2}}\left(\frac{M_{2}}{4}+\frac{N}{2}\right)
$$

The second method uses the profiles suggested by Piman 23

$$
\begin{aligned}
& u / u_{e}=f(z)-\lambda g(z) \\
& v / u_{e}=N K(z)-M_{2} g(z)
\end{aligned}
$$

$$
\text { where } k(z)=z e^{-z^{2}}
$$

$$
\begin{align*}
1-f(z)=2 g(z)+e^{-z^{2}} & =\frac{2}{\sqrt[3]{\pi}} z e^{-z^{2}}+\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^{2}} d t \\
z & =\varphi / \delta_{T} .
\end{align*}
$$

Here λ, M_{2} and N are formally as defined previously, but with δ_{T} replacing δ, and it should be noted that now δ_{T} is a scaling length, related to the boundary layer thickness, but not to be confused with the δ of the Pohlhausen method. Thus the upper limit of z is ∞ and not one as previously. Piman shows that for these profiles

$$
\begin{aligned}
& \theta_{11} / \delta_{T}=f_{1}(\lambda)=-289430+.007335 \lambda-0003798 \lambda^{2} \\
& \delta_{1} / \delta_{T}=f_{2}(\lambda)=-752253-0066987 \lambda
\end{aligned}
$$

$$
\frac{\tau_{01}}{\rho u_{e}^{2}}=\frac{\nu}{u_{e} \delta_{T}}\left[f_{3}(\lambda)\right]=\frac{\nu}{u_{e} \delta_{T}} \frac{2}{3 \sqrt{\pi}}(2+\lambda)=\frac{\nu}{u_{e} \delta_{T}} 0376127(2+\lambda)
$$

$$
7 \cdot 10
$$

$$
\theta_{21} / \delta_{T}=f_{4} N+f_{5} M_{2}=N(-0.294628-0.022314 \lambda)+M_{2}(-0.029826-00037975 \lambda)
$$

$$
\frac{\tau_{02}}{\rho_{u_{e}}{ }^{2}}=\frac{\nu}{u_{e} \delta_{T}}\left(c_{1} M_{2}+c_{2} N\right)=\frac{\nu}{u_{e} \delta_{T}}\left(\frac{2}{3 \sqrt{\pi}} M_{2}+N\right)
$$

Cooke ${ }^{4}$ simplified the solution by making the approximations $\theta_{11} / \delta_{T}=0.293$
and

$$
\frac{4}{3 \sqrt{\pi}} \frac{\theta_{11}}{\delta_{T}}(2+\lambda)-2 \lambda \frac{\theta_{11}}{\delta_{T}} \frac{\delta_{1}}{\delta_{T}} \bumpeq 0.436-2(0.293)^{2} \lambda
$$

These approximations were based on Lat's work ${ }^{14,15}$.
Cooke then obtained the etreamwise momentum integral equation in the form

$$
\frac{\partial\left[r^{2} u_{e}^{6}\left(\delta_{T}^{2} / v\right)\right]}{\partial s}=5.08 r^{2} u_{e}^{5}
$$

$\boldsymbol{\sigma}$

$$
\frac{\partial\left(r^{2} u_{c}^{6} \theta_{11}^{2}\right)}{\partial s}=0.436 r^{2} u_{c}^{5} \nu
$$

and the cross-flow momentum integral equation as

$$
\frac{\partial\left(r^{2} u_{0}^{2} \theta_{\nu}\right)}{\partial s}=r^{2} \frac{u_{0} \nu}{\partial T}\left[N+M_{2}(0.067 \lambda-0.669)\right] .
$$

The method involving Pohihausen quartic velocity profiles may be similarly amplified by a simple extension of a two-dimensional method due to Young ${ }^{1 l}$. Taking the streamwise momentum integral equation for small cross-flow

$$
\frac{\partial \theta_{11}}{\partial s}+\theta_{u}(H+2) \frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s}+\frac{\theta_{l}}{r} \frac{\partial r}{\partial s}=\frac{\tau_{a}}{\rho u_{e}{ }^{2}}
$$

and using the expression for $\tau_{01} / \rho u_{e}^{2}$ given by the assumption of the Pohlhausen quartic velooity profile, viz

$$
\frac{\tau_{01}}{\rho u_{c}{ }^{2}}=\frac{\nu}{u_{e} \delta}(2+\lambda / 6)
$$

we find that 5.2 becomes, if we write $\delta / \theta_{11} \geqslant f$,
$\frac{\partial \theta_{11}}{\partial s}+\theta_{11}(H+\lambda) \frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s}+\frac{\theta_{n}}{r} \frac{\partial r}{\partial s}=\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s} \frac{f \theta_{n}}{6}+\frac{2 \nu}{f \theta_{n} u_{e}}$
or

$$
\theta_{11} \frac{\partial \theta_{11}}{\partial s}=\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s} \theta_{11}^{2}[f / 6-(H+2)]-\theta_{11}^{2} \frac{1}{r} \frac{\partial r}{\partial s}+\frac{2 v}{f u_{e}} .
$$

This can be written

$$
\frac{\partial \theta_{\|}^{2}}{\partial s}+\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s} \theta_{e}^{2} g+\theta_{1} \frac{1}{r} \frac{\partial r}{\partial s}=\frac{4 \nu}{f u_{e}}
$$

where

$$
g=2\left[\begin{array}{ll}
(H+2) & -f / 6
\end{array}\right] .
$$

According to the Pohlhausen method the extremes of λ are about +7 and -12 for which the corresponding values of H are 2.31 and 2.74 and the corresponding values of δ / θ_{11} range from about 7 to 9.5 . Thus g varies iftle over the range of interest and if we assume g to be constant we obtain

$$
\frac{\partial\left(r^{2} \theta_{l}^{2} u_{e}^{g}\right)}{\partial s}=\frac{r^{2} 40}{f} u_{e}^{g-1}
$$

If we then assume the flat plate values of $f=9072$ and $H=2.59$ so that g-6.16 and assume f also to be a constant we have

$$
\frac{\partial\left(r^{2} \theta_{1}^{2} u_{e}^{616}\right)}{\partial s}=0.441 v r^{x} u_{e}^{5.16}
$$

which is very similar to the form (7.13) due to Cooke above. Similarly the assumption of H constantly equal to 2.59 and $\delta / \theta_{\|}^{\circ}=9.072$ simplifies the cross-flow momentum integral equation for the Pohlhausen quartic type method to the form

$$
\frac{\partial\left(\theta_{21} r^{2} u_{e}^{2}\right)}{\partial s}=\frac{r^{2} u_{0} v}{\delta}\left[0.5 \mathrm{~N}-0.1457 M_{2}\right]
$$

In both 7.18 above and 7.14 N is related to θ_{21} / δ (or θ_{21} / δ_{T}) by an equation of the form

$$
N=\frac{1}{f_{4}}\left(\frac{\theta_{21}}{\delta}-f_{5} M_{2}\right) \text { or } \frac{1}{f_{4}}\left(\frac{\theta_{21}}{\delta_{T}}-f_{5} M_{2}\right)
$$

where f_{4} and f_{5} are functions of λ only.

8. SOME COMPARISONS WITH EXACT SOLUTIONS

The four methods so far described based on the small oross-flow assumption (i.e. that using Pohlhausen quartic velocity profiles, its associated approximate method due to Young, that using Timman's profiles and Cooke's approximation thereof) have been programmed in Mercury Autocode for use on the University of London Atlas Computer and have been compared with three known exact solutions used as tests by Cooke ${ }^{4}$. These called Examples 1, 2 and 3 respectively in Figures 1 to 12 have velocity components

$$
\begin{aligned}
& \bar{u}_{1}=u_{1} / u_{\infty}=1 \\
& \bar{v}_{1}=V_{1} / u_{\infty}=A_{1} \frac{x}{c}+A_{2}\left(\frac{x}{c}\right)^{2}+A_{3}\left(\frac{x}{c}\right)^{3}
\end{aligned}
$$

respectively where X, Y are cartesian coordinates and U_{1}, V are velocities in the directions X increasing and Y increasing, c is a representative length and

$$
\left.\begin{array}{l}
A_{1}=2 \\
A_{2}=1 \\
A_{3}=-1
\end{array}\right\} \quad \text { EXAMPLE } 1
$$

$$
\left.\left.\begin{array}{l}
A_{1}=4 \\
A_{2}=4 \\
A_{3}=-4
\end{array}\right\} \text { EXAMPLE } 22 子 \begin{array}{l}
A_{1}=4 \\
A_{2}=-4 \\
A_{3}=4
\end{array}\right\} \text { EXAMPLEE } 3
$$

Cooke shows that for these cases for which the streamlines are translates we may take

$$
\frac{\partial}{\partial s}=\frac{1}{\bar{u}} \frac{\partial}{\partial x}, \frac{\partial}{r \partial \eta}=\frac{\bar{v}_{1}}{\bar{u}} \frac{\partial}{\partial x}, \quad M_{2}=-\frac{\lambda}{\bar{v}_{1}}
$$

where

$$
\bar{u}^{2}=\bar{u}_{1}^{2}+\bar{v}_{1}^{2}=\left(u_{e} / u_{\infty}\right)^{2} .
$$

These three examples all have streamlines with a point of inflexion at $x / c=0.5$. For Examples 1 and 2 the pressure gradient is initially favourable and changes to unfavourable at the point of inflexion. For Brample 3 the reverse is the case, the pressure gradient is originally unfavourable and changes to favourable at the point of inflexion.

The computer programe tabulated the solution of the two aimultaneous differential equations 7.2 and 7.4, the integration being performed by means of a librayy routine employing a Runga-Kutta-Merson technique.

Study of Figures 1 to 12, in which the results are presented reveals that, although there is little to choose between the four methods for the prediction of atreamwise momentum thickness, Cooke's approximation of the Timman profiles method produces slightly more accurate answers for the etreamrise skin friction than does the Young type approximation of the Pohlhausen quartic proitles method. This is, perhaps, to be expected as the Timman profiles satisfy all the boundary conditions at the outer edge of the boundary layer automatically. The predictions for $\tan \beta=\gamma_{0 \lambda} / \tau_{01}$ are good apart from the adverse pressure gradient for $x / c<0.5$ in Example 3, Figure 12. The predictions for θ_{1} are not so good in the cases involving
stronger adverse pressure gradients and larger cross-flows (Examples 2 and 3. Figures 5 and 9) but note should be taken of the false zeros of all the diagrams. The approximations made by Cooke appear to lead to the smallest errors for the cases examined, and Cooke's method seems therefore the best of the four tested. The only experimental checks ${ }^{12,13}$ upon Cooke's method known to the present authors show comparisons of predictions for $\tan \beta$ by Cooke's method with values obtained from flow visualisation tests. These have confirmed that $\tan \beta$ is well predicted by Cooke's method.

9. TWO OTHER METHODS

It will be seen that in all cases and in particular in Example 3 aignificant errors in the streamwise momentum thickness predictions occur in the presence of adverse pressure gradients. In an attempt to improve the predictions for adverse pressure gradients the technique devised by Luxton and Young ${ }^{5}$ for the case of the two-dimensional laminar compressible boundary layer with heat transfer has been adapted to the three-dimensional laminar boundary layer with small cross-flow.

The starting point for this method is equation 7.16

$$
\frac{\partial\left(r^{2} \theta_{11}^{2} u_{e}^{g}\right)}{\partial s}=\frac{r^{2} 4 v u_{e}^{g-1}}{f} .
$$

From an pnalysis of exact solutions Luxton and Young ${ }^{5}$ derive expressions for the dependence of f and g upon λ which in the simple incompressible case with zero heat transfer considered here may be reduced to

$$
\delta / \theta_{11}=f=9.072\left(1+D_{1} \lambda\right)
$$

and $H=2.59+D_{2} \lambda \quad 9 \cdot \lambda$
with $\quad g=2[(H+2)-f / 6]$
and $D_{1}=-0.0198, D_{2}=-0.0742$ for favourable pressure gradients and $D_{1}=-0.0246, D_{2}--0.106$ for adverse pressure gradients. We have also

$$
\lambda=\frac{\delta^{2}}{v} \frac{\partial u_{e}}{\partial s}=\frac{f^{2}}{v} \theta_{11}^{2} \frac{\partial u_{e}}{\partial s} .
$$

The calculation proceeds in a series of small steps in 5,9 and f are held constant during each step but vary from step to step. The procedure may be summarised as follows:
(i) Find the values of H and f at $s=.0$ from equations 9.2. In most cases $\lambda_{S=0}=0$ but if this is not so then $\lambda_{S=0}$ must be calculated from a known value of θ_{11} at $s=0$ by an iterative process through equations 9.3 and 9.2 .
(ii) Integrate equation 9.1 over a small step in 5 to obtain a value of θ_{11} at S_{1}.
(iii) Using the value of $f_{5}=0$ in equation 9.3 find an approximate value of $\lambda_{S_{1}}$.
(iv) Using the approximate value of $\lambda_{s_{1}}$ find $f_{s_{1}}$.
(v) Jse this value of $f_{S_{1}}$ in equation 9.3 to find a more accurate value of $\lambda_{y_{1}}$.
(∇) Substitute this more accurate value of $\lambda_{S_{1}}$ into equations 9.2 to find values of $f_{s_{1}}, H_{S_{1}}$ and hence $g_{s_{1}}$. The equation 9.1 may then be reintegrated over the step from $S=0$ to $s=s_{1}$ using the mean values of f and g over that step. This procedure (ii) to (vi) may be repeated until the value of $\lambda_{s_{1}}$ converges to a given tolerance.
(vii) Using the values of $f_{S_{1}}$ and $g_{S_{j}}$ repeat the procedure to find the solution at S_{2}.

This method has been applied to the three examples mentioned previously and as will be seen from Figures 1, 5 and 9 a definite improvement in the form of the distribution of θ_{M} is obtained, but the overall improvement for the larger adverse gradients is somewhat disappointing in the light of the results obtained in two dimensions (see Ref. 5).

For these large pressure gradients the question then arises as to the magnitude of the errors introduced by the assumption of small cross-flows, and we are led to consider the development of a method which does not
involve this assumption. Here a difficulty is encountered since the momentum integral equations contain terms such as $(1 / r)\left(\partial \theta_{12} / \partial \eta\right)$ and $(1 / r)\left(\partial \theta_{22} / \partial \eta\right)$. In the general case these must be accounted for by a calculation procedure which first ignores these terms and solves the momentum integral equations along several streamlines and then repeats the process accounting for the derivatives with respect to η by means of the differences in θ_{12} and $\theta_{\lambda \lambda}$ found upon neighbouring streamilines by the initial calculation. The whole calculation thus proceeds as an iterative process. For the particular cases considered here the process is however somewhat simpler since we may account for the derivatives in the η direction by the relation given above viz

$$
\frac{1}{r} \frac{\partial}{\partial \eta}=\frac{\bar{V}_{1}}{\bar{u}} \cdot \frac{\partial}{\partial x}
$$

The method devised is as follows and as will be seen it includes all the terms in the momentum integral equations. Timman has shown for his profiles that

$$
\begin{aligned}
& \theta_{12} / \delta_{T}=.205372 N+.03161 M_{2}-0.022314 \lambda N-0.003798 \lambda M_{2} \\
& \theta_{22} / \delta_{T}=-.156664 N^{2}-.044638 M_{2} N-.003798 M_{2}^{2} \\
& \delta_{2} / \delta_{T}=-.5 N-.066987 M_{2} .
\end{aligned}
$$

Substituting the Timman profile expressions for

$$
\frac{\theta_{12}}{\delta_{T}}, \frac{\theta_{2 \pi}}{\delta_{T}}, \frac{\delta_{2}}{\delta_{T}}, \frac{\theta_{11}}{\delta_{T}}, \frac{\delta_{1}}{\delta_{T}}, \frac{\theta_{21}}{\delta_{T}}, \frac{\tau_{01}}{\rho u_{e}^{2}}, \frac{\tau_{02}}{\rho u_{e}^{2}}
$$

into the momentum equations 3.2 and 3.3 and using

$$
M_{2}=-\frac{\lambda}{\bar{v}_{1}}, k_{2} u_{0}^{2}=-\frac{1}{\rho h_{2}} \frac{\partial P}{\partial \eta}=\frac{\nu}{\delta_{T}^{2}} M_{2} u_{e}, \frac{1}{r} \frac{\partial}{\partial \eta}=\bar{v}_{1} \frac{\partial}{\partial s}
$$

gives two simultaneous differential equations involving $\delta_{T}^{2} / \nu, \partial\left(\delta_{T}^{2} / v\right) / \partial S_{\text {, }}$ $N, \partial N / \partial s, \lambda=\left(\delta_{T}^{2} / \nu\right)\left(\partial y_{e} / \partial s\right)$ and functions of the external flow. These two equations were then rearranged by much lengthy but straightforward algebra into the form

$$
\begin{aligned}
& \frac{\partial\left(\delta_{T}^{2 / v)}\right.}{\partial s}=f_{1}\left(\delta_{T}^{2} / v, N, s\right) \\
& \frac{\partial(N)}{\partial s}=f_{2}\left(\delta_{T}^{2} / v, N, s\right)
\end{aligned}
$$

which could be solved by means of the library routine mentioned above. The method was then programmed and the results are presented in Figures 1 to 12 in which it is termed Method 3.

It will be eeen that the inclusion of the cross-flow terms in the momentum integral equations results in a marked improvement in the acouracy of the results particularly in the presence of strong adverse pressure gradients. The remaining relatively small discrepancies between the results given by Method 3 and the exact results can be ascribed to exrore arising from the velocity profiles chosen.
10. CONCLODING RETARKS

For the three-dimensional laminar boundary layer the use of the small cross-flow assumption together with a Pohlhausen type approximate solution of the momentum integral equations results in good agreement with exact solutions for cases involving favourable presaure gradients. Of the two types of velocity profiles, Pohlhausen quartios and Miman's profiles, teated in approximate solutions here, Cooke's approximation of the method involving the latter profiles yielded results which were marginally superior to those obtained by a Young type approximation of the method involving the former profiles. The results produced by these methods for the treamwise momentum thickness in adverse pressure gradients are by no means as good, however. This is thought to be due to the nature of the streamwise momentum integral equation which, with the assumption of amall orosa-flow velocity, we may rewrite as

$$
\frac{\partial \theta_{11}}{\partial s}=\frac{\tau_{01}}{\rho u_{e}^{2}}-\frac{1}{u_{e}} \frac{\partial u_{e}}{\partial s}\left[2 \theta_{11}+\delta_{1}\right]-\frac{\theta_{11}}{r} \frac{\partial r}{\partial s} .
$$

Far adverse pressure gradients $-\left(1 / u_{e}\right)\left(\partial u_{e} / \partial s\right)$ is positive so that if at any stage the value of θ_{11} predicted by the approximate solution is too large compared with the exact solution the value of $\partial \theta_{H} / \partial s$ over the next step will in consequence also tend to be too large and the approximate solution will tend to diverge from the exact solution. Similarly, should the value of θ_{11} be too small $\partial \theta_{11} / \partial s$ will be too small and once more the approximate solution will diverge from the exact solution. For favourable pressure gradients ($-\left(1 / u_{e}\right)\left(\partial u_{e} / \partial s\right)$ negative) this does not occur as a too large value of θ_{1} produces a too small value of $\partial \theta_{11} / \partial s$ and vice versa. The last term in the above equation $-\left(\theta_{11} / r\right)(\partial r / \partial s)$ tends to act in the opposite sense but it is generally dominated by the second term as far as the net effect of exrors in θ_{11} are concerned. For the adverse pressure gradient case, Example 3, shown in Figure 9, neglect of the cross-flow terms in the streamwise momentum integral equation and the assumption that $\theta_{11} / 8$ is a constant both have the effect of producing a val ue of θ_{11} which is too large when compared with the exact solution. This results in the divergence mentioned above and the consequent inaccuracy of this type of approximate method. The assumption that θ_{11} / δ is a constant may be removed by the adoption of the extension of the Luxton-Young technique presented here and results in some improvement of accuracy for favourable and small adverse gradients. However for large adverse gradients the assumption of small cross-flows leads to significant errors and must be discarded to achieve adequate accuracy.

The approximate method involving the full momentum integral equations developed here produces for the cases considered very satisfactory results but at the expense of greater computational complexity which would be even more marked in the general case where an iterative procedure would be required.

As a rough tentative guide as to when the pressure gradients and the
cross-flows are such as to call for the inclusion of the cross-flow terme we may note that for Examples 1 and 2 where the small cross-flow methods are for most puxposes of acceptable accuracy the maximum value of β was of the order of 10° whilst for Example 3 the maximum value of β was about 20°.

REFERENCES

1. Cooke J.C.

Hall M.J.
2. Cooke J.C.
3. Pohlhausen K.
4. Cooke J.C.
5. Luxton R.E. Young A.D.
6. Howarth L.
7. Squire L.C.
8. Timman R.
9. Eichelbrenner E.A. Oudart A.
10. Timman R.
11. Drucan W.T.

Thom A.S. Young A.D.
12. Crabbe R.S.

Boundary Layers in Three Dimensions. Yrogress in Aeronautical Sciences, Vol. 2, Pergamon Press. 1962.

An Axially Symmetric Analogue for General Three-Dimensional Boundary Layers. A.R.C. R. and M. 3200. 1959.

2ur Naherungsweisen Intergragtion der Differential-gleichung der Laminaren Reibungsschicht.

ZAMM 1,252. 1921.
Approximate Calculation of Three-Dimensional Laminar Boundary Layers. A.R.C. R. and M. 3201. 1959.

Generalised Methods for the Calculation of the Laminar Compressible Boundary Layer Characteristics wath Heat Transfer and NonUniform Pressure Distribution. A.R.C. R. and M. No. 3233. 1963.

The Boundary Layer in Three-Dimensional Flow. Part I - Derivation of the Equations for Flow Along a General Curved Surface. Phil. Mag. (7) 42, 239. 1951.

The Three-Dimensional Boundary Layer Equations and Some Power Series Solutions.
A.R.C. R. and M. 3006. 1956.

The Theory of Three-Dimensional Leminar Boundary Layers.

Proc. Symp. Boundary Layer Effecta in Aerodynamics, N.P.L. 1955.

Méthode de Calcul de la Couche Limite Tridimensionnelle, Application à un Corps Fuselé Incliné sur le Vent. O.N.E.R.A. Pub. No. 76. 1955.

A Calculation Method for Three-Dimensional Boundary Layers. N.L.L. Report F.66. 1950.

An Elementary Treatise on the Mechanics of Fluids.
pp. 279-281. Edward Amold. 1960.
An Application of Cooke's Nethod to the Laminar Incompressible Boundary Layer on a Right Circular Cone at Incidence. N.R.C. Aero Dept. L.R. 391. Dec. 1963.

13.	Peake D.J. Galway R.D.	The Three-Dimensional Separation of a Plane Incompressible Laminar Boundary Layer Froduced by a Circular Cylinder Mounted Normal to a Flat Plate. Agardograph 97, pp. 1057-1080. May 1965.
14.	Zast J.A.	A Simplified Method for the Calculation of Three-Dimensional Laminar Boundary Layers. N.L.L. Rep. F.184. 1956
15.	Zast J.A.	Nachprufung der Einfachen Rechenmethode für Driedimensionale Laminare Junzschichten mit Hilfe von Exacten Losungen. N.L.L. Rep. F.262. 1957.

NOTATION

ξ, η, φ	Orthogonal curvilinear coordinates with \mathcal{J} measured normal to the surface.
h_{1}, h_{2}	Metrics in the ξ, η, y coordinate system. ($h_{3}=1$)
u, v, w	Velocities in the ξ, η, \mathcal{l} directions respectively.
K_{1}	$=-\frac{1}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \xi}$ geodesic curvature of the curve
	$\xi=$ constant.
k_{2}	$=-\frac{1}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta} \quad$ geodesic curvature of the curve
	$\eta=$ constant.
s, n	Directions along and normal to an external streamline respectively.
\boldsymbol{r}	- h_{2}
$\delta_{1}, \delta_{2}, \theta_{11}$	Displacement and momentum thicknesses defined by
$\theta_{\mu \lambda}, \theta_{12}, \theta_{\text {八ג }}$	equation 3.1.
τ_{01}, τ_{02}	Skin friction components in the ξ, η directions respectively.
H	$=\delta_{1} / \theta_{11}$ the streamwise shape parameter.
M_{1}, M_{2}, N	Parameters used in description of velocity profiles.
λ	$-\left(\delta^{2} / v\right)\left(\partial u_{e} / \partial s\right)$, the Pohlhausen velocity profile parameter.
ρ	The density of the fluid.
μ	The viscosity of the fluid.
v	μ / ρ the kinematic viscosity of the fluid.
P	The static pressure in the fluid.

Suffix
External to the boundary layer.

-29

FIGURE 9. STREAFTWISE MOMENTUM THICKNESS. EXAMPLE 3

Δ

A.R.C. C.P. No. 1064

September 1967
Smith, P.D., and Young, A.D.
APPROXIMATE SOLUTIONS OR THE THREE-DIIERSSIONAL LAMINAR BOUNDARY LAYKR MOIERNTULA INIEGRAL EQUATIONS

Six methods for the approximate solution of the threedimensional laminar boundary layer momentum integral equations are presented and compared with three known exact solutions. These methods all involve the Polhausen technique of specifying velocity profiles in terms of one or tro unisnorns and substituting these expressions for the profiles into the two momentum integral equations to render them determinate.
A.R.C. C.P. NO. 1064 September 1967
Smith, P.D., and Young, A.D.
APPROXIUATE SOLUTIONS OF THE THREE-DILIENSIONAL LAMINAR BOUNDARY LAYER YOIGNTIUM INTEGRAL EQUATIONS

Six methods for the approximate solution of the tureedimensional laminar boundary layer momantua integral equations aro presented and compared with three known exact solutions. These rethods all involve th: Polhausen technique of spocifying velocity profiles in terms of one or tro unknomins and substatuting these expressions for the profiles into the two momentum integral equations to render them determinate.
A.R.C. C.P. No. 1064

September 1967
Smith, P.D., and Young, A.D.
APPROXILATE SOLUTIONS OF THE THRRE-DILIENSIONAL LAMINAR. bOUNDARY LAYER MOMENIUK INTEGRAL EQUATIONS

Six methods for the approximate solution of the threedimensional laminar boundary layer momentum integral equations are presented and colapared with three known exact solutions. These methods all involve the Polhausen technıque of specifying velocity profiles in tems of one or tro unknoings and substituting these expressions for the profiles into the two momentum integral equations to render them determinate.

Comparison of these methods with the exact solutions shows that the assumption of small cross-flow velocity in the boundary layer is generally adequate in cases involving favourable pressure gradients but introduces significant errors in cases involving adverse pressure gradients. In cases of moderate adverse pressure gradient the accuracy of the approximate solution may be improved to some extent by the adoption of an extension of the Luxtan-Young technique. However, for large adverse gradients adequate accuracy may only be obtained by including the cross-flow terms in the momentum integral equations, and the method desoribed here is then shom to lead to very satisfactory results in all the cases examined. It appears that providod the maximum value of the angle β between the limiting and external streamines is less than about 10° the small cross-flow assumption is of adequate accuracy for most engineering purposes.

Coaparison of these methods with the exact solutions shows that the assumption of small crose-flow velocity in the boundary layer is generally adequate in cases involving favoureble pressure gradients but introduces significant orrors in cases involving adverse pressure gredients. In cases of moderate adverse pressure gradient the accuracy of the approximate solution may be improved to some extent by the adoption of an extension of the Luxton-Young technique. However, for large adverse gradients adequate accuracy may only be obtained by including the cross-flow terms in the momentum integral equations, and the method described here is then shown to lead to very satisfactory results in all the cases examined. It appears that provided the maximum value of the angle β between the limiting and external streamlines is less than about 10° the small crose-flow assumption is of adequate accuracy for nost engineering purposes.

Comparison of these methods with the exact solutions shows that the essumption of small crose-flow veloaity in the boundary layer is generally adequate in cases involving favourable pressure gredients but introduces signiflicant errors in cases involving adverse pressure gradients. In cases of moderate edverse pressure gradient the accuracy of the approximate solution may be improved to some extent by the adoption of an extension of the Luxton-Young technique. However, for large adverse gradients adequate accuracy may only be obtained by including the cross-flow terms in the momentum integral equations, and the method described here is then shown to lead to very satisfactory results in all the cases examined. It appears that provided the maximun value of the angle β between the limiling and external streamlines is less than about 10° the small cross-flow assumption is of adequate accuracy for most enginearing purposes.

C.P. No. 1064

(C) Crown copyrıght 1969
Prınted and published by
Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w c 1
13A Castle Street, Edinburgh EH2 3AR
109 St Mary Street, Cardiff CFl 1Jw
Brazennose Street, Manchester m60 8as
50 Farffax Street, Brıstol bs1 3de
258 Broad Street, Birmingham 1
7 Linenhall Street, Belfast BT2 8AY
or through any bookseller

Printed in England

[^0]: Replaces A.R.C. 29407
 ** This work was submitted by the first author in part fulfilment of the requirementa for the degree of $\mathrm{Ph} . \mathrm{D}$. to the University of London, November 1965.

