
e 3izwi 
C.P. No. 1073 

MINISTRY OF TECHNOLOGY 

AERONAUT/CAL RESEARCH COUNCIL 

CURRENT PAPERS 

A Semi-Empirical Theory 

for the Growth and Bursting of 
Laminar Separation Bubbles 

b 
H P Horton 

Queen Mary College 

Universfty of London 

LONDON HER MAJESTY’S STATIONERY OFFICE 

1949 

Price 9s Od [45p] net 





C.P. lb. 1073. 

June 1967 

A Semi-empirical Theow for the Growth d Bursting 

of Laminar Separation Bubblea 

BY 

Ii. P. Horton 

Queen Mary College 

University of London 

A simple' pressure gradient criterion for the determination of the 

eOnd%tiona under which rs-attachment of a turbulent ehear layer can occur is 

proposed. Application of this criterion to the lsminar separation bubble 

problem, together with a simple bubble model and an approximate method of 

caloulstion of the momentum thickness growth over the bubble, leads to a 

method of prediction of the bubble growth. It is found that for a given 

imposed pressure distribution there exiets a Reynolds number at separation 

below which m-attachment is impossible; this 1s assocd.atsd with ths 

so-called 'bursting* phenomenon. The predicted bursting parmeters srs in 

good agreement with'sxperimental observations; in partioular, the value of 

Crabtree's pressure'rise parameter is found to be weakly depsnaent upon the 

boundary-layer Eeynolaa number at separation, vaaying between the limits 

0.27 to 0.36 over the rsnge of practical significance. It ia concluded 

that bursting occurd as a failure of the rs-attachment process, e.s suggested 

by wooawma. 

. Introduction 

The imestlgat~ons of McGregor', Gastsr2 and Woodward at 

Queen Mery College into the structure end behaviour of laminar 

* Replaces A.FkC.29 IS5 



peparation bubbles have shown clearly that the simple criterion 

originally proposed by Owen and Klanfer4, which states that e bubble 

is short or long according to whether the boundary layer Reynolds 

number at separation, R6,, , is greater or less than about 450, is by 
, s 

itself inadequate to determine the conditions under which bursting 

occurs. The hypothesis associated with this criterion, that a 

fundamental change in the stability of the separated laminar shear 

layer causes considerably delayed transition below this critical 

Reynolds number and hence much more extensive lengths of* sepazated 

flow, has been shown by Woodward to be incorrect since he found tran- 

sition to occur in very nearly the same physical position in bubbles 

just before and just after bursting. This observation, together 

with the discontinuous nature of the bursting phenomenon, suggested to 

Woodward that bursting occurs as a sudden failure of the shear layer 

to re-attach to the surface even though it is turbulent. This suggests 

that an ewamination of the conditions governing the re-attachment of 

a turbulent shear layer might be helpful in gaining an insight into 

the physical mechanism causing bubble bursting, and into the behaviour 

of separation bubbles.in general. 

2. A Simple Criterion for Turbulent Re-attachent 

A criterion for turbulent re-attachment, analogous to the 

laminer and turbulent separation criteria of Thwaites' and Buri 6 , may 

be derived by considering the behaviour of the momentum integral 

equation together with either the kinetic energy integral equation. 



3 

or Head’s 7 entrainment equation. We consider here only the former 

ca8e. 

The momentum integral and kinetic-energy integral equations 

for turbulent flow are, omitting the terms involving the normal Rey- 

nolds stresses, 

* iCf * . . . . . . . . . . . . . . . . . . . . . . . . (1) 

dc du 
and z +3% 2-c 

e dx 
d , . . . . . . . . . . . . . . . . . . . . . . . . . ‘ . . . . . . (2) 

m 

7 

where “-AZ cf -2 - - 2 au - e ’ 
4 

2 ’ Cd 3 1 7% dz , . . . . . . (3) 
oue P” e 

0 

and 6* - (1 - ;) dz , the displacement thicknesa 

0 
m 

e - 
I 

da, the momentum thickness . . . (4) 

0 
00 

c - 
I 

-$I da, the energy thickness. 

e 

Introducing now the energy shape parameter 

equation 2 may be written in the form 

dHc *r+ 3 -2 w cd 0 
du 

ue dx r . . . . . . . . . . . . . . . . . . . . (51 
c 



Eliminatioc of dO/dx between equations (1) and (5) laads 

to Truckenbrodt’sz3 shape-parameter equationI- 

dli 

viz 

du 
- (H-1)H .LL+c 

tz ue dx d - 4 Hc*Cf . . . . . . . . (6) 

Let us now examine the behaviour of equation (6) at a point of re- 

attachment. At such a point wa have by definition that the skin 

friction is zero, so equation (6) becomes 

do dH 
He CH - 1) iL 2-6 

ue dx 
2-c 
dx d . . . . . . . . ...*..... . . . (7) 

Now as can be seen from Fig. l., He becomes virtually in- 

dependent of H for the high 3alues of H (i.e. H = 3) associated with 

re-attachment. (These curves, due to Thompson, were derived for 

conventional attached boundary layers, but the experimental points 

included on the figure indicate that the curves are equally applic- 

able to x-developing boundary layers after re-attachment.) Thus 

unless dH/dx is exceedingly large, we should expect dHc/dx to be 

small at re-attachment. Some wasurements of the streamwise 

variation of HE near re-attachment ara shown in Fig. 2, which indi- 

cate that Hc passas through a minimum at the re-attachment point; 

- 0. 

Thus at re-attachment, equation 7 reduces to the equation 

e d” -2 a - ‘d 
ue dx Hc(H - 1) ’ . . . . . . . . . . . . . . . . . . .* . . . . . . . . . w 



It follows that if the velocity and shear stress profiles at re- 

attachment are universal, then !-- 
i I 

due 
uedx R 

is a function of Reynolds 

number only. 

Some evidence for the assumption of universality of velo- 

city profiles is presented in Fig. 3; re-attachment profiles behmd 

9 10 steps measured by Mueller and Tani are shown together with a 

number of profiles measured in swept separation bubbles. The 

presence of cross-flows in the latter case eliminates the inaccuracies 

occuring in the two-dimensional measurements due to the non-linear 

response of the hot-wire anemometer. The resulting mean profile is 

virtually identical to the self-preserving wake profile of Bradbury ; 11 

thu lends support to the Idea that re-attachment has a wake-like 

12 character, as is Inherent in Coles’ hypothesx, although the profile 

is rather more full than that of Coles. The profile is of a different 

form from that of turbulent separation profiles, being much less full. 

This wake-like character of the re-attachment process 

suggests that the assumption of constant eddy vxcosity through the 

layer may be valid; 13 indeed Clauser has shown that the outer 80-90X 

of turbulent boundary layers in general may be considered to have 

constant eddy viscosity, only the wall region being excluded. In 

the case of re-attachment, the wall region will be absent. For 

13 
equilibrium boundary layers Clauser has found that the eddy viscoslt 

pT is given by 



UT - kpue6* , . . . . . . . . . . . . . . . . . . . . . . *... . . . . . . . . . . . . w 

where pr is defined by Y - pt 2 , and k - 0.018. Shear 8tress 

measurements in reattaching layers by Mueller’ and Tani 10 suggest that 

k should be O-020. This implies that a turbulent Reynolds number RT 

defmed by RT = pue6*/uT has the constant value RT - 50 - l/k. 

Now Cd - 2 

% 
, . . . . . . . . . * . . . . . . . . . . . . . . . . . . (101 

But for the mean velocity profile of Fig. 3. we have that 

m 
2 

dn - 0.554 , . . . . . . . . . . . . . . . . . . . . . . . . . . (11) 

0 

so that with % = 50 we get that at re-attachment 

‘d = 0.0222. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WI 

The use of a constant value of % leads to the result that 

Cd is independent of Reynolds number. For the axean re-attachment 

profile we have that H - 3.50 and H = 1.51 so that from equati4p 
c 

8 we get 

- - 0.00590. . . . . . . . . . . . * . . . . . . . . . * . . . . . . . . 03) 

Recently Fiedler and Read 
14 

have found that the rate of 



entrainment unto a r -attaching boundary layer is higher than for 

the corresponding attached layer, and the same may be expected to be 

true of the dissipation coefficient Cd. Accordingly, the value of 

e % 
L I 
-- 
uedx R 

predicted by equation 13 may be expected to be too low; 

the actual form of the crlterlon, with its Independence of Reynolds 

number, may nevertheless be expected to be correct. 

0 due A number of experimental determinations of -- 
l I ue dx - +I 

are presented in Fig. 4; the rather large scatter is probably mainly 

attributable to the difficulty of measuru~g due/dx, which changes 

rapidly in the re-attachment zone. No definite Reynolds number effect 

is apparent, and the mean value of ARui-.OOS2 with a standard 

devution of .0016; the distribution of points about the mean follows 

approximately 2. normal curve, lending credence to the idea that the 

scatter is mainly due to experimental error. 

This mean experimental value, VIZ. 

'R = - - 0.0082 , . . . . . . . . . . . . . . . . (14) 

will be used in the ensuing theory. 

3. A Sunple Model of the Short Bubble 

Lam~nar separation bubbles are essentially a first-order 

interaction phenomenon; that Is., the perturbation of the inviscid 

velocity distribution due to the presence of a bubble is first order, 

rather than second order as is the case with attached boundary-layers 



in incompressible flow, so that the external velocity distribution 

should strictly be calculated to be compatible with the displacament 

effect of the bubble. In subsonic flow however this is rather a 

formidable problem, but fortunately some experimental observations 

of the general nature of the perturbed velocity distributions in the 

presence of short bubbles enable us to make use of a simple assmed 

form of perturbed velocity distribution, in which the total bubble 

length is essentially a free parameter which may be varied according 

to conditions. Nmerous investigations have determined the follw 

ing essential facts (see Fig. 5): 

(1) The perturbation to the inviscid velocity distribution 

is negligible except over the length of the bubble itself. 

Thus, the separation point may be calculated from the in- 

viscid velocity distribution by the usual laminar boundary 

layer methods and separation occurs at close to the corres- 

ponding inviecid value of ue; re-attachment takes place 

at some value of u e lying on the inviscid velocity distri- 

bution curve. 

(2) The pressure, and hence external velocity, over the 

laminar part of the bubble is constant, to a good approx- 

imation. 

(3) The external velocity falls nearly linearly between 

the transition and r&-attachment points. 
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There is a discontinuity in due/dx at the re-attachment point 

if we a~nume a linear fall of external velocity between transition and 

re-attachment; in practice of course there is a blending-in of the 

two curves, but it is found that this occurs after re-attachment so 

that the value of due/dx at x-attachment msy be taken as that of the 

linear velocity drop between transition and x-attachment. 

The length tl of laminar separated flow is obviously an 

important variable in the problem, but can only be determined experi- 

mentally. From dimensional considerationsit can be argued that, 

provided the level of fluctuaticxUin the boundary layer at separation 

is small, Ll/es should be a function of Ras. The results of careful 

1 experiments by McGregor , Gaster 
2 and Woodward are shown in Fig. 6, 

and it is found that the fo?zmula El/es = 4x104/Res correlates the 

results quite well. This formula is of the same form as that 

suggested by van Doenhoff 15 , but with a different constant (van 

Doenhof f’s value being 5~10~). 

Under the above assumptions it is evident that the value 

of (due/dx) at re-attachment depends only upon the velocity drop over 

the bubble and the length k2 of turbulent flow. In order to determine 

the re-attachment according to equation 14, the value of 6~ ia 

required ; in the next section a simple method of calculating this 

in terms of 9s will be given. 
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6. Calculation of Shear Layer Development 

We consider the laminar and turbulent parts of the bubble 

separately. 

(1) The Laminar Part 

As we have seen, the pressure is essentially 

constant in the laminar part of the bubble, and as we might 

therefore expect it is found that the reverse flow velocities 

under the laminar shear layer are exceedingly small. The 

skin friction in this region is therefore negligible, so 

from the momentum equation we get simply dfJ/dx - 0, 

i.e. 0 - T 0 s ’ . . . . . . . . . . . . . . . . . . . . . . . , . , . , . . cw 

where 8 T is the momenturn thickness at transition. 

(2) The Turbulent Part 

Methods based on the Crocco-Lees 16 mixing equation, 

the momentum-integral equation and the energy-integral equa- 

tion have been compared, and it is found that the energy- 

integral equation method is preferable in the existing con- 

ditions (strong adverse pressure gradient), as this method 

is considerably less sensitive to the value of the 

empirically-determined constants occuring in all three 

methods. 

The energy integral equation 2 may be written as 
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-+ & (ue3HE@ = Cd , . . . . . . . . . . . . . . . . . ..a . . . . . . (16) 

"e 

no that, integrating between transition T and m-attachment 

R we have that 

["cf3u;]~ = [Cdw;.dx. . . . . . . . . . . . . . . . . . . . . . (17) 

T 

Now from the experimental results shown in Fig. 2 we see that 

at T, HE = 1.48 and at R, H c = 1.52, and it is inferred that in 

general to a good approximation we may use a mean value of 

%n = 1.50 = constant. Writing also Ze = ue/u 
% 

= up eT' 

F = e/es = e/eT, F = x/es, me get 

xR 
-- 3 1 
'RueR 

-1 = - 
,I 

-3 

"%.I 
Cd*ue (3-d% . . . . . . . . . . . . . . . . . (18) 

, TT 

The contribution from the right-hand aide of this equation 

is not usually large, and accordingly the assumption of a 

constant overall value of Cd may be expected to yield results 

of acceptable accuracy. Making this approximation, equation 

18 becomes 

;R 

3ii 3-l %n 
R 'R 

where C h is the mean overall value of Cd. 
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5. Growth and Bursting Theory 

We are now III a position to obtain o closed solution for 

the length of a bubble by combining the re-attachment rrlterion,equa- 

tion 14, wth equation 19, sss*Lng the extecnsl velocity 

tlon model previously described. 

Consxder the turbulent part of the bubble alone; 

distribu- 

the velo- 

, . . . . . . . . . . . . . . . . . . . . . . . (20) 
t7 T2 

where T 2 - i21es. 

Now from cquatlon 14 we have at re-attachment 

An - [$$= [%jn . 2 , .'.................. (21) 

so that from equations 20 and 21, 

ii E 
?Tn = -IIn 

=x 2 
'r-XJ* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . (22) 

Also the external velocity dlstrlbution between T and R is 

% = 1 - (1 - GeR I r izT1] 9 . . . . . . . . . . . . . . . . . . . . . (23) 
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On integration this gives 

XR - .-.......... (25) 

Combining equation 22 and 25 leads to a relationship between KeR and 

i2 :- 

%+ 
(1 - &AR) 

G 4 * 4H% i* 
eR cd 

. . . . . . . . . . . . . . . . . . . . . . . . . . . (26) 

2!-- * 
4Hcm R 

Equation 26 therefore provides a relatIonship between the ratios of the 

external velocities at re-attactint and separation, ceR - ueR/ueS, 

and the non-dnnensional length of turbulent separated flow, Fz - fiz/fJS. 

A more fanliar parameter than YieR for expressing the 

velocity drop over a bubble 1s Crabtree s ' lJ parameter 0, where 

'R - 'S 2 0 - = 1 - iieR . . . . . . . . . . . 
hs2 

(27) 

Fig. 7 show the calculated variation of o with Fz, together 

1 
with experimental results of McGregor , Gaster 2 and Woodward 

3 . The 

three curves correspond to calculations with various values of Cdm; 

the curve for Cdm - 0.0182, which is the value for a turbulent half- 

jet with Liepmann and Laufer's 22 value of spread parameter os - 11, 

correlates the results nore satisfactorily than the other values, 

and hence this value will be adopted in the ensuing theory. 

By making the substitutions 
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T2 - T- Tl 

I 

. . . . . . . . . . . . . . . . “-. m . . . . . . . . . . . . . . . (281 

and Fl - 4 x 104 

% 

in equation 26, we can obtain the relationship between the bubble 

length x, the velocity ratio i&R and the separation Reynolds number 

Res- Now since S and R lie on the inviscid velocity 

there exists an additional relatmnshlp between L and 

eS - fh.(ReS), so that the varx+tion of z and i&R with 

determined uniquely. 

distribution, 

iY ekl* AL%, 

R% my be 

Making the substitution 28 in equation 26 we get 

The curves of 7 against iieR for various RSs so determined 

my be described as loci of possible re-attachment points. 

As an example let us find the growth behaviour for a linear 

inviscid velocity distributmn coven by 

h = 1 - xfc , when c is a reference length, a~, 

putting x* = x/c , &a 1 - x*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . wo 

Assme for the sake of argument that 



where OS* * es/c . 

The result is shown in FIN. ga, loci of possible points of 

re-attachment being shown for values of ROS between 160 and 250. 

The points of intersection of these loci with the inviscid velocity 

distribution determine the re-attachment points. It will be seen 

that a progressive expansion in the bubble with reduction of RbS 

occurs until the curves become tangentul at RB~ - 175; below this 

Reynolds number re-attachment is impossible, and we may associate 

this with the burstng condztion. As a result of this tangency 

condition, the growth rate with reduction of RoS at bursting becomes 

infnite, as shown n Fig. 8b. 

Let us extend the above analysis to the case of a general 

linear imposed velocity distribution; since Gaster has found that 

a good correlation exists at bursting between Reg and a parmeter P 

expressing the average velocity gradient over the bubble, we may 

expect that such a linearised approach will be a good approximation 

for most bubbles. For this linear type of velocity distribution, 

the bursting condition is that the line joining the points of separ- 

ation and re-attachment in the Le*- x plane becomes tangential to the 

locus of possible points of re-attachment. This leads to the 

result that at bursting 
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4B&R3(l - ;eR)* = 4 x 104 - 4 

R% 
Cu eR - 02 

. . . . . . . . . (31) 
1 

where B - 
Cd/4HE 

Cd/4Hc - AR ’ ’ - Cd/4Hc - AR ’ 

Substitution of the resulting values of LeR at bursting, for various 

%s* into equation 29 then gives the non-dimensional bubble length 

at bursting. Hence the values of Gaster’s parameter 

Res * ( eR - 1) iT 
P = . . . . . . . . . . . . . . . . . . . . . . . . . . . (32) 

if 

may be calculated. Also values of Crabtree’s parameter o 0 1 - zaR2 

may be obtained. The growth curves y against Res at constant P are 

shown in Fig. 9; it will be seen that at bursting dx/dR6s is 

infinite. 

Comparisons of the resulting theoretical curves of o, y and 

P against Res at bursting with experimental results are shown in 

Figs. 10, 11 and 12. The agreement with experiment is quite good, 

soma of the scattar of points being attributable to departures from 

linearity of the imposed velocity distributions, and scana to inaccu- 

racies in the formula used to predict the length of laminar flow. 

The theoretical curva of xB against R8g follows the curve FB - 6 ES 104/R6g 

quite closely, in quite good agreement with the curva TB - 6.4 x 104/R6g 

suggested by Young 18 to be the bebh curve through the experimental 

point& * The value of Crabtree’a parameter IJ at bursting is found 

tb be only weakly dependent cm Res, varying between the limits 

0~27 to 0.36 over the range 100 < Res x 500; this comparas 
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favourably with Crabtree's 17 suggested constant value of 0.35. As 

shown in Fig. 13, the predicted value of of, is not particularly 

dependent upon the value of the constant in the formula defining the 

length of separated laminar flow, and the shape of the loci of pass- 

ible re-attachment points is such that qute large departures from 

non-linearity of the unposed velocity distribution cause only small 

changes in oB. Thus for most purposes Crabtree's hypothesis that 

oB is a constant appears to be quite a good approximation; however, 

in order to fznd CI for a given velocity distrlbutlon, It is necessary 

to know the bubble length and this quantity k strongly dependent 

upon the length of laminar flow (see Fig. 14) and the curvature of 

the velocity dutribution. 

From equation 26 it may be seen that as & tends to Infin- 

9, kR tends to a rn~nu~~um value given by 

- 4 Cd/4H c 
ueR fin - Cd/4Kc - hR ’ 

which leads to a maximum attainable value of omax - 0.48. That part 

of the analysis leadIng to this result may be considered to be 

equally applicable to long as well as short bubbles, so this limiting 

value of o may be expected to relate to long bubble separations. 

The value is close to that derived for long bubbles by Norbury 6 

Crabtrae". 
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6. DiscussIon 

The good qualitative and fair quanLitat.ive agreement with 

experiment of Lhe present snnple approach strongly indicates certain 

essential features of the IneLhan~sm of b”rstLng. Tb~s may be stated 

Ill tile f0110w1ng terms. Tbc total velocity drop along the turbulent 

shear layer 1s related to the length of turbulent separated flow, and 

these cwo quantltles are dIctated by the length of lamu~ar flow and 

the unposed velocity dlstrlbutlon; bursting occurs when expansion 

of the turbulent part of the shear layer +nLh decrease of RoS cannot 

supply a sufflclent pressure ruse (velocity hop) to satisfy the ra- 

qurements of the unposed velocity dlstrlbutlon wbllst at the same 

tune attaining the requlslta value of the re-attachment parameter. 

The most Important aspect of the present analysts is the 

correlation between & and 0, from whwh the growth and bursting 

theory irmnedlately follows. The satisfactory predIctIon of this 

correlation by means of the re-attachment criterion lends additional 

support to the utility of the crlterlon. 

The lack of scns~t~v~ty of oB to both Reynolds number and 

length of lam~nar flow lndlcates that the yressure ruse o”er the 

bubble 1s the major factor determIning bursting. 
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- - 0.0082 
* . appears sufficient to determine under what conditions a turbulent 

shear layer will m-attach. 

(2) There exists a correlation between the non-dimensional 

length of laminar separated flow, TI - ii/OS, and ReS such that 

(3) There exists a correlation between the non-dimensional 

length of turbulent separated flow, & - I.z/OS and the ratio of the 

external velocities at re-attachment and transition, u eR 6ZTi /u and 

hence between & and 0. 

(4) Bubble growth and bursting behaviour may be predicted to 

a reasonable degree of accuracy by making use of conclusions 2 and 

3. 

(5) The value of Crabtree’s parameter o at bursting varies only 

slightly with RoS, between limits 0.27 and 0.36. 

(6) The mm-dmensimal bubble Length at bursting (for 

linear inviscid velocity distributions) may be approximated by the 

curve 7 - 6 x 104/RoS. 

(7) Bubble bursting occurs as a fundamental breakdown of the 

re-attachment process. 
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SYMBOLS NOT DEFINED IN THE TEXT 

x,2 Co-ordinates measured along and normal to the aerofoil 
surface 

9. - % - xs Total length of bubble 
Ll - xT - xS Length of laminar separated flow 
tz = xR - xT Length of turbulent separated flow 

P Static pressure 
ll Streamwise velocity 

% 
8% 

--T- Reynolds number based cn momentum thickness 
=E!k Rpt v Reynolds number based nn displacement thickness 

" Kinematic viscosity 

P Density 
T Wall shear stress w 

e du A = (--) Pressure gradient parameter ue dx 
Denotes lengths and velocities non-dimensionalised by 
'~3~ and naS respectively. 

i3 Geometric parameter in swept bubble experiments, 
Suffices 

B denotes conditions at bursting 

e denotes conditions at the edge of the viscous layer 

S,T,R denotes conditions at the points of separation, tranSitiOn 
and re-attachment respectively 

m denotes conditions in the undisturbed stream. 
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FIG. I. 
VARIATION OF ENERGY SHAPE PARAMETEK He WITH 

CONVENl-IONAL SHAPE PARAM&lER Id ACCBRDING TO 

THOklPSON, TOGETHERWITH MEASURED VALUES IN 3-D 
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STREAMWISE VAUJES,AND VALUES OF Re AUE o(lO=). 
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FIG. 2. 
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STREAMWISE DISTANCE AFT 
OF RE-ATTACHMENT. 

VARIATION OF STREAMWISE ENERGY SHAPE PARAMmER 

IN THE VICINITY OF RE-Afl-ACHMENl- FOR TWO 

SWEPT SEPARATION 6U66LES. 
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COMPARISON OF RE-ATTACHMENT PROFILES. 

t FOR THE MEAN PROFILE bl=Sfi, ffp4.0, Heal.51, &/es 7.5). 
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FIG. 4. 
EXPERIMENTAL DETERMINATIONS OF THE PRESSURE 
GRADIENT PARAMETER h Al RE-ATTACHMUT. 
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FIG. 5. 
SIMPLIFIED MODEL Of SHORT LAMMAK SEPARATION 8U66LE. 
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FIG. 6. 
VARIATION Of NON-OlMENSiONAL LENGTH OF SEPARATED 

LAMINAR FLOW WITH SEPARATION REYNOImOS NUMBIZR. 
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FIG. ‘7 =z 

COMPARISON OF CALCULATED AND MEASURED VARIATION 
OF PRESSURE RECOVERY PARAMETER WITH LENGTH OF 
lUR0ULIENT PART OF THE BUBBLE. 
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FIG. 8a 
EXAMPLE OF 

GROWTH AND 

GRAPHICAL 

BUI~STI NG. 

PREDIU-ION OF BUB8LE 



FlG.I?b. 
VARIATION OF CRA6TREE’S PRESSURE RECOVERY 
PARAMEl-ER,ARo Of To-WI- 6UBeti LEN&lH, WIlti 
SEPARATION REYNOLDS NUMEXR, FOR -I% HAPttlCAL 
E%AMPL~. 
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COMPARISON BETWEEN THRORRT’ICAA AND EXPERIMENTAL 
PRRSSURE RECOVERY PARAMETERS Al BURSTING. 
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FOR LEGEND SEE FlG.10. 
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COMPARISON OF THEORETICAL AND fXPERlMENlA1 
BU6ELE LENGTHS AT 6UFtSliNG. 
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FIG. 12. 
COMPARISON BETWEEN THEORETICAL AND EXPERlr++ENT* 
VALUES OF GASTER’S PARAMETER P AT BURSTING. 

(EXPERIMENTAL VALUES OF P CAACULATED USING 
MEASURED VALUES OF Ue,z AND ue,). 
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EFFECT OF VARIATION OF lRAN§lTlON LAW UPON 
THE PRESSURE RECOVERY PARAMETER AT 6URSTlNk 
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