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SUMMARY 

For the analysis of gust loads on aircraft, a method is described in 

which the occurrence and magnitude of the loads are represented as random 

variables. 

The paper begins with the discrete gust, and goes on to treat the case 

in whoh the disturbances are too frequent to be considered singly and become 

indiscrete. In the limit this leads to the usual results obtained from the 

spectral appoaoh, but in the observational material examined this limit is 

not reached. The simple mathematical model developed here gives a 

consistent picture gf the properties of observed gust load frequency 

distributions..- . 

* Replaces R.A.E. Teoizioal Report 6x62 -A&C. 31386 
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1 INTRODUCTION 

When making comparisons between aircraft of the loads imposed by atmos- 

,‘ 
pheric turbulence it is useful to set up a theoretxx%l mdel representing the 

statistical properties of the turbulence. 

The usual procedure is to observe, say, the normal acceleration on an 

instrumented aircraft; from these cbservatlons deduce the parameters of the 

assumed model, and. finally to estimate the response of a second aircraft. 

Quantities of particular importance are the magnitudes of the high loads, 

from the point of vxew of ultimate strength, and the number of the smaller 

loads for fatigue considerations. 

Since the steps taken in deducing the parameters of the model from the 

observations are retraced when making further predictions, most models work 

reasonably well for aircraft of similar geometrical and dynamic properties. 

Some years ago what is called the 'discrete gust' model was widely 

used. This assumes that the aircraft normal acceleration Increments - bumps - 

are all caused by discrete gusts of a standard shape; knowing the aircraft 
4 

characteristics, their frequency and distrlbutlon of magnitudes is determined 

from the observations. 
. 

More recently, the atmosphere has been defined in terms of a spectrum, 

usually of a standard shape, the disposable parameters being a scale-length 

and an Intensity or root-mean-square value. Given this 'input' spectrum and 

the aircraft response characteristics (i.e. its 'transfer function') the -cut- 

put spectrum is aeduced. Subject to certain conditions, from the output spec- 

trum may be determined the root-mean-square value of the quantity under 

examination, and the number of times its mean value is crossed in the positive 

direction per unit time (or distance), usually designated by the symbol Nc . 

When the disturbances encountered by the aircraft. cccw in isolation, 

a discrete gust approach is appropriate. As the disturbances become mere 

numercus so that their effects become superimposed, the discrete gust 

approach is no longer satisfactory. 

If, in these conditions, spectral methods are used without establishing 

to what extent the ccnditlons under wlsich they are valid are satisfied in 

practice, then little reliance can be placed on the results, particularly in 

the case of the number of zero crossings. 

- - -- 
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It is the purpose of this paper to examine these problems from a new 

standpoint. Rice', in his paper to whloh we refer in detail later, bases 

most of his results on the representation of a random process in terms of a 

large number of sinusoidal disturbances. He remarks, however, that its 

representation as a 'shot effect may also be used as a starting point. In 

this,the random process is represented by the superposition of a large number 

of identical pulses occurring randomly with respect to time. 

Ths idea is pursued here and compared with the spectral approach. The 

simple model developed 1s also found to be successful in explaining many 

$speots of observed gust distributions, ad this is illustrated by observa- 

tional material. 

The paper falls into two main parts. Sections 2 to 5 deal with the 

theoretical aspects and derive a simple male1 for gust loads which is 

summarised +,n Appendix A. Sections 6 to 9 deal with the observational 

mat&al jllud&ti& various aspects of the mdel. Readers mainly interested 

III practical applxatlons may prefer to read Appendix A zn place of seotions 

2 to 5. Finally, broad conclusions are given in section IO and some remarks 

on curve fitting are made 111 Appendix B. 

2 MATHEMATICAL ANALYSIS OF SIMPLE CASE 

2.1 When an aircraft is in turbulence, a response quantity under consideration 

can be examined by means of random process theory. The representation often 

adopted for the random process 1s a spectral one. An alternative representation 

is considered here, in which the random process x consists of the sum of a 

number of identical pulses occurring at random with respect to time. Thepulse 

shape is given by F(t) and 

x = 
c 

F(t - $1 (1) 

k 

where the kth pulse arrives at txne \ ard the summation is over all pulses. 

Initially, the pulse shape considered is defined by 

F(t) = a eext (2) 

for values of t 3 0 and zero for t < 0. 

The pulse shape is illustrated in Fig.la. (A range of pulse shapes oon- 

sidered in section 4.3 is also shown in Fig.lb.) Each pulse thus consists of 

. 

. 
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. 

instantaneous buld-up of magnitude a ad an exponential decay of rate X 

per unit time*. Let the average number of pulses per unit time be V. 

Then, by Campbell's theorem, the mean value of the random process is 

given by 
c-3 

G=v ae 
J 

-It at 

0 

i.e. 

;; = "Et/X (3) 

(see Rice' 1.2-Z); and the variance about the mean value is given by 
M 

cr2 
I 

2 -2Xtdt =v ae 

0 

2.e. 

a? = &32/(2X) 

(Rice 1.2-3). 

(4) 

Furthermore, for large values of v/X the distribution tends to become 

of Gaussian form and is then given by 

f(x) = 1 
cd-F% 

exp I- (x - X)2/(2c2)1 . 

The rate at which positive crossings of the mean value occur, for the 

case of v/X large, is determined as follows. At all times except for the 

$ This pulse shape has a bearing on the aircraft problem. If we consider 
a rigid aircraft flying without pitching into a sharp-edged gust, and assume 
that the lift builds up instantaneously, (i.e. neglecting Kussner and Wagner 
effects) then its normal acceleration is given by 

where c is the ai&sZft chord 
s is the d!kXtice flown into the gust, 
TJ is th&~&~&$locity 
V is the q+&xft velocity . . 
z is the aircraft normal acceleration 

pg 
is the aircrsf't mass parameter. 
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infinitesimal time when the pulses build up, the value of x approaches zero 

at a rate Xx. A crossing of the mean value in a positive direction can only 

occur at the build-up of a pulse,and then only if the variable x is m a 

range of width a below the mean value, immediately before its occurrence. 

The fraction of time the variable x spends between G - a and x 1s 

given by 

-P i- (x - x)2/(2& ax . (6) 

x-a 

Since v/X is large, a is small compared with cr and the integral 

(6) is approximately equal to 

a/(CG) . (7) 

The number of positive zero crossings per unit time, No, is thus 

and substituting for C from (4) gives finally 

No = <@V/K) . (8) 

It is seen that No depends partly on h, the rate at which x returns to 

zem, and partly on v, the number of pulses per unit time, each of these 

being of dimensions [T] -1 . 

2.2 An alternative approach is now considered. The autocorrelation function 

of the random variable x is first derived. Since the pulses ocour at random, 

cross contributions to the autocorrelation function vanish so that the auto- 

correlation function depends only on the shape a single pulse itself. 

Using Rice (2.6-2) and ftiing the autocorrelation functun for x about 

its mean value gives 

2 
R(T) = $ e-'= (9) 

. 

. 

where R(z) IS the unnormalised autocorrelation function so that when 

a = 0, R(T) = va2/(2L), that is, the variance. 
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The Fourier transform of R(T) gives the spectrum S(w) which is 

2 
s(w) = + x 2h 

,(A2 +02) * 
(10) 

If this function is used in Rice's fcrmula for the number of zero 
m 

crossings (Rice 3.3-II), as 
I 

w2 s(w) dw is infinite, an infinite 

0 

number of zero crossings per unit tine is predicted, in contradiction 

of (8) above. 

2.3 Rice himself' discusses the problem in connection with "a broad band 

noise voltage" . applxzd to a resistance and condenser in series. This is 

analogous to the case discussed here. The arrival of an electron at the 

condenser corresponds to the inztial build-up of the pulse and the total 

charge on the condenser decays exponentially. Rice attempts to explain 

the difficulty by considering the spectrum as consisting of two bands of 

noise and discusses this aspect in scme detail. It is also a.kgued that 

in a physical system there is always a high frequency cut-off to the spec- 

trum which prevents the required integral becoming infinite in practice. 

These arguments however, do not resolve the theoretical problem which is 

of an entirely different origin. 

In deriving his formula for the number of zero crossings,Rice (3.3-7) 

takes as kns representation of the random process 

N 

5 = 
c 

0 n ccs (wn t -9,) (11) 

xl, 

and uses the fact that c aad v, its first derivative with respect to 

time, each have a Gaussian distribution and are independent. (Rice's c and 

V correspond to cur x and ? ;) However, in the case under consideration, 
_ 

x and ? are &t independa?, since, apart from the infinitesimal time 

during which pulses arrive, x and j, are related by the equatibn 

and, furthermore, t~h&istributicn of j, is by nc mea,ng &&Sian. It 

appears from the analysis given in section 4, that the latter fact plays 



the greater part in invalulating the procedure. It may be concluded that the 

representation given in (11) is not a satisfactory one for the random process 

under oonsderatlon here. 

2.4 We return to a more general discussion of the problem in section 4. 

Seotmn 3 digresses to some extent from the main argument to consider a 

few ample extensions of the above treatment, making it somewhat more repre- 

sentative of the gust problem, and to derive a number of formulae illustrating 

limiting oases of the subsequent analysis. 

3 EXTENSIONS OF THE SIMPLE CASE 

3.1 If the pulses, (2) are assumed to be positive or negative at random, as 

well as bang random in time, the process will have zero mean. For an average 

pulse rate v, (v/2 positive, v/2 negatrve), the variance as before is 

va2/(21). 

Positive zero crossings occur at a rate v/2 times the fraction of time 

spent in the range -a to 0, where a is small compared with U. Proceeding 

as before then gives 

(13) 

This process is symmetrical while that of section 2.1 is markedly skew 

for moderate values of v/h . 

It may be useful to have a second-order approximation for No . If in 

(6) we put x-x=y, keep the first two terms in the expansion ofihe 

exponential, and integrate, we obtain 

No = @(I-$) . (14) 

The number of crossings of any value x can be found by a similar 

method. When the distribution of x approaches the Gaussian form and a is 

small compared with S, the dlstrlbution of x-crossings tends to that of 

x itself. As will be shown (seotlon 4.1) this is also the case generally, 

when x and. 5 are independent. 

3.2 As a further extension, let a vary from pulse to pulse, having a 
distribution given by 



. 

f(a) = 1 exp I- *2/(2p2)1 . 
P v-zi 

Again the mean is zero and the var~nce is given by 

9 

(15) 

2 = v2/w . (16) 

This follows from an extension of Campbell's Theorem derived. by Rice (1.5-2). 

A positive zero crossing OCOUPS when the variable is in the range 

-x to -x + dx and receives * pulse of magnitude x or greater. The 

probability of the first event IS 

1 
- exp I- x2/(2u2,1 dx 
u ?J-Ei 

and the probability that a pulse u of magnitude x or greater is 

m 
1 

-.I P mi x 
exp I- a2/(2p2)j da . 

Integrating the joint probability and multiplying by v gives: - 

No = 

ox 

To evaluate the integral substitute 

x = U i- sin 0 

-F .d :*c- z 
a = p r cose . 

a sector boded by 8 = Cl (when x = 0) & 

= x); and e&n&g from P = 0 to r = ~0 . 

(17) 

(18) 

(19) 

(20) 

(211 
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or for large v/h 

No = g-ql -g) 

as far as second-order terms. 

3.3 As a fmal example in this section, the case when a 1s distributed 

exponentially is considered. Let 

f(a) ' = .Fe 

so that 

2 = 2p2 

and 

2 = vp2/x . 

The probability that a exceeds a value x is 4 e -x/P, and the 

probabilzty that x lies between -x and --x + dx is 

Thus, 

The integral reduces to Mills' ratio for C/p. Kendall and Stuart* (Vol.1 

p 137) give for this ratio an asymptotic expansion in which the remainder 

at any point in the summation is less in absolute value than the last term 

taken into account. Keeping the first two terms in the asymptotic series 

gives 

N 0 ="-'--% 2 f-25 ( 3 

and using (25) to substitute for U//p we have finally 

No = &&(I -;) . (28) 

(22) 

(23) 

. 

(24) 

(25) 

(26) 

(27) , 

. 
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. 

3.4 All the formulae for No derived m thx section are, to the first 

order of small quantities, of the form 

No = constant x \/;x 

and although the distributions assumed for a differ constierably, the con- 

stant shows oomparatlvely small dlfferenoes. Evaluatxng the constant in 

(II+), (22) ad (28) gives 0.2821,0.2241, and 0.1995 respectively. 

4 GENSRAL MATHEMATICAL ANALYSIS 

4.1 In general, It is necessary to derive for the random process not only 

the rate of zero crossings, but also the rate of crossing of any value x 

and hence, the frequency distribution of crossings. In order to do this, 

knowledge 1s required of the Joint frequency k&rib&ion of x and ?. 

It can then be shown that the number of x-crossmgs in the positive dxec- 
5, 

tmn, N,, is given by 
',. 1, 

c-3 

Nx = 
I 

2 f(x, 5) a2 (29 

0 

where f(x, 2) 1s the joint frequency distrlbutlon of x and ?. (See for 

example, Crandall and Max-d p 45). 

Thus, N, 1.5 the average posltlve value of j, at the value x, 
00 

multiplied by 
I 

f(x, 5) d?, which is the value of the one-dunens~onal 

0 

distribution of x for positive values of ?. 
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If, 5 = c F(t - tk) (32) 

k 

and 

17 = 
c 

G(t - \) (33) 

k 

where the t k are the same in (32) and. (33), then the cumulant xr s of the 
f 

joint distribution of c and II is given by 

K = Y 
r9s 

F'(t) GS(t) dt . 

For the case being considered here, & = x and n = ?. The characteristic 

function of the joint distribution is then given by 

(34) 

and the joint distribution itself follows by taking the transform of the charao- 

teristic function, so that 

e -iux-iv? 
'p(u, v) au dv . (36) 

A simple extension of the above formulae allows the magnitude distribution 

of the pulses to be taken into account. Let the magnitude of the pulse be 

proportional to a variable a of known distribution. It follows from the 

additive property of cumulants that it is merely necessary to replace a" 

where it occurs in (34) by its mean value a . Apart from this, equations 

(34) are unchanged. For the symmetrical case, 2 =O for n odd and 

hence Kr s = 0 for (r + s) odd. Thus the problem is theoretically solved. 

The prooe&re, then, in the aircraft case is as follows. The atmosphere is 

defined in terms of a population of discrete gusts of standard shape, occurring 

with a given mean frequency, and with a given magnitude distribution. The 

aircraft response to a single gust is then determined in as much detail as is 

neoessary, there being no restriction on the number of degrees of freedom 

considered. From the response to a single gust the cumulants of the joint 
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. 

dlstributlon of x and $, the variable under consideration and Its first 

derlvatlve, are determined from (34). The Joint dlstnbution of x and j, 

follow from (35) am? (36) and any inf ormation regarding the orosslng distrl- 

bution from (29). 

This procedure will now be illustrated by means of a very simple mcdel, 

applied to aircraft normal aooeleratlon. However, simple though the model 

1s) we shall see later that it 1s adequate to expla;~n many of the obsenred 

features of gust load distributions. 

4.3 The pulse shape assumed m this section 1s a rough approximation to 

the resoonse of an aircraft to a discrete gust. If unsteady lift functions 

are Ignored ard the gust shape is assumed to be 

-A29 

u = U(l-e ) (37) 

then the aircraft normal acceleration 1s given by 

. . uv h2 
-A, s -x25 

e =gxn(e 
CP -= 1 

where X, = l/(c cl,) and s is the distance. 

This 1s equivalent to assuming a sharp-edged gust with 

I) = l-e 
-h2s 

I 
(39) 

cp = 1 

for the unsteady lift functions. 

In the following analysis the symbol t is retained for the indepetient 

variable and UV/(cpg) replaced by the symbol a, so that we let 

F(t) = x&(e 
4, t -x2t 

-e ) (40) 

and a for the time being is assumed constant. 

This pulse shape is illustrated m Fig.l(ii) for A:, = 10 A,, x2 = 5 A, and 

h2 = 2 1,. The maximum occurs at time t,,, where 

t, = logc~2/$ V(h, - A, 1 (41) 
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and. is of magnltde ae 
-% trn 

. 

Differentiating (40) we get 

G(t) = xq (1, e 
-A, t 

2- 1 
- A2 e 

-A*t 
) . (42) 

The cumulants of the joint distribution of x and j, are then given by (34). 

Up to the fourth order these are listed below in (43) together with the form 

taken when setting X,/k2 = a 

x1 ,o 
= m/A, 

(43)(i) 

"0,l = 0 
(j-1) 

vs. 2 h2 2 

K2,0 = 2X,(X, + A 
va 

27 
= 

2A,(l + aJ (iii) 

"I,1 = O (iv) 

Et2 A2 
2 2x 

K0,2 = m =7&J (v) 

2va3 A2 2 3 
K3,0 = 3+(2x, + A2) (A 

va 
, + 2x2 = 3h,(l + 2a) (1 + CL/z (vi) 

K2,1 = O (vii) 

J,3 x3 ? 
2 va- h 

K1,2 = 3(2x, + A2) (h 
2 

I +2 A21 
= 

(1 + 2a) (1 + a/2 (viii) 

2va3 13 2 (\ '1 + 1 ) 

K%3 = 3(2+ + A2) (A 

2 va3 1; (1 + CL) 

1 +2 A2J 
= 

3(1 + 2a) (1 + a/21 (ix) 

3va4 A3 
2 

K4,0 = v,c+ + A2, c*, + 3X2) (3h, + $1 = 
4 va 

LA ,(I + a) (1 + 3a) (1 + a/37 

. . . . . . . (x) 

"3,l = O (xi) 

. 

b 
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va 44 
h2 va 4 

h2 
K2,2 = 4(X, + x2.2) (A, + 3h2) (3X, + A2j = 12(1 + a) (1 + 3a) (1 + a/jj 

,i . . . . . . (xii) 

va4 x4 
2 4 x2 

"193 = 4(X, + 3h2) (31, + x2] 
lJa 2 

= 12(1 + 3a) (1 + u/jj (xiii) 

3YEl4 x; (hi + 3h, A2 + A;) va4 A3 (1 + 3a + 2) 
2 

%4 = 4(1, + 31 CA, + 3h*l (3h, + h2J = L(1 + a) (1 + 3cA) (1 + a/3j - 

. . . . . . (xiv) 

When A2 1s large compared with h,, then CC + 0 and the non-zero cumu- 

(U+)(i) 

(ii) 

(iii) 

(iv) 

(VI 

(vi) 

(vii) 

(viii) 

(i-4 

(4 



and 

KO,r 
= var $-l/r for ??>I . (xii) 

In passing, we note that IC,,, = 0. This, in Itself, is not in general 

sufficient to ensure the independence of x a4 j, . It is however, sufficient 

when x and j, are both Gaussian. In the general case, x and ? are 

uxlependent, though not necessarily Gaussxn, when Kr s = 0 for all Kr s 111 
, 9 

which r and s are both non-zero. 

To determine the degree to which the distributions of x and 2 tend 

to Gaussian form, the cumulants are expressed in standard form by dlvlding by 

the appropriate power of the standard deviation. Using the approxunatlons 

of (44), for x 

'3,0'('2,0 )3/2 = 2/j (45)(i) 

K4,,/(K2,,)’ = x,/v - (ii) 

Thus, the dlstributun of x tends to the Gaussx.n form as X,/Y 

tends to zero. For 2, 

Ko,3~(Ko,2)3’2 = 2/j -;- r 2h.2 
(46)(i) 

and 

KO ,4/(Ko ,2)2 = x2/u . (ii) 

Here the cause of the difficulty encountered in section 2 in determining the 

number of zero crossings is clearly seen. The ease considered there is the 

limitrng case of the present one when A2 + m. It is now apparent that for the 
distribution of ? to be Gaussian it is necessary for X2/v + 0 and these 

two conditions are inconsistent unless v 1s doubly infinite. 

When X2 is not infirute and v is large compared with both h, and 

X2 then the joint distribution of x and 5 is approximately Gaussian and 
we can use the result that 
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(47) 

i 
giving at once 

(48) 

from (43)(iii) and (v). 

When, however, h2 is large compared with v, approximating to the 

simple case consd.ered m section 2, then it is to be expected that 

equation (8) will give an approximate value of No. 

4.4 Before proceeding with the analysu, it is of interest at this junc- 

ture to compare the above approach with the spectral method. 

From the pulse shape given in (40) At 1s found that 

R(7) = 
c 

emh2' 

-T --T 3 
and 

a2 x2 
s(w) = 2 

2 2 2 2 
0,+w)(A2+w) - 

Also, 

and 

(49) 

(50) 

. 
so that No =JL, X2/(2%), agreeing with (48) above. 

In cases where 
h2 is large, thu method 1s not applicable, since the 

dxst,r.lbutun'of ; 1s no longer approximately Gauss+n. In such oases 
N o tends to the value derivediifi se&Ion 2.1, equation (8), which, not 

surprismgly, di@e& from tha.t obtained by applying the spectral formula 

in circumstances m which it 1s not valul. Thus, before using the spec- 

tral method, the distribution of both x and 2 should bc examined In 
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order to establish the fact that the results are valid. It is not sufrxmat 

merely to examine the time history of x alone to determine whether it is 

Gaussian, this may well prove to be a good approximation when V/h, is large. 

Furthermore, it is to be noted that in the simple case considered here, 

as may of$en happen in practice, the spectral method gives a fmxte value for 

No and so does not arouse suspicion regarding the valdity of the procedure, 

as would an infinite value. 

Returning to the main discussion, we continue consideration of the case 

when 12/h, is large but now allow the magnitude a to vary in accordance 

with a known distribution. As pointed out in section 4.2, the result of this 

is to replabe a" by 7 wherever it occurs in (44). It is assumed that the 

distribution of a is symmetrical about zero* and Ial is distributed expo- 

nentially in accordance with (23). By symmetry, the odd cumitants of the 

distribution of x alone vanish, and for the even cumulants (G)(k) 

becomes 

From (23) 

giving 

K2r 
= va21i(2r 1,) . 

-5 
a = (2r)! p2r 

K2r 
= v(2r - I): p2'/k, 

and thus 

q(u) ‘= exp [$ ,$J J-Qf&+Q (ipu)2r] 

(51) 

(52) 

(53) 

i=l 

* IY a has an exponential distribution, but takes only positive values 
(up gusts only) a similar analysis to that followed here yields 

q(u) = (1 - ipu) 
-v/x, 

and 

a Pearson Type III distribution. 
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i.e. 

q(u) = (1 + p2 u2, 

-6 
. (55) 

The distribution of x is then given by 

(56) 

i.e. 

for x positive, and the distribution is symmetrical about the origm, 

(K being the modified Bessel function). 

This is the distribution derived by the author by an entirely different 
4 

approach in an earlier paper . There, the distribution is derived from the 

assumption that it results from a large number of Gaussxn distributions, the 

variances of wkoh are themselves distributed in a certain way. 

For small values of v/(2X.,), a plot of log If(x)] against x is oon- 

cave upwards. As v increases the distribution becomes exponential, plot- 

ting as a straight line on the logarithmic scale, for 1) = 2X.,, and then 

for larger values of v becomes concave downwards, tending to a Rayleigh 

distribution in the lxnit as v + m. * 

As-shown &n the earlier p@p&, if such Rayleigh distributions, with 

values of p2 distributed in Pearson Type III fashion are combined, as the 

distribution of p becomes more heterogeneous, the series of shapes is 

retraced in the reverse direction. In this sequence, a given shape may 

occur twice, so thatr,t . 1s not-possible from a cursory examination of f(x) ~I . . . 
to determine wh:ther It r~sul~s.Ek5m a stationary process or not. 

. 1 ~ A-%‘.- .--'z. c&c: - 
Returning to‘the~present=model, the cumulants for the distribution of 

j, alone, from (&)(x11), are 

K0,2r = 
v F h2r-l 

* /(2r) 
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and a similar analysis to that for x yields 

. 

. . . . . . (58) 

The joint dutribution of x and 2 is not of oourse given by the 

product of (57) and (58); (57)isthe Joint dwtribution integrated with respect 

to a, and (58)isthe joint distribution integrated with respeot to X. The pro- 

duct would, however, be the correct form if x and j, were independent and we 

now examine how far this is likely to be a reasonable approximation. 

Independence results when all Kr s = 0 for both r and s non- 

zero. In the symmetrical case, up to tie fourth order, there are only two 

such oumulants, K2 2 and ICI,39 
whoh are not zero. From (43) and (44) 

the fourth order o&Aants are 

K4,0 
T = w/(4X,) 

Ic3,1 = O 

T 
K2,2 = I)& h2/12 

-4 2 
K.l,3 = V& x2/2 

Ic 0,4 = vh,l+ . 
2 

The cumulant 
'%,o 

is less than fco 4 by a factor l/(X, AZ), and it might 

be expected that, apart from the nun&ioal factor, the mtermediate cumulsnts 

would each reduce by the quarter power of this value. This is not the case 

however; on thu basis 

by a factor (X,/X2)'. 

K,,~ is low by a factor ($/X2)$, 
sad 392 low 

Thus, suxe x,/x2 1s small, there may be some gratis for hoping that 

the assumption that x and j, are Independent-is a reasonable approximation 

to the truth, ard this assumption is in fact made. 

Putting f,(x) equal to (57) and f2(?) equal to (58), and substi- 

tuting in (31), gives 



. . . . . (59) 

where n , = Y/(2X,) and n 2 = y/(2A2) . 

In particular 

No = X2(“, - 3/Z)! (n2 - &)! / I2741-1, - I)! (n2 - I)!] . (60) 

When v is large compared with both X, and x2 so that n 
1 and 

“2 are both large, then 

("I - l)!/(n, - 3/2): = ,,/(n, - $1 

and 

(“2 - 4):/b, - I)! f: ‘/n2 

so that (60) gives 

No = . 

If, finally, & is negligible compared with nl, then (61) reduces 
to 

in agreement wxth (4.8). 

If v 1s large compared rnth A1 and small compared with X2 then 

vh 
No = 4 J-- 1 

-2iF 

in agreement with the first order term of (28). 
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Thus, the formula for the number of eerc crossings given in (60) agrees 

in the two limiting cases conslderd with those derived mere simply. It has 

already been established4 that crossing distributions from aircraft normal 

acceleration records are satrsfactorily described by functions of the form of 

(57). It therefore seems worthwhile pursuing the model further and. examining 

it in relation to observational data. Before doing so, however, a further 

mod.xficatvm to the formulae will be made to take more account of the second 

order terms, as in the examples ccnsderd these are often not suffxiently 

small to be neglected. The procedure adopted is to assume distributions of 

the form (57) and (58) but with the values of the parameters adjusted to fit 

exactly the second and fourth cumulants In their full form of (43). This 

giV+S 

where 

n,G 

f,(x) = $ 
0 

K 
1 :c 9 - - ( )I 

{\'?I 2 
n, -; 

("1 - 1): P,l 

f2(S) = + 
0 

n2-& 
K j, 

2 n2 - $ 
(J/ 
T 

)T7c 2n2' (n2 - I)! p21 

“I = ~(1 + 9) (1 + a/3)/f+(~ + a)] 

9 = ~(1 + JCL) (1 + a/3)/i2x2(1 + a) (1 + 3a + a2,j 

and 

PI = P/fI(l + 3a) (1 + a/3)1 

p2 = Ph* ((1 + 3a + ~2vw1 + 9) (1 + a/3)1 . 

(62) 

(63) 

For the x-crossing dxtribution 

Nx = P,(n, _ 4): ($n1’~9 _ $ (.)/lp, 7t znl’ b, - 1): (3 - I)!] 

(64) 

(65) 

(66) 

(67) 

. . . . . (68) 

and 

L 

Nc = P2(~ - 3/Z): (n2 - +):/2x pl(“l - 1): (“2 - I)!1 . (69) 
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The application of these formulae to observational materxl 1s con- 

su?ered in sections 6 to 8. 

5 POSSIBLE EXTENSIONS OF THE MODEL 

5.1 Various extensions of the model immediately suggest themselves. Con- 

sdering first of all the dutribution of the pulses in tune, It has been 

assumed that their arrxvals form a Poisson process, and this implies an 

exponential dutribution of time intervals between pulses. Patchiness can 

be lntroduoed into the pulse oocurrenoes by assuming an alternative distrlbu- 

tlon of time intervals. A Pearson Type III might prove satisfactory for 

this, in which the probability of a time Interval between t and t + dt 

is 

t 
tp-l e- 7 

at / ITp(p - I)!1 . (70) 

The case already consdered is for p = 1. 

For p<l the dutrlbution of pulses becomes patchy, and for large values 

of p the pulses tend to occur periodically and so might be used m a des- 

cription of wave phenomena. In this case, the assumption of the uxlependence 

of x and j, would doubtless no longer apply. 

5.2 It would also be useful to consider alternatIve distributions for 

pulse magnlttie other than the exponential and to examine the effect this 

would have on the dutrlbutlon of the resulting variable. 

5.3 In the examples considered in sections 6 to 8, the model 1s applied 

to describe the behavxour of aircraft normal acceleration. There is, of 

course, no restriction on the variable quantity consulered, or on the com- 

plexity of the assumed pulse shape, which may take account of as many 

degrees of freedom in the response of the aircraft as are considered 

necessary. 

A simple extension of the model to include the effect of flexibility 

on the aircraft normal acceleration can be made by assuming a pulse shape 

of the form 

F(t) = a(e 
4, t 

-h2t) + b[e 
-( h3+ih4) t 

- e - e -(x3-ix4)tl . (71) 
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5.4 It is also necessary to examine m mere detail the importance of the 

cross-cumulsnts in the Joint distribution of x and 2. Apart from a 

slender otier-of-magnitude argument, the Justifxaticn for ignoring these 

cross-cumulants at present lies in the resulting agreement with observation. 

Certainly, for the treatment of quasi-periodic dx&.urbanoes as suggested in 

section 5.q, the cross-cumulants would become important. 

6 R.F. JONES'S THUNDERSTORM DATA 

6.1 The first application of the theoretIca results is to cbservatlons, 

in storm clouds with a Spitfire aircraft made by Jones 5 
. In this paper, 

frequency distributions of aircraft peak normal accelerations are given for 

flights through cumulus and cumulonimbus clouds at heights ranging from 

2500 feet to l+2l+OO feet, grouped into eight height bands. These observations 

are quoted here m Tables l(i) to ( viii) in the form of cumulative frequency 

distributions, whereas we have been dealing with crossing dxtributicns. 

However, for such data it has been shown6 that the cumulative distribution 

of peak values gives an acceptable approximation to the crossing distribution, 

beccmlng lncreaslngly close as the excurslcns from the mean become larger. 

It is therefore assumed in all the examples considered here that the dif- 

ferences between the cumulative peak distribution and the crossing distribu- 

tion may be ignored. 

Curves of the form of (68) are fitted to these data using tables of the 

function7 prepared for the purpose In which the shape parameter n takes 

half integral values. These appear to give a sufficient graduation of shapes 

and a reasonable fit was obtained by trial and error*. The values from the 

fitted curves are also given in Tables l(i) to (viii), and the observed 

values and fitted curves are shown plotted in Fxgs.Za to 2hcn a bumps- 

per-mile basis. The parameters for the fitted curves are given in Table 2, 
repeated below for convenience. 

4 The curve fitting for this particular example was done scme time before 
the ideas In the present paper were developed. 
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Table 2 (repeated) 

R.F. Jones's thunderstorm data. Summary of parameters 

Height, ft nl PI g units No h, per mile v per mile l/h2 fi 

2500- 7400 I$- 0.1042 5.49 22.97 39.1 89.2 

7500-124co 2; 0.0833 4.70 19.69 56.9 99.2 

12500-17400 2 0.1053 5.06 16.77 39.7 61.4 

17500-22400 1; 0.1316 4.86 14.20 33.3 47.6 

22500-27400 24 0.1220 4.66 11.94 50.4 36.8 

27500-32400 34 0.1036 4.33 9.97 60.7 35.4 

32500-37400 3& 0.0917 3.78 8.26 51.6 33.8 

375Qwt24oo 4& 0.0858 3.84 6.57 57.0 13.3 

(As up and down bumps have been added, the extrapolated value of the fitted 

curve at zero aooelerat~on gives 2No.) 

r 
6.2 An examination of Figs.2a to 2h shows a fairly uniform change of 

shape of the dutrlbutions, close to exponential form at the lower altitudes 

and increasing In curvature with increasing height. The values of n, in 

Table 2 confirm this impression. 

On earlier ideas this might be attributed to.the fact that at the 

higher altltules the sample is smaller and therefore likely to be more 

homogeneous. At the lower altitudes any combining of samples of different 

intensities will lead to a decrease in the curvature. In other words, the 
trend in the curvature of the distributions is due to a trend in sample 

size. 

The present work suggests an alternative explanation. It has been 

seen that the shape of the distribution is deperident on the parameter 

VP, (equation (57)). If h, is identified with l/(c II,) then this 

itself varies very widely with altitude and its variation LS suffioient to 
. explain the observed trend. In Fig.3 the values of n1 are shown plotted 

against the mass pa+a&eter p 
g' 

. shodrig good agreement with the predloted 

i relationship. The daahecl line & th& diagd is the best straight line 

through the or&';'tine full lirie is a second-degree Curve passing through 

the origin and the first and last experimental points. 
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6.3 We can also make some further deductions from the model. If A2 is 

large, so that we can use the first order approximations, then for the highest 

altitude band v/(2X,) = 4; from the observed shape of curve. Putting 

h, = l/(c p,) gives 1, = 6.57 per mile and v = 59.1 per mile. From the 

first order term of (27) 

and substituting the above values for v and 3 gives No = 3.93 per mile. 

This is very close to the observed value of 3.84 per mile. 

However, when the same calculations are made for the lowest altitude band 

the value of No is found to be 7.93 per mile compared with the observed value 

of 5.48 per mile, the comparison tending to be progressively worse with 

decreasing height. Clearly the first order approximation is only adequate 

at the high altitudes ani the effect of' terms in h,/'h2 become appreciable 

at the lower altitudes. 

6.4 To illustrate this, a model is fitted based on the more complete repre- 

sentation of (57). With a furtherparameter at our disposal it is now pos- 

sible to fit n., and N o exactly by a correct choice of v and x2. 

The values of N o based on the observations and the values of h, cal- 

culated from values of the mass parameter based on a mean aircraft weight are 

shown plotted as the circled points in Fig.4 and a smooth curve fitted by 

eye to the values of No . The experimental values are given in Table 2. 

From the experimental values of n,, No and k, and using equations (64) 

to (67) ad (69) values of v and l/l2 have been determined, also given 

in Table 2 and shown by the circled points of Fig.5. (The parameter l/h2 

rather than x2 itself has been taken as it is closely related to the old 

gust gradient distance, as shown by (37), although the build-up distance of 

the pulse itself depends on both h;r and h 2' ) From the curves shown as 

the full lines in Figs.3 and &the full lines of Fig.5 have been calculated, 

so that the full lines on all the Figs.3, 4, and 5 form a consistent set. 

There is a rather large scatter of circled points in Fig.5, but it 

should be remembered that the experimental errors of both n, and No oon- 

tribute to this. It is more correct to consider the experimental scatter 

from a different point of view. Postulating the variation of v and k2 

given by the full curves of Fig.5, the full curves for n, and No shown 

in Figs.3 and 4 are derive&in reasonably good agreement with experiment. 
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i 

From Fig.5, it is seen that there is a slight variation in the value of V , 

but its small magnitude confirms that almost all the variation in the shape 

of the bump distributions is due to the large change in 1-1. 

The large change in 1/X2 is, at fxst sight surprising. At 40000 feet 

the value of x,/h2 is 0.0292. A small value is to be expected since the 

first order approximation gives such a good agreement with observation. At 

5OCO feet the value of x,/x2 is 0.388; clearly the second order terns e.re 

no longer negligible. 

A better understanding of the behaviour of 1/X2 is obtained if 

equation (41) is used to calculate the pulse build-up distance, putting 

tm = H. Values of H calculated from the smoothed values of 3 arid h2 

are plotted m Fig.6 and show a linear relationship with height varying 

from 138 feet at 5000 feet altitude to 85 feet at 40000 feet altitude. The 

main function of h2 is to determine this build-up distance correctly. 

How far the variation in the build-up distance is due to a change in 

environment, and how far due to a change in aircraft response has yet to be 

determined. Comparisons between aircraft ~111 help to throw some light 

on this problem. 

6.5 The important point to be emphasised regarding this example is that 

the variation in curve shape for the bump distributions follows closely 

that predxted from the mathematxoal model, depending almost entirely on 

the change in aircraft mass parameter. 

7 'SWIFTER' MIDDAY FLIGHTS OVERFLAT DESERT 

7.1 The second example is taken from an extensive investigation of air- 

craft normal accelerations experienced when flying at low altitude in North 

Africa, known as 'Operation Swifter'. This investigation has been described 

in detail earlier 8 . The observations we now examine, relate to midday 

flights over the flat desert at 200 feet altitude. The restriction to mid- 

day flights has been made because environmental conditions are fairly steady 

at this time. 

The flights have been classified according to the solar radiation 

being received by the ground, and the cumulative gust distributions are 

given in Tables i(i) to (x). 

The results are presented in terms of gust velocities derivea by 

Zbroeek's method9. As only a single type of aircraft is involved, this 

merely amounts to making small corrections for aircraft weight ad speed, 
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converting the accelerations to gust velocltles by scme arbitrary factor, and 

interpolating to determine the number of gusts at the required velocity level. 

The gust velocity in Table 3 is therefore treated as proportional to aircraft 

normal acceleration, and, as before, the cumulative distribution is assumed to 

prvnde a satisfactory apprcnmation to the crossing distribution. 

Distributions of the form of (68) are fltted to the cbservatlons of 

Table 3, in whxh the fitted values are also given and a comparison between the 

experxmental points ard the fitted curves 1s shown diagrammatically in Figs.7a 

to 7j. A summary of parameters 1s given III Table 4, repeated below. 

Table 4 (repeated) 

'Swifter' midday flights over flat desert, Summary of parameters 

35-39 2; 

40-44 3; 

45-49 5 

50-54 53 

55-59 " 
60-64 1, 

65-69 " 

70-74 " 
75-79 I, 

80-84 II 

1.543 9.590 101.3 

1.259 8.816 130.7 

1.171 7.656 166.7 

1.468 7.510 180.2 

1.202 7.521 180.4 

1.253 a.032 188.0 

1.269 a.428 193.5 

1.351 8.668 196.7 

I .4oa 8.632 196.2 

1.323 9.000 200.9 

The values of I+, p., and N c are those of the curves fitted in Figs.7a 

to 7j (Tables j(1) to (x)). 

Ifi 
feet 

14.3e 1.700 

24.76 I.475 

41.62 1.500 

44.52 I .5la 

44.33 1.560 

37.63 1.573 

33.27 I.558 

30.85 1.637 

31.21 1.710 

27.81 1.577 

P 
feet/set 

The values of v, 1/X2 and p are derived using the relationships 

given m (64) to (69) with A, = 23.14 per mile. These values are shown 

plotted as the circled points in Figs.8 and 9. 

7.2 The most striking feature of these observations is the rapid increase 

in 9 as the solar radiation increases from 37 mW/cm2 to about 

50 mw/om2. This is detectable in Figs.7a to 7d as a change of shape 

and shown mere clearly in 8a . For values of solar radiation abwe 

50 mw/cm2 the value of n, is constant and second order terms produce a 
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slight trend in v, although whether in fact it 1s v that is constant with 

a slight trend in n, it is difficult to say, as the observations hardly 

warrant this accuracy, a change from 2 to 5 in n, being barely detectable. 

(Curve fitting with unrestricted values for n., would also entail two way 

interpolation if only existing tables were used.) During the rapid increase 

HI v the value of l/h2 also increases rapidly and then falls away slightly. 

There 1s a similar but smaller variation in Nc. 

7.3 It is also of interest to conalder the observations from an energy 

standpoint. The energy of the disturbances 1s proportional to their number 

and to the square of their magnitude. In Fig.10 the values of YP 
2 

are shown 

plotted against solar radiation and the points lie reasonably well on a 

straight line. Thus linear relationship has been used in determining the 

curves of Figs.80 and VC. The full lines of Fig.8a to 8c, Fig.Va to 

00 , and Fig.10, are a conszstent set, as are also the circled points. 

7.4 We may perhaps do a little guesswork regarding the physical impl~a- 

tlons of these results. As the solar radiation increases up to 50 mW/cm2 the 

number of disturbances Y increases rapidly, the atmosphere "comes to the 

boil" so to speak. This analogy is not stmctly correct as we are dealing 

with steady conditions at each value of solar radiation. 

Accompanying this rapid rise in Y, the behaviour of l/h2 indicates 

that the size of the dlsturbanoes also Increases. As the Lncrease in Y is 

far more rapid than the rise in solar radiation energy requirements lead 'cc a 

fall in p. 

Above about 50 mW/cm2 the number of disturbances is fairly constant and 

the Increase zn the UZ?LX of energy leads to a gradual increase in p. 

During th1.s stage l/h2 decreases slightly, perhaps because the disturbances 

become more sharply defined. 

7.5 It would be of interest to extend the curves to lower values of solar 

mdlatlon. 'Swifter' flights at these lower values were made in the early 

mornmgs and afternoons, when, of course, the conditions are not as steady 

as at midday. A cursory examination of these observations urdlcates that 

the values of n, seldom falls much below unity and the values of vp2 Ire 

above the straight line of Flg.10. This implIes that under these conditions 
the turbulence is patchy ard the model not strictly applicable as Y 1s not 
constant. It may be possible to extend the theory to take this into account 

(see scct10n 11.11. A further dlfflculty in analysing these results 1s that 
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for these small values of n,, a small change in n, leads to a large change 

in the shape of the distribution and present tables are inadequate. 

7.6 The important point in this example is the change in shape of the gust 

distribution produced by a change in the mean pulse rate V, while the mass 

parameter is held constant. This contrasts with the first example in which 

the change in shape is mainly due to the change in mass parameter. 

8 'SWIRTER' STACKED SORTIES 

The final example is also taken from the 'Swifter' investigation and 

refers to the flights known as the 'stacked sorties'. In these flights, which 

took place near midday, aircraft flew at heights of 200 feet, 4CKJ feet and 

600 feet separated by only a short interval of time so that the conditions 

were, for all practical purposes constant. (If only two aircraft were 

available the 600 feet flight was omitted.) To take a fairly homogeneous 

sample for the present analysis the flights considered are those made when 

the solar radiation exceeded 64 mW/cm2. The observed values and fitted dis- 

tributions are given in Tables 5 and 6, for flights over flat and hilly desert 

respectively, and are shown plotted in Figs.11 and 12. 

Now the mass parameter varies by only Just over 1% between 200 feet and 

600 feet and disturbances which affect an aircraft at 200 feet probably also 

affect an aircraft at 600 feet. That is to say, both 1, and v vary very 

little with altitude. Thus the present theory predicts very little change 

in the shape of the gust dxstributions with altitude and this is confirmed by 

the observations. On the other hand the number of zero crossings shows a 

marked decrease with altitude and this must therefore be due to a variation 

in h2' According to our model the variation in X2 will produce a small 

second order variation in n,. With the values of the parameters obtained 

from a first approximation this variation on the value of n, is between 

3 and 1 for each 200 feet change in altitude, and is barely detectable, 

if at all. However, in the curve fitting, an allowance has been made for this 

trend and values of n, differing by 4 for each 200 feet change in altitude 

have been chosen - in effect, the best set of three differing by this amount 

have been fitted. 

The resulting parameters are summarised in Tables 7(i) and 7(ii), 

repeated below. 



Table 7 (repeated) 
2 

'Swifter' stacked sorties with solar radiation 2 65 mW cm. 

Summary of parameters 

i ) Flat desert 

I Height In. I PI I Nn I 
f ,,:b,,l ft/sec per mile 

1.295 9.337 

--t-t 

1.326 7.275 

1.337 6.156 

23.14 204.9 25.10 

23.01 191.5 48.28 

22.87 183.0 71.41 

Height n, 
i-t 

200 4 

400 4; 

600 5 

(ii) Hilly desert 

1 
PI NO xl Y lfi2 

ft/seo per mile per mile per mile ft 

1.706 9.549 23.14 154.7 20.19 

1.650 7.892 23.01 153.7 37.13 

I.650 6.817 22.87 153.4 54.49 
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It will be seen that in the case of the flat desert the assumed change in 

"I is not qute sufficient to maintan v at a constant value; by compari- 
son, for the hilly desert, the allowance is Just suffxient to do so. 

The value of n, found here for flying at 200 feet over flat desert 

is the same as the value for all groups in the second example w2t.h solar 

radiation greater than 64 mW/cm2. As the range of solar radiation 1s much 
wider m the present example and the value of p varies slightly the comblna- 

tion of results might have been expected to produce a slight decrease in the 

value of n,, but this is not detectable. 

A further small point to note 1s that the value of l/h2 for flights 

at 200 feet over the flat desert found here differs slightly from the values 

1x1 the second example when the solar radiation exceeded 64 mW/om2. As these 
values are deterrmned from large samples, the difference is rather too great 
to be explaud as due to random sampling and 1s probably due to a slight 

dlfferenoe in routes flown. While all the stacked sorties were made on the 

routes to the West of El Adam, a good deal of flying over flat desert also 

took place on the southerly routes towards Glarabub. These are mnor pouts 
however. The maln feature of tins example 1s the strlklng behaviour of l/AZ. 
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8.2 The values of l/h2 given m Table 7 are shown plotted in Fig.13. These 

show a linear relationship with height within very close limits (to within 

w . The fact that the lines do not pass exactly through the origin may 

result partly from a bias between the actual and nominal altitties and partly 

from altimeter errors. 

In the case of the first example considered, changes in x2 are Con- 

nected with changes in aircraft response. Here, the aircraft response is, 

for all practical purposes, constant, and the change in ifi2 is clearly due 

to changes in the environment. The linear relationship with height shown in 

Fig.13 tends to confirm this opinion. 

0 DISCUSSION OF OBSERVATIONAL RESULTS 

0 . 1 The application of the 'shot effect' model to aircraft normal accelera- 

ilons gives encouraging results in the examples considered. 

The three examples illustrate the effect of varying each of the para- 

netcrs A,, II and A2 in turn. The first example demonstrates a change 

in shape of the gust distribution due to a variation of h,; the second, a 

change in shape of the gust distribution due to a variation in V; and the 

third shows the effect of x2 on the number of zero crossings No. The 

model satisfactorily predicts all these trends and presents a consistent picture 

of the phenomenon. 

,'.2 In earlier models the range of shapes in observed distributions was 

usually explained by postulating a distribution of root-mean-square values 

for short intervals of Gaussian processes; differing root-mean-square dis- 

trlbutions giving rise to differing gust distributions. This procedure 

suffers from a certain conceptual difficulty. These intervals must necessarily 

be long enough to be considered stationary and short enough for a continuous 

distribution of root-mean-square values to give a reasonable approximation 

to the truth. Furthermore, the process so defined is not stationary m as 

much as its root-mean-square value varies with time. In many cases, for 

examcle, when flying over a hot flat desert at midday, a model which does 

not rely on non-stationsrity to predict the observed gust distributions 

seems preferable. 

The present model does not suffer from these disadvantages. The shape 

of the gust distribution decends almost entirely on the mass parameter and the 

frequency of the disturbances, and the process is stationary in the sense that 

its stntistical propertics are invariant with tune. 
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10 CONCLUSIONS 

10.1 In investigating the behaviour of an aircraft in turbulence the most 

satisfactory method of' analysis depends on the frequency. with which the 

disturbances are encountered. 

When the disturbances are rare, then a discrete gust approach may 

prove adequate. As the occurrence of the disturbances becomes more frequent, 

so that their effects become superimposed, the discrete gust approach is no 

longer satisfactory. Finally, the frequency of occurrence becomes so great 

that $pectral methods can be used. Between the two limiting cases, the 

dxcrete gust and the spectral approach, there 1s a wide area in which 

neither is satisfactory. It is to this region, between the discrete gust 

on the one hand and the spectral approach on the other, that the method 

developed here applies. 

The examples chosen illustrate its application to aircrsft normal 

accelerations. It would be of interest to examine how far the model 1s 

successful in predicting the behaviour of other response variables, with, 

of course, suitable modificatxon of assumed pulse shape. 

However, above all, what 1s required at the present time is to make 

comparisons between aircraft to examine the consistency of the various para- 

meters under these coalitions and. to discover how far predictions based on 

one aircraft are valid for another. It should always be borne in mind that 

the purpose of the analysis is to predict, from observat'ions of gust loads 

on one aircraft, the loads experienced by a second aircraft flying in the 

same environment. For this purpose it J.S not necessary for the model to 

reflect accurately the true pwsical picture. In fact, it should be as 

simple as possible consistent with the aim defined above. 

. 
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Appendix A 

SUMMARY OF &kTHEMATICAL MODEL 

A.1 The mathematuxl model developed in the paper is summarised here. The 

equations given all occur in the main text and are quoted with their original 

equation numbers. 

The random variable x, (m th e cases constiered, the aircraft normal 

acceleration) is assumed to result from superimposing a large number of pulses 

of the form 

F(t) = $$ (e 
-h, t -x2t 

- e 
2- 1 

) . (40) 

These pulses occur at random with respect to time at a mean rate v per 

unit time. In the aircraft applications constiered in the paper, the mndepen- 

dent variable is distance rather than time, and the parameter 1, is identl- 

fled with l/(o @g), where c is the aircraft chord and P 
g 

the aircrsft 

mass parameter. 

The magnitude parameter a 1s assumed to be distributed exponentially:- 

-!2! 
f(a) = & e p . (23) 

The dutributions of x ad 5 are assumed to be, respectxvely 

f,(x) = F 0 
II, -; 

K 
1 n,G ( ,/i t 

-Jx 2 
y-4 

("I - 1): PI 
I 

(62) 

and 

f2(2) = + 
0 

"2-- : . 
K 

112-$ 
(J/i $ 

TX 2 
n2-& 

("2 - I)! P2 
I 

(63) 

where 

T = 41 + 3a) (1 + a/3) / h,(l + a)I (64) 

"2 = 41 + 3a) (1 + a/3) / h2(l + a) (1 + yd + a2)] (65) 

PI = P/W1 + 3a) (1 + a/3)1 (66) 
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and 

P* = P$ J (1 + 3a + a2)/w + 3a) (1 + a/3)1 (67) 

a = X,/h* . 

When a can be neglected, (62) and (63) are exact. Otherwise, the parameters 

in (62) and (63) are so chosen that the second and fourth cunulants have their 

correct values. 

Assuming further that x and % are independent, then the x-crossing 

distribution 1s given by 

n, -$ 

N, = P*(? - $)! e 
0 

K 
n, -; 

( )I 
?y 

iP, 7c* 
n, -& 

(n, - I)! (n2 - I)!1 

and 

. . . . . (68) 

No = P*(n, - 3/*): (n2 - 3)!/1*n p,(n, - I)! (n2 - I)!1 . (69) 
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Appendix B 

NOTE ON CURVE FITTING 

B.l All the fitted curves tabulated in this paper have been fitted by trial 

and error, using the set of functions previously tabulated7 for 

n = &($) 6(l) 12. These tables give a sufficient range of shapes for most 

practical purposes, except perhaps near the lower end of the range. The 

adequacy of the fit has been judged subjeotlvely without reoowse to a least- 

squares or minimum x 
2 

procedure. It would be necessary to consider a 

number of factors if this were done. 

When the number of gusts in a class interval is large, most of the error 

arises from instrumental and like o&uses, which lead to an error in the range 

of the Interval. This might be of the order of a few per cent. At the other 

extreme, when the numbers in the classes are small, the largest contribution 

to the error is due to sampling scatter. 

If the instrumental errors amount to, say, l+$ then the contribution to 

the variance from this cawe is N2/625, where N is the number in the class 

(strictly speaking, the expected number). For a given total number-in the 

whole dlstributron the sampling contribution to the variance of the class is 

N, making for the total variance N + li2/625. 

For classes containing over 625 gusts the instrument errors predominate; 

below this figure sampling errors predominate. 
n 

To minimise xL it 1s necessary to mirumise the squares of the dif- 

ferences between the observed and expected numbers d~vicled by the respective 

varmnoes, I.e. to minimise 

(Nabs - NeTI / (New + (d625) 

where N obs is the observed number in the class and N 
exp 

is the expected 

number. 

It is to be noted that the distributions tabulated here are cumulative 

before the above procedure can be applied the numbers within each class inter- 

val must be found by differencing. 

A computer programme for curve fitting based on these considerations and 

allowing for unrestricted values of the shape parameter n would be useful. 
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B.2 Two specific points regarding the actual curve3 fItted should be 

mentmned. 

The first is the appearance on several occasion3 of a few large gusts 

not fitting well into the general pattern. No simple expression fitting 

the Mann part of the dlstrlbution satisfactorily fits these tail3 and on 

any simple theory it 13 necessary to a33ume that such a tad results from 

a separate population of rare events. Whether these rare events are gusts, 

manoeuvres, or a combination of these 13 not yet established. 

The second point ccncernz the Swifter result3 only. The observed 

totals at a gust velocity of 74 ft/sec show a small posxtlve bias of about 

one or two per cent. Thu 13 not a serious discrepanoy and is undetectable 

on the d1agram3, but it is consistent enough to give rl3e to the suspicion 

that It may be due in 3cme way to the data prooesslng, possibly the instru- 

nent response characteristics, the addltlon of up and down gusts,or the method 

of interpolating between the acceleration levels to obtain the number of 

gusts at a given derived gust velocity. 

. 

. 
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T 
63 

- 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1 .I 
- 

No. of bumps T Bumps per mde 

Fitted Obs. FItted 1 Obs. 

1554 
755 
330 
147 

56 
22 
11 

5 
2 
1 
0 

Table 1 

R.F. JONES'S THUNDERSTORM DATA 

CUMULATIVE BUMP DISTRIBUTIONS 

(i) 2500 feet to 7400 feet; 227.1 mdes 

2494 
1554 
745 
333 
144 

60.1 
25.2 
10.3 

4.20 
1.70 
0.683 

6.84 
3.32 
1.45 
0.647 
0.247 
0.0969 
0.0484 
0.0220 
0.00881 
0.00440 

i0.98 
6.84 
3.28 
1.47 
0.634 
0.265 
0.111 
0.0454 
0.0185 
0.00749 
0.00301 

9 = I&; p1 = 0.1042 g 

(ii) 7500 feet to 12400 feet; 495.3 miles 

No. of bumps 
g 

Obs. FItted. 

0 0 4654 4654 
0.1 3495 3495 0.1 3495 3495 
0.2 0.2 1869 1874 1069 1874 
0.3 0.3 823 823 859 859 
0.4 350 0.4 350 360 360 
0.5 0.5 145 142 145 142 
0.6 
0.6 0.7 0.7 7; 7; :;*; :;*; 
0.8 7 0.8 7 7105 7105 
0.9 2.48 
1 .o 

: 
0.861 

1 .I 1 0.295 
1.2 0 

T Bumps per mrle 

Obs. Fitted 

7.06 7:: 
3.77 3.78 
1.66 1.73 
0.707 0.727 
0.293 0.287 
0.109 0.108 
0.0363 0.0398 
0.0141 0.0142 
0.00606 0.00501 
0.00606 0.00174 
0.00202 0.000596 

II., = 23; pl = 0.0833 g 
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Table 1 (C&d) 

(iii) 12500 feet to 17400 feet; 241.2 miles 
- 

g 

- 
0 
0.1 
0.2 

2 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 

- 

No. of bumps 
- 
Dbs. Fitted 
- 

2440 
1839 1839 
1064 1058 
527 542 
251 264 
123 122 

55 54.8 
27 24.2 

z 
10.5 

4.51 

1' 
1.91 
0.811 

1 0.34C 
1 0.142 
0 

- 

Bumps per mile 

Obs. Fitted 

7.62 
4.41 
2.18 
1.04 
0.510 
0.228 
0.112 
0.0373 
0.0166 
0.00829 
0.00415 
0.00415 
0.00415 

II, = 2; p, = 0.1053 g 

0.12 
7.62 
4.39 
2.25 
1.09 
0.506 
0.227 
0.100 
0.0435 
0.0187 
0.00792 
0.00336 
0.00141 
0.000589 

(iv) 17500 feet to 224.00 feet; 108.6 miles 

r T No. of bumps I Bumps per mile 

- 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1 .I 

Obs. 

750 
441 
230 
123 

:: 
la 

z 
1 
0 

1055 9.71 
750 6.91 6.91 
432 4.06 3.98 
234 2.12 2.15 
123 1.13 1.13 

63.0 0.543 0.580 
32.5 0.276 0.299 
16.5 0.166 0.152 

7.91 0.0829 0.0728 
3.90 0.0368 0.0359 
1 .Yl 0.00921 0.0176 

Fitted 

"1 
= 1;; p1 = 0.1316 g 
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Table 1 (Contd) 

(v) 22500 feet to 27400 feet; 46.2 miles 

Obs. Fitted 

0 0 I 

ti- 

430 
0.1 372 372 
0.2 244 264 
0.3 173 167 

0.1 372 
0.2 244 
0.3 173 
0.4 104 
0.5 60 
0.6 30 
0.7 16 
0.8 7 

0.i Iii 99.0 
0.5 60 55.7 
0.6 30 30.3 
0.7 16 16.1 
0.8 

I 
7 

I 
8.37 

0.9 5 4.28 0.9 5 
1.0 2 
1.1 0 

of bumps Bumps Bumps per mile 

Obs. 

per mile 

-pz 

8.06 
5.28 
3.75 
2.25 
1.30 
0.650 
0.346 
0.152 
0.108 
0.0433 

9.31 
8.06 
5.72 
3.62 
2.14 
1.21 
0.656 
0.349 
0.181 
0.0927 
0.0466 

"I 
= 2$; p1 = 0.1220 g 

(vi) 27y30 feet to 324.00 feet; 22.3 miles 

NO. 
g I- bumps Bumps per mile 

1 Obs. Fitted 

193 
173 
128 

84.0 
50.1 
28.0 
14.9 

7.60 

:*;: 
01865 
0.403 
0.185 
0.0832 
0.0371 
0.016t 

Obs. Fitted 

7.75 
5.69 
3.54 
2.24 
1.34 
0.672 
0.314 
0.224 
0.224 
0.134 
0.134 
0.0896 
0.0448 
0.0448 
0.0448 

8.66 

:-:z 
3176 
2.25 
1.25 
0.668 
0.341 
0.169 
0.0818 
0.0388 
0.0180 
0.00829 
0.00373 
0.00168 
0.000746 

"1 = 3;; PI = 0.1036 g 
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. 

Table 1 (Contd) 

(vii) 32500 feet to 37400 feet; 20.4 miles 

- 

g 
T 
l- 

0 
0.1 
0.2 

2 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1 .I 
1.2 

No. of bumps 

3bs. Fitted Obs. Flttd 

134 

:; 
28 
15 

8 
3 
2 
2 
2 
2 
0 

154 
134 

93.0 
55.3 
29.7 
14.9 

7.06 
3.23 
1.42 
0.608 
0.255 
0.105 

T Bumps per mle 

6.56 
4.56 
2.40 
1.37 
0.735 
0.392 
0.147 
0.0980 
0.0980 
0.0980 
0.0980 

2:; 
4:56 
2.71 
1.45 
0.730 
0.346 
0.158 
0.0696 
0.0298 
0.0125 
0.00516 

9 = 3;; P, = 0.0917 g 
. 

(viii) 37500 feet to l+ZQO feet; 13.7 miles 

0 I 0.1 0.: I 9L I 9i 16.88 1 _.-- 
> 66 29.1 4.98 

&i 43 25 44.0 25.0 3.15 1 .83 
0.5 13 13.1 0.952 
0.6 6 6.40 0.439 

Fitted 

7.69 
6.88 
5.06 
3.22 
1.83 
0.957 
0.469 

“1 = 4s; Pq = 0.0858 g 

. 



Table 2 

R.F. JONES'S THUNDERSTORM DATA 

SUhWRYOFPARAETFXS 

Height v 
reet 

n, p, g units No II +2 
per mile per mile feet 

2500- 7400 11 
2; 

0.1042 5.49 22.97 39.1 89.2 
7500-12400 0.0833 4.70 19.69 56.9 99.2 

12500-17400 2 
17500-22400 I1 

0.1053 5.06 16.77 39.7 61.4 

22500-27400 2I 
0.?316 4.86 14.20 33.3 47.6 

3l 
0.1220 4.66 11.94 50.4 36.8 

27500-32400 
31 

0.1036 4.33 9.97 60.7 
32500-37400 

4: 
0.0917 3.78 8.26 51.6 

37500-42400 0.0858 3.84 6.57 57.0 
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. 

1 

.  

Table 3 

'SWIFTER' MIDDAY FLIGHTS OVER FLAT DESEILT CLASSIFIED WITH RESPECT TO 

SOI&l PADIA'ITON. CUMULATNE GUST DIS-'lRlBU~ONS 

(i) Solar radiation 35-39 mW/cm*; 1620 miles 

hst velocity 
f-t/se0 I 
I 

T No. of gusts I Gusts per mile 

Obs. 

0 

;L 
IO2 
15 
20 

7337 
2344 

638 
44 

1 

31073 
7337 4.529 
2293 I.447 

644.3 0.3938 
42.58 0.02716 

2.457 0.0006~73 

Fitted 

19.181 
4.529 L 1.415 
0.3977‘ 
0.02628 
0.001517 

P. = 2;: Pl = 1.543 ft/sec 

(ii) Solar radiation lQ-LiJ+ mW cm2; 2953 miles 

Gust velocity No. of gusts Gusts per mile 

ft/sec Obs. Fitted Obs. Fitted 

52070 
12667 q2667 4.290 

7s 3769 3584 1.276 
10 850 064.4 0.2878 
15 38 38.16 0.01287 

47.633 
4.290 
1.214 
0.2927 
0.01292 

"1 = 34-; Pl = 1.259 ft/sec 

(iii) Solar radiation 45-49 m/cm*; 2532 miles 

Gust velocity No. of gusts Gusts per mile 

ft/sec Obs. Fitted Obs. Fitted 

38772 15.313 
12828 12828 

7% 
5.066 5.066 

4492 
10 1124 :t: 

1.774 1.672 
O.u+39 0.4514 

15 55 57.31 0.02172 0.02263 
20 5 2.116 0.001975 0.0008357 
25 2 

I 
0.0007899 

"1 = 5; Pl = 1.171 ft/sec 



Table 3 (C&d) 

(iv) Solar radhtion 50-54 mW/cm2 4994 miles 

Gust velocity No. of gusts Gusts per mile 

ft/sec Obs. Fitted Obs. Fitted 

; 27501 75008 27501 5.507 15.020 5.507 
74 10025 9760 2.007 1.954 

IO 2752 2819 0.5511 0.5645 
15 147 158.6 0.02944 0.03j76 
20 10 6.425 0.002002 O.OG,1287 
25 1 0.0002002 

"1 = 2; Pl = 1.168 f%/sec 

(v) Solar radiation 55-59 mW/cm*; 2051 miles 

:ust velocity 
ft/sec 

; 
7+ 

10 
15 
20 

:z 

T No. of gusts T Gusts per mile 

Obs. 

5.799 
2.165 
0.6558 
0.04144 
0.003413 
0.0004876 
0.0004876 

1 I 
F~ttd 

15.043 
5.799 
2.155 
0.6553 
0.04114 
0.001868 

y = 5%; Pl = 1.202 ft/sec 

(vi) Solar radiation 60-64 mW/cm*; 2255 miles 

15 142 142.0 0.06i97 
20 7.579 O.003~04 
25 

: 
0.3312 0.004435 

"I = 5+; PI = I.253 ft/sec 
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Table 3 (Contd) 

(vii) Solar radiation 65-69 mW/omz; 2691 miles 

I Ells+ -.-; velocity 
No. of gusts Gusts per mile 

rt/sec Obs. Fitted Obs. Fitted 

; 
I;- : 

15 
20 
25 

19122 45359 19122 7.106 16.856 7.106 
7923 2510 7721 2575 2.944 2.869 

0.9327 0.9569 
200 197.5 0.07432 0.07339 

15 11.05 0.005574 0.004106 
1 0.5368 0.0003716 0.0001aa3 

:ust velocity No. of gusts Gusts per mde 

ft/sec 
Obs. Fitted Obs. Fitted 

; 32436 32436 70053 a.027 17.336 8.027 
7+ 14607 14304 3.615 

IO 5200 5272 1.289 :-:&f * 15 478 502 0.1183 0.1242 
20 54 35.21 O.Ol336 O.OOb7l3 

:z 
2.035 0.001732 0.0005036 

0.007424 
35 i 0.0002475 

t- I 

( 

! 

"1 = 54; PI = 1.351 ft/sec 

(ix) Sl 0 ar radiation 75-79 mW/cm2; 2858 miles 

hut velocity No. of gusts Gusts per mile 

ft/sec obs. Fitted Obs. Fitted 

; 
7s 

24169 49341 24169 8.457 17.264 8.457 
11483 11251 4.018 3.937 

IO 4334 4409 1.516 
15 

I.543 
472 479.6 0.1652 0.1678 

:; y 38.74 2.586 0.01540 0.003749 O.Oj355 0.0009048 
30 1 0.003499 

n1 = 2; Pl = 1.269 ft/seo 

(viii) Solar radiation 70-74 mW/om*; 4041 miles 

"I = 5:; p1 = I.408 ft/sec 
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Table 3 (C&d) 

(x) Solar radiation 80-86 mW/om*; 2148 miles 

Gust velocity No. of gusts Gusts per mile 

e/se0 
Obs. Fitted Obs. Fitted 

0 38665 18.00 

IO2 71 
17359 17359 8.081 8.081 

7706 7436 3.588 1.204 3.462 
2586 2651 1.234 

15 237 234.9 0.1103 0.1094 
20 23 15.29 0.01071 O.CQ7118 
25 3 0.81800.001397 O.OQO3808 

n = 2; PI = 1.323 ft/seo 
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Table 4 

'SWIFTER' MIDDAY FLIGHTS OVER FLAT DESERT 

SUMMARYOFPARAMETERS 

Solar radiation P 
f-t/se0 

35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-84 

I.543 
1.259 
1.171 
1.168 
1.202 I 
1.253 
1.269 
I.351 
1.408 
1.323 1 

ET: 
71656 
7.510 
7.521 
8.032 
8.428 
0.668 
8.632 
9.000 

101.3 14.38 
130.7 24.76 
166.7 41.62 
180.2 44.52 
180.4 44.33 
188.0 37.63 
'93.5 33.27 
196.7 30.85 
196.2 31.21 
200.9 27.81 

1.700 
1.475 
1.500 
1.518 
1 .j60 
1.573 
1.558 
1.637 
1.710 
1.577 

The values of nl, p., and N are those of the curves fitted in 

Figs.7a to 7j (Tables 3(i) to (x)). 'The values of v, l/h2 and p are 

derived from these using the relationships given in (64) to (69) with 
L 

h, = 23.14 per mile. 

. 

. 

. 
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Table 5 

'SWIFTER' STACKED SORTIES WITH SOLAR RADIATION a65 mW cm2 OVEX FLAT DESERT 

CUMULATIVE GUST DISTRIBUTIONS 

(i) 200 feet; 2103 miles 

Gust velocity 
ft/sec Obs. FItted 

17089 
7365 
2401 

198 
IO 

of gusts Gusts per mile 1 

39272 
I 7089 

7108 
2452 

202.1 
12.20 

"1 = 54; P, = 1.295 ft/sec 

(ii) 4.00 feet; 2174 miles 

Gust velocity No. of gusts Gusts per mile 

ft/sec 
Obs. FItted Obs. Fitted 

: 15351 31633 15351 7.061 
7$ 

14.551 7.061 
7111 7009 3.271 3.224 

10 2641 2665 1.215 1.226 
15 285 265.6 0.1311 0.1222 
20 17 19.15 0.007820 0.008809 

"1 = 6: PI = 1.326 ft/sec 

(hi) 600 feet; 1342 miles 

Gust velocity No. of gusts Gusts per mile 
ft/sec 

Obs. Fitted Obs. Fitted 

0 16522 12.311 
5 
7; 

8617 8617 6.421 6.421 
4229 4193 3.151 3.124 

IO 1672 1703 1.246 1.269 
15 208 192.9 0.1550 0.1437 
20 20 15.63 0.01490 0.01165 
25 2 1.017 0.001490 O.OOO757f 

"1 q 63; p, = 1.337 ft/sec 
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Table 6 

'SWIFTER' STACKED SORTIES WITH SOLAR RADIATION 265 mW cm2 OVER HILLY DESERT 

GUMULATIVX GUST DISTRlBUTIONS 

(i) 200 feet; 1221 miles 

Gust velocity 
ft/sec 

0 
5 
7s 

10 
15 
20 
25 

"1 = 4; PI = 1.706 ft/sec 

T No. of gusts 

Obs. Fitted Obs. Fitted. 

1 Gusts per rule 

11256 
5534 
2189 

319 

23319 
11256 

5404 
2261 

305.2 
33.17 

3.149 

9.219 
L.532 
1.793 
0.2613 
0.03686 
0.004914 

19.098 
9.219 
4.426 
1.852 
0.2500 
0.02717 
0.002579 

(ii) 4.00 feet; 1252 tulles 

Gust velocity No. of gusts Gusts per mile 

ft/sec Obs. Fitted Obs. Fitted 

19762 15.784 
10077 10077 a.049 8.049 

7; 5228 4997 4.176 3.991 
IO 2175 2444 1.737 1.712 
15 276 297.2 0.2204 0.2374 
20 31 32.41 0.02476 0.02589 

:z 2 1 3.035 0.2561 0.001597 0.0007987 0.002424 0.0002046 

"1 = 4;; PI = 1.650 ft/sec 

. 
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Gust velocity 
ft/sec 

Table 6 (Contd) 

(iii) 600 feet; 688 miles 

5” 
7; 

10 
15 
20 

$I 

No. of gusts I Gusts per mile 

Obs. Fitted Obs. Fitted 

9381 13.635 
5174 5174 7.520 7.520 
2745 2730 3.990 
1204 1245 1.750 ::E 

194 192.6 0.2820 
32 23.06 0.04651 

4 2.340 0.005814 
2 0.2116 0.002907 

0.2799 
0.03352 
0.003LQl 
0.0003076 

PI = 1.650 ft/seo 

1 
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Table 7 

'SWIFTER' STACKED SORTIES WITH SOLAR RADIATION 365 mW/om* 

S~OFP~rn 

i ) Flat desert 

Height 
feet 

200 

400 
600 

6 1.326 

6; I.337 

No x1 
per mile Per mile Per L I I 
i’if 

ii) Hilly desert 

Ieight 
feet. "I PI No 3 

ft/seo per mile per mile 

9.549 23.14 

7.892 23.01 --I- 6.817 22.87 

v 
per mile 
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a 

c 

F(t) 

f(x) 

G(t) 

SYMBOLS 

a magnitude parameter in the definition of pulse shape F(t) 

aircraft chord 

the defined pulse shape, a function of t 

the frequency distribution of x, similarly f(2) etc. 

a further function of t, used mainly as the first derivative of 

F(t) 
the pulse buld up distance 

the modified Bessel function 

the expected number In a class 

the observed number in a class 

the number of positive crossxngs per unit time (or distance) of the 

value x 

parameters determining the shape of frequency dlstrlbutions 

a parameter In the distrlbutlon of time intervals between pulses 

the autocorrelatlon function 

the spectrum 

alstance 

time 

the pulse build up time 

gust velocity 

dummy varxable in characteristic function 

au-craft forward velocity 

dummy variable in characteristic function 

a random variable 

aircraft height 

the ratio h.,/k2 

oumulant of distribution (with suffix or suffices) 

parameters in the definition of pulse shape 

moment of dutribution (with suffix or suffices) 

aircraft maw parameter 

scale parameters of distributions 

standard deviation (with appropriate suffix) 

time variable in autocorrelation function (in (71), a scale parameter) 

mean pulse rate per unit time or distance 

a characteristic function, (or in (39) an unsteady lift function) 
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SYMBOLS (conta) 
: 

unsteady lift function 

frequency ya_ria@z in spectrum 

An extended use is made of the factorial sign, writing x! for l?(x + 1). 
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b Pulse shapes for a range of values of A2 

Fig. I Pulse shapes 
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Fig, 3 RX Jones’s thunderstorm data. Variation of 

the shape of the bump distribution 

with mass parameter 
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Fig.4 R.F. Jones’s thunderstorm data. Variation 
of N, and A, with altitude 
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Fig. 5 R.E Jones’s thunderstorm data-variation of 

u and I/A* with altitude 
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Fig. 6 R.F. Jones’s thunderstorm data. Variation of 

pulse build-up distance with height 
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Fig.7 “S,wifter)’ midday flights over flat desert classified with 
respect tb solar radiation. Cumulative gust distributions 
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Fig. 7 contd 
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Fig. 8 “Swifter” midday flights over flat desert. 

Parameters of fitted curves 
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Fig. 9 “Swifter” mldday flights over flat desert. 

Derived parameters 
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Fig. IO “Swifter” midday flights over flat desert. 

Energy relationship 
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Fig.lI“Swifte;‘stacked sorties with solar radiation 3 65mW/cm2 
over flat desert. Cumulative gust distributions 
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Fig. 12 “Swifter” stacked sorties with solar radiation 

365mW/cm’ over hilly desert. 

Cumulative gust distributions 
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OUSTS, DISXEIE AND INDISCBETS 

For Lhe analysis of wst loads on aircraft, a methoj is described in 
Vmlch the occurrence and magnitude of the loads are represented as randan 
variables. 
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I 
For the analysis of @st loads on a,~craR. a mechhrd Is described in 
tilti the occu,-,?nee and magn,t”de 0P the loads are represented as randlm , 
variables. 

The paper begins with Lhe discrete tllst, and @es M to Lreat the MSB 

1” which the d,sL&aa”ces are too frequent to be considered sl”& and 
becam Indiscrete. In the limit this leads to the usual result.s obta,“cd 
h-m the spectral approach. but In Lhe observatIonal naterlal examined ,,>I, 
llmlt is not reached. The simple Fiathemntlcal m&e1 developed here glvvs 
a cmslstent picture 01 rhe properties ol cbser”ed gllst lad Wq”ency 
dlstr-,b”t,a,s. 
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