1084

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Comparison of Different Methods of Assessing the Free Oscillatory Characteristics of Aeroelastic Systems

 byA. Jocelyn Lawrence
P. Jackson

Structures Dept., R.A.E., Farnborough

$$
\because
$$

-

```
U.D.C. 533.6.013.42
```


COMPARISON OF DIFFERENT METHODS OF ASSESSING THE FREE OSCILLATORY CHARACTERISTICS OF AEROELASTIC SYSTEMS

by
A. Jocelyn Lawrence
P. Jackson
Structures Dept., R.A.E., Farnborough

SUMMARY

Different approximate methods of determining the eigenvalues of the integro-differential matrix equation of a simple aeroelastic system are compared. It is shown that methods which use an approximate second order differential matrix equation with constant coefficients can gave large errors in the values of complex eigenvalues, though the errors are usually small at airspeeds below the cratical flutter speed, if the frequency parameter of each particular eigenvalue is lined-up with the value used to determine the aerodynamics. An improved method of solution using a finite series approximation to the indicial aerodynamics yielded in some cases an additional complex eigenvalue wath frequency of the same order as the other natural frequencies.

* Replaces R.A.E. Technical Report 68296 - A.R.C. 31379.
CONTENTS
Page
1 INTRODUCTION 3
2 METHODS OF SOLUTION 3
2.1 British approach 3
2.2 American approach 4
2.3 Richardson approach 6
3 COMPARATIVE APPLICATION 12
3.1 The system considered 12
3.2 Results of the British approach 13
3.3 Results of American approach 13
3.4 Results of the Richardson approach 14
3.5 Comparison between the different methods 16
4 CONCLUSIONS 17
Appendıx A The nature of the system's free motion 19
Appendix B Determination of the K_{r} matrices 24
Tables 1-1027-38
Symbols 39
References 4.1
Illustrations Figures 1-33Detachable abstract cards

INTRODUCTION

The primary purpose of a flutter calculation is to determine the critical flutter speed (if any), but the free oscillation characteristics at lower speeds are also of interest. In partıcular, when making flight flutter tests, or wind tunnel flutter tests on a model, a flutter speed may not be determined, and then all comparisons with theory will have to be made for the characteristics of the system at subcratical speeds. The dafferent methods of flutter analysis commonly used agree as regards critical flutter speeds, provided the same basic data are used, but give different values of the decay rates at other speeds. Some assessment of the importance of these differences is therefore required*. Richardson ${ }^{1}$ gives one example where the standard American approach (see section 2.2) is mısleading and Clerc ${ }^{2}$ has found that a method simalar to the American approach can largely overestimate the magnitude of the relative damping ratio when compared with the traditional British approach with lined-up frequency parameter.

The present investigations are aumed at showang in particular how the traditional Brıtish approach (with and without lined-up frequency parameters) compares with the more rigorous approach of Richardson. Comparisons are also made with the American method of analysis.

2 METHODS OF SOLUTION

2.1 British approach

This is the standard approach in use in thas country. The flutter equation is taken in the non-dimensional form

$$
\begin{equation*}
A \frac{d^{2} q}{d \tau^{2}}+(v B+D) \frac{d q}{d \tau}+\left(v^{2} C+E\right) q=0 \tag{1}
\end{equation*}
$$

frequently with $D=0$; where $\tau=V_{0} t / \ell, \quad v=V / V_{0}$ and V_{0} and ℓ are a reference speed and length respectively. An exponential solution is postulated, leading to an eigenvalue problem to determine the complex elgenvalues λ for a solution in the form $q=\bar{q} e^{\lambda \tau}$. The system is unstable if, for any eigenvalue, $R(\lambda)>0$ and a critical speed is defined by $R(\lambda)=0$.

Strictly equation (1) applies only when the motion is simple harmonic, implying that λ is purely imaginary ($=i \omega$). The aerodynamic matrices B and C are functions of the frequency parameter $\nu=(\omega / v)$ and, in general, of the

[^0]Mach number also, but in the present case the air is assumed to be incompressible, so there is no dependence on Mach number. However, a solution of equation (1) is usually obtalned by assuming a value of ν for the caiculation of the matrices B and C, and then solving equation (1) for λ. The value of λ so obtained will not, in general, be purely imaginary, nor will $\frac{1}{\mathrm{v}} \mathrm{I}(\lambda)$ be consistent with the assumed value of the frequency parameter v. In order to achleve some measure of agreement and perfect agreement in the limiting case when λ is purely imaginary, the assumed value of ν is often lined-up with the derived value of $\frac{1}{v} I(\lambda)$ by the following procedure.

A graph is plotted of ω obtaned from the eigenvalues $\lambda(=\mu+i \omega)$ against v and the intersections of each curve with the line $\omega=\nu v$ (where v Is the value of the frequency parameter assumed in the evaluation of B and C) give the lined-up values of frequency and speed. From the corresponding graphs of the relative damping ratio $=-\mu / \sqrt{\mu^{2}+\omega^{2}}$ against $\quad v$ the appropriate values of this ratio can be found. From a series of such graphs for various ν graphs of the lined-up frequency and relative damping ratio can be plotted.

This method has the disadvantage that it is necessary to calculate elgenvalues for a large range of speeds without lining-up in order to obtain lined-up values for one value of ν; at least for the first few values of frequency parameter.

2.2 American approach

The system equation is taken in a rather different form from the above. The actual structural damping is ignored and a fictitious hysteretic structural damping $\frac{g}{\omega} \mathrm{E}$ is introduced which is supposed just sufficient to manntain steady harmonic motion. The solution $q=\bar{q} e^{i \omega \tau}$ may then be taken which gives

$$
\begin{align*}
& \left(-\omega^{2} A+i \omega v B+i g E+v^{2} C+E\right) \bar{q}=0 \tag{2}\\
& \left\{A-\frac{I v B}{\omega}-\left(\frac{v}{\omega}\right)^{2} C-\frac{(1+i g)}{\omega^{2}} E\right] \bar{q}=0 . \tag{3}
\end{align*}
$$

Since $\frac{\mathbf{v}}{\omega}=\frac{1}{v}$, the problem reduces to a determination of the eigenvalues (in the usual algebraic sense) of the matrix

$$
\begin{equation*}
E^{-1}\left(A-\frac{i B}{\nu}-\frac{C}{\nu^{2}}\right) \tag{4}
\end{equation*}
$$

A chosen ν is used to determine B and C and so all the terms are known.

The complex eigenvalues of the matrix can then be found for a series of values of v. Separation of real and imaginary parts enables a determination of g and ω separately; the velocity is obtained from ω and the assumed ν.

As g represents a damping which has to be introduced, a negative value which may be regarded as an excitation means that the system is intrinsically damped and therefore stable. The critical flutter speed is glven by $g=0$.

It will be seen that values of frequency and fictitious structural damping obtained by this method are accurate at all values of v so that insofar as no lining-up is necessary the solution may be regarded as superior to that from the British approach.

There is however the problem of the relationship between g and the decay factor μ. In the limit as $\mu, v \rightarrow 0$ it can be shown that

$$
g \rightarrow \frac{2 \mu}{\omega} \bumpeq \frac{2 \mu}{\sqrt{\mu^{2}+\omega^{2}}}
$$

where μ / ω is small. A more general relationship has been found by Zisfein and Frueh ${ }^{3,4}$ but the introduction of the so-called base curve of the system is not very convenient for the present application. We have therefore used $-g / 2$ as the relative damping factor in this case for comparison with the methods using $-\mu / \sqrt{\mu^{2}+\omega^{2}}$ but it must be remembered that the comparison is close only for low values of the speed and decay factor.

A similar approach to the American method has been used in France ${ }^{2}$. The same equation (3) is solved but a different interpretation is put on the solution. It is assumed that equation (1) has a solution of the form $q=\vec{q} e^{i \omega(1+i a) \tau}$ where the aerodynamic matrices B, C are determined for a frequency parameter $v=\omega / v$. This results in the equation

$$
\begin{equation*}
\left\{A-\frac{i B}{\nu(1+i a)}-\frac{C}{\nu^{2}(1+i \alpha)^{2}}-\frac{E}{\omega^{2}(1+i a)^{2}}\right\} \bar{q}=0 \tag{5}
\end{equation*}
$$

It is then assumed that a can be neglected, i.e. put equal to zero, in the second and third terms. This is true at a critical flutter speed and is also
a good approximation when v is small. Thus we again get equation (3) except that $(1+i g)$ is replaced by $1 /(1+i a)^{2}$ and a is here a measure of the decay rate. Equatıng ımaginary parts of $(1+i \alpha)^{2}$ and $1 / 1+i g$ gives a in terms of g and hence

$$
\begin{aligned}
\frac{a}{\sqrt{1+a^{2}}} & =-\operatorname{sgn}(g) \frac{g}{2\left(1+g^{2}\right)}\left\{1+\frac{g^{2}}{4\left(1+g^{2}\right)^{2}}\right\}^{-\frac{1}{2}} \\
& \approx-\frac{g}{2} \text { where } g \text { is small. }
\end{aligned}
$$

For any particular value of g, equating real parts of

$$
\omega_{F}^{2}(1+i \alpha)^{2}=\frac{\omega_{\mathrm{A}}^{2}}{1+i g}
$$

gives

$$
\begin{equation*}
\left(\frac{\omega_{A}}{\omega_{F}}\right)^{2}=\left(1-\alpha^{2}\right)\left(1+g^{2}\right)=1+g^{2}-\frac{g^{2}}{4\left(1+g^{2}\right)}=\left(\frac{V_{A}}{V_{F}}\right)^{2} \tag{7}
\end{equation*}
$$

where the subscripts F and A indicate the French and American interpretation respectively. The relative damping ratio is $a / \sqrt{1+\alpha^{2}}$, but as clerc ${ }^{2}$ showed, it does not agree with the value obtanned by the traditional British approach with lined-up frequency parameter except near $v=0$ and at a critical flutter speed.

2.3 Richardson approach

For general motion the system equation has the form ${ }^{5}$

$$
\begin{equation*}
\left(A-A_{1}\right) \frac{d^{2} q}{d \tau^{2}}+E q=v^{2} \int_{0}^{\tau} K\left(\tau-\tau_{0}\right) \frac{d q(\tau)}{d \tau_{0}} d \tau_{0} \tag{8}
\end{equation*}
$$

where $\mathrm{K}(\tau)$ is the indicial aerodynamic matrix, and is related to the matrices B and C, already introduced, and the aerodynamic inertia matrix A, by the transform relationship

$$
\begin{equation*}
i \omega \int_{0}^{\infty} K\left(\tau_{o}\right) e^{-i \omega \tau_{0}} d \tau_{0}^{-}=-\left(\frac{i \omega}{v} B+C-A_{1} \frac{\omega^{2}}{v^{2}}\right) \tag{9}
\end{equation*}
$$

This follows from (8) with $q=\bar{q} e^{i \omega \tau}$ and $\tau=\tau^{\prime}+\frac{2 N \pi}{\omega}$ when $N \rightarrow \infty$ (i.e. for simple harmonic motion of infinite duration) when compared with the equation for maintained sinusoidal oscillation (i.e. equation (1)).

The solution of the integro-differential equation (8) is not easy. Taking the Laplace transform of (8) the characteristic equation

$$
\begin{equation*}
\left|\left(A-A_{1}\right) p^{2}+E-v^{2} p \bar{K}(p)\right|=0 \tag{10}
\end{equation*}
$$

is obtained, where

$$
\begin{equation*}
\overrightarrow{\mathrm{K}}(\mathrm{p})=\int_{0}^{\infty} \mathrm{K}(\tau) \mathrm{e}^{-p \tau} d \tau \tag{11}
\end{equation*}
$$

$\bar{K}(p)$ is known only for purely imaginary values of p and in this case we have from (9)

$$
\begin{equation*}
\bar{K}(j \omega)=-\frac{1}{i \omega}\left(\frac{i \omega}{v} B+C-A_{1} \frac{\omega^{2}}{v^{2}}\right) \tag{12}
\end{equation*}
$$

Milne ${ }^{6}$ has examined this problem rigorously and suggests obtaining solutions of the characteristic equation by using power series expansions of $\overline{\mathrm{K}}(\mathrm{p})$ about points on the imaginary axis.

A rather more simple approach to the solution of (8) has been suggested by Richardson ${ }^{1}$. H_{i} s main idea.was to approximate to the indicial aerodynamic matrix K by an*expression which includes a power series in $v \tau$ multiplied by an exponential term

$$
\begin{equation*}
K(\tau)=\frac{\delta(\tau)}{v_{1}}+K_{\sigma}+e^{-p_{o} v \tau} \sum_{r=0}^{m-1} \frac{K_{r}}{r!}\left(p_{o} v \tau\right)^{r} \tag{13}
\end{equation*}
$$

where $\delta(\tau)$ is the rught-hand Durac delta function, i.e. the first dufferential of the function

$$
\begin{aligned}
H(\tau) & =0 & \tau \leqslant 0 \\
& =1 & \tau>0
\end{aligned}
$$

The term $A_{1} \frac{\delta^{\prime}(\tau)}{V}$ represents the apparent mass effect of the air. The existence of a term proportional to $\delta(\tau)$ is well known and has been demonstrated for example by Malne (equation (2.11) of Ref.6).

The elements of $K(\tau)$ for a wing with heave and pitch freedoms, apart from the initial impulses and the constant terms, are proportional in the two-dimensional case to the Wagner function $k_{1}(\tau)$ (see Lomax ${ }^{9}$). A good approximation to $k_{1}(\tau)$ which has been suggested ${ }^{9}$ is

$$
k_{1}(\tau) \approx 2-\left(\frac{1}{3} e^{-0.09 \tau}+\frac{2}{3} e^{-0.6 \tau}\right)
$$

It does not however have the raght behaviour as τ tends to ∞ (cf. Milne ${ }^{6}$). Thas suggests that suitable values of p_{0} for our approximation should be in the range $0.09 \rightarrow 0.6$ and nearer the upper limyt because of the doubts about the approximation for $k_{1}(\tau)$ for large τ.

The coefficients in equation (13) can be obtalned from the matrices B and C by the use of equations (11) and (12) as will be shown later (see Appendix B).

Substitution of (13) in (8) gives
$A \frac{d^{2} g}{d \tau^{2}}-v A_{0} \frac{d q}{d \tau}+\left(E-v^{2} K_{\sigma}\right) q$

$$
\begin{equation*}
=v^{2} \sum_{r=0}^{m-1} K_{r} \frac{\left(p_{o} v\right)^{r}}{r!} \int_{0}^{\tau} e^{-p_{0} v\left(\tau-\tau_{o}\right)}\left(\tau-\tau_{0}\right)^{r} \frac{d q}{d \tau_{0}}\left(\tau_{o}\right) d \tau_{0} \tag{14}
\end{equation*}
$$

$$
\begin{gathered}
I_{r}=\frac{1}{r!} \int_{0}^{\tau} e^{-p_{0} v\left(\tau-\tau_{0}\right)}\left(\tau-\tau_{0}\right)^{r} \frac{d q}{d \tau_{0}}\left(\tau_{0}\right) d \tau_{0} \\
\frac{\partial}{\partial \tau}\left(I_{r}\right)=I_{r-1}-p_{o} v I_{r} \\
\left(\frac{\partial}{\partial \tau}+p_{0} v\right)^{r} I_{r}=I_{0} .
\end{gathered}
$$

Hence following Richardson, we multiply equation (14) by the operator $\left(\frac{\partial}{\partial \tau}+p_{0} v\right)^{m}$ and obtain
$\left(\frac{\partial}{\partial \tau}+p_{o} v\right)^{m}\left\{A \frac{d^{2} q}{d \tau^{2}}-v A_{o} \frac{d q}{d \tau}+\left(E-v^{2} K_{\sigma}\right) q\right\}$

$$
\begin{equation*}
=v^{2} \sum_{r=0}^{m-1} K_{r}^{\prime}\left(p_{o} v\right)^{r}\left(\frac{\partial}{\partial \tau}+p_{o} v\right)^{m-r} I_{o} \tag{15}
\end{equation*}
$$

Assuming $q=\bar{q} e^{\lambda t}$ where $\lambda=\mu+i \omega$

$$
I_{0}=\lambda e^{-p_{o} v \tau} \int_{0}^{\tau} e^{\left(\lambda+p_{o} v\right) \tau_{0}} \bar{q} d \tau \tau_{0}
$$

Hence $q=\bar{q} e^{\lambda t}$ is a solution if
$\left(\lambda+p_{0} v\right)^{m}\left\{A \lambda^{2}-v A_{0} \lambda+E-v^{2} K_{\sigma}\right\} \bar{q}=v^{2}\left\{\sum_{r=0}^{m-1} K_{r}\left(p_{o} v\right)^{r} \lambda\left(\lambda+p_{o} v\right)^{m-r-1}\right\} \bar{q}$

The problem is now reduced to an eigenvalue problem in λ. However, the matrix involved is still not simple. Divide by $\left(\lambda+p_{0}\right)^{m}$ and introduce m new variables defined by

$$
\begin{equation*}
\bar{q}_{r}=\frac{\left(p_{0} v\right)^{r} \lambda}{\left(\lambda+p_{o} v\right)^{r+1}} \bar{q} \quad r=0,1 \ldots m-1 \tag{17}
\end{equation*}
$$

to give

$$
\begin{equation*}
\left(A \lambda^{2}-A_{o} v \lambda+E-v^{2} K_{\sigma}\right) \bar{q}-\sum_{r=0}^{m-1} v^{2} K_{r} \bar{q}_{r}=0 \tag{18}
\end{equation*}
$$

This can be reduced to a matrix form suitable for the same programme as was used for the British approach by the following:

It wall be seen later that

$$
\left.\begin{array}{l}
A_{0}=-B_{\nu \rightarrow \infty}=-B_{\infty} \quad \text { (say) } \tag{19}\\
K_{\sigma}=-C_{\nu=0}=-C_{0} \quad \text { (say) }
\end{array}\right\}
$$

so that $-A_{0} v \lambda$ becomes $B_{\infty} v \lambda$ and $-v^{2} K_{\sigma}$ becomes $v^{2} C_{o}$ where B_{∞}, C_{o} are constants. Also we have the recurrence relations

$$
\left.\begin{array}{l}
\left(\lambda+p_{o} v\right) \bar{q}_{r}=p_{o} v \bar{q}_{r-1} \tag{20}\\
\left(\lambda+p_{o} v\right) \bar{q}_{o}=\lambda \bar{q} \cdot
\end{array}\right\}
$$

These are not suitable as they stand, as the programme does not allow for terms linear in v, only terms in $v \lambda$. Multiply by λ

$$
\left.\begin{array}{l}
\left(\lambda^{2}+p_{0} v \lambda\right) \bar{q}_{r}=p_{o} v \lambda \bar{q}_{r-1} \tag{21}\\
\left(\lambda^{2}+p_{0} v \lambda\right) \bar{q}_{0}=\lambda^{2} \bar{q} \cdot
\end{array}\right\}
$$

This gives

where I, O are unit and null matrices respectively.
This is the same type of eigenvalue problem as obtained by the British method (a second order, real lambda matrix) and it can be solved by the same computer programme.

If the matrices A etc. are of order n, this problem will glve rise to $2 n(m+1)$ eigenvalues instead of the usual $2 n$. The meaning of an extra 2 nm roots is discussed in some detail in Richardson's paper ${ }^{1}$. Of the
 in a suit
 reai roots when v, O) Such feain roots are probably spurious, but the characteristic equation (100) does not necessarily have just ${ }^{2} \mathrm{n}^{-1}$ roots and it may well be that additiven rootitwhich are not approximately equal to. $-p_{o} v$ are sagnificant (see Appendis A) This can only be verified by seeing if the roots persist when and improved approximation is used for K.

3 COMPARATIVE APPLICATION

3.1 The system considered

A hypothetical two-dumensional system in incompressible flow, wath freedoms in pitch about the leading edge, heave and control surface rotation was devised. With ℓ as the length of the wing chord, the control surface chord was 0.24ℓ. The matrices A, B, C and E for this system are guven by

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
14.767 & 7.0154 & 0.8796 \\
7.0154 & 4.271 & 0.7269 \\
0.8796 & 0.7269 & 0.927
\end{array}\right) \\
& B=2\left(\begin{array}{ccr}
\ell_{\dot{z}} & e_{\dot{\alpha}} & 10 e_{\dot{\beta}} \\
-m_{\dot{z}} & -m_{\dot{\alpha}} & -10 m_{\dot{\beta}} \\
-10 h_{\dot{z}} & -10 h_{\dot{\alpha}} & -100 h_{\dot{\beta}}
\end{array}\right) \\
& C=2\left(\begin{array}{crr}
\ell_{z} & \ell_{\alpha} & 10 \ell_{\beta} \\
-m_{z} & -m_{\alpha} & -10 m_{\beta} \\
-10 h_{z} & -10 h_{\alpha} & -100 h_{\beta}
\end{array}\right) \\
& E=\left(\begin{array}{lll}
2.21 & 0.7735 & 0 \\
0.7735 & 1.3807 & 0 \\
0 & 0 & 0.79
\end{array}\right)
\end{aligned}
$$

where $l_{z}, l_{\dot{z}}$ etc. are the two-dimensional aerodynamic derivatives, defined in Ref. 7 and are functions of the frequency parameter $\nu=\omega / v$. The matrices B and C were evaluated for $\nu=0.1,0.28,0.5,0.6,0.8,1.0,1.3,1.6$, $2 \cdot 0,2 \cdot 2,2 \cdot 4,2 \cdot 6$ and $5 \cdot 0$ using the formulae of Ref.7. The values are shown in Table 1 together wath the values of C_{0} and B_{∞} required for the Richardson approach.

3.2 Results of the British approach

The responses of the system without lining-up were calculated using EMA programme R.A.E. 272/A to solve the eigenvalue equation (1) for a range of velocities ($v=0-1 \cdot 1$) and for 8 values of frequency parameter in the range $\nu=0.5$ to $5 \cdot 0$, These results are tabulated in Table 2 and shown graphically in Figs.1-17. Fig. 1 shows the critical conditions (obtained by interpolation) and the other Figures show the variation of the elgenvalues through the speed range.

The imaginary parts ω of the eigenvalue are plotted directly, but instead of the real parts μ, the relative damping ratios, $-\mu / \sqrt{\mu^{2}+\omega^{2}}$ are shown. Each paif of curves is labelled A, B or C according to the value of ω at the start of the ourve $(v=0)$. It must however be borne in mind that what we have in the (ω, ν, v) space and similarly in the $\left(-\mu / \sqrt{\mu^{2}+\omega^{2}}, \nu, v\right)$ space for the whole set of results, is not necessarily three separate surfaces, but quite likely one surface which is triple-valued for each point (ν, v). Thus any point on this surface may be reached from different values of ω in the $\mathrm{v}=0$ plane, according to the route taken along the surface. When the lining-up of the values of ν was done as described in section 2.1 this was indeed found to be the case. The resulting curves of frequency and relative damping ratio are shown in Figs. 18 and 19'and listed in Table 3. They are again labelled A, B or C according to the value of the frequency at $v=0$. Some of the points on these A, B curves correspond to points on the B, C unlined-up curves, for the lowest frequency parameter. This complication made it necessary to obtain results for a large number of ν and v (see Table 2). The lined-up graph indicates a flutter speed of $v=0.79$ but no instability near $v=0$ as is suggested by the unlined-up ourves for the lower values of ν (cf. Figs.3, 5, 7 and 9). The unlined-up curves for $\nu=1.0$ upwards have the same character as the lined-up curves though the actual values can be considerably different. For example, the relative damping ratio for the least damped root is muoh larger at subcritical speeds on the $\nu=1.0$ curve than on the lined-up curve (cf. Figs. 9 and 19). The critical speed from the unlined-up results does not vary very much from the true value except at the higher values of ν (see Fig.1).

3.3 Results of American approach

The matrix $E^{-1}\left(A-\frac{i B}{\nu}-\frac{C}{\nu^{2}}\right)$ required for the American method was evaluated for a range of values of $\nu \quad(\nu=0.5$ to $5 \cdot 0)$ and are listed in

Table 4. The eigenvalues of thas matrix were then obtaned by anverse iteration using EMA Programme 622 and a purpose written calling routine by R.J. Davies. The programe required anltial estimated values and the ones used were based either on the results of calculations from other values of ν or on ones from the British approach solutions. It was not necessary to obtain all three eigenvalues this way; when two had been found the thard could be deduced by the following device.

For a matrix X of order n, the equation defining the eigenvalues the characteristic equation is $|X-\lambda I|$ which is of degree n in λ. It may be written out

$$
(-\lambda)^{n}+T_{r}(X)(-\lambda)^{n-1}+\ldots+|X|=0
$$

where $T_{r}(X)$ is the trace of X (i.e. the sum of the dagonal elements). From the elementary theory of equations we have

$$
\begin{aligned}
\sum_{r=1}^{n} \lambda_{r} & =- \text { coefficient } \lambda^{n-1} / \text { coefficient } \lambda^{n} \\
& =T_{r}(x)
\end{aligned}
$$

so that the sum of the eigenvalues is the trace of the matrax. Once two of them were known therefore the third could be calculated with relative ease.

The results of the calculations are plotted in Figs.19-20 and listed in Table 5. The elgenvalues obtaned from the trace of the matrix are indicated in the table. $(-g / 2)$ has been plotted as beang comparable with the relative damping ratio obtained from the other methods.

3.4 Results of the Rzchardson approach

The K_{r} matrices occurring in the series approximation (13) to the indicial aerodynamic matrix K were obtanned as described in Appendıx B, for two values of p_{0} and two values of m viz.

$$
\begin{aligned}
& p_{0}=0.4,0.6 \\
& m=2,3 .
\end{aligned}
$$

(See section 2.3.)

In each case the values of the B and C matrices for the following values of ν_{q} were used to obtain the least squares solution.

$$
\nu_{\mathrm{q}}=0 \cdot 1,0 \cdot 28,0 \cdot 5,0 \cdot 6,0 \cdot 8,1 \cdot 0,1 \cdot 3,1 \cdot 6,2 \cdot 6,5 \cdot 0 .
$$

The values of C_{0} and B_{∞} (see equations ($B-9$), ($B-10$), ($B-13$)) were also required and all these values of B and C are given in Table 1. The resultant K_{r} matrices are shown in Table 6.

Two checks were made to see how good were the approximations to the aerodynamic matrix K. Equation ($B-7$) was first used to obtain the first element on the leading dıagonal of the matrıces B and C (i.e. B_{11} and C_{11}). Some of these were obtained for the same values of ν_{q} as used in the calculation of the K_{r} matrices for direct comparison, and others at values of x which made calculation of equation ($B-7$) simple. The results are given in Table 7 and plotted against x in Figs.22-25. Secondly for one value of $\nu(1 \cdot 0)$ and one value of $p_{0}(0 \cdot 6)$ the complete B and C matrices were evaluated from equation (B-7). Thecomparison with those originally calculated from the equations of Ref. 7 is shown in Table 8.

All the results show that the approximation with $p_{0}=0.6$ and $m=3$ is the best of the four cases consıdered. It gaves results that lie almost always within 5% of the true value. An exception is the coeffacient B_{12} in Table 8 where there is a 15% difference. This is however an unusual case in that $\left(B_{\infty}\right)_{12}$ is much larger than B_{12}, and the approximation to \bar{B}_{12} (see equation ($\mathrm{B}-10$)) is much better.

The eigenvalues of equation (22) were obtained with the same computer programme R.A.E. 272/A as for the British approach using the four sets of K_{r} matrices corresponding to the two chosen values of p_{o} and m, for a range of values of v from 0 to $1 \cdot 0$. The complex eigenvalues are given in Table 9. In every case three pairs of such eigenvalues were obtained and in a few cases a fourth pair of complex eigenvalues were found. In addition there were a number of zero real roots* and a number of real roots all approximately equal to $-p_{o} v$ (see section 2.3). The fourth pair of complex roots, when present, were very little different from $\lambda=-p_{o} v$ at low values of v, and it is impossible to decide where they become a pair of equal roots. Two almost
*The large number of real roots (up to 18) at $v=0$ were obtained without difficulty by the programme used, R.A.E. 272/A.
equal roots can be found as a complex palr wath very small imaginary parts for the numerical accuracy can never be perfect. As in the other methods the curves have been labelled A, B, C, D according to the value of ω at $v=0$.

The values of Table 9 are plotted in Figs.26-33. Apart from the extra root which is present for the cases where $m=3$, all the approximations to K glve very similar results. The $m=2$ approximations give rather lower relatıve damping ratios for the least stable curve at subcritical speeds (cf. e. g. Figs. 26 ard 29). The critical speeds are to all intents and purposes the same in each case. The most noticeable dufference is between the frequency curves for the two approximations where $m=3$ (Fıgs. 26 and 30). When $p_{0}=0 \cdot 0$ the frequency of the fourth eigenvalue (D) rises more rapidly than for $p_{0}=0.4$ and this affects the form of the B curve at the higher speeds. In view of the comparison referred to above, one would expect the $\left(p_{0}=0.6\right.$, $i=3$) results to be the best approximation to the true solution.

3. 5 Comparisons between the dufferent methods

The ielevant comparison is that between the best approximation to the true solution for all speeds, as given by the Richardson approach using $m=3$ and $p_{0}=0.6$ (FIgs. 26 and 27), which we will call the 'true' solution, and the solutions obtained by the other methods.
(1) The Eritish approach - the best solution for constant v (Figs. 8 and 9 for $v=1 \cdot 0$).
(11) The Brıtısh approach - lined-up v solution (Figs. 18 and 19).
(111) The Anerıcan approach (Figs:20 and 21).

Inspection of these figures shows that the lined-up solution (12) is quite a good approximation to the 'true' solution. The frequencies and relative damping ratios at subcritical speeds, the frequency peak at $\omega=0 \cdot 6$, $v=0.8$ and the critical flutter speed all show good agreement* with the 'true values'. The rate of change of the relative damping ratio at the critical ilutter speed is rather less than the 'true' value and there is an indication that one palr of complex roots (curve B in Figs. 18 and 19) wall Decome real at about $v=0.9$, whach is quite different from the behaviour of curve B in Figs. 26 and 27.

The values of the frequencies and fictitious structural damping obtained b_{j} the Amerıcan approach (Flgs. 20 and 21) give fairly good indıcations of the

[^1]'true' frequencies and relative damping ratios when the latter are small (<0.1). The least stable root appears to be rather more unstable than it really is. The critical flutter speed is accurate, but the rate of change of $(-g / 2)$ at this point does suggest a somewhat less violent onset of flutter than the 'true' results indicate. The American approach results are however of little value in predicting the free oscillation characteristics of the system.

Except for the value of the cratical flutter speed the best unlined-up British approach solutions (Figs. 8 and 9) are not in good agreement with the 'true' values. In particular the least stable root is much more stable between $v=0.4$ and 0.8 than is really the case.

4 CONCLUSIONS

The following points summarise the findings of this investigation. It would, of course, be desirable to repeat the investigation for an actual aircraft, using three-dimensional aerodynamics and larger values of m in the series approximations to the unsteady aerodynamic forces. Programme lamatations made at impossible to take larger values of m in the present calculations.
(i) When using the British approach, it is important to line-up the assumed and calculated values of the frequency parameter ν. The method is then adequate for most purposes.
(ii) The American approach is of use when one is anterested only in critical flutter speeds, for most of the information obtained is not what is required by the flutter analyst.
(iii) For the accurate determination of cratical flutter speeds, the American approach is the simplest. The lining-up in the Bratish approach is laborious and prone to error, though a good approximation may be obtained without lining-up provided the assumed frequency parameter is well chosen.
(iv) The Richardson approach is more straightforward than the lined-up British approach and is believed to gave a truer solution. It might therefore be the best method to use in some cases from the point of view of accuracy and convenience. 'There is however the disadvantage of having a much larger eigenvalue problem to solve. Computing limitations may therefore make the Richardson approach unusable when a system with a large number of degrees of freedom is being considered. This problem may be minimised if, in the computing procedure, advantage is taken of the sparseness of the matrix in equation (22).
(v) The results of the Richardson approach show that as a consequence of aerodynamic effects, extra natural frequencies of a system may appear which are not present when the airspeed is zero. These are distinct from the rigid body natural frequencies - short period oscillations etc. This possibilıty should be borne in mind during flight flutter tests.

Appendix A

by D.L. Woodcock

An alternative approach perhaps clarifies the significance of the eigenvalues of the lambda matrix in (22). We will consider the response of the system to impulsive forces applied at an instant $\tau=\tau_{1}>0$, ie. the solution of
$\left(A-A_{1}\right) \frac{d^{2} q}{d \tau^{2}}+E q=v^{2} \int_{0}^{\tau} K\left(\tau-\tau_{0}\right) \frac{d q\left(\tau_{0}\right)}{d \tau_{0}} d \tau_{0}+e^{-p_{0} v\left(\tau-\tau_{1}\right)} \sum_{s=0}^{\infty} \delta^{(s)}\left(\tau-\tau_{1}\right) f_{s}$
(say) ... (A-1)
where f_{s} are arbitrary constant column matrices. Taking the Laplace transform of this we have, since $q(0)=\left(\frac{d q}{d \tau}\right)_{\tau=0}=0$, assuming $R(p)>0$,

$$
\begin{equation*}
\left[\left(A-A_{1}\right) p^{2}+E-v^{2} p \bar{K}(p)\right] \overline{\bar{q}}(p)=e^{-p \tau_{1}} \sum_{s=0}^{\infty}\left(p+p_{o} v\right)^{s} f_{s} \tag{A-2}
\end{equation*}
$$

where $\overline{\bar{q}}(p)$ is the Laplace transform of $q(\tau)$ and $\vec{K}(p)$ is the Laplace transform of $K(\tau)$. With the approximation (13) for $K(\tau)$

$$
\begin{equation*}
\overline{\mathrm{K}}(\mathrm{p})=\frac{A_{0}}{v}-\frac{p A_{1}}{v^{2}}+\frac{K_{\sigma}}{p}+\sum_{r=0}^{m-1} \frac{K_{r}\left(p_{0} v\right)^{r}}{\left(p+p_{o} v\right)^{r+1}} \tag{A-3}
\end{equation*}
$$

and (A-2) becomes

$$
\left[A p^{2}-v p A_{0}+E-v^{2} K_{\sigma}-v^{2} p \sum_{r=0}^{m-1} \frac{K_{r}\left(p_{0} v\right)^{r}}{\left(p+p_{o} v\right)^{r+1}}\right] \overline{\bar{q}(p)=e^{-p \tau} \sum_{s=0}^{\infty}\left(p+p_{o} v\right)^{s} f_{s}}
$$

Now if the roots of

$$
\left|\left(p+p_{0} v\right)^{m}\left(A p^{2}-v p A_{0}+E-v^{2} K_{\sigma}\right)-v^{2} p \sum_{r=0}^{m-1} K_{r}\left(p_{0} v\right)^{r}\left(p+p_{o} v\right)^{m-r-1}\right|=0
$$

are

$$
\begin{equation*}
p=\lambda_{i} \quad I=1 \ldots t \tag{A-6}
\end{equation*}
$$

where

$$
\begin{aligned}
i= & t_{0}(=1) \ldots t_{1}-1 \text { indicates single roots } \\
= & t_{1} \quad \ldots t_{2}-1 \text { indicates double roots } \\
& \text { etc. }
\end{aligned}
$$

then

$$
\begin{aligned}
{\left[A p^{2}-v p A_{o}+E-v^{2} K_{\sigma}-v^{2} p \sum_{r=0}^{m-1}\right.} & \left.\frac{K_{r}\left(p_{o} v\right)^{r}}{\left(p+p_{o} v\right)^{r+1}}\right]^{-1} \\
& =\left(p+p_{o} v\right)^{m} \sum_{j=0}^{n(m+2)-1} \sum_{i=t}^{t} \sum_{\left(p-\lambda_{i}\right)^{J+1}}^{R_{i, J}}
\end{aligned}
$$

where the $R_{i j}$ are constant matrices.
From $(\mathrm{A}-7)$ and $(\mathrm{A}-4)$ we thus get an expression for $\overline{\bar{q}}(\mathrm{p})$ which we write as

$$
\begin{equation*}
\overline{\bar{q}}(p)=e^{-p \tau_{1}} \sum_{s=0}^{\infty} \bar{Q}_{s}(p) f_{s} \tag{A-8}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{Q}_{S}(p)=\sum_{j=0}^{n(m+2)-1} \sum_{i=t}^{t} \frac{\left(p+p_{o} v\right)^{m+s}}{\left(p-\lambda_{i}\right)^{j+1}} R_{i J} \tag{A-9}
\end{equation*}
$$

Taking the inverse transform of (A-8) we have

$$
\begin{equation*}
q\left(\tau+\tau_{1}\right)=\sum_{s=0}^{\infty} Q_{S}(\tau) H(\tau) f_{s} \tag{A-10}
\end{equation*}
$$

where $Q_{S}(\tau)$ is the Inverse transform of $\bar{Q}_{S}(p)$ and is given by
$Q_{s}(\tau)=\sum_{j=0}^{n(m+2)-1} \sum_{i=t}^{t} e^{\lambda_{i} \tau} \frac{e^{-\left(p_{0} v+\lambda_{i}\right) \tau}}{J^{\prime}} \frac{\partial^{m+s}}{\partial \tau^{m+s}}\left\{e^{\left(p_{o}^{\left.v+\lambda_{i}\right) \tau}\right.} \tau^{j}\right\} R_{i j}$.
Each term in $Q_{S}(\tau)$ is therefore a finite polynomial (of degree \jmath) in τ,
multiplied by $\lambda_{i} \tau$.
But $(A-4)$ can be written, multiplying both sides by $\left(p+p_{o} v\right)^{m}$

$$
\begin{equation*}
\sum_{u=0}^{m+2} D_{u}\left(p+p_{o} v\right)^{u} \overline{\bar{q}}(p)=e^{-p \tau} 1 \sum_{s=0}^{\infty}\left(p+p_{o} v\right)^{m+s} f_{s} \tag{A-12}
\end{equation*}
$$

where the matrices D_{u} are simply related to the matrices A, A_{o}, E, K_{σ} and K_{r} of ($\mathrm{A}-4$). Thus, since

$$
\begin{equation*}
\left(p+p_{o} v\right)^{u} \bar{Q}_{s}(p)=\bar{Q}_{s+u}(p) \tag{A-13}
\end{equation*}
$$

then substituting for $\overline{\bar{q}}(p)$ from ($A-8$) in ($A-12$) gives, remembering that the f_{s} are arbitrary,

$$
\begin{equation*}
\sum_{u=0}^{m+2} D_{u} \bar{Q}_{s+u}(p)=\left(p+p_{o} v\right)^{m+s} I \tag{A-14}
\end{equation*}
$$

for any $s \geqslant 0$.
Taking inverse transforms we have

$$
\begin{align*}
\sum_{u=0}^{m+2} D_{u} Q_{s+u}(\tau) & =e^{-p_{o} v \tau} \delta^{(m+s)}(\tau) I \tag{A-15}\\
& =0 \text { for almost all } \tau .
\end{align*}
$$

Consequently there are only $(m+2)$ independent solutions and so we can rewrite $(A-10)$ as

$$
\begin{equation*}
q\left(\tau+\tau_{1}\right)=\sum_{s=0}^{m+1} Q_{s}(\tau) H(\tau) f_{s} \tag{A-16}
\end{equation*}
$$

(the meaning of the column matrices f_{S} is here changed slightly). If all the roots of $(A-5)$ are distinct then the expression for $Q_{S}(\tau)$ simplafies to (since $t_{1}^{-1}=t$, l.e. $j=0$ only)

$$
\begin{equation*}
Q_{S}(\tau)=\sum_{i=1}^{t}\left(p_{0} v+\lambda_{i}\right)^{m+S} e^{\lambda_{2} \tau} R_{10} \tag{A-17}
\end{equation*}
$$

The above expression for q (equation (A-16)) shows that each root of (A-5) represents, an general, genuine exponential behaviour of the solution of the equations of motion, when the approximation (13) to $K(\tau)$ is made. The exceptions are when all the coefficients of a particular $e^{\lambda_{1} \tau}$ in the equations (A-11) are zero. This may arıse from a chance form of initial disturbance, and so is of no mportance; or for other reasons such as:-

At $v=0$ there will be an $\lambda_{\lambda_{i} \tau}$ multiple root $\lambda_{i}=-p_{o} v(=0)$. For this root the coefficient of $R_{1 J} e^{\lambda_{1} \tau}$ in (A-11) 1.s zero for all $j<(\mathbb{m}+\mathrm{s}$). Moreover comparison of the general form of the expansion ($A-7$) with the particular form for $r=0$ (i.e. the expansion of $\left(A p^{2}+E\right)^{-1}$) shows that the $\underset{\lambda, \tau}{\operatorname{matrices}} R_{I J}$ are null for all $J \geqslant m$. Consequently the coefficient of this $e^{\lambda_{i}}$ in (A-11) is zero for each value of s. But these are isolated instances, and so we can say that none of the λ_{i} obtained from (A-5), or from (22), when the nm zero roots are deleted, are spurious solutions if the approximation (13) to $K(\tau)$ is correct. However we have evaluated the coefficzents in this approximation by making the value of its transform $\bar{K}(p)$ (equation ($A-3$)) agree as closely as possible with the true value for purely amaganary values of p. Moreover $\vec{K}(p)$ actually has the form* (see Ref.6)
*Taken as sangle valued in the complex plane cut along the negative real axls.

$$
\bar{K}(p)=\frac{1}{p}\left\{\sum_{s=0}^{\infty} M_{s} p^{s}+p^{2} \log p \sum_{s=0}^{\infty} N_{s} p^{s}\right\}
$$

and so it follows that our approximation (A-3) cannot be very good at points near the negative real axis. Thus one would expect values of λ_{1}, which are roots of (A-5), to be good approximations to the systems eigenvalues, wath the true $K(\tau)$, when they are complex with relatively not too large real parts. This suggests that the roots which we have obtained, which are approximately equal to $-p_{o} v$, are almost certainly spurious roots of the actual problem, but when such a root develops a sizeable imaginary part it may well not be spurious. Indeed Milne ${ }^{6}$ has shown that with the true $K(\tau)$ the system cannot have any negative real roots. In addition, in the same paper, he shows that the solution of ($A-1$) has the form, for $\tau>0$,

$$
\begin{equation*}
q(\tau)=\sum_{i=1}^{m} q_{i} e^{\lambda_{i} \tau}+\sum_{j=1} r_{j} \frac{1}{\tau^{j}}+O\left(e^{-\mu_{m} \tau}\right) \tag{A-19}
\end{equation*}
$$

where $\lambda_{i}(i=1 \ldots m)$ are all the roots, assumed distinct, of the characteristic equation (10) whose real parts are greater than ($-\mu_{m}$), and the second term is an asymptotic expansion for an integral given in Ref.6. The leading nonzero term in this asymptotic expansion will theoretically domnate any decaying exponentials when τ is large, but the little experience there is ${ }^{6}$ suggests that this does not occur until the value of τ is much too large to be of any practical interest.

24

Appendix B

DETERMINATION OF THE $\quad \mathrm{K}_{\mathrm{r}}$ MATRICES

Substitution of the series (13) for $K(\tau)$ in equation (11) gives, assuming $R \ell(p)>0$,

$$
\begin{equation*}
\vec{K}(p)=\frac{A_{0}}{v}-p \frac{A_{1}}{v^{2}}+\frac{K_{\sigma}}{p}+\sum_{r=0}^{m-1} \frac{K_{r}\left(p_{0} v\right)^{r}}{\left(p+p_{0} v\right)^{r+1}} \tag{B-1}
\end{equation*}
$$

If we now go to the lımat $p \rightarrow i \omega$ we obtain, remembering $\nu=\omega / v$,

$$
\begin{equation*}
-I \omega \bar{K}(i \omega)=-I v \nu\left[\frac{A_{0}}{v}-\frac{z \nu A_{1}}{v}+\frac{K_{\sigma}}{I v \nu}+\sum_{r=0}^{m-1} \frac{K_{r}\left(p_{o} v\right)^{r}}{v^{r+1}\left(p_{o}+i \nu\right)^{r+1}}\right] \tag{B-2}
\end{equation*}
$$

Substituting for $\bar{K}(1 \omega)$ from (12)
$-\nu^{2} A_{1}+i \nu B+C=-\nu v \nu\left[\frac{A_{0}}{v}-\frac{I \nu A_{1}}{v}+\frac{K_{\sigma}}{I v \nu}+\sum_{r=0}^{m-1} \frac{K_{r}\left(p_{0} v\right)^{r}}{v^{r+1}\left(p_{0}+i \nu\right)^{r+1}}\right]$.

When $v=\infty$

$$
\begin{equation*}
B=B_{\infty}=-A_{0} \tag{B-4}
\end{equation*}
$$

When $\quad \nu=0, \quad \nu B=0$

$$
\begin{equation*}
c=c_{0}=-K_{\sigma} . \tag{B-5}
\end{equation*}
$$

Thus with the substitution

$$
\begin{equation*}
x=v^{2} /\left(\nu^{2}+p_{0}^{2}\right) \tag{B-6}
\end{equation*}
$$

$1 \nu\left(B-B_{\infty}\right)+\left(C-C_{0}\right)$

$$
\begin{align*}
= & -\sum_{r=0}^{m-1} i K_{r}(1-x)^{r / 2} x^{\frac{1}{2}}(\sqrt{1-x}-i \sqrt{x})^{r+1} \\
= & -i \sqrt{x(1-x)}\left\{K_{0}+K_{1}(1-2 x)+K_{2}(1-x)(1-4 x)+\ldots\right\} \\
& \quad-\left\{K_{0} x+K_{1} 2 x(1-x)+K_{2} x(1-x)(3-4 x) \ldots\right\} \tag{B-7}
\end{align*}
$$

B and C are evaluated for ℓ values of ν (and hence x) $\ell \geqslant m$, and the resulting equations solved by the least squares method.

If $\delta_{i j}$ is the modulus of the error in the satisfaction of this equation for the $i j^{\text {th }}$ term of the matrix then

$$
\begin{align*}
& \delta_{i J}^{2}=\left\{\vec{c}_{i J}+x\left[\left(K_{i j}\right)_{0}+2(1-x)\left(K_{i j}\right)_{1}+(1-x)(3-4 x)\left(K_{i J}\right)_{2}+\ldots\right]\right\}^{2} \\
& +\left\{\nu \vec{B}_{i J}+\sqrt{x(1-x)}\left[\left(K_{i J}\right)_{0}+(1-2 x)\left(K_{i J}\right)_{1}+(1-x)(1-4 x)\left(K_{i J}\right)_{2}+\ldots\right]\right\}^{2} \\
& =\left\{\bar{c}_{1, J}+\sum_{r=0}^{m-1} a_{r}(x)\left(k_{2 J}\right)_{r}\right\}^{2}+\left\{v \bar{B}_{i J}+\sum_{r=0}^{m-1} \beta_{r}(x)\left(K_{i J}\right)_{r}\right\}^{2} \quad \text { (say) } \tag{B-8}
\end{align*}
$$

where

$$
\begin{align*}
& C-C_{o}=\bar{C}=\left[\bar{C}_{i J}\right] \tag{B-9}\\
& B-B_{\infty}=\bar{B}=\left[\bar{B}_{i J}\right] \tag{B-10}\\
& K_{r}=\left[\left(K_{i \jmath}\right)_{r}\right] \tag{B-11}
\end{align*}
$$

Let $S_{i j}$ be the sum of $\left(\delta_{i j}\right)^{2}$. The required $\left(K_{i j}\right)_{r}$ are then given by the solution of the set of simultaneous equations

$$
\frac{\partial S_{i, j}}{\partial\left(K_{i j}\right)_{r}}=0 \quad \text { for } r=0 \text { to }(m-1)
$$

ie.

$$
\begin{align*}
0=\sum_{q=0}^{\ell-1}\left[a _ { r } (x _ { q }) \left\{\bar{c}_{i j}\left(\nu_{q}\right)\right.\right. & \left.+\sum_{s=0}^{m-1} a_{s}\left(x_{q}\right)\left(k_{i j}\right)_{s}\right\} \\
& +\beta_{r}\left(x_{q}\right)\left\{\nu_{q} \bar{B}_{i j}\left(\nu_{q}\right)+\sum_{s=0}^{m-1} \beta_{s}\left(x_{q}\right)\left(K_{i j}\right)_{s}\right] \tag{B-12}
\end{align*}
$$

These equations for the different values of r and io can be combined to give the single matrix equation.
where

$$
\begin{equation*}
r_{r s}=\sum_{q=0}^{l-1}\left\{a_{r}\left(x_{q}\right) a_{s}\left(x_{q}\right)+\beta_{r}\left(x_{q}\right) \beta_{s}\left(x_{q}\right)\right\} \tag{B-14}
\end{equation*}
$$

This equation can easily be solved to give the matrices K_{r}. The $\gamma_{r s}$ turn out to be surprisingly simple.

$$
\left.\begin{array}{l}
r_{00}=\sum_{q=0}^{l-1} x_{q} \\
r_{01}=r_{10}=r_{11}=\sum_{q=0}^{l-1} x_{q}\left(1-x_{q}\right) \\
r_{02}=r_{20}=\sum_{q=0}^{l-1} x_{q}\left(1-x_{q}\right)\left(1-2 x_{q}\right) \\
r_{12}=r_{21}=r_{22}=\sum_{q=0}^{l-1} x_{q}\left(1-x_{q}\right)^{2}
\end{array}\right\}
$$

Table 1
OSCILLATORY AERODYNAMIC MATRICES

	B_{∞}			C_{0}		
	$3 \cdot 14159$	3.92699	$5 \cdot 95689$	0	$6 \cdot 28319$	37.5622
	0.78540	$1 \cdot 76715$	3.97733	0	1.57080	$15 \cdot 8822$
	0.15912	0.60969	$2 \cdot 97667$	0	$0 \cdot 31825$	5-41081
ν	B			C		
$0 \cdot 1$	$5 \cdot 71147$	$-2 \cdot 35420$	$-40 \cdot 61437$	0.08209	$5 \cdot 77304$	$34 \cdot 22431$
	$1 \cdot 42787$	$0 \cdot 19685$	-7.66548	$0 \cdot 02052$	$1 \cdot 44326$	$15 \cdot 04774$
	$0 \cdot 28929$	$0 \cdot 29154$	0.61777	0.00416	$0 \cdot 29241$	$5 \cdot 24176$
$0 \cdot 28$	$4 \cdot 92207$	$1 \cdot 11343$	$-17 \cdot 11312$	$0 \cdot 32528$	$5 \cdot 16603$	$29 \cdot 74182$
	1.23052	1.06376	-1.79017	0.08132	$1 \cdot 29151$	$13 \cdot 92712$
	$0 \cdot 24931$	$0 \cdot 46718$	$1 \cdot 80814$	0.01648	$0 \cdot 26167$	$5 \cdot 01471$
$0 \cdot 5$	$4 \cdot 35144$	$2 \cdot 50648$	-6.78208	0.58197	$4 \cdot 78792$	26.58033
	1.08786	$1 \cdot 41202$	$0 \cdot 79259$	$0 \cdot 14549$	$1 \cdot 19698$	$13 \cdot 13675$
	$0 \cdot 22041$	0.53774	$2 \cdot 33142$	0.02948	$0 \cdot 24251$	$4 \cdot 85458$
0.6	4-17814	$2 \cdot 82657$	$-4 \cdot 26015$	0.67602	$4 \cdot 68515$	$25 \cdot 63583$
	$1 \cdot 04453$	$1 \cdot 49204$	$1 \cdot 42308$	0.16900	1.17129	$12 \cdot 90062$
	$0 \cdot 21163$	0.55395	$2 \cdot 45916$	0.03424	0.23731	$4 \cdot 80674$
$0 \cdot 8$	$3 \cdot 92684$	$3 \cdot 22015$	-1.02519	0.82930	$4 \cdot 54882$	$24 \cdot 28273$
	$0 \cdot 98171$	$1 \cdot 59043$	$2 \cdot 23182$	0.20733	$1 \cdot 13720$	$12 \cdot 56235$
	0.19890	0.57389	$2 \cdot 62302$	$0 \cdot 04201$	$0 \cdot 23040$	4.73820
$1 \cdot 0$	3.75694	3.44156	$0 \cdot 89489$	0.94694	$4 \cdot 46715$	$23 \cdot 38156$
	$0 \cdot 93924$	1.64579	$2 \cdot 71184$	0.23673	1.11679	$12 \cdot 33705$
	$0 \cdot 19029$	0.58510	$2 \cdot 72027$	0.04796	$0 \cdot 22627$	$4 \cdot 69256$
$1 \cdot 3$	3.58938	3.62527	$2 \cdot 58135$	1.07747	$4 \cdot 39748$	22.50687
	0.89734	1.69172	$3 \cdot 13345$	0.26937	1.09937	$12 \cdot 11838$
	$0 \cdot 18181$	0.59441	$2 \cdot 80569$	0.05458	$0 \cdot 22274$	$4 \cdot 64825$
$1 \cdot 6$	$3 \cdot 48181$	$3 \cdot 72465$	3.55303	1.17121	4-36021	$21 \cdot 95505$
	0.87045	1.71656	$3 \cdot 37637$	$0 \cdot 29280$	1.09005	$11 \cdot 98043$
	0.17636	0.59944	$2 \cdot 85491$	0.05932	0.22085	$4 \cdot 62030$
$2 \cdot 0$	$3 \cdot 38937$	3.79781	$4 \cdot 31486$	$1 \cdot 26007$	$4 \cdot 33442$	$21 \cdot 48893$
	$0 \cdot 84734$	$1 \cdot 73485$	$3 \cdot 56683$	$0 \cdot 31502$	1.08361	11.86390
	0.17168	0.60315	$2 \cdot 89350$	0.06382	0.21954	$4 \cdot 59669$
$2 \cdot 2$	$3 \cdot 35657$	$3 \cdot 82089$	4.56797	1.29392	4.32701	$21 \cdot 32581$
	0.83914	$1 \cdot 74062$	3.63011	$0 \cdot 32348$	1.08175	$11 \cdot 82312$
	0.17001	0.60431	$2 \cdot 90632$	0.06554	$0 \cdot 21917$	$4 \cdot 58843$
$2 \cdot 4$	3.32981	3.83853	4.76740	$1 \cdot 32262$	4.32178 ${ }^{\prime}$	$21 \cdot 19377$
	0.83245	$1 \cdot 74503$	3.67996	$0 \cdot 33066$	$1 \cdot 08044$	$11 \cdot 79011$
	0.16866	0.60521	$2 \cdot 91642$	0.06699	$0 \cdot 21890$	$4 \cdot 58174$
$2 \cdot 6$	$3 \cdot 30770$	$3 \cdot 85229$	4.92725	1.34716	$4 \cdot 31807$	21.08547
	0.82693	$1 \cdot 74847$	$3 \cdot 71993$	0.33679	1.07952	11.76303
	0.16754	0.60590	$2 \cdot 92452$	$0 \cdot 06824$	0.21872	$4 \cdot 57626$
$5 \cdot 0$	$3 \cdot 19653$	$3 \cdot 90876$	$5 \cdot 65508$	$1 \cdot 48588$	$4 \cdot 31094$	$20 \cdot 55591$
	0.79913	1.76259	$3 \cdot 90188$	$0 \cdot 37147$	1.07774	$11 \cdot 63064$
	0.16191	0.60877	$2 \cdot 96138$	0.07526	0.21836	$4 \cdot 54943$

Table 2

UNLINED-UP BRITISH METHOD SOLUTIONS

$v=0.5$	ω			$\frac{-\mu}{\sqrt{\mu^{2}+\omega^{2}}}$		
V	A	B	C	A	B	C
0	$1 \cdot 2747$	$0 \cdot 3776$	0.8839	0	0	0
$0 \cdot 1$	$1 \cdot 3026$	0.3831	0.8598	-0.0335	0.0263	0.1955
$0 \cdot 2$	$1 \cdot 3455$	0.3970	0.8295	-0.0355	0.0456	0.3454
$0 \cdot 3$	$1 \cdot 3837$	0.4152	0.8122	-0.0181	0.0611	0.4533
$0 \cdot 4$	$1 \cdot 4153$	0.4366	0.8053	0.0149	0.0788	0.5241
0.5	$1 \cdot 4412$	0.4634	0.8000	0.0656	$0 \cdot 1004$	0.5648
0.6	$1 \cdot 4684$	0.5020	0.7769	0.1384	$0 \cdot 1224$	0.5845
$0 \cdot 7$	1.5215	0.5675	0.6888	0.2290	0.1219	0.6148
$0 \cdot 8$	1.6233	0.6478	0.5119	0.3063	0.0360	0.7361
$0 \cdot 9$	$1 \cdot 7540$	0.6810	$0 \cdot 2901$	0.3575	-0.0792	0.9065
$1 \cdot 0$	$1 \cdot 8957$	0.6838		$0 \cdot 3917$	-0.1776	
$1 \cdot 1$	$2 \cdot 0424$	0.6720		$0 \cdot 4159$	-0.2634	
$v=0.6$						
0	$1 \cdot 274$	0.3776	0.8839	0	0	0
$0 \cdot 1$	$1 \cdot 2950$	$0 \cdot 3832$	0.8669	-0.0238	0.0300	0.1835
$0 \cdot 2$	$1 \cdot 3271$	0.3974	0.8455	-0.0230	0.0521	0.3292
$0 \cdot 3$	$1 \cdot 3535$	0.4159	0.8378	-0.0043	0.0696	$0 \cdot 4347$
$0 \cdot 4$	$1 \cdot 3701$	0.4374	0.8437	0.0302	0.0889	0.5019
0.5	$1 \cdot 3748$	$0 \cdot 4641$	0.8583	0.0848	$0 \cdot 1130$	0.5345
0.55	$1 \cdot 3725$	$0 \cdot 4811$	0.8657	0.1232	$0 \cdot 1269$	0.5376
0.6	$1 \cdot 3694$	0.5024	0.8681	0.1725	$0 \cdot 1412$	0.5307
0.65	1.3739	0.5310	0.8534	0.2344	0.1541	0.5147
$0 \cdot 7$	$1 \cdot 4035$	0.5730	0.7970	$0 \cdot 2983$	0.1583	0.5057
$0 \cdot 75$	$1 \cdot 4586$	0.6340	0.6916	$0 \cdot 3469$	$0 \cdot 1268$	0.5440
$0 \cdot 8$	$1 \cdot 5241$	0.6821	0.5825	$0 \cdot 3807$	0.0501	0.6346
0.85	1.5928	0.7028	0.4889	$0 \cdot 4057$	-0.0243	$0 \cdot 7294$
$0 \cdot 9$	1.6626	$0 \cdot 7099$	0.3940	$0 \cdot 4252$	-0.0875	0.8197
0.95	$1 \cdot 7332$	$0 \cdot 7101$	0.2795	$0 \cdot 4409$	-0.1424	0.9077
$1 \cdot 0$	$1 \cdot 8041$	$0 \cdot 7060$	0.5997	$0 \cdot 4540$	-0.1918	0.9957
1.05	$1 \cdot 8755$	0.6991		$0 \cdot 4651$	-0.2371	
$1 \cdot 1$	$1 \cdot 9472$	0.6899		$0 \cdot 4746$	-0.2797	
$\nu=0.8$						
0	$1 \cdot 2747$	0.3776	0.8839	0	0	0
$0 \cdot 1$	$1 \cdot 2849$	0.3833	0.8761	-0.0103	0.0345	$0 \cdot 1671$
$0 \cdot 2$	$1 \cdot 3010$	0.3978	0.8688	-0.0520	0.0603	0.3065
$0 \cdot 3$	$1 \cdot 3091$	0.4165	0.8764	0.014	0.0801	$0 \cdot 4094$
$0 \cdot 4$	$1 \cdot 3019$	0.4381	0.9035	0.0484	$0 \cdot 1014$	0.4739
0.5	$1 \cdot 2688$	$0 \cdot 4643$	0.9546	$0 \cdot 1023$	$0 \cdot 1285$	0.5005
0.6	$1 \cdot 1726$	0.5005	1.0572	$0 \cdot 1941$	$0 \cdot 1646$	$0 \cdot 4782$
$0 \cdot 7$	0.9338	0.5649	$1 \cdot 2680$	0.2585	$0 \cdot 2166$	$0 \cdot 4641$
0.8	0.7573	0.6111	$1 \cdot 4233$	0.0492	$0 \cdot 4848$	0.4955
$0 \cdot 9$	0.7525	0.4819	1.5615	-0.1105	0.6966	0.5207
$1 \cdot 0$	0.7363	$0 \cdot 3244$	1.6961	-0.2169	$0 \cdot 8655$	$0 \cdot 5400$

Table 2 (Conta)

$\nu=1 \cdot 0$	ω			$\frac{-\mu}{\sqrt{\mu^{2}+\omega^{2}}}$		
v	A	B	C	A	B	C
0	$1 \cdot 2747$	0.3776	0.8839	0	0	0
0.1	$1 \cdot 2789$	0.3833	0.8817	-0.0016	0.0370	0.1567
$0 \cdot 2$	$1 \cdot 2838$	0.3979	$0 \cdot 8844$	0.0065	0.0648	$0 \cdot 2919$
$0 \cdot 3$	$1 \cdot 2786$	0.4168	0.9037	0.0257	0.0860	0.3939
0.4	$1 \cdot 2545$	0.4384	0.9461	0.0560	0.1083	0.4599
0.5	$1 \cdot 1980$	0.4642	1.0199	0.0973	0.1368	0.4937
0.6	1.0911	0.4984	$1 \cdot 1349$	0.1371	0.1766	0.5094
$0 \cdot 7$	0.9433	0.5517	$1 \cdot 2676$	0.1398	0.2429	0.5304
$0 \cdot 8$	0.8103	0.5867	$1 \cdot 3951$	0.0108	0.4311	0.5535
0.9	0.7781	0.5092	1.5197	-0.1330	0.6268	0.5732
$1 \cdot 0$	0.7544	0.3974	1.6441	-0.2360	0.7859	0.5891
$1 \cdot 1$	0.7288	0.2231	$1 \cdot 7694$	-0.3223	0.9349	0.6017
$\nu=1 \cdot 3$						
0	$1 \cdot 2747$	0.3776	0.8839	0	0	0
$0 \cdot 1$	$1 \cdot 2737$	$0 \cdot 3834$	$0 \cdot 8866$	0.0065	0.0391	$0 \cdot 1471$
$0 \cdot 2$	$1 \cdot 2672$	$0 \cdot 3981$	0.8995	0.0178	0.0685	$0 \cdot 2780$
$0 \cdot 3$	$1 \cdot 2481$	$0 \cdot 4171$	0.9312	0.0353	0.0908	$0 \cdot 3805$
$0 \cdot 4$	$1 \cdot 2090$	0.4388	0.9874	0.0574	$0 \cdot 1137$	0.4522
0.5	$1 \cdot 1439$	0.4642	1.0692	0.0777	0.1433	$0 \cdot 5011$
$0 \cdot 6$	1.0547	0.4967	$1 \cdot 1683$	0.0853	$0 \cdot 1851$	0.5386
$0 \cdot 7$	0.9443	0.5407	$1 \cdot 2740$	0.0641	0.2559	0.5692
$0 \cdot 8$	$0 \cdot 8424$	0.5671	$1 \cdot 3826$	-0.0356	$0 \cdot 4045$	0.5936
0.9	0.7986	$0 \cdot 5224$	$1 \cdot 4939$	-0.1578	0.5726	0.6129
$1 \cdot 0$	0.7698	0.4430	1.6076	-0.2556	0.7183	$0 \cdot 6280$
$1 \cdot 1$	$0 \cdot 7420$	$0 \cdot 3286$	$1 \cdot 7235$	-0.3394	0.8535	0.6400
$\nu=1 \cdot 6$						
0	$1 \cdot 2747$	0.3776	0.8839	-	0	0
0.1	$1 \cdot 2707$	0.3834	0.8894	0.0113	0.0402	$0 \cdot 1414$
$0 \cdot 2$	$1 \cdot 2568$	$0 \cdot 3982$	0.9091	0.0248	0.0705	0.2695
$0 \cdot 3$	$1 \cdot 2287$	0.4174	0.9490	0.0404	0.0933	$0 \cdot 3732$
$0 \cdot 4$	$1 \cdot 1824$	$0 \cdot 4391$	1.0116	0.0548	0.1166	0.4509
0.5	$1 \cdot 1186$	0.4644	1.0917	0.0623	$0 \cdot 1464$	0.5091
0.6	1.0395	0.4960	$1 \cdot 1817$	0.0578	$0 \cdot 1889$	0.5536
$0 \cdot 7$	0.9438	0.5359	$1 \cdot 2776$	$0 \cdot 0280$	0.2598	0.5874
0.8	0.8552	0.5593	$1 \cdot 3780$	-0.0624	0.3923	0.6132
0.9	0.8092	0.5277	$1 \cdot 4823$	-0.1739	0.5446	0.6330
$1 \cdot 0$	0.7785	$0 \cdot 4641$	1.5899	-0.2681	0.6809	0.6483
$1 \cdot 1$	0.7498	0.3730	$1 \cdot 7004$	-0.3501	$0 \cdot 8074$	0.6604

Table 2 (Contd)

$\nu=2 \cdot 6$	ω			$\frac{-\mu}{\sqrt{\mu^{2}+\omega^{2}}}$		
v	A	B	C	A	B	C
0	$1 \cdot 2747$	0.3776	0.8839	0	0	0
$0 \cdot 1$	$1 \cdot 2665$	0.3834	0.8932	0.0186	0.0416	0.1330
$0 \cdot 2$	$1 \cdot 2409$	$0 \cdot 3984$	0.9238	0.0355	0.0730	0.2566
$0 \cdot 3$	$1 \cdot 1984$	0.4179	0.9770	0.0460	0.0964	0.3643
$0 \cdot 4$	$1 \cdot 1468$	$0 \cdot 4400$	1.0437	0.0459	0.1198	0.4537
$0 \cdot 5$	1.0894	$0 \cdot 4654$	$1 \cdot 1169$	00.0382	$0 \cdot 1497$	0.5224
$0 \cdot 6$	1.0220	0.4962	1-1962	0.0216	0.1925	0.5730
$0 \cdot 7$	$0 \cdot 9422$	0.5321	$1 \cdot 2817$	-0.0172	0.2616	0.6101
$0 \cdot 8$	0.8682	0.5533	$1 \cdot 3726$	-0.0994	0.3763	0.6377
0.9	0.8226	0.5355	$1 \cdot 4683$	-0.1988	0.5079	0.6585
$1 \cdot 0$	0.7906	0.4909	1.5679	-0.2876	$0 \cdot 6298$	0.6745
$1 \cdot 1$	$0 \cdot 7616$	$0 \cdot 4260$	1.6709	-0.3665	$0 \cdot 7429$	0.6869
$\nu=5 \cdot 0$						
0	$1 \cdot 2747$	0.3776	0.8839	0	0	0
0.1	$1 \cdot 2643$	0.3835	0.8953	0.0225	0.0421	$0 \cdot 1284$
$0 \cdot 2$	$1 \cdot 2316$	$0 \cdot 3986$	0.9325	0.0417	0.0740	0.2494
$0 \cdot 3$	$1 \cdot 1810$	$0 \cdot 4185$	0.9931	0.0476	0.0976	0.3609
$0 \cdot 4$	1.1295	0.4410	1.0590	0.0390	0.1209	$0 \cdot 4571$
0.5	1.0763	0.4669	1-1277	0.0250	0.1506	0.5299
0.6	1.0140	0.4977	$1 \cdot 2022$	0.0032	0.1931	0.5827
$0 \cdot 7$	$0 \cdot 9408$	0.5325	$1 \cdot 2831$	-0.0393	0.2607	0.6212
$0 \cdot 8$	0.8732	0.5537	$1 \cdot 3697$	-0.1191	0.3676	0.6496
0.9	0.8291	0.5418	$1 \cdot 4613$	-0.2135	0.4893	0.6709
$1 \cdot 0$	0.7974	0.5061	1.5569	-0.2995	0.6030	0.6873
$1 \cdot 1$	0.7688	0.4532	1.6560	-0.3766	0.7083	0.7001

Table 3
LINED-UP BRITISH METHOD SOLUTIONS

	A			B			C		
ν	v	ω	$\frac{-\mu}{\sqrt{\mu^{2}+\omega^{2}}}$	v	ω	$\frac{-\mu}{\sqrt{\mu^{2}+\omega^{2}}}$	v	ω	$\frac{-\mu}{\sqrt{\mu^{2}+\omega^{2}}}$
0.5				0.844	0.422	0.804			
0.6	1.14	0.684	-0.312	0.842	0.504	0.71			
0.8	0.935	0.748	-0.154	0.78	0.624	0.42			
1.0	0.808	0.808	-0.020	0.45	0.45	0.122			
1.3	0.714	0.928	0.052	0.326	0.424	0.095			
1.6	0.632	1.011	0.05	0.255	0.408	0.084	0.984	1.576	0.646
2.6	0.434	1.128	0.045	0.15	0.39	0.058	0.402	1.045	0.454
5.0	0.242	1.21	0.048	0.076	0.38	0.032	0.184	0.925	0.23

Table 4
VALUES OF MATRIX $E^{-1}\left(A-\frac{i B}{\nu}-\frac{C}{\nu^{2}}\right)$

ν	Real part			Imaginary part		
0.5	4.97277	-6.66793	-43.00800	-4.21237	-1.93107	$8 \cdot 13445$
	$1 \cdot 87368$	$3 \cdot 36114$	-13.43767	$0 \cdot 78406$	-0.96354	-5.70521
	0.96416	-0.30780	-23-40673	-0.55799	-1.36136	-5.90234
0.6	$5 \cdot 19061$	-3.69731	-28.51554	-3.37051	-1.86745	$4 \cdot 74427$
	1.83313	$2 \cdot 80821$	-9.45273	0.62736	-0.75488	$-4 \cdot 37567$
	$0 \cdot 99302$	$0 \cdot 08571$	-15.72792	-0.44647	-1.16867	-5.18811
0.8	$5 \cdot 47233$	-0.83830	-14.90035	-2.37584	-1.63870	$1 \cdot 60096$
	$1 \cdot 78070$	$2 \cdot 27605$	-5.34247	$0 \cdot 44222$	-0.52184	-2.91744
	1.03034	$0 \cdot 46442$	-8.19803	-0.31471	-0.90805	$-4 \cdot 15035$
$1 \cdot 0$	$5 \cdot 64118$	0.43969	-9.00432	-1.81844	-1-41814	$0 \cdot 35141$
	$1 \cdot 74927$	2.03818	-3.36446	0.33847	-0.39752	-2.16097
	1.05270	0.63371	-4.76653	-0.24088	-0.74063	$-3 \cdot 44338$
$1 \cdot 3$	$5 \cdot 79093$	$1 \cdot 34244$	-4.96893	-1-33641	-1.15927	-0.35759
	$1 \cdot 72140$	$1 \cdot 87015$	-1.88330	0.24875	-0.29306	-1.54541
	$1 \cdot 07254$	$0 \cdot 75329$	-2.30816	-0.17703	-0.57878	-2.73193
$1 \cdot 6$	$5 \cdot 87808$	$1 \cdot 77750$	-3.08558	-1.05329	-0.97197	-0.58449
	$1 \cdot 70517$	$1 \cdot 78917$	-1.13439	0.19605	-0.23251	-1.20093
	1.08408	0.81092	-1-11115	-0.13952	-0.47424	-2.25863
$2 \cdot 0$	$5 \cdot 94704$	2.07740	-1.82265	-0.82026	-0.79528	-0.65196
	1.69234	1.73335	-0.60060	$0 \cdot 15268$	-0.18271	-0.92643
	1.09322	0.85065	-0.28123	-0.10866	-0.38174	-1.93133
$2 \cdot 2$	$5 \cdot 97012$	$2 \cdot 16917$	-1.44387	-0.73848	-0.72806	-0.64838
	1.68804	1.71626	-0.43388	0.13745	-0.16516	-0.83184
	1.09628	$0 \cdot 86281$	-0.02661	-0.09782	-0.34771	-1.67222
$2 \cdot 4$	5.98837	2.23872	-1-15969	-0.67154	-0.67095	-0.63457
	1.68464	1.70332	-0.30635	$0 \cdot 12500$	-0.15073	-0.75504
	1.09870	0.87202	0.16653	-0.08896	-0.31920	-1.53820
2.6	6.00306	$2 \cdot 29271$	-0.94105	-0.61577	-0.62190	-0.61551
	$1 \cdot 68191$	1.69327	-0.20663	$0 \cdot 11461$	-0.13866	-0.69142
	$1 \cdot 10064$	0.87917	0.31650	-0.08157	-0.29499	-1-42382
$5 \cdot 0$	6.07075			-0.30944	-0.32885	-0.39052
	1.66931	1.65126	0.21766	0.05760	-0.07109	-0.34642
	$1 \cdot 10961$	0.90907	0.94307	-0.04099	-0.15412	-0.74972

Table 5
AMERICAN METHOD SOLUTIONS

T indrcates the solution is obtained by the 'trace method' see section 3.3.

Table 6
K_{r} MATRICES

	$p_{0}=0.6$			$\mathrm{p}_{0}=0.4$		
K	-1.51095	2.02132	$17 \cdot 38758$	-1-44934	$2 \cdot 00797$	$17 \cdot 09156$
	-0.37773	0.50534	$4 \cdot 34687$	-0.36233	0.50200	$4 \cdot 27287$
	-0.07654	0.10238	0.88069	-0.07342	$0 \cdot 10170$	0.86570
K_{1}	0.46925	$0 \cdot 65061$	$2 \cdot 24242$	0.95872	0.38477	-1.06499
	0.11730	0.16264	0.56063	0.23967	0.09618	-0.26623
	0.02380	0.03296	0.11357	0.04859	0.01949	-0.05396
K_{2}	-0.59545	1-33257	10.05638	-0.80506	0.88432	$8 \cdot 11242$
	-0.14885	0.33315	$2 \cdot 51405$	-0.20126	0.22109	2.02807
	-0.03019	0.06749	0.50935	-0.04080	0.04478	$0 \cdot 41089$
	$\mathrm{m}=2$			$m=2$		
K。	-1.40817	1.79130	$15 \cdot 65171$	-1.34863	1.89735	16.07675
	-0.35204	$0 \cdot 44783$	3.91291	-0.33716	0.47434	4.01917
	-0.07133	0.09073	$0 \cdot 79277$	-0.06832	0.09610	0.81430
K	$0 \cdot 11651$	$1 \cdot 44002$	$8 \cdot 19979$	0.57042	0.81131	$2 \cdot 84788$
	0.02912	$0 \cdot 36000$	2.04994	0.14260	0.20282	0.71197
	0.00592	0.07294	0.41531	0.02891	$0 \cdot 04109$	$0 \cdot 14423$

Table 7
COMPARISON OF AERODYNAMIC COEFFICIENTS

$p_{0}=0.6$		B_{11}			C_{11}		
ν	X	Calculated from Ref. 7	Approxi from eq $m=3$	mations n. (28) $m=2$	Calculated from Ref. 7	Approx from eq $m=3$	mations qn. (28) $m=2$
0	0	$6 \cdot 2832$	$5 \cdot 8702$	5.2944	0	0	0
$0 \cdot 1$	0.0270	$5 \cdot 7115$	$5 \cdot 7099$	$5 \cdot 2464$	0.0821	0.0614	0.0319
0.2	$0 \cdot 1$		$5 \cdot 3272$	$5 \cdot 1140$		0.2060	0.1199
$0 \cdot 28$	0.1788	$4 \cdot 9221$	$4 \cdot 9875$	4-9664	0.3253	$0 \cdot 3322$	$0 \cdot 2176$
$0 \cdot 3$	$0 \cdot 2$		4-9078	$4 \cdot 9259$		$0 \cdot 3616$	0.2444
$0 \cdot 3928$	$0 \cdot 3$		$4 \cdot 5881$	$4 \cdot 7301$		0.4813	0.3735
0.4899	$0 \cdot 4$		$4 \cdot 3443$	$4 \cdot 5265$		0.5792	0.5073
0.5	0.4098	4-3514	$4 \cdot 3236$	$4 \cdot 5060$	0.5820	0.5882	0.5208
0.6	$0 \cdot 5$	$4 \cdot 1781$	$4 \cdot 1526$	$4 \cdot 3151$	0.6760	0.6697	0.6458
0.7349	0.6		3.9892	$4 \cdot 0959$		0.7671	0.7890
$0 \cdot 8$	0.64	$3 \cdot 9268$	3.9264	4.0061	0.8293	0.8111	0.8475
0.9165	$0 \cdot 7$		$3 \cdot 8301$	3.8690		0.8856	0.9368
$1 \cdot 0$	0.7353	$3 \cdot 7569$	$3 \cdot 7706$	$3 \cdot 7870$	0.9469	0.9351	0.9901
$1 \cdot 2$	$0 \cdot 8$		3.6518	3.6343		1.0396	1.0893
$1 \cdot 3$	0.8244	3.5894	$3 \cdot 6026$	3.5759	1.0775	1.0841	1-1271
1.6	0.8767	$3 \cdot 4818$	$3 \cdot 4869$	$3 \cdot 4490$	$1 \cdot 1712$	$1 \cdot 1906$	1-2094
1.8	0.9		$3 \cdot 4302$	$3 \cdot 3918$		$1 \cdot 2436$	$1 \cdot 2464$
$2 \cdot 6$	0.9494	$3 \cdot 3077$	3.2974	3-2691	$1 \cdot 3472$	1-3667	$1 \cdot 3258$
$5 \cdot 0$	0.9858	$3 \cdot 1965$	$3 \cdot 1875$	$3 \cdot 1776$	$1 \cdot 4859$	$1 \cdot 4685$	$1 \cdot 3849$
-	$1 \cdot 0$	$3 \cdot 1416$	3-1416	$3 \cdot 1416$	$1 \cdot 5708$	$1 \cdot 5110$	$1 \cdot 4082$
$\mathrm{P}_{0}=0.4$							
0		6.2832	6. 3808	$5 \cdot 0871$			
0.1	0.0588	$5 \cdot 7115$	$5 \cdot 9247$	$5 \cdot 1306$	0.0821	$0 \cdot 1023$	0.0162
0.1333	$0 \cdot 1$		$5 \cdot 6551$	$5 \cdot 1493$		$0 \cdot 1608$	0.0322
0.2	$0 \cdot 2$		$5 \cdot 1474$	$5 \cdot 1544$		0.2665	0.0871
0.2619	$0 \cdot 3$		$4 \cdot 8096$	$5 \cdot 1024$		0.3365	$0 \cdot 1650$
$0 \cdot 28$	$0 \cdot 3289$	$4 \cdot 9221$	$4 \cdot 7368$	$5 \cdot 0768$	$0 \cdot 3253$	0.3528	$0 \cdot 1917$
$0 \cdot 3266$	0.4		$4 \cdot 5932$	$4 \cdot 9934$		$0 \cdot 3901$	0.2657
0.4 0.4899	0.5		$4 \cdot 4501$	4.8274		$0 \cdot 4466$	$0 \cdot 3891$
0.4899	0.6		$4 \cdot 3319$	$4 \cdot 6043$		0.5254	0.5354
0.5 0.6	0.6098	$4 \cdot 3514$	$4 \cdot 3198$	$4 \cdot 5795$	0.5820	0.5349	0.5509
0.6	0.6923	$4 \cdot 1781$	4-2030	$4 \cdot 3478$	0.6760	0.6345	0.6906
0.6110 0.8	0.7 0.8		$4 \cdot 1902$ 3.9768	$4 \cdot 3242$ $3 \cdot 9870$		0.6457	$0 \cdot 7045$
0.8 1.0	0.8 0.8621	3.9268 3.7569	3.9768 3.7870	$3 \cdot 9870$ 3.7491	0.8293	0.8269	0.8964
	0.8621 0.9	$3 \cdot 7569$	$3 \cdot 7870$ 3.643	3.7491	0.9469	0.9785	1.0270
$1 \cdot 2$ $1 \cdot 3$	0.8 0.9135	$3 \cdot 5894$	3.6433 3.5864	3.5928 3.5352		$1 \cdot 0884$	$1 \cdot 1111$
1.6	0.9412	$3 \cdot 4818$	$3 \cdot 4599$	$3 \cdot 4139$	1.1712	$1 \cdot 1309$ 1.2238	$1 \cdot 1419$
$2 \cdot 6$	0.9769	$3 \cdot 3077$	$3 \cdot 2751$	$3 \cdot 2510$	$1 \cdot 3472$	$1 \cdot 3560$	1.2917
$5 \cdot 0$	0.9936	$3 \cdot 1965$	$3 \cdot 1794$	$3 \cdot 1720$	$1 \cdot 4859$	$1 \cdot 4230$	$1 \cdot 3328$
-	$1 \cdot 0$	3-1416	$3 \cdot 1416$	$3 \cdot 1416$	$1 \cdot 5708$	$1 \cdot 4493$	$1 \cdot 3486$

Table 8
COMPARISON OF AERODYNAMIC COEFFICIENTS $\left(\nu=1 \cdot 0, p_{o}=0 \cdot 6\right)$

i	j	$B_{i j}$			$c_{i j}$		
		Calculated from Ref. 7	$\begin{gathered} \text { eqno }(28) \\ \mathrm{m}=3 \end{gathered}$	$\begin{gathered} \text { eqn. } \\ \mathrm{m}=2 \end{gathered}$	Calculated from Ref. 7	$\begin{gathered} \text { eqn. (28) } \\ \mathrm{m}=3 \end{gathered}$	$\begin{gathered} \text { eqn. (28) } \\ \mathrm{m}=2 \end{gathered}$
1	1	$3 \cdot 7569$	$3 \cdot 7706$	$3 \cdot 7870$	0.94694	$0 \cdot 93514$	0.99006
1	2	3-4416	$3 \cdot 4724$	$3 \cdot 4357$	$4 \cdot 4671$	$4 \cdot 5284$	$4 \cdot 4055$
1	3	$0 \cdot 8949$	1.0312	0.7541	$23 \cdot 3816$	$23 \cdot 7892$	$22 \cdot 8618$
2	1	0.93924	0.94265	0.94676	0.23673	0.23378	$0 \cdot 24752$
2	2	$1 \cdot 6458$	$1 \cdot 6535$	1.6443	$1 \cdot 11679$	$1 \cdot 13210$	$1 \cdot 10137$
2	3	$2 \cdot 7118$	$2 \cdot 7459$	$2 \cdot 6766$	12.3370	12.4389	$12 \cdot 2071$
3	1	0.19029	0.19098	0.19182	0.04796	0.04736	0.05014
3	2	0.58510	0.58666	$0 \cdot 58481$	0.22627	$0 \cdot 22937$	$0 \cdot 22314$
3	3	$2 \cdot 7203$	$2 \cdot 7272$	$2 \cdot 7131$	$4 \cdot 6926$	$4 \cdot 7132$	4-6666

Table 9
RICHARDSON METHOD SOLUTIONS

$\begin{aligned} p_{0} & =0.6 \\ m & =3 \end{aligned}$	ω				$-\frac{\mu}{\sqrt{\mu^{2}+\omega^{2}}}$			
v	A	B	C	D	A	B	C	D
0	$1 \cdot 2746$	0.3776	0.8839	0	0	0	0	
0.1	$1 \cdot 2635$	0.3835	0.8961	$0 \cdot 0067$	0.0239	$0 \cdot 0417$	0.1272	0.9931
0.2	$1 \cdot 2303$	$0 \cdot 3984$	0.9335	0.0182	$0 \cdot 0420$	0.0711	0.2517	0.9868
$0 \cdot 3$	$1 \cdot 1867$	$0 \cdot 4177$	0.9863	0.0316	0.0460	0.0913	0.3708	0.9853
$0 \cdot 4$	$1 \cdot 1465$	0.4389	$1 \cdot 0384$	0.0731	0.0442	0.1119	0.4711	0.9618
0.5	$1 \cdot 1014$	0.4635	1.0919	$0 \cdot 1256$	0.0470	$0 \cdot 1390$	0.5459	0.9337
$0 \cdot 6$	1.0396	0.4956	1-1501	$0 \cdot 1907$	0.0558	0.1760	0.6001	0.9007
0.7	0.9436	0.5465	$1 \cdot 2132$	0.2721	0.0653	0.2315	0.6397	0.8599
$0 \cdot 8$	0.8034	0.6124	$1 \cdot 2807$	0.3830	-0.0030	$0 \cdot 3884$	0.6690	0.8011
0.9	$0 \cdot 7452$	0.5067	$1 \cdot 3523$	0.5846	-0.1428	0.6037	0.6911	0.7272
$1 \cdot 0$	$0 \cdot 7051$	$0 \cdot 4762$	$1 \cdot 4273$	0.6943	-0.2471	0.6382	$0 \cdot 7081$	0.7611

$m=2$

0	1.2746	0.3776	0.8839		0	0	0	
0.1	1.2643	0.3837	0.8951		0.0243	0.0421	0.1266	
0.2	1.2320	0.3986	0.9315		0.0453	0.0730	0.2472	
0.3	1.1826	0.4170	0.9910		0.0536	0.0944	0.3598	
0.4	1.1341	0.4367	1.0547		0.0494	0.1144	0.4575	
0.5	1.0851	0.4593	1.1203		0.0443	0.1379	0.5316	
0.6	1.0267	0.4891	1.1914		0.0410	0.1666	0.5854	
0.7	0.9495	0.5356	1.2687		0.0376	0.2011	0.6247	.
0.8	0.8334	0.6213	1.3515		0.0103	0.2585	0.6537	
0.9	0.7440	0.6836	1.4392		-0.1225	0.4046	0.656	
1.0	0.6978	0.7066	1.5309		-0.2354	0.5093	0.6925	

Table 9 (Contd)

$\begin{aligned} p_{0} & =0.4 \\ m & =3 \end{aligned}$	ω				$-\frac{\mu}{\sqrt{\mu^{2}+\omega^{2}}}$			
v	A	B	C	D	A	B	c	D
0	$1 \cdot 2746$	0.3776	0.8839		0	0	0	
$0 \cdot 1$	$1 \cdot 2636$	$0 \cdot 3835$	$0 \cdot 8959$		0.0240	0.0418	$0 \cdot 1270$	
$0 \cdot 2$	$1 \cdot 2303$	$0 \cdot 3982$	0.9337		0.0427	0.0715	$0 \cdot 2504$	
$0 \cdot 3$	$1 \cdot 1847$	0.4172	0.9891	0.0291	0.0470	$0 \cdot 0914$	$0 \cdot 3682$	0.9750
$0 \cdot 4$	$1 \cdot 1430$	0.4384	$1 \cdot 0446$	0.0549	0.0433	0.1110	$0 \cdot 4683$	0.9526
0.5	1.0984	0.4635	$1 \cdot 1019$	0.0816	0.0428	0.1363	0.5434	0.9248
0.6	$1 \cdot 0404$	$0 \cdot 4974$	$1 \cdot 1642$	0.1279	0.0477	$0 \cdot 1701$	0.5979	0.8913
$0 \cdot 7$	0.9540	0.5539	$1 \cdot 2320$	0.1726	0.0564	$0 \cdot 2151$	0.6378	$0 \cdot 8515$
0.8	$0 \cdot 8085$	0.6673	$1 \cdot 3049$	0.2172	0.0097	0.3235	0.6674	0.8065
0.9	0.7450	0.7076	$1 \cdot 3821$	0.2508	-0.1407	0.5109	0.6899	0.7680
$1 \cdot 0$	$0 \cdot 7057$	0.7373	$1 \cdot 4631$	$0 \cdot 2691$	-0.2478	0.6174	0.7072	0.7519
$\mathrm{m}=2$								
0	$1 \cdot 2746$	0.3776	0.8839		0	0	0	
$0 \cdot 1$	$1 \cdot 2641$	$0 \cdot 3836$	0.8953		$0 \cdot 0242$	0.0419	$0 \cdot 1268$	
$0 \cdot 2$	$1 \cdot 2312$	$0 \cdot 3985$	0.9321		0.0446	0.0721	$0 \cdot 2482$	
$0 \cdot 3$	$1 \cdot 1833$	$0 \cdot 4174$	0.9902		0.0518	$0 \cdot 0929$	$0 \cdot 3622$	
$0 \cdot 4$	$1 \cdot 1365$	$0 \cdot 4382$	1.0513		$0 \cdot 0481$	0.1133	0.4604	
$0 \cdot 5$	1.0879	$0 \cdot 4624$	$1 \cdot 114$		$0 \cdot 0447$	$0 \cdot 1391$	0.5346	
0.6	1.0279	$0 \cdot 4942$	$1 \cdot 1831$		0.0436	$0 \cdot 1728$	0.5884	
$0 \cdot 7$	0.9452	0.5440	$1 \cdot 2576$		0.0409	0.2172	0.6276	
0.8	0.8247	0.6285	$1 \cdot 3377$		-0.0043	$0 \cdot 3059$	0.6567	
0.9	0.7516	0.6654	$1 \cdot 4225$		-0.1351	0.4644	0.6786	
$1 \cdot 0$	0.7079	0.6741	$1 \cdot 5113$		-0.2403	0.5762	0.6954	

Table 10

Method

Critical flutter speed Frequency
 ${ }^{\mathrm{v}}$ crit
 $\omega_{\text {crit }}$

$\nu \mathrm{v}_{\text {crit }}$
British unlined-up

$\nu=0.5$	0.83	0.66	0.415
$\nu=0.6$	0.832	0.695	0.499
$\nu=0.8$	0.828	0.755	0.662
$\nu=1.0$	0.795	0.812	0.795
$\nu=1.3$	0.77	0.865	1.001
$\nu=1.6$	0.735	0.908	1.176
$\nu=2.6$	0.66	0.974	1.716
$\nu=5.0$	0.61	1.005	3.05
Brıtish lined-up	0.792	0.82	
American	0.805	0.81	

Richardson method

$p_{0}=0.6, m=3$	0.8	0.805
$p_{0}=0.6, m=2$	0.805	0.83
$p_{0}=0.4, m=3$	0.81	0.80
$p_{0}=0.4, m=2$	0.795	0.83

A	inertia matrix, structural and aeradynamic
A_{0}	see equation (13)
A_{1}	aerodynamic inertia matrix
B	aerodynamic damping matrix
B_{∞}	(B) ${ }_{\nu=\infty}$
$\overline{\mathrm{B}}$	$B-B_{\infty}$
$\overline{\mathrm{B}}_{i j}$	ij ${ }^{\text {th }}$ element of $\overline{\mathrm{B}}$
C	aerodynamic stiffness matrix
C_{0}	$(\mathrm{C})_{\nu=0}$
$\overline{\mathrm{C}}$	$C-C$ O
$\overline{\mathrm{C}}_{i J}$	$i j^{\text {th }}$ element of $\overrightarrow{\mathrm{C}}$
D	structural damping matrix
E	structural stiffness matrix
$\mathrm{H}(\tau)$	unit step function, see section 2.3
I	unit matrix
K	indicial aerodynamic matrix
$\overline{\mathrm{K}}(\mathrm{p})$	Laplace transform of K
K_{σ}	see equation (13) ($=-\mathrm{C}_{0}$)
K_{r}	see equation (13)
$S_{\text {i J }}$	$\Sigma\left(\delta_{i j}\right)^{2} \text { see Appendıx B }$
V	airspeed
V_{0}	reference airspeed
$g / \omega$$h_{z}, h^{\prime}$$\ell$	ratio of fictitious hysteretic structural damping matrix to matimy E
	hinge moment derivatives, see Ref. 7 hefterence length; number of values of v used to determine matmices
$\ell_{2}, \ell_{\dot{z}}$	Iifft force derivatives, see Ref. 7
m	see tquation (13)
$\mathrm{m}_{\mathrm{z}}, \mathrm{m}_{\dot{\mathrm{z}}}$	pitching moment derivatives, see Ref. 7

SYMBOLS (Contd)

n	number of degrees of freedom of the system
p	Laplace transform parameter
p_{0}	see equation (13)
q	column matrix of generalised coordinates
\bar{q}	$q e^{-\lambda \tau}$
$\bar{q}^{\text {r }}$	see equation (17)
t	time
v	$\mathrm{V} / \mathrm{V}_{0}$
x	$v^{2} /\left(\nu^{2}+p_{o}^{2}\right)$
x_{q}	see Appendix B
$a_{r}(x)$	see equation ($\mathrm{B}-8$)
$\beta_{r}(x)$	see equation ($B-8$)
$\gamma_{r s}(\mathrm{x})$	see equation ($B-14$)
$\delta(\tau)$	right hand Dirac delta function
$\delta_{i, j}$	see Appendix B
λ	complex eigenvalue
μ	real part of λ
ν	frequency parameter $=\omega / \mathrm{v}$
ν_{q}	see equation ($\mathrm{B}-12$)
τ	$V_{0} \mathrm{t} / \mathrm{l}$
ω	imaginary part of λ
$-\frac{\mu}{\sqrt{\mu^{2}+\omega^{2}}}$	relative damping ratio

REFERENCES

No.

Author(s)

1 G.R. RIchardson

2
2 D. Clerc

3 M.B. Zisfein
F.J. Frueh

4 M.B. Zisfein
F. J. Frueh

5 C.G.B. Mitchell

6
R.D. Mılne

7 I.T. Minhinnick

8 Natke

9 H. Lomax

A more realistic method for routine filutter calculations.
AIAA Symposium of Structural Dynamics and Aeroelasticity (1965)

Sur un perfectionnement apporté a la résolution pratique de l'squation caracterıstıque du flottement. ONERA TP No. 198 (1964)

Velocity frequency damping relationships for wing and panel binary systems in high supersonic flow. AFOSR TR 59-969 (1959)

Approximation methods for aeroelastic systems in high supersonic flow. AFOSR TR 60-182 (1960)

Calculation of the response of a flexible aircraft to harmonic and discrete gusts by a transform method. R.A.E. Technical Report 65264 (1965)

Asymptotic solutions of linear stationary integrodifferential equations. A.R.C. R.\& M. 3548 (1966)

Tables of functions for evaluation of wing and control surface flutter derlvatives for incompressible flow. R.A.E. Report No. Structures 86 (1950)

Bemerkungen $z u$ der angenäherten Lösung des klassischen Flatterproblems.
Comments on the approxamate solution of the classical flutter problem, translated by Miss L.O. Klanfer. R.A.E. Library Translation to be issued

Indicial aerodynamics. AGARD Manual on Aeroelasticity, Vol.II, Chapter 6

Fig.l Critical flutter conditions from British method solutions

Fig 2 British method solution ($\nu=0.5$)-frequency

Fig. 3 British method solution $(v=0.5)$

- relative damping ratio

Fig. 4 British method solution ($\nu=0.6$)-frequency

Fig. 5 British method solution $(\nu=0.6)$
-relative damping ratio

Fig. 6 British method solution $(\nu=0.8)$-frequency

Fig. 7 British method solution ($\nu=0.8$)
-relative damping ratio

Fig. 8 British method solutions ($v=1 \cdot 0$)-frequency

Fig. 9 British method solutions ($\quad v=1.0$)
-relative damping ratio

Fig. 10 Bitısh method solutions $(\nu=1 \cdot 3)$-frequency

Fig. 11 British method solutions $(\nu=1 \cdot 3)$
-relative damping ratio

Fig. 12 British method solutions $(\nu=1.6)$-frequency

Fig. 13 British method solutions $(v=1 \cdot 6)$
-relative damping ratio

Fig. 14 British method solutions $\quad(v=2 \cdot 6)$-frequency

Fig. 15 British method solutions $(\nu=2.6)$
-relative damping ratio

Fig. 16 British method solutions $(\nu=5 \cdot 0)$-frequency

Fig. 17 British method solutions $(\nu=5.0)$
-relative damping ratio

Fig. 18 British method solutions-(lined-up v)-frequency

Fig. I9 British method solutions (lined-up v) -relative damping ratio

Fig. 20 American method solutions-frequency

Fig. 21 American method solutions-fictitious structural damping factor

Fig. 22 Check for K_{r} matrices, $P_{0}=0 \cdot 6$ - values of $B_{\|}$

Fig. 23 Check for K_{r} matrices, $P_{0}=0.6$-values of C_{11}

Fig. 24 Check for K_{r} matrices, $P_{0}=0.4$ - values of B_{11}

Fig. 25 Check for K_{r} matrices, $P_{0}=0.4$-values of C_{11}

Fig. 26 Richardson method solutions ($p_{0}=0 \cdot 6, m=3$)-frequency

Fig. 27 Richardson method solutions
($p_{o}=0.6, m=3$) -relative damping ratio

Fig 28 Richardson method solutions
($P_{0}=06, m=2$)-frequency

Fig. 29 Richardson method solutions
($p_{0}=0 \cdot 6, m=2$)-relative damping ratio

Fig. 30 Richardson method solution ($p_{o}=0.4, m=3$) - frequency

Fig. 31 Richardson method solution
($p_{o}=0.4, m=3$) - relative damping ratio

Fig. 32 Richardson method solution ($p_{o}=0.4, m=2$)-frequency

Fig. 33 Richardson method solutions ($P_{0}=0.4, \mathrm{~m}=2$) -relative damping ratio

Jacicson，P．
COTPARISON OF DIFFERENT TETHODS OF ASSESSING THE FRES OSCILLATORY CHARACTERISTICS OF AEROELASTIC SYBTEMS

Different approximate methods of determining the eigenvalues of the integro－differential metrix equation of a simple aeroelastic system are compared．It is shown that methods which use an approximate second order differential matrix equation with constant coefficients can give large errors in the values of complex eigenvalues，though the errors are usually small at airspeeds below the criticel flutter speed，if the frequency parameter of each particular eigenvalue is lined－up with the value used to determine the aerodynamics．An improved method of solution using a ifinite series approximation to the indicial aerodynamics yielded in some cases an additional complex eigenvalue with a frequency of the same order as the other natural frequencies．

 depuo puovas azempraddie ue asn पणן

 ＂d＂uosyore
UKtevon＇v＂ovuanset
8961 xequovea
矤 $£ 10^{\circ} 9^{\circ} £ \varepsilon 5$

－safouanbarj termieu deyzo

 ＂d＇uosyprp
UKTevor＇V＇evurnot

Zわ＂$£ 10^{\circ} 9^{\circ} £ \subseteq \subseteq$

© Crown copyright 1970

Published by Her Majesty's Stationery Office

To be purchased from
49 High Holborn, London w c 1
13a Castle Street, Edinburgh EH 2 3AR
109 St Mary Street, Cardiff CF1 I sw
Brazennose Street, Manchester 2
50 Farrfax Street, Bristol BS1 3DE
258 Broad Street, Brmingham 1
7 Linenhall Street, Belfast br2 8ay
or through any bookseller

[^0]: *Since this was written we became aware of a recent paper by Natke ${ }^{8}$ which contributes to such an assessment.

[^1]: *The critical flutter speeds and frequencies for all the cases are compared in Table 10 (see also Fig.1).

