N. A. E.

C P. No. 96 (14,238) A R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Graphical Solution of Multhopp's Equations for the Lift Distribution of Wings

By

F. Vandrey

LONDON : HER MAJESTY'S STATIONERY OFFICE

1952

Price 1s 9d net

~

-

C.P.96 A.R.L./R1/G/AE/2/5 February, 1951

GRAPHICAL SOLUTION OF MULTHOPP'S EQUATIONS FOR THE LIFT-DISTRIBUTION OF WINGS

ABSTRACT

A simple graphical method is described facilitating the determination of the lift-distribution of wings. The basis is Multhopp's method of replacing approximately the integro-differential equation for the circulation by a finite system of linear equations which give the values of the circulation at certain fixed points along the span.

The values of the unknown circulations are represented by scales in a set of diagrams for the equations. The multiplication of the approximate values of the unknowns and the constant coefficients of the equations is effected by auxiliary scales in the diagrams. The corrections of the approximate values are transferred from the auxiliary scales to the main scales by a pair of dividers.

The lift-distribution of a rectangular wing is determined as a practical example.

INTRODUCTION

 The determination of the lift-distribution of wings is usually carried out by the method of Multhopp(1), whereby Prandtl's integro-differential equation is replaced approximately by a finite system of linear equations. These equations permit a solution by iteration which converges rather quickly in all cases of practical interest.

2. The calculations are usually carried out numerically, but graphical methods are equally suitable for the procedure of iteration, and their accuracy is often sufficient for practical purposes. Nulthopp himself suggested a graphical method in which the slope of straight lines represented the required values of the circulation***. The practical application of his method requires a drafting machine, for transferring the directions of these lines from the diagram of one equation of the system to that of another one.

3. A somewhat simpler graphical method is described below. The values of the circulation are represented by scales. The multiplication of these values and the constant coefficients of the equations is effected by auxiliary scales. The corrections obtained from the auxiliary scales are transferred to the main scales by a pair of dividers.

MULTHOPP'S SYSTEM OF EQUATIONS AND ITS SOLUTION BY ITERATION

4. Consider the equations of Multhopp, for example in the case of 7 points along the span of the wing, assuming symmetrical distribution of the angle of incidence with respect to the centre of the wing.

$$Y_{1} \begin{bmatrix} 5 \cdot 23 + \frac{b}{c_{1} t_{1}} \end{bmatrix} = \alpha_{1} + 1 \cdot 91 Y_{2} + 0 \cdot 15 Y_{4}$$

$$Y_{2} \begin{bmatrix} 2 \cdot 83 + \frac{b}{c_{2} t_{2}} \end{bmatrix} = \alpha_{2} + 1 \cdot 04 Y_{1} + 1 \cdot 19 Y_{3}$$

$$Y_{3} \begin{bmatrix} 2 \cdot 16 + \frac{b}{c_{3} t_{3}} \end{bmatrix} = \alpha_{3} + 0 \cdot 91 Y_{2} + 0 \cdot 85 Y_{4}$$

$$Y_{4} \begin{bmatrix} 2 \cdot 00 + \frac{b}{c_{4} t_{4}} \end{bmatrix} = \alpha_{4} + 0 \cdot 11 Y_{1} + 1 \cdot 58 Y_{3}$$
(1)

5. Here, b denotes the span of the wing, $c_V = \frac{1}{2} \frac{d}{d} \frac{c_L}{\alpha}$ (\approx 1.1 π in most cases)

the derivative of the lift-coefficient with respect to the angle of incidence, t_V the length of the chord of the wing-section, α_V the angle of incidence ($\alpha = \frac{1}{57.3} \alpha^0$), $\gamma_V = \frac{c_{LV} \cdot t_V}{2b}$ the non-dimensional circulation at the point V. The position η_V of the points where γ_V is calculated is shown in Figure 1.

6. In order to calculate the unknown values γ_V from (1) for a given wing, the method of iteration is used. An estimated Oth approximation is obtained by neglecting the terms containing γ_V on the righthand side of (1)

$$Y_{10} = \left(5.23 + \frac{b}{c_1} \tilde{t_1} \right)^{-1} \alpha_1$$

(2)

The first approximation is then obtained by introducing Y_{V_0} into the righthand sides of (1). As Y_1 and Y_3 in (1) depend only on Y_2 and Y_4 and vice versa, a more rapid convergence is obtained by using Y_{20} and V_{40} only in the determination of Y_{11} and Y_{31} , and using these values instead of Y_{10} and Y_{30} for the determination of Y_{21} and Y_{41} . The first step of the iteration procedure will therefore be

*** German war-time report of the Focke-Wulf Werke, Bremen. Not published.

$$Y_{11} = \left[5.23 + \frac{b}{c_1 t_1} \right]^{-1} (\alpha_1 + 1.91 Y_{20} + 0.15 Y_{40})$$

$$Y_{31} = \left[2.16 + \frac{b}{c_3 t_3} \right]^{-1} (\alpha_3 + 0.91 Y_{20} + 0.85 Y_{40})$$

$$Y_{21} = \left[2.83 + \frac{b}{c_2 t_2} \right]^{-1} (\alpha_2 + 1.04 Y_{11} + 1.19 Y_{31})$$

$$Y_{41} = \left[2.00 + \frac{b}{c_4 t_4} \right]^{-1} (\alpha_4 + 0.11 Y_{11} + 1.58 Y_{31})$$
(3b)

Further approximations are calculated in the same way. After a few steps, the successive approximations $\gamma_{\gamma n}$ become practically constant, i.e. they represent the solution of the system (1).

GRAPHICAL ITERATION OF MULTHOPP'S SYSTEM OF EQUATIONS

7. In order to carry out the iteration of the system (1) by graphical

methods, the values γ_{VO} have first to be determined, i.e. α_1 , ... have to be multiplied by $\left(5.23 + \frac{b}{c_1 t_1}\right)^{-1}$, ... This may easily be done by constructing a right-angled triangle with the sides $5.23 + \frac{b}{c_1 t_1}$ and α_1 in suitablé units (independent of each other) and a scale for γ_1 parallel to the side representing α_1 (Figure 2).

8. Let
$$\mathcal{L}_1$$
 be the unit length of $5.23 + \frac{b}{c_1 t_1}$, \mathcal{L}_2 the unit length of α_1 and \mathcal{L}_3 a third unit length. A straight line AB is then drawn bearing a scale of unit length \mathcal{L}_1 with the origin at a distance 5.23 \mathcal{L}_1 from A .
Another straight line CD is drawn perpendicular to AB through the point C at a distance \mathcal{L}_3 from A .

9. Now let $\frac{b}{c_1 t_1} = 2$ in a particular case. A second line $EF \mid Ab$ is then drawn through the point E which corresponds to $\frac{b}{c_1 t_1} = 2$ on the scale of Ab. Further a line GH is drawn anywhere in the plane bearing a scale for α_1 of unit length $\frac{3}{2}$. Let α_1 be 1 in a particular case. $\alpha_1 = 1$ is then transferred by a pair of dividers from GH to EJ along the line EF, and a straight line is drawn from A to J intersecting the line CD at the point K. The distance CK will then be

$$CK = JE_{\bullet} \frac{AC}{AE} = 5.23 + \frac{\alpha_{1}}{c_{1}} \frac{b}{t_{1}} \cdot \frac{l_{2} l_{3}}{l_{1}} = Y_{10} \frac{l_{2} l_{3}}{l_{1}}$$
(4)

The line CD may therefore be fitted with a scale for γ_1 , of unit length $\frac{l_2 l_3}{p_1}$.

1C. The scales AB, CD and GH are obviously the same for every wing, only the lines EF and AJ (dotted in Figure 2) have to be drawn in any particular case. Almost the same system of scales can also be used for the determination of Y₂₀, Y₃₀ and Y₄₀, the only difference is that the distance between A and the origin of the b/ct - scale must be 2.83 ℓ₁, 2.16 ℓ₁ or 2.00 ℓ₁ respectively, instead of 5.23 ℓ₁.

ll. In order to obtain from γ_{10} the improved value

$$Y_{11} = \left(5.23 + \frac{b}{c_1 t_1}\right)^{-1} (\alpha_1 + 1.91 Y_{20} + 0.15 Y_{40})$$
(5)

the quantities 1.91 γ_{20} and 0.15 γ_{40} have to be added to α_1 and the result has again to be multiplied by $5.23 + \frac{b}{c_1 t_1}^{-1}$. Two auxiliary scales LM for 1.91 γ_2 and 0.15 γ_4 are therefore drawn in addition to the scales AB, CD and GH of Figure 2, with the unit lengths 1.91 γ_2 for γ_2 and 0.15 γ_2 for γ_4 (Figure 3).

12. With the aid of these auxiliary scales, the length $(1.91 \gamma_{20} + 0.15 \gamma_{40})$ is transferred to JN along the line JF. The line AN is then drawn in the diagram intersecting the scale of γ_1 at the point O corresponding to the improved approximate value γ_{11} of γ_1 .

The improved value of γ_3 , γ_{31} , is determined in exactly the same manner and then γ_{21} and γ_{41} are determined correspondingly by using the improved values γ_{11} and γ_{31} instead of γ_{10} and γ_{30} .

13. The next approximation γ_{V_2} is then obtained by the same process, using γ_{21} , γ_{41} , γ_{12} , γ_{32} , instead of γ_{20} , γ_{40} , γ_{11} , γ_{31} , and correspondingly for further approximations. After a few steps, a set of values γ_{Vn} is obtained which remain constant if the iteration is continued. These values represent the solution of the system (1) within the range of accuracy of the method.

14. The scales AB of $\frac{b}{c_1 t_1}$, CD of γ_1 , GH of α_1 and the auxiliary scales LM

of γ_2 and γ_4 in the diagram of the first equation, and the corresponding scales in the diagrams of the other equations, are obviously the same for all wings. It is therefore convenient for practical applications to use blueprints of these scales which can be kept in stock (Figure 4). The diagrams of the first and third equation of (1), and equally those of the second and fourth equation, may be designed on these blue-prints with the use of the same scale of $\frac{b}{c \ t}$ in order to obtain smaller dimensions of the whole diagram.

15. A similar combined diagram can also be designed for the case of an antisymmetrical distribution of the angle of incidence. The equations of Multhopp are in this case

$$Y_{1} \left[5.23 + \frac{b}{c_{1} t_{1}} \right] = \alpha_{1} + 1.85 Y_{2}$$

$$Y_{2} \left[2.83 + \frac{b}{c_{2} t_{2}} \right] = \alpha_{1} + \gamma_{1} + \gamma_{3}$$

$$Y_{3} \left[2.16 + \frac{b}{c_{3} t_{3}} \right] = \alpha_{3} + 0.77 Y_{2}$$
(6)

The diagram for this case is designed in Figure 5; further explanation appears unnecessary.

16. It is of course not difficult to apply the same method to the case of 15 points along the span in order to obtain a better approximation to the original integro-differential equation of Prandtl. For a still greater number of points, however, say 31, the graphical method becomes too complicated. In such cases, the calculation should be carried out numerically.

A NUMERICAL EXAMPLE

17. A practical example will show the use of the diagrams of Figures 4 and 5. Consider for example a rectangular wing of aspect ratio $b/t = 2\pi$. Let the value of $c = \frac{1}{2} \quad \frac{d}{d} \frac{c_L}{\alpha}$ be π (theoretical value for symmetrical wing-sections of infinitely small thickness) and the angle of incidence α be constant (e.g. = 1) along the wing in the symmetrical case, and be zero in the antisymmetrical case at the points η_4 , η_3 , η_2 and 1 at the point η_1 . The value of $\frac{b}{d}$ will then be 2 for all points of the wing.

4

18. Consider first the symmetrical case. In order to obtain the Oth approximation, lines parallel to the scales of γ_V are drawn through the points $\frac{b}{c \ t} = 2$, and the points J_V are marked on these lines by transferring to them $\alpha_V = 1$ from the scale of α (Figure 4). Straight lines are then drawn through J_V and the points (γ_V) of the basic lines of the diagram. These lines intersect the scales of γ_V at the points γ_{V_0} which give the Oth approximation for the iteration process

$$\gamma_{10} = .14; \gamma_{20} = .21; \gamma_{30} = .25; \gamma_{40} = .26$$

19. The lengths corresponding to γ_{20} = .21 and γ_{40} = .26 are now transferred

from the scales (γ_1) to the dotted line from $\frac{b}{c_1 t_1} = 2$ to J_1 in the upper diagram of Figure 4. By this means the point N_1 is obtained. The straight line connecting N_1 and (γ_1) on the basic line intersects the scale of γ_1 at a point corresponding to the improved value γ_{11} . The improved value γ_{31} is determined in the same manner and correspondingly the values γ_{21} and γ_{41} are determined from the lower part of the diagram, using in this case the values γ_{11} and γ_{31} , instead of γ_{10} and γ_{30} . The first approximation is therefore

$$\gamma_{11} = .20; \quad \gamma_{21} = .34; \quad \gamma_{31} = .34; \quad \gamma_{41} = .40.$$

Repeating the procedure once more with these improved values, the second approximation

$$\gamma_{12} = .23; \gamma_{22} = .36; \gamma_{32} = .40; \gamma_{42} = .42$$

is obtained.

After the next step, only the value of Y, is slightly altered

$$\gamma_{13} = .25; \gamma_{23} = .36; \gamma_{33} = .40; \gamma_{43} = .42$$

and further steps will give the same result, within the range of accuracy which can be achieved by a graphical method. The values γ_{V_3} are therefore the solution of the problem. The exact solution of the equations is

 $\gamma_1 = 0.2419$ $\gamma_2 = 0.3590$ $\gamma_3 = 0.4042$ $\gamma_4 = 0.4162$.

20. The determination of the values γ_V in the anti-symmetrical case is carried out in exactly the same way with the use of the diagram Figure 5, and therefore needs no further explanation. The result is

$$\gamma_1 = .15; \quad \gamma_2 = .03; \quad \gamma_3 = .01; \quad \gamma_4 = 0.$$

In this case only two steps of the iteration process are needed to obtain the final result. The exact solution of the equation is

$$\gamma_1 = 0.1464$$
 $\gamma_2 = 0.0315$ $\gamma_3 = 0.0058$ $\gamma_4 = 0.$

21. The permission of the Admiralty for the publication of this paper is acknowledged.

REFERENCE

(1) H. Multhopp: Die Berechnung der Auftriebsverteilung von Trag fluegeln. Luftfahrtforschung 15 (1938), 153-169.

F. VANDREY F.V/EL A.R.L., Teddington. February, 1951.

DS 31779/1

C.P. No. 96 (14,238) A.R.C. Technical Report

CROWN COPYRIGHT RÉSERVED

PRINTED AND PUBLISHED BY HER MAJESTY'S STATIONERY OFFICE To be purchased from

York House, Kingsway, LONDON, W.C.2 423 Oxford Street, LONDON, W.1 P.O Box 569, LONDON, s E.1

13a Castle Street, EDINBURGH, 21 St. Andrew's Crescent, CARDIFF39 King Street, MANCHESTER, 2Tower Lane, BRISTOL, 12 Edmund Street, BIRMINGHAM, 380 Chichester Street, BELFAST

or from any Bookseller

1952

Price 1s 9d net

PRINTED IN GREAT BRITAIN

ı.

_