

Graphical Solution of Multhopp＇s Equations

 for the Lift Distribution of WingsBy
F．Vandrey

LONDON ：HER MAJESTY＇S STATIONERY OFFICE
1952

GRAPHICAL SOLUTION OF MULTHOPPIS EQUATIONS FOR THE LIFT-DISTRIBUTION OF WINGS

ABSTRACT

A simple graphical method 1 s described facilitating the determination of the lift-distribution of wings. The basis is Multhopp's method of replacing approximately the integro-differential equation for the circulation by a finite system of linear equations which give the values of the circulation at certain fixed points along the span.

The values of the unknown circulations are represented by scales in a set of diagrams for the equations. The multiplication of the approximate values of the unknowns and the constant coefficients of the equations is effected by auxiliary scales in the diagrams. The corrections of the approximate values are transferred from the auxiliary scales to the main scales by a pair of dividers.

The inft-distribution of a rectangular wing is determined as a practical example.

1. The determination of the lift-distribution of wings is usually carried out by the method of Multhopp (1), whereby Prandtl's integro-differential equation is replaced approximately by a finite system of linear equations. These equations permit a solution by iteration which converges rather quickly in all cases of practical interest.
2. The calculations are usually carried out numerically, but graphical methods are equally suitable for the procedure of iteration, and their accuracy is often sufficient for practical purposes. Nulthopp himself suggested a graphical method in which the slope of straight lines represented the required values of the circulation***. The practical application of his method requires a drafting machine, for transferring the directions of these lines from the diagram of one equation of the system to that of another one.
3. A somewhat simpler graphical method 1 s described below. The values of the circulation are repr-sented by scales. The multiplication of these values and the constant coefficients of the equations is effected by auxiliary scales. The corrections ootained from the auxiliary scales are transferred to the main scales by a pair of dividers.

NULTHOPP'S SYSTEM OF EQUATIONS AND

ITS SOLUTION EY ITERATION

4. Consider the equations of Multhopp, for example in the case of 7 points along the span of the wing, assuming symmetrical distribution of the angle of incidence with respect to the centre of the wing.

$$
\begin{align*}
& \gamma_{1} 5.23+\frac{b}{c_{1} t_{1}}=\alpha_{1}+1.91 \gamma_{2}+0.15 \gamma_{4} \\
& \gamma_{2}: 2.83+\frac{b}{c_{2} t_{2}}=\alpha_{2}+1.04 \gamma_{1}+1.19 \gamma_{3} \\
& \gamma_{3}: 2.10+\frac{b}{c_{3} t_{3}}=\alpha_{3}+0.91 \gamma_{2}+0.85 \gamma_{4} \tag{1}\\
& \gamma_{4}: 2.00+\frac{b}{c_{4} t_{4}}=\alpha_{4}+0.11 \gamma_{1}+1.58 \gamma_{3}
\end{align*}
$$

5. Here, b denotes the span of the wing, $c_{\nu}=\frac{1}{2} \frac{d}{d} c_{L}$ ($\approx 1.1 \pi$ in most cases)
the derivative of the lift-coefficient with respect to the angle of incidence, t_{V} the length of the chord of the wing-section, α_{V} the angle of incidence $\left(\alpha=\frac{1}{57.3}-\alpha^{0}\right), \quad \gamma_{v}=\frac{c_{V} \cdot t}{2 b}$ the non-dimensional circulation at the point V. The position η_{V} of the points where γ_{V} is calculated is shown in Figure 1.
6. In order to calculate the unknown values γ_{v} from (l) for a given wing, the method of iteration is used. An estimated oth approximation is obtained by neglecting the terms containing Y_{V} on the $r i g h t h a n d$ side of (1)

$$
\begin{equation*}
\gamma_{10}=\left\{5.23+\frac{b}{c_{1}} \tilde{t}_{1}\right\rangle^{-1} \alpha_{1} \tag{2}
\end{equation*}
$$

The first approximation is then obtaned by introducing Y_{V} into the rightand sides of (1). As Y_{1} and Y_{3} in (1) depena only on Y_{2} and Y_{4} and vice versa, a more rapid convergence is obtained by using γ_{20} and γ_{40} only in the determination of γ_{11} and Y_{31}, and using these values instead of γ_{10} and γ_{30} for the determination of Y_{21} and Y_{41}. The first step of the iteration procedure will therefore be
*** German war time report of tre Focke-hulf Werke, Bremen. Not publishec.

$$
\begin{align*}
& \gamma_{11}=\left\{5.23+c_{1} t_{1}\left(\alpha_{1}+1.91 \gamma_{20}+0.15 \gamma_{40}\right)\right. \tag{3a}\\
& \left.\gamma_{31}=2.16+\frac{b}{c_{3} t_{3}}\right)^{1}\left(\alpha_{3}+0.91 \gamma_{20}+0.85 \gamma_{40}\right) \\
& \gamma_{21}=\left\{2.83+\frac{b}{c_{2} t_{2}}\right\}^{1}\left(\alpha_{2}+1.04 \gamma_{11}+1.19 \gamma_{31}\right) \tag{3b}\\
& \gamma_{41}=\left\{2.00+\frac{b}{c_{4} t_{4}}\right]^{1}\left(\alpha_{4}+0.11 \gamma_{11}+1.58 \gamma_{31}\right)
\end{align*}
$$

Further approximations are calculated in the same way. After a few steps, the successive approximations $\gamma_{v m}$ become practically constant, l.e. they represent the solution of the system (1).

GRAPHICAL ITERATION OF MULTHOPF'S SYSTEM
 OF EQUATIONS

7. In order to carry out the 1 teration of the system (1) by graphical methods, the values $Y_{v o}$ have first to be determined, i.e. α_{1}, \ldots have to be multiplied by $\left[5.23+\frac{b}{c_{1} t_{1}}\right]^{-}, \ldots$ This may easily be done by constructing a right-angled triangle with the sides $5.23+\frac{b}{c_{1}} t_{1}$ and α_{1} in suitablé units (independent of each other) and a scale for γ_{1} parallel to the side representing α_{1} (Figure 2).
8. Let ℓ_{1} be the unit length of $5.23+\frac{b}{c_{1} t_{1}}, c_{2}$ the unit length of x_{1} and
$\&_{3}$ a third unit length. A straight line $A B$ is then drawn bearing a scale of unit length l_{1} with the origin at a distance $5.23 \mathrm{C}_{1}$ from A. Another straight line $C D$ is drawn perpendicular to $A B$ through the point C at a distance e_{3} from A.
9. Now let $\frac{b}{c_{1} t_{1}}=2$ in a particular case. A second line $E F \mid A b$ is then drawn through the point E which corresponds to $\frac{b}{c_{1} t_{1}}=2$ on the scale of
$A b$. Further a line $G H$ is drawn anywhere in the plane bearing a scale for α_{1} of unit length A_{2}. Let α_{1} be 1 in a particular case. $\quad \alpha_{1}=1$ is then transferred by a pair of dividers from $G H$ to $E J$ along the line $E F$, and a straight line is drawn from A to J intersecting the line $C D$ at the point K. The distance $C K$ will then be

$$
\begin{equation*}
C K=J E \cdot \frac{A C}{A E}=5.23+\frac{\alpha_{1} b}{C_{1} t_{1}} \cdot \frac{\ell_{2} l_{3}}{\ell_{1}}=\gamma_{10} \frac{l_{2} l_{3}}{l_{1}} \tag{4}
\end{equation*}
$$

The line $C D$ may therefore be fitted with a scale for γ_{1}, of unit length $\frac{\hat{l}_{2} \hat{e}_{3}}{\hat{\ell_{1}} .}$
10. The scales $A B, C D$ and $G H$ are obviously the same for every wing, only the lines $E F$ and $A J$ (dotted in Figure 2) have to be drawn in any particular case. Almost the same system of scales can also be used for the determination of Y_{20}, Y_{30} and Y_{40}, the only difference is that the distance between A and the origin of the $b / c t$ - scale must be $2.83 \ell_{1}, 2.16 \ell_{1}$ or $2.00 \ell_{1}$ respectively, instead of $5.23 \mathrm{P}_{1}$.
11. In order to obtain from Y_{10} the improved value

$$
\begin{equation*}
\gamma_{11}=\left(5.23+\frac{b}{c_{1} t_{1}}\right)^{-1}\left(\alpha_{1}+1.91 \gamma_{20}+0.15 \gamma_{40}\right) \tag{5}
\end{equation*}
$$

the quantities $1.31 \gamma_{20}$ and $0.15 \gamma_{40}$ have to be added to α_{1} and the result has again' to be multiplied by $5.23+\frac{b}{c_{1} t_{13}}{ }^{-1}$. Two auxiliary scales $L M$ for 1. $91 \gamma_{2}$ and $0.15 \gamma_{4}$ are therefore drawn in addition to the scales $A B, C D$ and $G H$ of Figure 2, with the unit lengths $1.91 f_{2}$ for γ_{2} and $0.15 \dot{e}_{2}$ for Y_{4} (Figure 3).
12. With the aid of these auxiliary scales, the length (1.91 $\left.\gamma_{20}+0.15 \gamma_{40}\right)$. is transferred to $J N$ along the line $J F$. The line $A N$ is then drawn in the diagram intersecting the scale of γ_{1} at the point 0 corresponding to the improved approximate value Y_{11} of γ_{1}.

The improved value of γ_{3}, γ_{31}, is determined in exactly the same manner and then Y_{21} and Y_{41} are determined correspondingly by using the improved values γ_{11} and γ_{31} instead of γ_{10} and γ_{30}.
13. The rext approximation γ_{V} is then obtained by the same process, using
$Y_{21}, \gamma_{41}, \gamma_{12}, \gamma_{32}$, instead of $Y_{20}, \gamma_{40}, \gamma_{11}, \gamma_{31}$, and correspondingly for further approximations. After a few steps, a set of values $Y_{V n}$ is obtained which remain constant if the iteration is continued. These values represent the solution of the system (1) within the range of accuracy of the method.
14. The scales $A B$ of $\frac{b}{c_{1} t_{1}}, C D$ of $\gamma_{1}, G H$ of α_{1} and the auxiliary scales $L M$
of γ_{2} and γ_{4} in the diagram of the first equation, and the corresponding scales in the diagrams of the other equations, are obviously the same for all wings. It is therefore convenient for practical applications to use blueprints of these scales which can be kept in stock (Figure 4). The diagrams of the first and third equation of (1), and equally those of the second and fourth equation, may be designed on these blue-prints with the use of the same scale of $\frac{b}{c t}$ in order to obtain smaller dimensions of the whole diagram.
15. A similar combined diagram can also be designed for the case of an antasymmetrical distribution of the angle of incidence. The equations of Multhopp are in this case

$$
\begin{align*}
& \gamma_{1}\left\{5.23+\frac{b}{c_{1} t_{1}}:=\alpha_{1}+1.85 \gamma_{2}\right. \\
& \gamma_{2}: 2.83+\frac{b}{c_{2} t_{2}}:=\alpha_{1}+\gamma_{1}+\gamma_{3} \tag{6}\\
& \gamma_{3}: 2.16+\frac{b}{c_{3}} t_{3}:=\alpha_{3}+0.77 \gamma_{2}
\end{align*}
$$

The diagram for this case is designed in Figure 5; further explanation appears unnecessary.
16. It 1 s of course not difficult to apply the same method to the case of

15 points along the span in order to obtain a better approximation to the original integro-differential equation of Prandtl. For a still greater number of points, however, say 31, the graphical methoa becomes too complıcated. In such cases, the calculation should be carried out numerically.

A NUMERICAL EXAMPLE

17. A practical example will show the use of the diagrams of Figures 4 and 5 . Consider for example a rectangular wing of aspect ratio $b / t=2 \pi$. Let the value of $c=\frac{1}{2} \frac{d}{d} \frac{c_{L}}{\alpha}$ be π (theoretical value for symmetrical wing-sections of infinitely small thickness) and the angle of incldence α be constant
(e.g. = I) along the wing in the symmetrical case, and be zero in the antisymmetrical case at the points $\eta_{4}, \eta_{3}, \eta_{12}$ and 1 at the point η_{1}. The value of $\frac{b}{c t}$ will then be 2 for all points of the wing.
18. Consider first the symmetrical case. In order to obtain the oth approximation, lines parallel to the scales of γ_{V} are draw through the points $\frac{b}{c}=2$, and the points J_{V} are marked on these lines by transferring to them $\alpha_{V}=1$ from the scale of α (Figure 4). Straight limes are then drawn through J_{V} and the points $\left(Y_{V}\right)$ of the basic lines of the diagram. These lines intersect the scales of γ_{ν} at the points $\gamma_{V_{0}}$ which give the 0 th approximation for the 1 teration process

$$
\gamma_{10}=.14 ; \quad \gamma_{20}=.21 ; \quad Y_{30}=.25 ; \quad \gamma_{40}=.26
$$

19. The lengths corresponding to $Y_{20}=.21$ and $Y_{40}=.26$ are now transferred from the scales $\left(\gamma_{1}\right)$ to the dotted line from $\frac{b}{c_{1} t_{1}}=2$ to J_{1} in the upper diagram of Figure 4. By this means the point N_{1} ls abtained. The straight line connecting N_{1} and $\left(\gamma_{1}\right)$ on the basic line intersects the scale of γ_{1} at a point corresponding to the improved value γ_{11}. The improved value γ_{31} is determined in the same manner and correspondingly the values γ_{21} and γ_{41} are determined from the lower part of the diagram, using in this case the values γ_{11} and γ_{31}, anstead of γ_{10} and γ_{30}. The first approximation is therefore

$$
\gamma_{11}=.20 ; \quad Y_{21}=.34 ; \quad Y_{31}=.34 ; \quad Y_{41}=.40
$$

Repeating the procedure once more with these improved values, the second approximation

$$
\gamma_{12}=.23 ; \quad \gamma_{22}=.36 ; \quad \gamma_{32}=.40 ; \quad \gamma_{42}=.42
$$

is obtained.
After the next step, only the value of γ_{1} is slightly altered

$$
\gamma_{13}=.25 ; \quad \gamma_{23}=.36 ; \quad \gamma_{33}=.40 ; \quad \gamma_{43}=.42
$$

and further steps will give the same result, within the range of accuracy which can be achieved by a graphical method. The values $Y_{V_{3}}$ are therefore the solution of the problem. The exact solution of the equations is

$$
Y_{1}=0.2419 \quad Y_{2}=0.3590 \quad Y_{3}=0.4042 \quad Y_{4}=0.4162
$$

20. The determination of the values Y_{V} in the anti-symmetrical case is
varried out in exactly the same way with the use of the diagram Figure 5, and therefore needs no further explanation. The result is

$$
Y_{1}=.15 ; \quad \gamma_{2}=.03 ; \quad Y_{3}=.01 ; \quad Y_{4}=0 .
$$

In this case only two steps of the iteration process are needed to obtain the final result. The exact solution of the equation is

$$
\gamma_{1}=0.1464 \quad \gamma_{2}=0.0315 \quad \gamma_{3}=0.0058 \quad \gamma_{4}=0
$$

21. The permission of the Admiralty for the publication of this paper is acknowledged.

REFERENCE

(1) H. Multhcpp: Die Berechnung der Auftriebsverteilung von Trag fluegein. Luftfahrtforschung 15 (1938), 153-169.
F. VAFDREY
F.V/EL
A.R.L., Tedangton. February, 1951.

FIG.I.

FIG. 2.

FIG.3.

(RECTANGULAR WING, $\left.b / t=2 \pi, C=\pi, \alpha_{1}=1, \alpha_{2}=\alpha_{3}=\alpha_{4}=0.\right)$					
ν	4	3	2	1	0
3	0	. 383	. 707	. 924	1
$d w$	0	0	0	1	1
d/evtio	2	2	2	2	2
duo	0	0	0	44	0
/w:	0	.01	. 03	$\cdot 15$	0
$\mathrm{d}^{4}+2$	0	01	.03	$\cdot 15$	0

CROWN COPYRIGHT RESERVED

PRINTED AND PUBLISHED HY HER MANESTY'S STATIONERY OFFICE
To be purchased from
York House, Kingsway, london, w.c. 2423 Oxford Street ${ }_{2}$ LONDON, w. 1
P.O Box 569, LONDON, S E. 1

13a Castle Street, mindburgh, 21 St. Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 30 Chichester Street, belfast

> or from any Bookseller

1952
Price 1s 9d net
TRINTED in GREAT BRITAIN

