MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Flight Measurements of Wing-Tip Vortex Motion near the Ground by
F. W. Dee and O. P. Nicholas
Aerodynamics Dept., R.A.E., Bedford

FIIGHT MEASUREMENTS OF WING-TIP VORTEX MOTION NEAR THE GROUND

by
F.W. Dee
O.P. Nicholas
Aerodynamics Dept., R.A.E., Bedford

SUMMARY

Tests have been made to measure the movement of the wing tip vortices from a Hunter aircraft flying at 170 knots approximately 35 feet above a runway, in a variety of wind conditions. Measurements were limited to a maximum time of 20 seconds after vortex generation. During this period the theoretical predictions presented are in good general agreement with the observed motions; however significant differences did occur. There was no clear indication as to whether the vortices decayed more rapidly in the presence of the ground and atmospheric turbulence, than would have been expected from earlier measurements away from the ground in calm air. Limited tests were also made to study the vortex mutual interaction away fram the ground.
CONTHNTSPage
1 INIRODUCTION 3
2 TEST AIRCRAFT 3
3 DESCRIPIION OF TESTS 3
3.1 Tests away from the ground 3
3.2 Tests near the ground 4
3.2.1 Test method 4
3.2.2 Measurement of vortex positions 5
4 RESUUTS AND DISCUSSION 6
4.1 Vortex mutual interaction away from the ground 6
4.2 General features of vortex motion near the ground 8
4.3 Typical results measured near the ground 9
5 CONCLUSIONS 11
6 SUGGESTIONS FOR FURTHER WORK 12
Appendix A Calculation of vortex motion near the ground in still air 13
Table 1 Test data 16
Table 2 Measured vortex positions 17
Symbols 25
References 26
Illustrations Figures 1-12
Detachable abstract cards

INTRODUCTION

Previous flight tests ${ }^{1}$ have established the behaviour of the vortex traill behind aircraft flying at low speed away from the ground in essentially calm air conditions. Since one of the critical regions for wake penetrations by other aircraft is in the airport terminal area ${ }^{2}$, information is required on the behaviour of vortices close to the ground.

Simple potential flow theory (Appendix A) suggests that as the tracling vortices descend towards the ground their vertical velocity decreases and they begin to travel horizontally over the ground away from each other. In practice several effects may be expected to modify the behaviour of the vortices close to the ground. Because wind varies with height, so does its effect on the motion of the vortices. Compared with the earlier measurements at 10000 feet and above, atmospheric turbulence increases at lower altitudes and this, together with ground friction effects, should dissipate the vortıces more rapldly than in the case of calmer air conditions away from the ground.

To obtain a better understanding of these effects same flight tests have been made at R.A.E. Bedford airfield using a Hunter alrcraft with different coloured smoke injected into its two wing tip vortices. In the tests the overall motion of the vortices was observed, but measurement of local velocities was not attempted. This Report presents the results of these tests and some comparison with theory together with suggestions for further theoretical analysis.

2 TEST AIRCRAFT

- A Hunter 6 aircroft (see Table 1) was fitted with special racks on the outer wing pylons, the port rack carrying 4 red, and the starboard, 4 yellow smoke grenades. The grenades burned for about 15 seconds, and could be fired by the pilot in any combination to mark each trazling vortex distinctively during the test runs. No recording instrumentation was fitted in the Hunter.

A Whirlwind helicopter, with an observation hatch in the cabin floor, was used as an airborne photographic station to record the vortex motions.

3 DESCRIPITION OF TESTS

3.1 Tests away from the ground

During earlier tests with a Comet aircraft away from the ground ${ }^{1}$, using a similar method of visualising the trailing vortices, a mutual interaction
between the two vortices was observed. Initial tests were therefore made to determine the behaviour of the Hunter's trailing vortex system away from the ground. The aircraft was flown at 170 kn eas at an altitude of 1000 feet, and the vortex pattern photographed by a ground-based cine-camera. The results of these tests permitted a height to be selected for the Hunter flights near the ground, such that the vortex motion would be significantly affected by the ground before there was any likelinood of vortex mutual interaction occurring.

3.2 Tests near the ground

3.2.1 Test method

The tests were made over the airfield at R.A.E. Bedford, which is situated in flat countryside. There are few bucldings on or near the airfield, and none within half a mıle of the test area. This area is shown diagrammatically in Fig. 1 and contains the intersection of two runways at right angles, along one of which the Hunter was flown. The other runway was used as a camera base, with the camera located 925 feet from the test runway centre-line.

A second camera was carried in the Whirlwind helicopter, which at the commencement of a test hovered at about 500 feet above the runway intersection A vertical measuring plane, at right angles to the track of the test aircraft, contained the ground camera position, and a marker board in a corner between the two runways.

The Hunter was flown at 170 km in all cases, and at an altitude of about 35 feet above the runway. Before traversing the test area, the pilot ignited the smoke grenades, and maintained smooth, steady flight across the test area. The time required for the aircraf't to make a complete circuit was deemed to be sufficiently long to allow the disturbance caused by the previous run either to settle, or be blown away, before the next test. Visual observation of the Hunter's smoke trails, with and wathout the helicopter in position, suggested that the effects of helicopter rotor downwash could be neglected, since no difference in the behaviour of the smoke trail could be detected. Also, with the helicopter in position, no difference in trail behaviour could be detected along the length of the smoke trail, which extended about 2000 feet either slde of the measuring plane.

The two cine-cameras, loaded with colour film and running at 16 frames per second, were used to record continuously the vortex positions as marked by the red and yellow smoke trails. The cameras were started before the

Hunter passed through the measuring plane, and stopped only after the smoke had dispersed. The ground camera was fixed, and recorded the heights of the intersections of the smoke trails with the measuring plane, while the airborne camera, at about 500 feet altitude, recorded the lateral positions of the intersections. During the tests, the helicopter pilot endeavoured to maintain position in the measuring plane, and vertically above the trails, enabling the camera operator to aim his camera vertically through the open hatch in the floor of the cabin. The marker board, which was initially in the field of view of both cameras, defined a reference point subsequently used in the analysis of the tests. The film records were synchronized by identifying on both films the anstant at which the Hunter passed through the measuring plane.

Thirty-eight runs were made in a variety of wand conditions, with speeds varying between zero and 15 kn and directions between 0 and 90° to the Hunter's track. Helicopter piloting problems did not allow tests in higher winds.

3.2.2 Measurement of vortex positions

Selected frames of the cine-film records were projected, and the vertical and lateral positions of the intersections of the smoke trail with the measuring plane were measured, and scaled appropriately to yield displacements in feet from their initial positions inmediately after generation. The scale factors were established for the ground camera from the image length of the Hunter aircraft, and for the airborne camera from the amage size of the 10 -foot square concrete slabs of the runway surface.

A correction was applied to the measurements from the ground camera film to compensate for perspective distartion, which caused the apparent trall height above ground to vary with distance from the camera. No correction was applied to the aurborne camera records, since the likely errors due to imperfect positioning of the helicopter were assessed as being of a considerably greater magnitude than the perspective errors.

The film frames were analysed at 1 -second intervals, corresponding to 1-second increments of wake age in still air. Since the presence of a head - or tail - wind component effectively moved a younger or older portion
of wake into the measuring plane, the elapsed time has been multiplied by a factor* to yield the true age of the portion of the trail in the measuring plane. The headwind component was derived from knowledge of the local wind strength and direction measured at 30 feet above ground level, by a standard Meteorological office recording anemometer.

4 RESULTS AND DISCUSSION

4.1 Vortex mutual interaction away from the ground

During earlier flights tests with a Comet aurcraft ${ }^{1}$, a mutual interaction was observed between the two vortices. A sinuous distortion developed, which increased until the smoke filaments marking the vortices almost touched at intervals along the trails. The culmanation of this process was the rupture of the smoke filaments, and the linking of the free ends across the flight path to form a series of loops. The process of interaction is shown for increasing vortex ages in Fig. 2. The breaks in the smoke trails visible in the photographs at 38 seconds, and at the extreme left of the photograph at 81 seconds are due to trail penetrations by an instrumented aircraft ${ }^{1}$. For the Comet, flying at 150 kn eas and 10000 feet altitude, the time required for the formation of these loops was about 90 seconds, and it appeared that after little more than 120 seconds the vorticıty had substantially decayed, although it cannot be necessarily assumed that a rapid vortex breakdown follows the interaction.

The Hunter flaght tests at 1000 feet confirmed that the trailing vortex behaviour was similar to that of the larger aircraft, although in this case, the time taken for the loops to form was about 12 seconds.

* True age $=\frac{V-u}{V} \times$ elapsed time
where $V=$ airspeed of aircraft
$u=$ headwind component along aircraft's track.
In the analysis it was assumed that u dud not vary with height. Since $\left(\frac{V-u}{V}\right)$ was always near unity in these tests $\left(0.95<\frac{V-u}{V}<1.05\right)$ the error introduced by this assumption was small.

A reason for the shorter interaction time for the Hunter may be the smaller lateral separation of the vortex pair. If it as supposed that the system is adequately described at $t=0$ by a vortex pair, and also that the individual vortex structure is always described by Squire's formula ${ }^{3}$, with the eddy viscosity a universal constant, and further, that the time orlgin is suitably chosen to permit differences in core size, the inntial conditions are fully specified by:-
(i) vartex strength, K,
(ii) lateral spacing, $s\left(=\frac{\pi b}{4}\right.$ where b is geometric wingspan),
(21i) inltial core size, d.
Further, If it is supposed that the effect of d is small, then dimensional analysis leads from $T=f(K, b)$ to

$$
\frac{T K}{b^{2}}=\text { constant } C \text {, say }
$$

since this is the only non-dimensional group that can be formed from the parameters. If we now write

$$
\mathrm{K}=\frac{4 \mathrm{~L}}{\pi \rho \mathrm{Vo}}
$$

where $L=$ aircraf't lıfft

$$
\rho=a u r \text { density }
$$

$V=$ alrcraft speed
$b=$ geometric wingspan
we obtain,

$$
\mathrm{T}=\mathrm{c} \frac{\rho \mathrm{Vb}^{3}}{\mathrm{~L}}
$$

The value of C cannot be found precisely from the Comet and Hunter tests, but appears to be of the order 10 for both aircraft. More work would be required to establish C, and to determine whether other parameters, defining a more general initial structure, had a signıficant effect. For aircraft with slender wangs, such as the Concorde, although vorticity is shed into the wake, the trailing vortex pattern is more complex than that shed by an aircraft with attached flow, and may be different in character. Consequently, the mechanism of the decay process for the Concorde may be different, and more flight tests would be required with a slender wing arroraft to
investigate this. It is, nevertheless, interesting to note that for the Concorde, on the climb-out, at a weight of $350000 \mathrm{Ib} \frac{\mathrm{p} \mathrm{Vb}^{3}}{\mathrm{~L}}=1.5$ seconds, and on the approach at a weight of $200000 \mathrm{lb} \frac{\mathrm{p} \mathrm{Vb}^{3}}{\mathrm{~L}}=1.9 \mathrm{sec}$. If the Concorde vortices behaved as those of the Hunter and Comet aurcraft, they would interact within 15-20 seconds, but as the decay process may be dreferent, the vortices could persist for much longer than this time.

4.2 General features of vortex motion near the ground

Although, as will be seen later, the general motion of the vortices was as predicted by simple theory, various other features were frequently apparent.

Imediately after generation the lateral separation of the vortex pair was about 35 feet (the Hunter's wingspan is 33.7 feet), but during the first two seconds the separation decreased to about 27 feet, corresponding closely to the usually accepted value of $\frac{\pi}{4}$ (geometric wangspan). It may be that the process of entrainment of the smoke into the vortex core, or the rolling up of the vortex sheet, caused the initially larger separation.

The minimum height above ground of the vortices was normally of the order of 10 feet, and vartex mutual interaction never occurred. However, it was seen that occasionally one or both of the vortices broke into a series of roughly semi-circular arches with both ends perpendicular at the ground, as sketched in Fig.3. This suggests that the theoretical analogy of replacing the ground plane by a pair of marror image vortaces is valıd, and that each vortex could be considered to be interacting with its mirrar image in a manner resembling the vortex mitual interaction observed during the Comet tests away from the ground (Fig.2).

The vortices frequently moved in such a way that their heights became different from each other, and sometimes both became sinuous. The principal result of these effects was that the study was then of the motion of an asymmetric vortex arrangement. However, the sinuous vortices introduced a further effect; although the departure from a two-dimensional system was in itself normally small, the effect of any headwind component was to impart a spurious apparent motion to the measurements which were taken in a fixed plane.

Another feature noticed was that the vortices frequently "bounced", 1.e. while they moved apart they reached a minımum height and then began to rise again.

4.3 Typical results measured near the ground

The horizontal and vertical co-ordinates of the intersections of the smoke trails with the measuring plane for each test are tabulated in Table 2 against true wake age in seconds. For each run the Meteorological Office wind velocity is quoted, together with the track of the test aırcraft.

A limited selection of the results is shown in F18.4, which presents the movements of the vortzces in the measuring plane for wind condztions from calm (less than 2 knots) up to 16 knots. Figs. $4 a$ and $4 b$ correspond to nominally calm condıtions, and it will be seen that the upwind vortex descended almost vertically and remained very near the runway centreline. The very light cross-wind was sufficient to neutralise the upwind movement due to the vortex-induced velocities. This could present a hazard to following aircraf't using the same runway. For the downwind vortex the two effects were additive. Fig. 4 c shows the vortex movement with a $6 \frac{1}{2}$ knot crosswind component, both the vortices being blown clear of the runway centreline quite rapidly. Again in Fig. 4 d , wh th an 8 knot cross-wind component, the lateral vortex motion was very rapid, and the vortices would have presented no hazard to following aircraft using the same runway but could present a possible hazard on nearby parallel runways.

Figs.5-8 present the results shown in Fig.4, together wath theoretical preductions based on the initial conditions in each case. The expected paths of the vortaces in still air were calculated from the expressions derived in the Appendix and an allowance made for the effects of cross-wnd.

The actual cross-wind component during the farst 3 seconds of recording was derived from the mean horizontal velocity of the vortices during this period. This cross-wind was then applied to the calculated still air motion, assuming a $1 / 7$ power law for the variation of wind strength with height in the earth's boundary layer and using a step-by-step integration process.

It will be seen that the theoretically predicted paths are in reasonable agreement with the measured results, suggesting that the motion derived in the Appendix, together with a $1 / 7$ power law for wind velocity, provides an adequate prediction for vortex motion near the ground.

Smoke dissipation or vortex mutual interaction limited the period of measurement in the present tests to less than 20 seconds. For large conventional aircraft the mutual interaction time appears to be considerably greater, so it is possible that their vortices would persist near the ground for considerable periods, as they do away from the ground. Thus any information on vortex decay near the ground would be valuable.

From the present tests, an attempt has been made to extract rates of decay at positions well outside the vortex core by comparison of measured vortex motions with the predictions of the Appendix. The time histories of the vertical and horizontal velocities of the individual vortices relative to the surrounding air have been derived from the recorded positions, with allowances for wind as described in sections 3.2 .2 and 4.3.

The theoretical prediction of the velocity of each vortex has been based on the measured vortex separation, but to sumplify the calculation the assumption has been made that the other vortex of the pair was at the same height as the one being studied. The measured and predicted horizontal velocities have been compared on the basis of (height) ${ }^{-1}$, and the vertical velocities on the basis of (half the horizontal separation) ${ }^{-1}$. These bases were chosen because when the horizontal velocity is largest it is primarily dependent on height, and when vertical velocity is largest it is primarily dependent on horizontal separation. Equations (4) and (5) in the Appendix show that for zero eddy viscosity the predicted velocities are given by:

$$
\dot{y}=\frac{\mathrm{K}}{4 \pi A z^{3}} \quad \text { and } \quad \dot{z}=\frac{-K}{4 \pi A y^{3}}
$$

where y is positive away from the vertical plane of symmetry between the vortices
and z is positive upwards.
The Appendix assumes a symmetrical disposition of the vortices, so for convenience the expression

$$
z=\frac{-K}{4 \pi A s^{3}}
$$

where $s=$ half the horizontal separation of the vortices, has been used in the study of velocities.

Figs. 9-12 show the comparison between measured velocities of the vortzces and those predicted for zero eddy viscosity, for the four tests presented in Figs.4-8. The scatter in the measurements is large but it should be pointed out that in the analysis of the present tests, the wind velocıty profile for any given test was assumed invariant with time, whereas in practice, atmospheric turbulence can cause appreciable fluctuations of wind velocity with time. Thus the horizontal and vertical velocity camponents of Figs.9-12 include any effects of random velocity fluctuations due to atmospheric turbulence. Because of this scatter there is no clear indication as to the decay in the translational velocities of the vortices, but it cannot be large.

Thus the vortex motion near the ground can probably be predicted adequately. However, no knowledge was gained of the velocity distributions within the vortex near the ground so it is not possible to predict how rapidly the peak velocities within the vortices will decay or assess whether the expression given by Squire ${ }^{3}$, for velocities within the vortex still holds under these conditions.

5 CONCLUSIONS

Flight tests have been made to stuay the behaviour of wing-tip vortices near the ground. A Hunter aircraft was used, flying at 170 knots at a height of about 35 feet above a runway, in a variety of wind conditions.

Measurements were limited to a maximum time of 20 seconds after vortex generation. During this period the predictions of existing theory (see Appendix) are in good general agreement with the observed vortex motions. However, significant differences did occur, the two vortex heights frequently becoming dдfferent from each other, and the vortzces sometimes descending to a minimum height and then rising again. A reaction between a single vortex and the ground, similar to the vortex mutual interaction that had been seen an earlier tests, was also occasionally observed.

There was no clear indication as to whether the vortices decayed more rapidly in the presence of the ground and atmospheric turbulence, than would have been expected from earlier measurements awdy from the ground in calm air.

All the measurements obtained in the tests are presented in this report, for the benefit of any reader who wishes to make a more complete analysis of the data.

Limited tests at 1000 feet altitude indicated that away from the ground the vortex trail developed into a series of closed loops and that the interaction time for this process was approximately 10 seconds compared with earlier measurements of about 90 seconds for a Comet. The results suggest that there may be a correlation between the interaction time and the quotient (vortex separation)/(velocity induced at one vortex centre by the other). Although this result cannot necessarily be read across directly to the Concorde because of the different character of the vortex trail, it suggests that the interaction time for the Concorde on the climbout and the approach may be considerably smaller than for existing transport aircraft.

6 SUGGESTIONS FOR FURTHER WORK

The analysis of the results in this Report could be extended, and theory could be developed, with the following aims:-

1 The development of a method of predicting when a pair of vortices will move into an asymmetric position, and what their subsequent motion will be.

2 A more detalled study of the velocities with which the vortices moved might yield information about the decay in these velocities with time.

3 Further theoretical work could include computer studies of the mechanism of the vortex mutual interaction process away from the ground (more results of the type shown in Fig. 2 are available).

4 Further tests are necessary if the rate of decay of the peak velocity within vortices near the ground is to be established.

In addition, flight tests are required to study the decay process of vortices shed by a slender wing aurcraft and these are now planned.

Appendix A

CATCULATION OF VORTEX MOTION NEAR THE GROUND IN STIIL AIR

A more gensral treatment of vortex motions is given by Jones ${ }^{4}$, for a multiplicity of vortex generators. A simpler apprach, considering only one vortex pair, has been adopted here.

In the analysis that follows, the vortex-induced velocities are assumed not to vary with time, i.e. the effects of eddy viscosity on the circumferential velocity distribution in the vortex have been neglected, as these effects are conslderable only in the region adjacent to the vortex core and the mutually-induced vortex motions are dictated by the velocities prevailing several core diameters away from the vortex centre. For typical aircraft under approach conditions the expression in Ref. 1 suggests that it will be several manutes before the relevant velocitıes fall to 99% of their anitial values.

The analysis follows the methods of classical hydrodynamics ${ }^{5,1}$.
Let the trailing vortex pair be located a distance $2 y$ apart, and at heaght z above the ground, then the vortex system with its mage may be represented thus:-

Now the circumferential velocity v, due to a single vortex of strength K is

$$
v=\frac{K}{2 \pi r}
$$

where r is the distance from the vortex axis.
If we consider the velocities induced at Q by the remaining vortex and the two image vortices, and resolve velocities (i) horizontally and (ii) vertically we have
(i) $\dot{\mathrm{y}}=\frac{\mathrm{K}}{4 \pi}\left[\frac{1}{z}-\frac{z}{y^{2}+z^{2}}\right]$,
and

$$
\text { (ii) } \quad \dot{z}=\frac{-K}{4 \pi}\left[\frac{1}{y}-\frac{y}{y^{2}+z^{2}}\right]
$$

therefore,

$$
\dot{\mathrm{y}}=\frac{\mathrm{x}}{4 \pi \mathrm{z}}\left(\frac{\mathrm{y}^{2}}{\mathrm{y}^{2}+\mathrm{z}^{2}}\right)
$$

and

$$
\begin{equation*}
\dot{z}=\frac{-K}{4 \pi y}\left(\frac{z^{2}}{y^{2}+z^{2}}\right) \tag{A.2}
\end{equation*}
$$

Combining (A.1) and (A.2)

$$
\frac{\dot{y}}{\dot{z}}=\frac{d y}{d z}=-\frac{y^{3}}{z^{3}}
$$

or,

$$
\frac{\mathrm{dz}}{\mathrm{z}^{3}}=-\frac{\mathrm{dy}}{\mathrm{y}^{3}}
$$

and hence,

$$
\begin{equation*}
\frac{1}{y^{2}}+\frac{1}{z^{2}}=A \tag{A.3}
\end{equation*}
$$

A may be found by substituting y_{0} and z_{0} for y and z respectively. (A.1) and (A.2) may now be rewritten as

$$
\begin{align*}
& \dot{\mathrm{y}}=\frac{\mathrm{K}}{4 \pi \mathrm{~A} z^{3}} \tag{A.4}\\
& \dot{z}=\frac{-K}{4 \pi A y^{3}}
\end{align*}
$$

By eliminating z from (A.1) and rearranging:-

$$
\dot{y}=\frac{K}{4 \pi A}\left[\frac{A y^{2}-1}{y^{2}}\right]^{3 / 2}
$$

or,

$$
\frac{4 \pi}{K}\left[\frac{y^{2}}{A y^{2}-1}\right]^{3 / 2} d y=\frac{d t}{A}
$$

Hence, it can be shown that,

$$
\frac{4 \pi}{A K}\left[\frac{A y^{2}-2}{\left(A y^{2}-1\right)^{1 / 2}}\right]=t+B
$$

B may be found by substituting y_{0} for y at $t=0$.
Rearranging,

$$
y^{2}=\frac{2\left[\frac{64 \pi^{2}}{A K^{2}}+A(t+B)^{2}\right]}{\frac{64 \pi^{2}}{K^{2}}}\left\{1 \mp\left(\frac{64 \pi^{2}}{A^{2} K^{2}(t+B)^{2}}+1\right)^{-1 / 2}\right\}
$$

and, by symmetry, z is given by:-

$$
z^{2}=\frac{2\left[\frac{64 \pi^{2}}{A K^{2}}+A(t+B)^{2}\right]}{\frac{64 \pi^{2}}{K^{2}}}\left\{1 \pm\left(\frac{64 \pi^{2}}{A^{2} K^{2}(t+B)^{2}}+1\right)^{-1 / 2}\right]
$$

In each of these expressions, the upper alternative sign applies when $t<B$, and the lower alternative sign applies when $t>B$.

Hence, the vertical and horazontal displacements of the vortex cores can be calculated as a function of time, to give the theoretical vortex positions shown in Figs.5-8.

Table 1
IEST DATA

Leading particulars of test aircraft (Hunter Mk.6)

$$
\begin{aligned}
\text { Wing span } & =33.75 \mathrm{feet} \\
\text { Mean weight } & =16400 \mathrm{lbf}
\end{aligned}
$$

Equivalent airspeed $=170 \mathrm{kn}$
Nominal test height $=35 \mathrm{feet}$

$$
\begin{aligned}
\text { Circulation } K & =\left(\frac{4 L}{\pi p V b}\right) \\
& =907 \text { feet }^{2} \mathrm{sec}^{-1}
\end{aligned}
$$

Table 2

MEASURED VORTEX POSITIONS

y and z coordinates, in feet, of the points of intersection of the port (p) and starboard (s) trails with the measuring plane are tabulated against true wake age (in seconds). For each run wind direction and speed, measured by Meteorological Office recording instruments, are quoted. The Hunter's speed was 170 knots in all runs.

Wind 0		Run 1		
		A/C track 270°		
$\begin{aligned} & \text { Time } \\ & (\operatorname{secs}) \end{aligned}$	y_{p}	y_{3}	z_{p}	$z_{\text {s }}$
0	10	-26	34.6	36.0
1	3	-26	30.9	31.9
2	-2	-28	26.1	26.8
3	-6	-32	22.1	22.8
4	-8	-36	18.2	18.7
5	-10	-40	15.2	15.6
6	-14	-46	13.2	13.7
7	-14	-50	11.2	11.6
8	-14	-58	9.1	11.7
9	-12	-64	9.1	12.8
10	-10	-72	9.1	14.0
11	-6	-80	10.1	15.2
12	-6	-86		16.4
13	-4	-92		18.7
14	-4	-98		19.9
15		-102		21.1

Run 2				
Wand $0 \quad \mathrm{~A} / \mathrm{C}$ track 270°				
$\begin{gathered} \text { Time } \\ (\text { secs }) \end{gathered}$			z_{p}	$z_{\text {s }}$
0	20.9	-14.5	38.0	37.6
1	16.4	-12.7	35.4	34.5
2	14	-16	31.5	31.5
3	13	-18	29.6	30.6.
4	10	-22	25.7	28.7
5	8	-24	21.8	26.7
6	4	-28	19.9	25.8
7	0	-32	18	23.8
8	0	-34	16	22.8
9	0	-38	14	22.9
10	0	-38	13	
11	0	-42	13	
12	0		11	
13	0		10	
14	0		10	
15	0		9	

Run 3				
Wind $100^{\circ} / 3 \mathrm{kn} \mathrm{A} / \mathrm{C}$ track 270°				
$\begin{gathered} \text { Time } \\ \text { (secs) } \end{gathered}$	y_{p}	y_{s}	z_{p}	z_{s}
0	18	-20	35.3	36.8
1.0	10	-20	31.6	32.7
2.05	8	-22	27.7	28.7
3.05	7	-24	24.8	25.7
4.1	6	-26	21.9	22.6
5.1	4	-36	17.9	19.7
6.15	4	-30	15.9	17.5
7.15	4	-36	13.9	16.6
8.2	8	-42	12.9	14.6
9.2	6	-46	10.9	14.7
10.25	12	-52		14.8

Run 4					
Wind	$120^{\circ} / 4$	kn	A / C	track 270°	
Time					
(secs)	y_{p}	y_{s}	z_{p}	z_{s}	
0	16	-17	35.4	36.6	
1	16	-14	30.5	32.5	
2	16	-14	26.5	27.4	
3	16	-14	21.6	22.3	
4	17	-18	17.7	18.3	
5	20	-22	14.5	16.4	
6	24	-26	11.7	15.4	
7	30	-34	9.7	13.5	
8	38	-42	7.7	12.5	
9	50	-54	6.6	11.6	
10	57	-60	6.6		

Table 2 (Contd)

Run 5				
Wind $120^{\circ} / 14$	kn	A/C	track 090°	
Time				
(secs)	y_{p}	y_{s}	z_{p}	z_{s}
0	-14	22	39.6	39.0
0.95	-24	8	36.9	36.7
1.85	-38	-8	35.4	34.3
2.8	-52	-22	32.7	31.7
3.75	-64	-36	28.9	28.1
4.65	-76	-46	26.0	25.2
5.6	-90	-56	24.1	23.3
6.55	-100	-62	24.4	22.4
7.5	-112	-70	24.7	19.4
8.4	-126	-80	21.6	17.4
9.35	-138	-94	17.2	16.5
10.3	-146	-104	16.2	15.6
11.2	-168	-110	17.7	16.8
12.15	-194	-124	16.9	15.9

Run 6			
Wind $120^{\circ} / 14 \mathrm{kn} A / C$ track 090°			
$\left(\begin{array}{c} \text { Time } \\ (\sec) \end{array} \quad y_{p}\right.$	y_{s}	p	
$0 \quad-14$	18	36.5	35.3
$0.95-26$	2	35.0	35.9
$1.85-42$	-12	31.4	35.5
2.8 -56	-32	29.7	32.1
$3.75-72$	-46	27.0	28.4
$4.65-92$	-64	25.3	$24 \cdot 6$
5.6-120	-76	24.9	18.4
$6.55-148$	-102	23.2	17.8
$7.5-160$	-120	19.9	18.0
$8.4-190$	-142	19.3	18.5
9.35-216	-158	$19 \cdot 7$	15.2

Wind 120% 年 $\frac{\text { Run } 8}{\mathrm{~km}} \mathrm{~A} / \mathrm{C}$ track 090°				
$\begin{aligned} & \text { Time } \\ & (\text { secs }) \end{aligned}$			${ }^{2} \mathrm{p}$	z_{5}
0	-20	16	38.8	37.4
0.95	-34	-4	35.3	34. 1
1.85	-54	-22	30.7	29.7
2.8	-70	-40	26.9	28.2
3.7	-94	-60	23.1	25.6
4.65	-112	-76	21.3	22.7
5.55	-136	-90	18.4	20.8
6.5	-150	-108	16.3	20.1
7.4	-174	-120	15.4	19.2
8.35	-186	-132	14.4	19.4
9.3	-206	-148	14.7	18.6
10.2	-228	-166	15.0	20. 8
11.15	-248	-178	16.5	21.5

Run 11
Wind $130^{\circ} / 14 \mathrm{~km} \mathrm{~A} / \mathrm{C}$ track 270°

Time (secs)	y_{p}	y_{s}	z_{p}	z_{s}
0	0	-32	20.0	20.7
0.95	-16	-52	18.3	19.0
1.85	-34	-72	15.6	17.2
2.8	-48	-94	13.7	17.6
3.75	-62	-118	12.8	18.0
4.65	-72	-138	10.8	18.4
5.6	-88	-162	11.0	18.8
6.55	-96	-182	11.0	18.0
7.5	-106	-202	11.1	18.3
8.4	-124	-228	13.6	18.7
9.35	-142	-250	18.5	20.3
10.3	-162		20.0	

Table 2 (Contd)

Run 12				
Wind 130\%/14 kn A/C track 270°				
$\begin{gathered} \text { Time } \\ (\operatorname{secs}) \end{gathered}$	y_{p}	y_{s}	${ }^{2} \mathrm{p}$	S
0	22	-18	26.4	27.5
0.95	4	-32	21.9	22.8
1.85	-10	-48	20.2	18.9
2.8	-22	-64	19.5	18.2
3.7	-32	-78	17.6	16.3
4.65	-44	-94	16.8	17.6
5.55	-56	-110	15.9	21.3
6.5	-62	-120	14.9	20.3
7.4	-73.3	-130	14.0	20.5
8.35	-80	-151.7	13.0	21.0
9.3	-93.3	-175	11.0	17.8
10.2	-97.3	-201	11.1	17.0
11.15	-100	-218	11.1	18.5
12.1	-110	-238	11.2	20.1

Run 13				
Wind $120^{\circ} / 13 \mathrm{kn} \mathrm{A} / \mathrm{C}$ track 270°				
$\begin{gathered} \text { Time } \\ (\text { secs }) \end{gathered}$		$\mathrm{y}_{\text {s }}$	${ }^{2} \mathrm{p}$	${ }^{\text {s }}$
0	24	-12	35.1	35.5
1.05	18	-16	30.4	30.5
2.05	12	-22	25.7	25.6
3.05	8	-28	22.8	23.7
4.05	0	-34	20.0	19.7
5.1	-2	-42	18.0	17.8
6.1	-4	-48	16.1	15.8
7.15	-8	-56	1.1	14.9
8.15	-8	-66	14.1	13.9
9.15	-8	-76	13.1	13.0
10.2	-2	-80	13.0	14.1
11.2	-10	-94	11.1	12.1
12.2	-10	-98	10.1	11.1

Run 14				
Wind $080^{\circ} / 7 \mathrm{~km}$ A/C track 090°				
$\begin{aligned} & \text { Time } \\ & \text { (secs) } \end{aligned}$		y_{s}	p	z_{s}
0	-22	14	36.9	36.4
0.95	-24	8	31.8	30.7
1.9	-28	0	26.8	26.0
2.85	-32	-2	21.7	21.0
3.85	-38	-8	18.7	18.2
4.8	-44	-12	14.7	15.2
5.8	-50	-16	13.7	15.3
6.7	-58	-18	12.8	16.3
7.65	-66	-20	13.9	14.3
8.65	-76	-22	13.0	15.4
9.6	-82	-22	12.0	16.4
10.55	-92	-20	11.0	17.4
11.5	-104	-16	11.1	20.3
12.5	-	-14	-	21.3
13.45	-120	-12	11.3	

$\frac{\text { Run 15 }}{}$					
Wind $090^{\circ} / 6 \mathrm{kn}$	A/C	track 090°			
Time					
$($ secs $)$	y_{p}	y_{s}	z_{p}	z_{s}	
0	-26	12	40.1	38.5	
0.95	-28	6	35.0	34.8	
1.9	-28	4	30.9	30.9	
2.85	-32	0	26.9	26.0	
3.85	-34	0	23.9	23.0	
4.8	-36	0	19.7	19.0	
5.8	-40	0	17.7	17.0	
6.7	-42	0	15.7	15.0	
7.65	-46	4	15.8	13.9	
8.65	-48	8	14.7	12.9	
9.6	-52	10	12.7	11.9	
10.5	-58	14	12.8	11.8	
11.5	-62	20	13.9	12.7	
12.45	-70	20	15.1	13.7	
13.45	-70	26	16.1	14.6	
14.4	-74	28	17.3	15.5	
15.35	-78	28	18.4	16.5	
16.3	-80	28	20.6	18.4	
17.25	-80	30	21.7	19.4	

Table 2 (Contd)

Run 18					
Wind	$130^{\circ} / 10$	kn	A / C	track	270°
Time		y_{p}	y_{s}	$\boldsymbol{z}_{\mathrm{p}}$	\mathbf{z}_{s}
(secs)					
0	28	-10	33.0	34.4	
1.05	8	-24	28.7	29.8	
2.1	-8	-40	25.2	26.1	
3.1	-22	-56	22.5	23.3	
4.2	-34	-72	20.7	21.6	
5.25	-46	-88	16.8	20.8	
6.3	-60	-108	13.8	19.0	
7.35	-68	-126	11.8	17.0	
8.4	-64	-146	9.6	17.4	

Run 19				
Wind 130% l2 len A/C track 270°				
$\begin{gathered} \text { Time } \\ \text { (secs) } \end{gathered}$	y_{p}	$\mathrm{y}_{\text {s }}$	${ }^{2}$	S
0	24	-14	34.1	35.5
1.05	10	-24	30.7	31.8
2.1	-4	-36	27.1	28.1
3.1	-16	-50	23.4	25.3
4.2	-28	-62	19.6	23.5
5.25	-38	-74	16.6	22.7
6.3	-48	-88	15.8	21.9
7.35	-54	-102	13.8	21.1
8.4	-52	-112	12.7	21.3
9.4	-58	-128	11.7	21.6
10.45	-60	-140	10.6	18.4

Run 20					
Wind $130^{\circ} / 12$	kn	A/C	track	270°	
Time					
(secs)	y_{p}	y_{s}	z_{p}	z_{s}	
0	16	-24	31.5	32.8	
1.05	-2	-36	29.1	31.2	
2.1	-18	-50	24.5	25.8	
3.1	-32	-68	19.7	22.6	
4.15	-44	-84	17.8	18.5	
5.2	-58	-104	15.9	16.7	
6.25	-60	-118	13.8	19.2	
7.3	-72	-138	11.9	18.4	
8.35	-84	-160	13.1	19.9	
9.4	-94	-178	13.2	20.3	

Run 21					
Wind	$130^{\circ} / 10$	kn	A / C	track 270°	
Time					
(secs)	y_{p}	y_{s}	z_{p}	z_{s}	
0	20	-18	32.3	33.6	
1.05	10	-24	30.7	31.8	
2.15	0	-32	29.0	29.0	
3.2	-8	-42	27.2	26.1	
4.3	-14	-50	25.4	23.2	
5.35	-22	-62	21.5	20.3	
6.45	-30	-72	18.6	19.4	
7.5	-38	-84	15.6	16.4	
8.55	-42	-94	14.6	15.4	
9.65	-50	-108	13.7	14.5	
10.7	-54	-126	12.7	15.9	
11.8	-58	-138	10.6	17.2	
12.85	-62	-150	10.7	18.6	
13.9	-66	-162	10.7	18.8	
14.95	-68	-174	11.8	20.2	

Table 2 (Contd)

Run 23				
Wind $220 \% / 12 \mathrm{~km}$ A/C track 270°				
$\begin{gathered} \text { Time } \\ (\text { secs }) \end{gathered}$	y_{p}	y_{s}	${ }^{\text {z }}$ p	z_{s}
0	28	-12	30.1	30.4
0.95	8	-24	24.8	24.6
1.9	-8	-40	21.2	21.9
2.85	-20	-56	18.4	21.2
3.8	-34	-72	16.6	19.4
4.75	-46	-86	14.7	17.5
5.7	-52	-100	11.6	16.6
6.65	-54	-114	9.5	15.7
7.6	-56	-128	10.6	14.8
8.55	-60	-148	16.0	13.9
9.5	-66	-156	15.0	15.2
10.45		-162		21.2

Run 24

Wind $230^{\circ} / 11 \mathrm{~lm} \mathrm{~A} / \mathrm{C}$ track 270°

Time (secs)	y_{p}	y_{s}	z_{p}	z_{s}
0	14	-22	35.5	36.9
0.95	0	-32	30.0	31.1
1.9	-10	-44	26.3	28.3
2.86	-20	-54	20.4	24.3
3.8	-36	-68	16.6	17.2
4.75	-54	-82	15.9	14.3
5.7	-70	-	15.1	-
6.65	-80	-114	14.1	14.6
7.6	-8.4	-128	9.8	17.1
8.55	-82	-144	6.5	16.2

Run 25
Wina $220^{\circ} / 11 \mathrm{~km} \mathrm{~A} / \mathrm{C}$ track 270°

Time (secs)	y_{p}	y_{s}	z_{p}	z_{s}
0	6	-32	38.8	34.2
0.95	-6	-40	29.2	29.2
1.9	-18	-52	25.5	26.4
2.85	-30	-62	21.7	24.5
3.8	-42	-74	16.7	21.6
4.75	-54	-86	14.8	18.6
5.7	-64	-98	11.8	16.6
6.65	-72	-112	10.8	14.6
7.6	-80	-126	9.8	14.8
8.55	-80	-138	9.8	14.9
9.5	-82	-150	8.7	16.3
10.5	-80	-160	7.6	19.9
11.4	-80	-170	7.6	23.7
12.40		-178		26.2
13.35	-188		30.1	

Table 2 (Contd)

0 Run 27				
Wind $340^{\circ} / 6 \mathrm{kn} \mathrm{A} C$ C track 270°				
$\begin{gathered} \text { Time } \\ (\text { secs }) \end{gathered}$	y_{p}	$\mathrm{y}_{\mathbf{s}}$	P	z_{s}
0	14	-24	47.3	48.2
0.95	22	-10	43.9	45.5
1.95	32	0	41.5	42.0
2.95	42	10	39.2	38.6
3.95	48	20	36.0	35.2
4.9	52	26	33.0	33.0
5.9	58	32	29.0	28.0
6.9	62	36	27.1	24.0
7.85	66	40		19.1
8.85		46		16.2
9.8		48		13.3
10.8		50		11.4
11.8		54		7.5
12.75		56		6.6
13.75		56		7.5
14.75		54		8.5
15.7		54		10.4
16.7		52		12.3
17.7		52		13.2

Run 28				
Wind $180^{\circ} / 12 \mathrm{kn} \mathrm{A/C} \mathrm{track} 270^{\circ}$				
$\begin{aligned} & \text { Time } \\ & \text { (secs) } \end{aligned}$	y_{p}	y_{s}	z_{p}	z_{s}
0	12	-24	27.6	27.7
1	-4	-34	24.1	24.9
2	-18	-50	20.4	22.1
3	-30	-66	17.5	21.4
4	-40	-80	15.6	19.5
5	-50	-98	13.7	19.9
6	-58	-112	11.7	19.1
7	-68	-130	9.7	19.4
8	-74	-140	8.6	19.6

Run 29				
Wind $180^{\circ} / 12 \mathrm{~km}$ A/C track 270°				
$\begin{aligned} & \text { Time } \\ & \text { (secs) } \end{aligned}$	y_{p}	ys_{5}	${ }^{2} \mathrm{p}$	s
0	18		29.4	
0.95	-4		25.1	
1.95	-18	-48	21.4	18.9
2.95	-30	-60	18.6	16.0
3.95	-4 4	-78	16.8	14.1
4.95	-54	-96	15.9	12.1
5.95	-66	-116	16.1	13.5
6.9	-76		15.1	

Run 30				
Wind $180^{\circ} / 12 \mathrm{kn} \mathrm{A/C} \mathrm{track} 270^{\circ}$				
$\begin{gathered} \text { Time } \\ (\text { secs }) \end{gathered}$	y_{p}	y_{5}	z_{p}	z_{s}
0	12	-24	30.6	31.8
0.95	-18	-48	25.5	29.5
1.95	-44	-76	21.0	27.1
2.95	-66	-102	16.1	24.4
3.95	-84	-124	14.2	22.7
4.95	-108	-152	12.3	19.8
5.95	-128	-178	10.2	20.3
6.9	-146	-206	8.1	20.8
7.9	-164	-234	7.1	22.6
8.9	-184	-266	4.8	24.5

Table 2 (Contd)

Run 31			
Wind $190^{\circ} / 12 \mathrm{kn} \mathrm{A} / \mathrm{C}$ track 270°			
$\begin{array}{cc} \text { Time } & \mathrm{y}_{\mathrm{p}} \end{array}$	y_{s}	${ }^{2} \mathrm{p}$	z_{s}
$0 \quad 12$	-22	24.7	23.6
$0.95-16$	-48	22.4	21.0
$1.95-40$	-76	19.8	19.5
$2.95-66$	-104	17.1	17.8
3.9 -90	-132	15.4	17.1
4.9 -116	-164	13.5	18.8
5.85-132	-188	12.6	20.5
6.85-156	-216	12.9	19.7
7.8-180		11.9	
$8.75-202$		12.2	
9.75-218		13.6	

Rin 32				
Wind 220% kn A/C track 270°				
$\begin{aligned} & \text { Time } \\ & \text { (secs) } \end{aligned}$	y_{p}	$\mathrm{y}_{\text {- }}^{\text {c }}$	${ }^{2}$	z_{s}
0	24	-12	22.4	22.3
0.95	26	-6	17.5	18.1
1.95	30	-2	13.6	16.0
2.9	32	0	11.6	15.0
3.85	36	4	11.5	13.9
4.8	38	6	11.5	13.9
5.8	42	10	10.5	13.8
6.75	48	10	10.4	14.8
$7 \cdot 7$	54	10	13.2	16.8
8.7	62	8	15.9	18.9
9.6	70	6	15.7	18.9
10.6	78	6	11.9	19.9
11.5		6		19.9
12.55		8		20.8
13.5		8		19.8

Run 33				
Wind $220 \% / 10 \mathrm{kn} \mathrm{A} / \mathrm{C}$ track 270°				
$\begin{gathered} \text { Time } \\ (\operatorname{secs}) \end{gathered}$	y_{p}	$\mathrm{y}_{\text {s }}$	z_{p}	z_{s}
0	28	-8	27.2	27.2
0.95	26	-4	22.4	23.1
1.9	28	-4	19.4	20.1
2.85	28	-4	17.5	17.1
3.85	30	-6	15.5	14.1
408	34	-6	13.5	13.1
5.8	36	-8	11.5	12.1
6.7	40	-10	11.5	12.1
7.7	44	-14	10.5	13.2
8.65	46	-18	10.5	12.2
9.6	50	-24	11.4	12.3

Run 34				
Wind $2200^{\circ} / 9 \mathrm{~km}$ A/C track 270°				
$\begin{gathered} \text { Time } \\ \text { (secs) } \end{gathered}$	y_{p}	y_{s}	z_{p}	s
0	20	-14	30.3	30.5
0.95	18	-12	26.5	26.3
1.9	18	-14	24.5	22.3
2.85	20	-16	21.5	19.3
3.8	22	-18	17.6	18.3
4.8	26	-24	13.6	17.4
5.7	28	-28	10.7	17.5
6.65	32	-36	9.7	17.7
7.6	38	-42	8.6	16.7
8.6	4	-50	8.6	19.0
9.5	52	-54	8.5	20.1
10.5	54	-58	8.5	20.2
11.45	58	-66	8.4	21.4
12.4	68	-66	8.3	21.4

Table 2 (Contd)

Run 35					
Wind $230^{\circ} / 11$	kn	A / C	track 270°		
Time	y_{p}	y_{s}	z_{p}	z_{s}	
(secs)					
0	24	-12	30.2	30.4	
0.95	22	-8	28.3	28.3	
1.9	24	-10	26.3	24.3	
2.85	26	-10	23.3	20.2	
3.8	28	-10	21.3	16.2	
4.8	34	-14	20.2	15.2	
5.7	40	-18	17.2	15.3	
6.65	46	-20	16.2	16.4	
7.6	54	-26	16.0	15.4	
8.6	60	-30	15.0	13.4	
9.5	64	-34	14.0	13.5	
10.5	70	-36	12.9	13.5	

Run 36					
Wind $030^{\circ} / 4$	kn	A/C	track	270°	
Time					
(secs)	y_{p}	y_{s}	z_{p}	z_{s}	
0	20	-14	28.4	29.4	
1.0	10	-20	26.7	27.6	
2.05	6	-30	22.9	24.8	
3.05	0	-40	20.0	22.9	
4.05	-4	-48	18.1	20.0	
5.1	-8	-62	15.1	18.1	
6.1	-14	-70	14.2	17.2	
7.1	-16	-82	12.2	16.3	
8.15	-20	-92	11.2	15.4	

Run 37					
Wind $030^{\circ} / 4 \mathrm{kn}$	A / C	track	270°		
Time	y_{p}	y_{s}	z_{p}	z_{s}	
(secs)					
0	12	-20	24.7	25.6	
1.0	4	-24	21.9	21.5	
2.05	0	-30	19.0	18.6	
3.05	-4	-38	17.1	15.6	
4.05	-8	-44	15.1	13.6	
5.05	-10	-50	14.2	12.6	
6.1	-12	-60	14.2	10.6	
7.1	-14	-68	14.2	9.7	
8.1	-16	-76	14.2	10.8	
9.15	-16	-86	15.3	12.0	
10.15	-18	-96	15.3	13.2	
11.15	-16	-106	16.3	14.5	

Run 38				
Wind $030^{\circ} / 5 \mathrm{kn} \mathrm{A} / C$ track 270°				
$\begin{aligned} & \text { Time } \\ & \text { (secs) } \end{aligned}$	y_{p}	y_{s}	z_{p}	${ }_{s}$
0	14	-22	25.6	26.6
1.05	8	-22	22.8	23.6
2.05	4	-24	19.9	20.5
3.1	0	-30	17.0	17.5
4.1	-4	-36	14.1	16.6
5.15	-10	-44	13.1	14.7
6.2	-12	-52	11.1	14.8
7.2	-12	-62	8.1	13.9
8.2	-12	-72		11.9
9.2	-12	-82		13.1
10.25	-14	-94		14.3
11.3		-104		14.5

SYMBOLS

A, B constants of integration
b aircraft wingspan, feet
C a constant
$K \quad$ circulation $(=4 L / \pi \rho V b)$ feet ${ }^{2} \sec ^{-1}$
L aircraft lift, lbf
$r \quad$ radıal distance from vortex centre, feet
s half the horizontal separation of the vortices
T vortex interaction time, seconds
t vortex age, seconds
u headwind component along alrcraft track, kn
V aircraft airspeed, kn
$v \quad$ circumferential vortex velocity, feet $\sec ^{-1}$
y lateral position of vortex core in measuring plane, +ve towards ground camera, feet
$\dot{y} \quad$ horizontal velocity of vortex core in measuring olane, +ve away from plane of symmetry, feet sec^{-1}
vertzcal position of vortex core in measuring plane, +ve upwards, feet
$\dot{\mathrm{z}} \quad$ vertical velocity of vortex core in measuring plane +ve upwards, feet sec^{-1}
$\rho \quad$ air density, slugs ft^{-3}
$\nu \quad$ kinematic viscosity of air,
Suffices
$P \quad$ port
S starboard
0 value at instant of generation

REFERENCES

No.
Author Title, etc
J.W. Wetmore
J.P. Reeder

Aircraft vortex wakes in relation to terminal operations.
NASA Tech. Note D 1777 (A.R.C. 24851) (1963)
3 H.B. Squire
The growth of a vortex in turbulent flow. A.R.C. 16666 (1954)

4 J.P. Jones
The calculation of the paths of vortices from a system of vortex generators, and a comparison with experiment.
A.R.C. C.P. 361 (1955)

5
L.M. Milne-Thomson Theoretical hydrodynamics.
pp 325 (1949) Macmillan \& Co

Fig. 1 Diagrammatic view of test area

Fig.2. Trailing vortex mutual interaction away from the ground. Comet aircraft. 150 kn . E.A.S. af 10,000 ft.

Fig 3 Sketch showing interaction sometimes observed between individual vortices and the ground

Fig 4a-d Measured vortex positions with different crosswind components

Fig 5 Comparison of measured and theoretical vortex positions

Fig. 6 Comparison of measured and theoretical vortex positions Crosswind $=-3.5 \mathrm{ft} / \mathrm{s}$ (run I)

Fig. 7 Comparison of measured and theoretical vortex positions Crosswind $=-11 \mathrm{ft} / \mathrm{s} \quad($ run 18$)$

Fig. 8 Comparison of measured and theoretical vortex positions Crosswind $=-14 \mathrm{ft} / \mathrm{s}$ (run 8)

a Horizontal velocity vs (height) ${ }^{-1}$

b Vertical velocity vs (half-separation) ${ }^{-1}$

Fig.9a\&b Vortex horizontal and vertical velocity components (run 2) Crosswind - $2 \mathrm{ft} / \mathrm{s}$

a Horizontal velocity ys (height) ${ }^{-1}$

b Vertical velocity vs (half-separation) ${ }^{-1}$

Fig.lOasb Vortex horizontal and vertical velocity components (run I) Crosswind $-3.5 \mathrm{ft} / \mathrm{s}$

a Horizontal velocity vs height

b Vertical velocity vs half-separation

Fig.Il a \& b Vortex horizontal a vertical velocity components (run I8) Crosswind - $11 \mathrm{ft} / \mathrm{s}$

Fig.12as bVortex horizontal a vertical components (Run 8) Crosswind - $14 \mathrm{ft} / \mathrm{s}$

A.R.C. C.P. NO. 1065	
January 1968	533.692 .048 .3.
Dee, F.W.	533.682 .054
Nicholas, O.P.	

FLIGHT MEASUREMENTS OF WING TIP VORTEX MOTION NEAR THE GROUND

Tests have been made to measure the movement of the wing tip vortices from a Hunter aircraft flying at 170 knots approximately 35 feet above a runmay, in a variety of wind conditions. Measurements were limited to a maximum time of 20 seconds after vortex generation. During this period the theoretical predictions presented are in good general agreement with the observed motions; however significant differences did occur. There mas no clear indicstion as to whether the vortices decaysed more rapidly in the presence of the ground and atmospheric turbulence, than would have been expected from earlier measurements amay from the ground in calm air. Limited tests were also made to study the vortex mutual interaction away from the ground.

```
A.R.C. C.P. NO. 1065
January 1968
Dee, F.W.
```

Nicholas, O.P.

FLIGHT MEASUREMENTS OF WING TIP VORTEX MOTION NEAR THE GROUND

Tests have been made to measure the movement of the wing tip vortices from a Hunter alreraft flying at 170 knots approximately 35 feet above a runway, in a variety of wind conditions. Heasurements were 1 imited to a maximum time of 20 secands after vortex generation. During this period the theoretical predictions presented are in good general agreement with the observed motions; however significant differences did occur. There was no clear indication as to whether the vortices decayed more rapidiy in the presence of the ground and atmospheric turbulence, than would have been expected from earlier measurements away from the ground in calm air. Limited tests were also made to study the vortex mutual interaction away from the ground.

A.R.C. C.P. No. 1065	$533.692 .048 .3:$
Jamary 1968	533.682 .054

Dee, F.W.
Nicholes, O.P.
flight measureinnis of winc tip vortex motion near tee GROUND
Tests have been made to measure the moverent of the wing tip vortices fram a Hunter aircraft flying at 170 knots approximately 35 feet above a runkay, in a variety of wind conditions. Measurements were ilimited to a maximm time of 20 seconds after vortex generation. During this period the theoretical predictions presented are in good general agreement with the observed motions; however significant differences did occur. There was no clear indication as to whether the vortices decayed more rapidly in the presence of the ground and atmospheric curbulence, than would have been expected from earlier measuraments amay from the ground in calm air. Limited tests were also made to study the vortex mutual interaction away from the ground.

© Crown copyright 1969

Published by

Her Majesty's Stationery Office

To bo purchased from 49 High Holborn, London w $C 1$ 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff CF1 1 rw Brazennose Street, Manchester 2 50 Farfax Stroct, Bristol BSI 3DE 258 Broad Street, Birmingham 1 7 Livenhall Street, Belfast BT2 8AY or through any bookseller

