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SUMMARY, 

Different approximate methods of determining the eigenvalues of the 
Integro-dlfferentxd matrn equation of a simple aeroelastlc system are com- 
pi-d. It is shown that methods which use an approximate second order 
differentnl matrix equation with constant coefficients can give large errors 
in the values of complex eigenvalues, though the errors are usually small at 
airspeeds below the crlticd flutter speed, if the frequency parameter of 
each particular eigenvdlue is lined-up with the value used to determine the 
aerodynamics. An improved method of solution using a finite series appronma- 
tion to the-$&5d aerody&nics yielded in some cases an additional complex 

7. i-k-, 
eigenvalue w=th;-~~~requency,;of~~f.the-same order as the other natural frequencies. 

* R@~WS R.A.E. Technical Report 68296 - A.R.C. 31379. 
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1 INTRODUCTION 

. 

7 

The primary purpose of a flutter calculation is to determxx the critical 
flutter speed (if any), but the free oscillation characteristics at lower 
speeds are also of interest. In partvxlar, when maklng flight flutter tests, 

or wind tunnel flutter tests on a model, a flutter speed may not be determined., 

ana then all comparisons with theory will have to be ma&e for the characteris- 
tics of the system at subcritical speeds. The different methods of flutter 
analysis conmority used agree as regards critical flutter speeds, provided the 
same basic data are used, but give different values of the decay rates at other 
speeds. Some assessment of the importance of these differences 1s therefore 
required*. Richardson' gives one example where the standard funerlcan approach 
(see section 2.2) is mlsleadlng and Clerc 2 has found that a method simdar to 

the American approach can largely overestimate the magnitude of the relative 

damping ratio when compared with the traditional British approach with lxned-up 

frequency parameter. 

The present investigations are armed at showing in particular how the 
traditional Brltxsh approach (wz,th and without lined-up frequency parameters) 
compares with the more rigorous approach of Richardson. Comparisons are also 
made with the American method of analysis. 

2 METHODS OF SOLUTION 

2.1 British approach 

This is the standard approach in use in ths country. The flutter equa- 
tion is taken in the non-dimensional form 

2 
A u + (vB+ D) 2 + (v2C +E) q = 0 

dT2 

frequently with D = 0; where q = Vat/4, v = V/v0 and V. and 4 are a 
reference speed and length respectively. An exponential solution is postulated, 

leading to an eigenvelue problem to determine the complex elgenvalues h for a 
AT solution in the form q = 4 e . The system is unstable If, for any eigenvatue, 

R(h) > 0 and a critical speed 1s defined by R(h) = 0. 

Strictly equation (1)~applies only when the motion 1s simple harmonic, 
implying that h is purely imaginary (= iw). The aerodynamic matrices B and 

C are functions of the frequency parameter Y = (w/v) and, in general, of the 

*Since this was written we became aware of a recent paper by Natke8 which 
contributes to such an assessment. 
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Mach number also, but m the present case the air 1s assumed to be ~nccm&ess- 
ible, so there is no dependence on Mach number. HOWeVer, a solution of equa- 
tion (1) is usually obtained by assuming a value of v for the dculation of 
the matrxes B and C, and then solving equation (1) for h The value of 
h so obtained will not, in general, be purely imaginary, nor will $ I(h) be 
consistent with the assumed value of the frequency parameter V. In order to 
achieve scme measure of agreement and perfect agreement in the limiting case 
when A 1s purely Imaginary, the assumed value of v is often lined-up with 
the derived value of : I(h) by the following procedure. 

A graph 1s plotted of w obtained from the elgenvalues X (= p+iw) 

against v and the intersections of each curve with the line o = w (where 
" 1s the value of the frequency parameter assumed in the evaluation of B 
and C) give the lined-up values of frequency and speed. From the correspond- 
ing graphs of the relative damping ratio = -p /v against v the appro- &I + w 
priate values of this ratio can be found. From a series of such graphs for 
varlcus v graphs of the lined-up frequency and relative damping ratio can be 
plotted. 

This method has the disadvantage that it is necessary to calculate 
elgenvalues for a large range of speeds without lining-up in order to obtain 
lxled-up values for one value of u; at least for the first few values of 

frequency parameter. 

2.2 Amerxan approach 

The system equation is taken in a rather different form from the above. 
The actual structural damping IS ignored and a fxtdious hysteretx structural 

damping ", E is introduced whxh is supposed Just sufficient to maintain 
steady harmonic motion. The solution q = 7 eIW may then be taken which 
g1ve.Y 

(- w2A + iwrB + igE + v% + E) 4 = 0 (2) 

s1rd=;, w the problem reduces to a determination of the eigenvalues (in 

the usual algebraic sense) of the matrix 

(3) 

(4) 
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A chosen v is used to determine B and C and so al.1 the terms are 
known. 

The complex eigenvalues of the matrix can then be found for a series 
of values of V. Separation of real and imaginary parts enables a detenna- 
tlon of g and w separately; the velocity is obtained from w and the 
assumed v. 

As g represents a damping which has tQ be introduced, a negative 
value which may be regarded as p exqitation means that the gystem is 
intrinsically damped and therefore stable. The critical flutter speed is 
given by g = 0. 

It will be seen that values of frequency and fictitious structural 
dampzng obtained by this method are accurate at all values of Y so that 
Insofar as no lining-up is necessary the solution may be regarded as superior 
to that from the British approach. 

There is however the problem of the relationship between g and the 
decay factor p. In the limit as p, v + 0 it can be shown that 

where cl/w is small. A more general relationship has been found by Zisfein 
and Frueh3" but the intro$dion of the so-called base curve of the system 
is not very convenient for the present application. We have therefore useg 
-g/2 as the relative damping factor in this case for oomparxon with the 
methods using --jl/X@&T but it must be remembered that the comparison is 
close only for low values of the speed and decay factor. 

A similar approach to the American method has been used in Franoe2. 
The same equation (3) is solved but a different. interpretation is put on the 
solution. It is assumed that equation (1) has a solution of the form 
q=qe iw(l+ia),z where the aerodynamic matrices B, C are determined for a 
frequency parameter Y = w/v. This results in the equation 

(5) 

It is then assumed that a can be neglected, i.e. put equal to zero, in the 

second and third terms. This is true at a critical flutter speed and is also 
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a good approxlmatux when v is small. Thus we again get equation (3) except 
that (l+ig) 1s replaced by I/(ltia)2 and a is here a measure of the decay 

rate. Equating Maginary parts of (I+ ia) and l/l + ig gives a in terrrs 

of 65 and hence 

- sgn k) - c l+g2 3 
4 

2 (1 + g2) 4 (l+g212 
z - f where g is small . 

For any particular value of' g, equating real parts of 

o$ (I+ ia)2 = + 
1 + 1g 

(6) 

C> A 2 
= (l-a2 ) (1 + g2) = 1 + g2 - --EL-= 2 

"F 0 

2 

4 (1 + g2) "F 
(7) 

where the subscripts F and A ndlcate the French and. American Interpreta- 
tlon respectively. The relative damping ratio IS a/%2, but as Clew2 

showed, It does not agree with the value obtalned by the traditional British 
approach with Ined-up frequency parameter except near v = 0 and at a 
critical flutter speed.. 

2.3 Richardson approach 

For general motion the system equation has the form5 

(A-A~) 5 + Eq = v2 [ K(T-~~) * dTo 
0 0 

(8) 

where K(7) is the indicial aerodynamic matrix, and is related to the matrices 
B ad C, already introducea, and the aerodynamic lnertla matrix A, by the 

transform relationship 

. 
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00 

iw 
1 

-im 2 
Kbo) e o a7; = -+,+,-A,% . 

( > 
(9) 

v 
0 

2Nx This follows from (8) with q = 7 elm and = = z'+w when N -+m (i.e. 
for simple harmonic motion of infinite duration) when compared with the equa- 
tion for maiptained sinusoidal oscillation (i,e. equation (1)). 

The solution of tpe integro-differential equation (8) is not easy. 
Taking the Laplace transform of (8) the characteristic equation 

I(A-A,) p2 * E - v2p i?(p)1 = 0 (10) 

is obtained, where 

m 

E(P) = 
1 

K(7) e-p7 dz (11) 
0 

E(P) is known only for purely imaginary values of p and in this case we 
have from (9) 

ii(@) = - & 
2 

B + C - A, % . 
v > 

(12) 

Milne6 has examined this problem rigorously and suggests obtaining 
solutions of the characteristic equation by using power series expansions of 

E(P) about points on the imaginary axis. 

A rather‘more simple approach to the solution of (8) has been suggested 

by Richardson!. i&s main idea.was to appr?xim@e to the indicisl aerodynamic ,_ 
matrix K by-an,eS@-ession wgch includes a power series in VT multiplied 

by an expone&&&m _ 
-. 

~_ 
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*where 6( 7) is the right-hand Duac delta fun&Ion, i.e. the fu-st dlfferentul 
of the function 

H(T) = 0 T $0 

The term *, ud represents the apparent mass effect of the air. The exut- v 
ence of a term proportional to S(T) 1s well known and has been demonstrated 
for example by Mllne (equation (2.11) of Ref.6). 

The elements of K(7) for a wing with heave and pitch freedoms, apart 
from the initial impulses and the constant terms, are proportional in the 
tvo-dimensional case to the Wagner function k,(T) (see Lomax'). A good 

approximation to k,(T) which has been suggested 9 is 

k, (T) z 2- 
( 
se -0.09~ + 2 

3 
,-o-62 

> 
. 

It does not however have the rxght behaviour as 7 tends to -(cf. I,I~lne~). 
"his suggests that suitable values of' p, for our approxunation should be in 
the range 0.09 +0*6 and nearer the upper limit because of zhe doubts about 
the approxlmatlon for k,(T) for large 7. 

The coefflclents in equation (13) can be obtained from the matrices B 
and C by the use of equations (11) and (12) as vnll be shown later (see 
Appendix B). 

Substitution of (13) in (8) gives 

AL - vAo 2 + (E - v2 
d.c2 "d q 

m-1 
2- 

L 

(PO")' = 
Kr r! J 

-P,+T,) 
= Y e (T-T,)' + (7,) dTo * (14) 

0 
r=O 0 

. 
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If 

& (I,) = I,-, - PoV I T 

(& + ,,J IF = IO . 

Hence following Richardson, we multiply equation (14) by the operator 

(-& + povr and obtain 

. 

. 

m-1 
2 = v 

c 
" (Pod' (& + povJ-r IO . (15) 

r=O 

Assuming q = 4 e ht. where h = ytiw 
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Hence q = 4 eht is a solution lf 

m-1 

(A+po")" iAX2 - vAoh + E - v2 Kc1 4 = v2 
ic 

Kr (pov)' h (h+po'~)~+' 
I 

4 

r=O 

. . . (16) 

The problem 1s now reduced to an eqenvdue problem 111 h. However, the matrn 
mvolved. is still not simple. Divide by (A+pov)" and introduce m new vari- 
ables defined by 

T& = 
(Pod' h 

(X+ pov)r+' 
4 x0,1.. .m-1 (17) 

to give 

m-1 

(AX2 - Aovh + E - v 2 K,) -i - 
c 

Y2 K, -g = 0 . (18) 

l-0 

This can be reduced to a matrix form suitable for the same programme as was 

used for the British approach by the f'ollowlng: 

It ~111 be seen later that 

A = - BYtco = - B, (say) 0 

Kc = - Cyzo = - Co (say) 
(19) 

so that -Aovh becomes B,"h and -v2Ko becomes v2 co where Bd Co are 
constants. Also we have the recurrence relations 

(A + Pod K = PoV <-, 

(h + p,v) to = h 4 . 
(20) 

These are not sutable as they stand, as the programme does not allow for terms 
linear in v, only terms m vX. Multiply by X 

b 

. 
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E 

This gives 

(x2 + Pcvx) p = PcvX <-, 

(2 * pcvh) 4, = x2 4 . 

AX*+B_vh+E+v*Cc 2 
-VK -v -v 2K 

0 m-1 

- x21 

0 

. 

. 

. 

. 

. 
0 

(h2+povh)I 0 0 

- Pcv? (?+pcvk)1 0 
. . . . . . . . . . . . . . . . . . . . * . . 

-p,v7b I 

where I, 0 are unit and null matrices respectively. 

4 

40 

; . . . . . 
\itl-, 

(21) 

=o 

\ 

. . . (22) 

This is the same type of eigenvalue problem as obtained by the British 
method (a second order, real lambda matrix) and it can be solved by the same 
computer programme. 

If the matrices A etc. are of order n, this problem will give rise 
to 2n(m+l) elgenvalues instead of' the usual 2n. The meaning of +n extra 
2nm roots is d~~ussed in scme detail in Richardson's paper'. Of the 

s:pvill be zerc and are introduced to give equations 

computer programme, LB. by the step from equations 
ill consist often of n complex pairs and. nm 

equal to -pcv; (t&&s is certainly the case i 
roots are probably.qpurious,-but &the characterutic -~I :- --; 

necessari$y have juS.t~,3n root‘s1~and it may well be 
which are not apprcdately equal to. -pcv are slgnifl- 

This can only be ver"ified by seeing if the roots 
5-d approximation is used for K. 
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3 COMPARATIVE !ZPLICATION 

3.1 The sj-stem considered. 

A hypothetical two-dlmenslonal system II? incompressible flow, with 

freedoms in pitch about the leadug edge, heave and control surface rotation 

was devrsed. With 4 as the length of the wu-,g chord, the control surface 

chord was O-248. The matrices A, 5, C and E for this system are given by 

A = 

i 

14.767 

7.0154 

O-8796 

3 = 

i 

2.21 

o-7735 

lo 

7.0154 0.8796 

4.271 0.7269 

0.7269 0.927 

%i 
-m. a 

-IOh& 

1oe- 
P 

-1Om. 
P 

-lOOh. 
P 

e a 
-m a 

-IOh, -1OOh 
P 

0.7735 

I.3807 

0 

0 

0 

0.79 
i 

where AZ, 6; etc. are the two-dlmenslonal aerodynamx derivatives, defYned 

in Ref.7 and are functuzns of the frequency parameter v = co/v. The matrices 

B and C were evaluated for v = 0.1, 0.28, 0.5, 0.6, 0.8, 1.0, 1.3, 1.6, 

2.0, 2.2, 2.4, 2.6 and 5-O usmg the formulae of Ref.7. The values are shown 
in Table 1 together with the values of Co and B 00 required for the 

RIchardson approach. 
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3.2 Results of the British approach 

The responses of the system without lining-up were calculated using EMA 
programme R.A.E. 272/A to solve the eigenvdue equation (1) for a range of 
velocities (v = O-l-1) and for 8 values of frequency parameter in the range 

Y = 0.5 to 5.0, These results sre tabulated in Table 2 and shown graphically 

in Flgs.l-17. Fig.1 shows the critxaJ conditions (obtained by interpolatipn) 
and the other Figures show the variation of the e~genvalues through the speed 

rangq. 

The imaginary parts w of the eigenvdue are plotted directly, but 

instead of thq reQ parts p, the relative damping ratios, -p/@z? are 
shown. Each paq of curves is labelled A, B or C according to the value 

of w at t@e start of the ourve (v = 0). It must however pe borne in mind 
that what we have in the (w, v, v) space and similarly in the (-p P---T ", -J) p cw 
space for the whole set of results, is not necessarily three separate surfaces, 

but quite likely one surface which is triple-valued for each point (v, v). 
Thus a~ point on this surface may be reached from different values of w in 
the v = 0 plane, according to the route taken along the surface. When the 
lining-up of the values of v was done as described in section 2.1 this was 
indeed found to be the case. The resulting curves of frequency and relative 
damping ratio are shown in Figs.18 and 19'and. listed in Table 3. They are 
again labelled A, B or C according to the value of the frequency at v = 0. 
Some of the po$nts on these A, B curves correspond to points on the B, C 

unlined-up curves, f?r the lowest frequency parameter. This complication 
made it necessary to obtain results for a large number of v and v (see 
Tab$e 2). The lined-up graph indicates a flutter speed of v = 0.79 but no 
instability near Y = 0 as is suggested by the unlined-up curves for the 
lower values of v (cf. Figs.3, 5, 7 and 9). The unlined-up curves for 
v = 1-O upwards have the same character as the lined-up curves though the 

actual vsJ+es can be consjderably different. For example, the relative damping 
ratio for the least dsmped root is muoh larger at subcrItical speeds on the 
Y = I.0 curve than on the lined-up curve (cf. Figs.9 and 19). The critical 

speed from the unlined-up results does not vary very much from the true value 
except at the higher values of v (see Fig.1). 

3.3 Results of American'arnxxiac~ 

The ms$rix E -1 

( 
iB C A---- 
v v2 > 

required for the American method was 

evaluated for a range of vslues mf v (u = O-5 to 5.0) and are listed in 

i 

. 

i 



Table 4. The eigenvalues of this matrix were then obtaned by uxerse itera- 
tlon using E&IA Programme 622 ana a p~pose mitten dtl~ng routine by 
R.J. Davis. The programme required lnltial estimated values and the ones 
used were based either on the results of calculatxaxs from other values of 
v or on ones from the British approach solutions. It was not necessary to 
obtain all three eigenvalues this way; when two had been found the thud 
could be deduced by the following device. 

For a matrix X of order n, the equation defining the eigenvalues - 
the characteristic equation IS IX- Nl which is of degree n in X. It 
may be written out 

(-h)n + T,(X)(-X)"' + . . . + 1x1 = 0 

where Tr(X) is the trace of X (i.e. the sum of the diagonal elements). 
From the elementary theory of equations we have 

n 

c 
1, = - coefficient hn-'/coefficient h" 

r=l 

= T$) 

so that the sum of the eigenvalues is the trace of the matrx. Once two of 
them were known therefore the third could be calculated with relative ease. 

The results of the calculations are plotted in Flgs.ly-20 and luted in 
Table 5. The e~genvdues obtained from the trace of the matrix are indicated 
in the table. (-g/2) has been plotted as being comparable with the relative 
danping ratio obtained from the other methods. 

3.4 Results of the Richardson approach 
. 

The K, matrices occurruxg in the series approxunation (13) to the 

indiclal aerodynamic matrix K were obtained as described in Appendu B, for 

two values of po and two values of m viz. 

m = 2, 3. 

(See sectlon 2.3.) 
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. 

; 

In each case the values of the B and C matrices for the following values 
of " 

9 
were used to obtain the least squares solution. 

v = 9 0.1, 0.28, 0.5, O-6, 0.8, I-O, 1.3, 1.6, 2.6, 5.0 . 

The values of Co and B, ( see equations (B-y), (B-IO), (B-13)) were also 
required and all these values of B and C are given in Table 1. The 
resultant Kr matrxes are shown in Table 6. 

Two checks were made to see how good were the approxlmatlons to the aero- 
dynamic matrix K. Equation (B-7) was first used to obtain the fzst element 
on the leadlng dlagonsl of the matrxes B and G (i.e. B,, and C,,). Some 
of these were obtained for the same values of v as used in the calculation 
of the K 

9 
matrlces for direct comparison, and others at values of x which 

made calc>ation of equation (B-7) simple. The results are given in Table 7 

and plotted against x in Figs.22-25. Secondly for one value of v (1.0) and 
one value of p, (O-6) the complete B and C matrices were evaluated from 
equation (B-7). Theicomparison with those originally calculated from the 
equations of Ref.7 is shown in Table 8. 

All the results show that the approximation with p 
0 

= 0.6 and m = 3 

is the best of the four cases consxkred. It gives results that lie almost 
slways within 5% of the true vdue. An exception is the coefficient B,2 in 
Table 8 where there 1s. a 1% dxfference. This is however an unusual case in 

that (BJ12 is much larger than B,2, and the approximation to E,2 (see 
equation (B-10)) is much better. 

The eigenvalues of equation (22) were obtained with the ssme computer 
programme R.A.E. 272/A as for the British approach using the four sets of K r 
matrices corresponding to the two chosen values of p, and m, for a range 
of values of v from 0 to 1-O. The complex eigenvalues are given in Table 9. 
In every case three pairs of such eigenvalues were obtained and in a few cases 
a fourth pair of complex eigenvslues were found. In addltlon there were a 
number of zero real roots* and a number of real. roots all approximately equal 
to -p,v (see section 2.3). The fourth pair of complex roots, when present, 

were very little different from h = -p,v at low values of v, and it is 

impossible to aeciae where they become a pair of equal roots. Two almost 

*The large number of red. roots (up to 18) at v = 0 were obtained 
without difficulty by the programme used,R.A.E. 272/A. 
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equal roots can be found as a complex pair with very small imaginary parts 

for the numerlcal zccuracy can never be perfect. As in the other methods the 
curves hzve been labelled A, B, C, D according to the value of w at v = 0. 

The values of Table 9 are plotted in Flgs.26~33. Apart from the extra 
root which is present for the cases mhere m = 3, all the approxxnatlons to 
K give very SlPllar results. The m = 2 approximations give rather lower 
relative darrplng ratios for the least stable curve at subcrltlcal speeds (cf. 
e.g. Flgs.26 ar.d 29). The crltlcal speeds are to all Intents and purposes the 
same 1r-1 each czse. The most notxeable difference 1s between the frequency 
curves r'or the two approximations where m = 3 (Flgs.26 and 30). When 

PO = 0.0 the frequency of the fourth eigenvalue (D) rxes mere rapidly than 

for p 0 = 0.4 and this affects the form of the B curve at the higher speeds. 
In view OS the conpanscn referred to above, one would expect the (pc = 0.6, 
,ii = j) results to be the best approxxnation to the true solution. 

3.5 Conpar~so~~s between the dzfferent methods 

?he :elevalxt comparr~son LS that between the best approxlmatron to the 
ir'iie solution i-or all speeds, as given by the Richardson approach using m = 3 
aitd p 0 = O-6 (r'lss.26 and 27), which we wxll call the 'true' solution, and 
th? solut~or;s obtalned by the other methods. 

(1) The Brztxh approach - the best solution for constant " (Flgs.8 

and y for " = 1.0). 

(11) The Sntxh approach - lined-up v solution (Flgs.18 and 19). 

(111) The Anencan approach (Figs:20 and 21). 

Inspectloa sf these figures shons that the lined-up solution (11) is 
quite a good approxlmatlon to the 'true' solution. The frequencies and 

xlstlve Zsnplng ratios at subcritxal speeds, the frequency peak at w = 0.6, 

v = 0.8 and the crlt~cal flutter speed all show good agreement* with the 
'true values'. The rate of change of the relative damping ratlo at the 
crltlcal flutter speed 1s rather less than the 'true' value and there IS an 
lnilcctlon that ore ?an of complex roots (curve B in Figs.18 and 19) ~111 
oecome real at about v : 0.9, which is quite different from the behaviour 

of curve 9 IIn F1gs.26 and 27. 

The values sf the frequencies and flctltious structural damping obtained 
bj the Amencan approach (F~gs.20 and 21) give fairly good ndlcations of the 

*The cntlcal flutter speeds and frequencies for all the cases are ccm- 
pared III Table IO (see also Flg.1). 
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. 

. . 

'true' frequencies and relative damping ratios when the latter are small 
(< O-1). The least stable root appears to be rather more unstable than it 
redly is. The critical flutter speed is accurate, but the rate of change 
of (-g/Z) at this point does suggest a somewhat less violent onset of flutter 

than the 'true' results indicate. The American approach results are however 
of little value in predicting the free oscillation characteristics of the 

system. 

Except for the value of the critical flutter speed the best unlined-up 

British approach solutions (Figs.8 and 9) are not in good agreement with the 
'true' values. In partxxiLsr the least stable root is much more stable 

between v = 0.4 and 0.8 than is really the case. 

4 CONCLUSIONS 

The following points summarise the findings of this investigation. It 
would, of course, be desirable to repeat the investigation for an actual air- 
craft, using three-dimensional aerodynamics and larger values of m in the 
series approximations to the unsteady aerodynamic forces. Programme limita- 

tions made it impossible to take larger values of m in the present 
calculations. 

(i) When using the British approach, it is important to line-up the 
assumed and calculated values of the frequency parameter V. The method is 

then adequate for most purposes. 

(ii) The American approach is of use when one is interested only in 
critical flutter speeds, for most of the information obtained is not what is 

required by the flutter analyst. 

(iii) For the accurate determination of critical flutter speeds, the 
American approach is the simplest. The lining-up in the British approach is 
laborious and prone to error, though a good approximation may be obtained 
without lining-up provided the assumed frequency parameter is well chosen. 

(iv) The Richardson approach is more straightforward than the lined-up 
British approach and-is believed to give a truer solution. It might therefore 

be the best method to use in some cases from the point of view of accuracy and 
conveniencp. 'There is however the disadvantage of having a much larger eigen- 

value problem to solve. Computing limitations may therefore make the Richardson 

approach unusable when a system with a large number of degrees of freedom is 
being considered. -This problem msy be minimised if, in the computing procedure, 

advantage is taken of the sparseness of the matrix in equation (22). 



18 

(v) The results of the Richardson approach show that as a consequence 
of aerOaynamlc effects, extra natural frequencies of a system may appear which 
are not present when the airspeed is zero. These are distuxt from the r~gd 

body natural frequencies - short period oscillations etc. This posslbillty 
should be borne xn mind during flight flutter tests. 

, 
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[(A-A,) p2 + E - V2P i?(P)1 T(P) = 3 
-p=, w 

. 
c 

(P+Pov)3 f3 (A-2) 

Appendix A 

THE i%l'UiBOF TJ%E SYSTElJ'S'~-MOTION 

by D.L. Woodcock 

An alternative approach perhaps clarifies the significance of the eigen- 
values of the lambda matrix in (22). We will consider the tiesponse of the 

system to impulsive forcesapplied at an instant ‘c=z , > 0, i.e. the solution 

of 

(A-A,) d + Eq = v2 / 
ad7 1 -p,v(w, ) Y 

aT2 
Kbqo) + d7o + e 

0 z 
,(3) (-,) fs 

0 s=o 

(say) . . . (A-l) 

where f 
3 

are arbitrary constant column matrices. Taking the Laplace trans- 
9 form of this we have, since q(0) = a~ 

0 
= 0, assuming FM(p) > 0, 

2=0 

s=o 

where T(p) is the Laplace transform of q(T) and E(p) is the Laplace 
transform of K(7). With the approxmation (13) for K(T) 

A 
Z(p) = $ -- + > + PAI 

m-1 
Kr(Pod' 

v2 c r=O (p+ podr+' 
(A-3) 

and (A-2) become3 

m-l 
L- Ap2 - vpAo + E - v2 K d - v2p 

c 

K,(p,v)I‘ 'PT, O" 

r=O 
(p+ Podr+' 1 t(p) = e 

c 
(p+ Pod3 f3 

a=0 

Now if the root3 of 

. . . (A-4) 

m-l 

I (~+p,v)~ (Ap2-vpAo+E-v2 K$ - v2p 
c 

K,(p,+ (p+ P,v)~-~-' 
I 

= 0 

I-=0 
. . . (A-5) 
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are 

Appendx~ A 

p = Ai I = I... t (A-6) 

where i = to(d) . . . t,-1 indicates single roots 

=t 
1 

. . . t2-1 indicates double roots 

etc. 

then 

III-1 

KC- v2p 
c 

Kr(podr -1 

(p+ PO") 
l-+1 1 l-0 

n(m+2)-1 t 

= (p+ P,VY 1 c (p-:;)J+l (A-7) 

J=o i=t 
J 

where the R. are constant matrices. 
1J 

From (A-7) and (A-4) we thus get an expression for %P) which we write as 

where 

n(m+2)-1 t 

G,(P) = 1 1 :::;:I: RiJ * 

J=o 1=t 
J 

Taking the inverse transform of (A-8) we have 

cc 

9(7+7,) = 
1 

Q&d H(T) fs 

s=o 

(A-8) 

(A-9) 

(A-IO) 

where Q,(T) is the uwerse transform of q,(P) ana is given by 
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. 

n(m+Z)-1 t 

QSb) = 
1 1 ,hi" em'p~'i)T 5 ie(Pov+hi)7 Tjj IliJ . cA-,, ) 

J=o i=t 
J 

Each term in Q (T) 
s h.z 

is therefore a finite pdynomid (of degree J) in rc, 
multlplled by e ' . 

But (A-4) can be written, multiplying both sides by (p+ ~,v)~ 

m+2 

c 
D"(P+ ~,v)~ t(p) = e 

-PT, GO 

c 
(p+ Pov)m+s fs (A-12) 

u=o s=o 

where the matrices D are simply related to the matrloes A, A u o, E, Kc and K, 
of (A-4). Thus, since 

(p+ p,vF G,(P) = Q,+,(P) (A-1 3) 

then substituting for y(p) from (A-8) In (A-12) gives, remembering that the 

fS are arbitrary, 

m+2 

c 
DU G,+,(P) = (P+ ~~v)~+~ 1 (A-1 4) 

u=o 

for any s a 0. 

Taking inverse transforms we have 

m+2 

c 
DU Qs+u(T) = e-'Ovz &m+s) (T) 1 

u=o 

(A-3 5) 

= 0 for almost all z . 
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Consequently there are only (m+2) xxkpendent solutions and so we can rewrite 
(A-IO) as 

m+l 

d-y 1 = 
c 

Q,(T) H(T) f s (P.-l 6) 

s=o 

(the meaning of the column matrxces f s is here changed slightly). If all the 
roots of (A-5) are distinct then the expression for Q,(T) amplifies to 
(since t,-I = t, 1.e. j=O only) 

t 

Q&d = (Pov+ A. l)m+s exl' Rio . 

iA 

(A-17) 

The above expressxa~ for q (equation (A-16)) shows that each root of (A-5) 
represents, 1n general , genuine exponential behaviour of the solution of the 
equations of potion, when the approximation (13) to K(T) 1s made. The 
exceptra~s are when all. the coefficients of a particular e x1= in the equa- 

tlons (A-II) are zero. This may a.rxe from a chance form of initial ddcurb- 

mice, and so 1s of no Importance; or for other reasons such as:- 

At v = 0 there will be an nm multiple root Ai = -pov (=O). For 

this root the coeffxcient of R e hlT 
1J 

in (A-II) 1s zero for all J < (m+s). 
Moreover cov.par~son of the general form of the expansion (A-7) with the 
partxxlar form for i- = 0 (i.e. the expansion of (Ap2+ E)-I) shows that the 
matrices R are null for all 

x .T 1J J 2 m. Consequently the coefficient of this 

e 1 in (A-II) 1s zero for each value of S. But these are isolated instances, 
and so we can say that none of the A i obtained from (A-5), or from (22), when 
the nm zero roots are deleted, are spurious solutions If the approximation 
(13) to K(T) is correct. However we have evaluated the coefflczents in this 
approxxnation by making the value of Its transform I?(p) (equation (A-3)) 
agree as closely as possible with the true value for purely lmagx~ary values 

of p. Moreover E(p) actually has the form* (see Ref.6) 

*Taken as single valued in the complex plane cut along the negative red 
a.xlS. 
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. 

w 

E(p) = $ 
Lx 

Ms pa + P’ log P r Ns P’] (n-18) 

s=o s=o 

and so it follows that our approximation (A-3) cannot be very good at points 
near the negative red axis. Thus one would expect values of h,, which are 
roots of (A-5), to be good approximations to the systems eigenvalues, mth the 
true K(T), when they are complex with relatively not too large real parts. 
This suggests that the roots which we have obtained, which are approximately 
equal to -pov, are almost certainly spurious roots of the actual problem, but 
when such a root develops a sizeable imaginary part it may well not be spurious. 
Indeed Milne6 has shown that with the true K(z) the system cannot hXve any 
negative red roots. In addition, in the same paper, he shows that the solution 
of (A-l) has the form, for = > 0, 

m 
47) = c %e + c rj$+O(e 

i=l J=l 

(A-l 9) 

where hi (i = I... m) are all the roots, assumed distinct, of the characteris- 

tic equation (10) whose resl parts are greater than (-II,), and the second term 
is an asymptotic expansion for an lntegrsl given In Ref.6. The leadlng non- 
zero term in this asymptotic expansion will theoretically domxxke any decaying 
exponentids when 7 is large, but the little experience there is6 suggests 

that this does not occur until the value of 7 is much too large to be of any 
practical interest. 
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Appendix B 

DETERMINATION OF THE K, Mt?Ti(ICES 

Substitution of the series (13) for K(c) in equation (11) gives, 
assuming Re(p) > 0, 

A 
I?(p) = $ - p - + $ + ,": 

K m-l 

c 

K&P,'# 

(P' Podr+' . 
(B-1) 

r=O 

If we now go to the luut p -) iw we obtam, remembermg v = w/v, 

TLvA K Ill-1 

- IWit (iw) = - IVY - + + -AL + 
Kr(podr 

IVY c vr+'(po+ iv)'+' ' 1 (B-2) 

l-0 

Substituting for F(uN) from (12) 

m-l 

- v2 A, + ivB + C = 
c 

Kr(?,d' 
- LV" 

vr+' (p, + iv)'+' I . (E-3) 

l-0 

when ” = m 

B=B =-A0 M 

When Y = 0, vB = 0 

C = Co = -Ku. 

Thus with the substitution 

(B-4) 

(B-5) 

(B-6) 

, 
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=v(B-B-) + (c-Co) 

m-l 
= - 

c 
iql -x) r/2 x+ (G- i &)r+' 

r=o 

= - i &o )K~ + K,(l-2~) + K2(1-x) (14~) + ***I 

- iK,x + K,Zx(l-x) + K2x(k)(3-44 . ..I (B-7) 

B and C are evaluated for e. values of v (and hence x) -8 a m, and the 
resulting equations solved by the least squares method. 

If hij is the modulus of the error in the satisfaction of this 
equation for the iJ th term of the matrix then 

iEiJ + x [(K IJ o + 2(1-x) (KiJ), .) + (l-x) (3-4x) (IQ2 + . ..]I2 

+ IYE. + Jx(l [(K& + (I-~) (KiJ), + (1-x) (1-b) (KiJj2 + ---]I* 

= [CIJ =; 
m-l 

+ - ar(x) (KIJ$ + [uziJ +r P,(x) (Kid&]* (say) (B-8) 

r=O l-0 

where 

c-co = e = [CiJl (B-9) 

E-B w = E = [i&l (B-10) 

Kr = [(K&l . (B-II) 

Let s iJ be the sum of (bij)F. The required (Kij)r are then given by the 

solution of the set,of sinniltaneous equations 

asi. 
-a(K,j), = O for r = 0 to (m-l) 
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i.e. 

t-1 m-l 

0 = 1 [a&) [c,,b,) + 1 a,(~,) (K&) 

q=o s=o 

m-1 

Appendix B 

+ PJX,) vq q,b,) + 
c c 

P&x,) (KiJ& 1 - (B-12) 

s=o 

These equations for the different values of r and iJ can be combined to 

give the single matrix equation. 

(s-13) 
where 

&I 

Y = I-S 
c 

b,(x,) qXq) + PJX,) P,(x,)l . 

q=o 

(B-14) 

Thu equation can easily be solved to give the matrxes K,. The yrs turn 

out to be surpnsu~gly simple. 

yoo = 2’ x9 
q=o 

l-1 

YOI = -q. = Y,, = 
c 

xq(l -x9) 

q=o 
&I (B-1 5) 

Yo2 = Y20 = 
c 

xq(l -xq) (I -2xq) 

q=o 
&I 

3 2 = Y21 = Y22 = 
c 

xqbxq)2 
I 

q=o 
etc. 
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Table 1 

OSCILLATORY AERODYNAMIC MATRICES 

B co 

3.14159 3.92699 5.95689 0 6a28319 37.5622 
O-78540 1.76715 3.97733 0 l-57080 15.8822 
0*15912 0*60969 2.97667 0 0.31825 5.4108 

Y B C 

0.1 5.71147 -2.35420 0.08209 34.2243 
I.42787 0.19685 

-yg 
- 0.02052 

: *z: 
- 15.0477, 

0.28929 0.29154 0.61777 o-0041 6 0.29241 5.2417' 

0.28 4.92207 I.11343 -17'11312 O-32528 5.16603 29.7418: 
I.23052 1.06376 -1 *79017 0.08132 I*29151 13.9271: 
0.24931 0.46718 I.80814 0.01648 0.26167 5.0147 

0.5 ZZ:2 Z-50648 -6.78208 o-58197 4.78792 26.5803. 
I .41202 0.79259 0.14549 l-19698 l3*1367! 

0.22041 O-53774 2.33142 o-02948 o-24251 4*8545( 

0.6 4.17814 2.82657 -4.26015 O-67602 4.68515 25.6358: 
I-04453 I.49204 I.42308 0~16900 1 *I7129 12.9006: 
0~21163 0.55395 2.45916 0.03424 O-23731 4.80671 

0.8 3.92684 3.22015 -1 ~02519 0.82930 4.54882 24.2827: 
0.98171 I.59043 2.23182 O-20733 I.13720 12.5623f 
0.19890 0.57389 2.62302 0*0&201 O-23040 4*7382( 

1.0 3.75694 3.44156 o-89489 0.94694 4.46715 23 *3815t 
0.93924 I 064579 2.71184 O-23673 1~11679 12.33705 
0-19029 0.58510 2.72027 O-04796 0.22627 4*6925( 

1.3 3.58938 3.62527 2.58135 1.07747 4.39748 22.50681 
o-89734 I ~69172 3.13345 0.26937 I.09937 12.1183E 
0.18181 0*59441 2.80569 0.05458 0.22274 4.6482: 

1.6 3d+8181 3.72465 3.55303 I ~17121 4.36021 21 -9550: 
O-87045 1.71656 0.29280 1~09005 ll~y804: 
O-17636 0.59944 :%3; * 0.05932 0.22085 4*6203c 

2.0 3.38737 3.79781 4.314.86 1.26007 4.33442 21.4889: 
o-84734 1.73485 3.56683 0.31502 I.08361 11.8639~ 
0.17168 0.60315 2.89350 O-06382 O-21954 4.59665 

2.2 3.35657 3*82089 4.56797 1.29392 4.32701 21 -32581 
OQ339l4 I -74062 3.63011 O-32348 l-08175 II*82312 
0~17001 0.60431 z-90632 O-06554 0~21917 4.5884: 

2.4 3.32981 3.83853 4.76760 I-32262 4.32178' 21 *I9377 
O-83245 I.74503 3.67996 o-33066 1*08OI+& 11~79011 
O-16866 0~60521 Z-91642 O-06699 O-21890 4.58174 

z-6 3.30770 3.85229 4.92725 1.34716' 4.31807 21*08547 
0.82693 l-74847 3.71993 0.33679 l-07952 11.76303 
O-16754 0*60590 2.92452 0.06824 0.21872 4.57626 

j-0 3.19653 3.90876 5.65508 1.48588 4.31094 20.55591 
O-79913 1.76259 3*9Ol8a 0.37147 l-07774 11 *63064 
0.16191 O-60877 Z-96138 o-07526 O-21836 4.54943 

r 
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Table 2 

UNLINED-UP BRITISH METHOD SOLUTIONS 

" = 0.5 w 
F p2+ W2 

v A B C A B C 

0 1 -2747 0.3776 0.8839 0 0 
o-1 1.3026 0.3831 0.8598 -0.:335 0.0263 0.195: 
0.2 I.3455 0.3970 0.8295 -0.0355 0.0456 0.3454 

0.3 I.3837 0.4152 0.8122 -0.0181 0.0611 0.4 I.4153 0.4366 O-8053 0.0149 0.0788 :'z * 
0.5 1.44.12 0.4634 0.8000 0.0656 0*1004 0.56ti 
0.6 I.4684 0.5020 0.7769 0.1384 0.1224 0.5845 
0.7 I e5215 0.5675 O-6888 0.2290 0.1219 0.614E 
0.8 1.6233 0.6478 0.5119 0.3063 0~0360 0.7361 
0.9 I.7540 0.6810 0.2901 0.3575 -0.0792 0.9065 
1 *o I.8957 O-6838 0.3917 -0.1776 
1 *I 2.0424 0.6720 0.4159 -0.2634 

v = 0.6 

0 I.274 0.3776 0.8839 0 0 0 
0.1 1.2950 0.3832 0.8669 -0.0238 0~0300 0.183: 
0.2 I.3271 0.3974 0.8455 -0.0230 0.0521 0.329; 
0.3 I.3535 0.4159 0.8378 -0.0043 0.0696 0.4347 
0.4 I.3701 0.4374 0.8437 0.0302 0.0889 0.5015 
:.;5 1 1 -3748 *3725 0.4641 o*L&311 0.8583 0.8657 0.0848 0.1232 0*1130 O-1269 O-5376 0.534: 

0.6 1.3694 0.5024 0.8681 0.1725 0.1412 0.53oi 
0.65 I.3739 0.5310 0.8534 0.2344 0.1541 0*514i 
o-7 I.4035 0.5730 0.7970 0.2983 0.1583 0.5057 
0.75 I.4586 0.6340 0.6916 0.3469 0.1268 0*544c 
0.8 I.5241 O-6821 0.5825 0.3807 0~0501 0.6346 
0.85 I -5928 O-7028 0*4889 0.4057 -0.0243 o-7294 
o-9 I a6626 0.7099 0.3940 O-4252 -0.0875 0.8197 
0.95 1.7332 0*7101 O-2795 0.4409 -0.1424 0.9077 
1 -0 I.8041 0.7060 0.5997 ::$g -0.1918 0.9957 
I.05 I .a755 O-6991 -0.2371 
1 .I l-9472 O-6899 0.4746 -0.2797 

v = 0.8 

0 I;2747 0.3776 
:*:;21' * 

0 
o-:345 

0 
o-1 1 -2849 0.3833 -0~0103 0.1671 
0.2 1~3010 O-3978 0.8688 -0.0520 0.0603 0.3065 
0.3 1.3091 0.4165 O-8764 O*OlI$t 0.0801 o-4094 
0.4 1.3olv 0.4381 0.9035 0.0484 0.1014 0.4739 
0.5 1~2680 0.4643 0.9546 0.1023 0.1285 0.5005 
0.6 1.1726 0.5005 I.0572 0.1941 0.1646 0.4782 
0.7 0.9338 0.5649 1 -2680 0.2585 0.2166 0.4641 
0.8 0.7573 0.6111 l-4233 O-0492 O-4848 0.4955 
0.9 0.7525 -0*1105 0.6966 0.5207 
1-o 0.7363 -0.2169 0.8655 O-5400 
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Table 2 (Contd) 

c 

, 

v = 1.0 w II 

ti 

Y A B C A B C 

0 1 *2747 0.3776 04339 0 0 
0.1 I -2789 o-3833 0.8817 -0.0~16 O.,",,, 0.156; 
o-2 1 -2838 
0.3 l-2786 

:'~z 0.8844 0.0065 0.0648 0.2915 
. 0.9037 O-0257 0.0860 0.393: 

0.4 1.2545 0.4384 O-9461 0.0560 0.1083 0.459: 
0.5 I.1980 O-4642 1 -0199 0.0973 0.1368 o-4937 
0.6 I-0911 0.4984 I.1349 0.1371 0.1766 0.5094 
0.7 o-9433 0.5517 1.2676 0*1398 0.2429 0.5304 
0.8 0.8103 0.5867 I.3951 0.0108 0.4311 0.553: 
0.9 O-7781 o-5092 I.5197 -0.1330 0.6268 0.573; 
1 -0 0.7544 0.3974 I.6441 -0.2360 0.7859 0.5891 
1-l 0.7288 0.2231 1.7694 -0.3223 o-9349 0.6017 

,= 1.3 

0 1 *2747 0.3776 0.8839 0 0 0 
o-1 1 *2737 0.3834 0.8866 0.0065 0*0391 0.1471 
0.2 I -2672 0.3981 0.8995 0.0178 0.0685 0.278C 
0.3 I.2481 0'4171 0.9312 0.0353 0.0908 0.3805 
0.4 I.2090 O-4388 0.9874 o-0574 0.1137 0.4522 
0.5 l-1439 O-46@ 1.0692 0.0777 0.1433 0*5011 
0.6 1 so547 0.4967 1.1683 0.0853 04851 0.5386 
0.7 0.9443 0.5407 1 *2740 0.0641 0.2559 0.5692 
0.8 o-8424 0.5671 1 *3826 -0.0356 0.4045 0.5936 
0.9 0.7986 0.5224 I.4939 -0.1578 0.5726 0.6129 
1 *o 0.7698 0.4430 1.6076 -0.2556 0.7183 0.6280 
1 *I o-7420 0.3286 I.7235 -0.3394 0.8535 0.6400 

I = 1.6 

0 1 -2747 0.3776 0.8839 
0.1 1 -2707 0.3834 0.8894 o&3 

0 0 
0.0402 0.1414 

:.; 1.2287 I.2568 0.3982 0.4174 0.9490 O*YOY 0.0248 0.0404 0.0933 0.0705 0.2695 0.3732 
0.4 1.1824 0.4391 1.0116 o-0548 0.1166 O-4509 
o-5 I.1486 0.4644 l*Ogr7 0.0623 0.1464 0.5091 
0.6 1.0395 0.4960 1 *I817 0.0578 0.1889 0.5536 
0.7 0.9438 0.5359 I.2776 O-0280 O-2598 0.5874 
0.8 0.8552 o-5593 I.3780 -0.0624 0.3923 0.6132 
0.9 O-8092 0.5277 l-4823 :g':lg O-5446 0.6330 
1 *o o-7785 0*4&l l-5899 + 0.6809 0.6403 
1-l o-7498 0'3730 l-7004 -0-3501 O-8074 0.6604 

. 
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Table 2 (Cc&d) 

" = 2.6 w !J 
Lb 

v A B C A B C 

0 1.2747 0.3776 0.8839 0 0 
o-1 1.2665 O-3834 0.8932 oaI86 o-:4,6 0.1330 
0.2 l-2409 0.3984 0.9238 

0.4179 0.9770 :‘z * 
0.0730 0.2566 

0.3 I.1984 0.0964 0.3643 
0.4 I.1468 O~I+lQO 1.0437 0.0459 0.1198 0.4537 
0.5 I.0894 0.4654 1.1169 00.0382 0.1497 0.5224 
0.6 1.0220 0.4962 I d962 0.0216 0.1925 0.5730 
0.7 0.9422 0.5321 1.2817 -0.0172 0.2616 0.6101 

0.8 0.8682 0.5533 1.3726 -0.0994 0.3763 0.9 0.8226 0.5355 1.4683 -04988 0.5079 z;;: - 
1 -0 0.7906 0.4909 1.5679 -0.2876 0.6298 0.6745 
1 *I 0.7616 0.4260 I.6709 -0.3665 0.7429 0.6869 

” = 5.0 

0 1 a2747 0.3776 0.8839 0 0 0 
o-1 l-2643 0.3835 0.8953 0.0225 0.o&21 0.1284 
0.2 1.2316 0.3986 0.9325 0.0417 0.0740 0.2494 
0.3 1 *I810 0.4185 0.9931 0.0476 0.0976 0.3609 
0.4 I.1295 0*4I+lO I*0590 0.0390 0.1209 o-4571 
0.5 1.0763 0.4669 I.1277 0.0250 0~1506 0.5299 
0.6 I*0140 0.4977 1.2022 0.0032 0*1931 O-5827 
0.7 o-9408 0.5325 I -2831 -0.0393 0.2607 0.6212 
0.8 0.8732 0.5537 l-3697 -0~1191 0.3676 0.6496 
0.9 0.8291 0.5418 1.4613 -0.2135 0.4893 0.6709 
1 -0 0.7974 0.5061 1.5569 -0.2995 0.6030 0.6873 
1 .I 0.7688 0.4532 1.6560 -0.3766 0.7083 0*7001 

Table 2 

LINED-UP BRITISH METHOD SOLUTIONS 

A 
I 

-k- “7e 
0.684 -0.312 
0.748 -0.154 
0.808 -0.020 
0.928 0.052 
I*011 0.05 
1.128 0.045 
1.21 0.048 

v 

0.844 0.422 0.804 
0.842 0.504 0.71 
0.78 0.624 O-42 
0.45 0.45 0.122 
0.326 0.424 0.095 
0.255 0.408 0.084 
0.15 0.39 O-058 
0.076 0.38 0.032 

B 

F- 

r  

p2+COL 

0.646 
0.454 
0.23 
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4 Table 

VALUES OFMATRIX E-' 

v Real part Imaginary part 

0.5 z;:~8 -6.66793 -43.00800 
. 3.36114 -13.43767 

-Ez -1 '93107 %*13441 
' 

o-9641 6 
-0.96354 -5.70521 

-0.30780 -23.40673 -0.55799 -I *36136 -5.902jL 

0.6 5.19061 -3.69731 -28.51554 -3.37051 -1 *86745 4.7442; 
4 -83313 2.80821 -9.45273 O-62736 -0:75488 -4.3756; 
o-99302 O-08571 -15.72792 -0.44647 -t *16867 -5.18811 

0.8 5.47233 -0*83830 -14.90035 -2.37584 -1.63870 1 - 60096 
I.78070 2.27605 -5.34247 o*ld+222 -0.52184 -2.91744 
I.03034 0.46442 -8-l 9803 -0.31471 -0.90805 -4.15035 

1-o 5.64118 O-43969 -3";;43$ -1 *8184!+ -1.41814 0.35141 
1 *74927 2.03818 . 0.33847 -0.39752 -2.16097 
A.05270 0.63371 -4.76653 -0-24088 -0.74063 -3.44338 

I.3 5.79093 1 ~W4.5. -4.96893 -1 -33641 -1 -15927 -0.35759 
1 -72140 1*87Ol5 -1 -88330 o.urs75 -0.29306 -1 -54541 
I.07254 0.75329 -2.30816 -0.17703 -0.57878 -2.73193 

1.6 5.87808 l-77750 -3.08558 -1 *0532g -0.97197 -0.58449 
q-70517 1.78917 -l-A3439 0.19605 -0.23251 -1.20093 
I.08408 0~81oy2 -1~11115 -0.13952 -0.47424 -2.25863 

!*O :*zz 2.07740 -1 - 82265 -0.82026 -0.79528 -0.65196 
. l-73335 -0~60060 0.15268 -0.18271 -0.92643 

1.09322 0.85065 -0 - 28123 -0.10866 -0.38174 -A*$3133 

!*2 5.97012 2.16917 -1.44387 4 73848 -0.72806 
1 .68804 1.71626 

-0.64838 
-0.43388 o-13745 

l-o9628 
-0.16516 

0.86281 
-0.83184 

-0.02661 -0.09782 -0.34771 -1.67222 

i-4 5.98837 2 e 23872 -1 45969 -0*67154 
1.68464 

-0.67095 -0.63457 
f-70332 -0.30635 0*12500 

I*09870 0.87202 0.16653 
-0.15073 -0.75504 

-0~08896 -0~31920 -1.53820 

1.6 6.00306 
2.29271 -o*g4105 

",'%T 
-0.62190 

1.68191 1.69327 
-0.61551 

-0.20663 . 
I do064 

-0.13866 -0.691l42 
0.87917 0.3~650 -0*08157 -0.29499 -id+2382 

*o 6.07075 2.51842 -0.05022 -0.30944 
I -66931 

-0.32885 -0.39052 
1.65126 0.21766 0.05760 -0.071og -0.34642 

1 do961 O~goYO7 0'94307 -0~04099 -0.15412 -0.74972 
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AMERICAN METHOD SOLUTIONS 

?requency parameter 

v w 

t 
0.5 0~61072 

o-47955 

0.6 o-63319 -0.22137 1.0553 
o-49399 0.44777 0.8233 

0.8 0.69755 -0.07660 0.8719 
0.48152 0.25480 0.6019 

1 *o O-45178 0.16086 0.4518 
O-80645 -0.0004289 0.8064 

1.3 0.93615 O-02804 0.7201 
0.42547 0.11635 0.3273 

l-6 1.01633 o-03304 
0.09645 

~ 0.6352 
0.41095 0.2568 

2.2 1.10095 o-03480 0.5004 0.82502 -0.057330 T 
0.39611 0.07306 0.18005 6.37336 -0.931281 
I.47218 I.72004 0.6692 0.46140 -1 -58725 

2.4 I.11786 o-03545 0.4658 O-80025 -0.056739 T 
0.39327 0.06754 0.1639 6.46557 -0.873348 
l-29925 I.20728 0.5414 0.59240 -1.43038 

2.6 I.13174 0.03632 0.4353 O-78073 -0.056710 
o-39103 O-06276 0.1504 6.53989 -0.820828 
I.20194 0.93955 0.4623 0.69220 -1 '30071 

5.0 I.21409 0~04242 0.2428 O-67842 -0.057550 
0.38132 Q-03350 0.0763 6.87734 -0.460743 
o-94945 o-27583 0*1899 1 .I0931 -0.611957 

Sp?C 

-g/2 

-0.29496 
0.55225 

.0.03422 0.5399 o-85771 -0.058705 T 
0.07950 0.1999 6.25755 -0.994975 
0.13596 0.9384 0.28390 -1.78062 

i 

I v 

i-2214 
o-9591 

Eig 
Real 
l/W2 

2.68112 I.58164 
4.34852 -4.80293 

-22.10245 -7.85694 T 

2.49424 I.10429 
4.09797 -3.66984 

-14.32131 -6.74955 T 

2.05517 0.31482 
4.31287 -2.19779 

-6.81769 -5.16506 T 

4.89935 -1 -57618 
I -53760 0.0013190 

-3.52413 -4.08448 

I*14107 -0.063988 
5.52413 -1.28538 

-1 *31228 -3.01203 

O-96812 -0.063975 
5.92129 -1.14215 

-0.33331 -2.33831 

!nVS.lUe 

Imaginary 

P/W" 

T induxtes the solution is obtained by the 'trace method' see section 3.3. 
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Table 6 

PO = 0.6 PO = 0.4 

m=3 m=3 

% -1~51095 2.02132 17.38750 -1.44934 2.00797 17.0915t 
-0.37773 o-50534 4.34687 -0.36233 0.50200 4.27287 
-0.07654 o.lo238 0.88069 -0.07342 0~10170 0.8657c 

5 o-46925 0.65061 2*2&u 0.95872 0.38477 -1 *06495 
0~11730 0.16264 0.56063 O-23967 O-0961 a -0.2662: 
0.02380 0.03296 0.11357 0.04859 o.oq949 -0.05396 

K2 -0.59545 I.33257 10.05638 -0.80506 0. aa432 adduj 
-0.20126 , -0.14885 o-33315 2.51405 0.22109 2.02807 

-0~03019 0.06749 o-50935 -0.04080 0.04478 0.4loay 

m=2 m=2 

Ko -I +oaq 7 I.79130 15.65171 :a-;$,3 1 -89735 16.07675 
-0.35204 o-44783 3.91291 * o-47434 4.01917 
-0.07133 0.09073 O-79277 -0.06832 0.09610 0.81430 

5 0.11651 l.L&.002 a.1 9979 o-57042 0.81131 2. a4788 
0.02912 0 -36000 2.04994 0.14260 0.20282 0.71197 
0.00592 O-07294 0.41531' 0.02891 0.04109 O*l4623 
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, 
, 
, 
, 
, 
, 

L 

I 

( 
( 
C 
( 
( 
( 
C 
C 
C 
C 
c 
C 
1 
1 
1 
1 
2 
5 

PO = 0.t 

” 

0 
o-1 
0.2 
0.28 
o-3 
0.3928 
0.4899 
3.5 
3.6 
3.7349 
3.8 
2.9165 
1 *o 
1.2 
1.3 
I-6 
1.8 
!.6 
j-0 

c-3 

?o 
= o-4 

0 

:::333 
).2 
I.2619 
I.28 
1.3266 
)*4 
I.4899 
1.5 
l-6 
)*6110 
j.8 
-0 
-2 

:; 
8. ,6 
,-0 

m 

Table Z 

COMPARISON OF AERODYNAMIC COEFFICIENTS 

c 
, 
, 
, 
, 
I 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
1 

X 

0 
0.0270 
o-1 
3.1788 
3.2 
2.3 
3.4 
3.4098 
3.5 
1.6 
1-64 
1.7 
1.7353 
I.8 
I.8244 
I.8767 

z494 
I.9858 
I .o 

0.0588 
0.1 
o-2 

00.:289 
0.4 
0.5 
0.6 
0.6098 
0.6923 
o-7 
0.8 
0.8621 
0.9 
0.9135 
O-9412 
0.9769 
O-9936 
1 *o 

B1l 

:alculated 
'ram Ref.7 

6.2832 
5.7115 

4'9221 

4.3514 
4.1781 

3.9268 

3.7569 

3.5894 
3.4818 

3.3077 
3.1965 
3.1416 

6.2832 
5'7115 

4.9221 

4.3514 
4.1781 

3.9268 
3.7569 

3.5894 
3.4818 
3.3077 
3.1965 
3.1416 

Approximatuxv 
from eqn. (28) 

m=3 

5.8702 
5.7099 
5.3272 
4.9875 
4.9078 
4.5881 

:: ;g 
4.1526 
3.9892 
3.9264 
3.8301 
3.7706 
3.6518 
3.6026 
3.4.869 
3.4302 
3.2974 
3.1875 
3.1416 

6.3808 
5.9247 
5.6551 
5.1474 
4.8096 
4.7368 
4.5932 
4.4501 

:: :1';: 
4.2030 
4.1902 
3.9768 
3.7870 
3.6433 
3.5864 
3.4599 
3.2751 
3.1794 
3.1416 

In=2 

5.2944 
5.2464 
5.114c 
4.9664 
4.9259 
4.7301 
4.5265 
4.5060 
4.3151 
4.0959 
4.0061 
3.8690 

::g 
3.5759 
3.4490 
3.3918 
3.2691 
3*~?76 
3.1416 

5.0871 
5.1306 
5'1493 
5.1544 

::A;2 
G-9934 
4.8274 
i.6043 
6.5795 
G.3478 
S-3242 
3.9870 
3.7491 
J-5928 
3.5352 
J-4139 
3.2510 
J-1720 
3.3416 

C 
11 

Calculated 
from Ref.7 

0 
O-0821 

o-3253 

0.5820 
O-6760 

O-8293 

o-9469 

I.0775 
l-1712 

1.3472 
l-4859 
l-5708 

0.0821 

0.3253 

0.5820 
O-6760 

0.8293 
o-9469 

1.0775 
i-1712 
l-3472 
l-6859 
I.5708 

Approximation 
from eqn. (28 

In=3 

0 0 
0.0614 0.031: 
0.2060 0.119: 
0.3322 0.2171 
0.3616 0.2441 
OG313 0.3731 
o-5792 o-507: 
O-5882 0.52ot 
0.6697 0.645t 
0.7671 O-789( 
0.8111 O-84?! 
0.8856 3.936f 
o-9351 3*yyo1 
l-0396 1.oay: 
1.0841 i -1271 
I-1906 1.2091 
l-2436 1*2L+6L 
I -3667 I *325E 
I.4685 1.3845 
I*5110 I-408; 

0.1023 
O-1608 
0.2665 
o-3365 
O-3528 
0*3901 
o-4466 
o-5254 
o-5349 
o-6345 
o-6457 
O-8269 
0.9785 
1 -0884 
1.1309 
i-2238 
1.3560 
l-4230 
1w+93 

/ 
, 
, 
, 
i 
t 
( 
( 

1 
1 
1 
I 
1 

0.0162 
o-0322 
oa71 
0.1650 
O-1917 
0.2657 
0.38gr 
3.5354 
3.5509 
3.6906 
3.7045 
1.8964 
1.0270 
I .I111 
I *I419 
I -2061 
1.2917 
l-3328 
I.3486 

m=2 

1 
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Table 8 

COMPARISON OF AEIlODYNAMIC COEFFICIENTS (v = l-0, II = 0.6) 

- .  I  

B ij C. 1.z 
i j 1 

Calculated eqn. (28) eqn, (28) Calculited eqn. (28) kqn. (28: 
from Ref.7 m=3 m=2 from Ref.7 m=3 In=2 

1 1 3.7569 3.7706 3.7870 o-94694 0.93514 o-yyoo6 

12 3.4416 3.4724 3.4357 4*467l 4.5284 4*4o55 

13 O-%949 1.0312 0.7541 23.3816 23.7a92 22461% 

2 1 o-93924 o-94265 0.94676 0.23673 o-23378 o-24752 

2 2 I ~645% 1.6535 1.6~3 I .11679 i -13210 I.10137 

2 3 2.7118 2.7459 2.6766 12.3370 12.4389 12.2071 

3 1 0~19029 o-19098 0.19182 0.04796 o-04736 0.05014 

3 2 0.58510 0.58666 o-5&+%1 0.22627 0.22937 0.22314 

3 3 2.7203 2.7272 2.7131 4.6926 4*7132 4.6666 
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PO = 0.6 

In=3 

v A 

0 I.2746 
o-1 l-2635 
0.2 1 -2303 
0.3 1.1867 
0.4 I.1465 
0.5 1~1014 
0.6 I.0396 
0.7 O-9436 
0.8 0.8034 
O-9 O-7452 
1 *o 0.7051 

0 
o-1 
o-2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

I 0.9 
1 -0 

: -Z$ . 
l-2320 
I.1826 
1.1341 
1.0851 
1.0267 
0.9495 
0.8334 
0.7440 
0.6978 

Table 9 

RICHARDSON METHOD SOLUTIONS 

w 

B C 

0.3776 0.8039 
0.3835 0.8961 
0.3984 0.9335 
0.4177 0.9863 

I 

O-4389 I.0384 
0.4635 I.0919 
0.4956 1.1501 
0.5465 I.2132 
0.6124 I.2807 
0.5067 I.3523 
0.4762 l-4273 

0.3776 0.8839 
0.3837 0.8951 
0.3986 0.9315 
o-4170 0.9910 
0.4367 l-0547 
0.4593 i -1203 
0.4891 1 *I914 
0.5356 I.2687 
0.6213 I.3515 
0.6836 I.4392 
0.7066 I.5309 

D 

0.00067 
0.0182 
0.0316 
0.0731 
0.1256 
0.1907 
0.2721 
0.3830 
O-5846 
0.6943 

-* 

A B 

0 0 
0.0239 0.0417 
0*04.20 0.0711 
0.0460 0.0913 I 0.0442 0*111y 
0.0470 0.1390 
0.0558 0.1760 
0.0653 0.2315 

-0.0030 0.3884 
-0.1428 0.6037 
-0.2471 0.6382 

C D 

0 
0.1272 
0.2517 
0.3708 
0.4711 
o-5459 
0.6001 
0.6397 
0.6690 
0.6911 
0.7081 

0.993 
0*986[ 
0.985: 
0.961t 
0,933; 
0'900; 
0.859: 
0,8011 
0.727: 
0.7611 

0 
0.1266 
0.2472 
0.3598 
0.4575 
0.5316 
0.5854 
0.6247 

", : 2:B 
0.6925 I 

. 
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Table y (Contcl) 

PO = 0.4 
w 

m=3 -* 

v A B C D A B C D 

0 I -2746 0.3776 0.8839 0 0 0 
o-1 1.2636 0.3835 0.8959 o-0240 0.0418 o-1270 
0.2 I.2303 O-3982 O-9337 O-0427 0.0715 0.2504 
0.3 14847 0.4l72 0~9891 0.0291 0.0470 0*0914 0.3682 0*975( 
0.4 1.1430 0.4384 i.ows 0.0549 O-0433 0~1110 O-4683 O-952( 
0.5 l-0984 0.4635 I*1019 O-0816 O-0428 0.1363 0.5434 0.YW 
0.6 I.0404 O-4974 1.1642 0.1279 0.0477 0*1701 0.5979 0.891; 
0.7 0.9540 0.5539 1.2320 0.1726 0.0564 0.2151 0.6378 0.85lE 
0.8 O-8085 0.6673 I.3049 0.2172 0.0097 0.3235 0.6674 0.8065 
o-9 Q-7450 0.7076 I.3821 O-2508 -CM407 0.5109 0.6899 0*768C 
1 *o 0.7057 0.7373 I.4631 0.2691 -0.2478 0.6174 0.7072 0.751: 

m=2 

0 1.2746 0.3776 O-8839 
0.1 1.2641 0.3836 o.ay53 0.00242 0.:419 0.1'268 
0.2 i-2312 0.3985 0.9321 0.0446 0.0721 0.2482 
0.3 1.1833 0.4174 0~9902 0.0518 0.0929 0.3622 
0.4 I.1365 0.43a2 I.0513 O.O@I 0.1133 0.4604 

g:; 1.0879 I.0279 0.4624 0.4942 1.114!+ I*1831 0.0447 0.0436 0.1391 0.1728 0.5346 0.5884 
0.7 0.9452 0.5440 I.2576 0.0409 0.2172 o-6276 
0-a o.a247 0.6285 1.3377 -0.0043 0.3059 0.6567 
O-9 0.7516 0.6654 I.4225 -0.1351 0.4644 0.6786 
1 *o 0.7079 0.6741 I.5113 -0.2403 0.5762 0.6954 

37 

. 
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Table 10 

Method 

British unlined-up 

v = 0.5 

v = 0.6 

v = 0.8 

v = 1-o 

" =I.3 

v = 1.6 

v = 2.6 

!J = 5-o 

British lined-up 

American 

Richardson method 

0.83 

o-832 

O-828 

o-795 

o-77 

o-735 

O-66 

0-61 

o-792 

0.805 

PO 
= 0.6, m = 3 O-8 

PO 
= 0.6, m = 2 0.805 

pcl =0*4, In=3 O-81 

PO 
= o-4, m = 2 o-795 

Critical flutter speed Frequenq 
v crit w crit 

O-66 

O-695 

0.755 

0.812 

O-865 

o-908 

0.974 

l-005 

0.82 

O-81 

O-805 

O-83 

0.80 

o-83 

vv wit 

O-415 

o-499 

0.662 

o-795 

1 -001 

1.176 

I.716 

3.05 

i 

. 
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c 

. 

A 

*o 

*I 
B 
B C-3 

E 

5 
iJ 

C 

co 
E 

%J 
D 
E 

H(T) 
I 
K 

E(P) 

% 

Kr 
s. 

1J 
V 

v. 

g/w 

SYMBOLS 

inertia matrix, structural and aeradynamlc 

see equation (13) 

aerodynamic uxrtia matrix 

aerodynamic damping matrix 

(B)V;cz 

B-B 

iJ 
th element of E 

aerodynamic stiffness matrix 

(c)v,0 

c-c 

. ~thoelenent of E 1J 

structural damping matrix 

structurd stiffness matrix 

unit step function, see section 2.3 

unit matrix 
indicial aerodynamic matrix 

Laplace transform of K 

see equation (13) (= -Co) 

see equation (13) 

Z(hiJ)'see Appendx B 

airspeed 
reference airspeed 

rat@ of fictitious hysteretic structural damping matrix to 

nge moment derivatives, see Ref.7 

number of values of v used to determine Kr 

ce derivatives, see Ref.7 

m 33 
: mz,mi, . . . pl -moment derivatives, see Ref.7 
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n 

P 

PO 

9 

4 

i- 
t 
" 

x 

xq 
a,(x) 

P,(x) 

Y,,(X) 

6(T) 
6 

iJ 
h 

P 
Y 
v 

9 
7 
w 

-* 

SYMBOLS (conta) 

number of degrees of freedom of the system 
Laplace transform parameter 
see equatxn3 (13) 

column matru of generalised coordinates 

q e-A7 

see equation (17) 

time 

V/v 
0 

v2/(u2+ PE) 

see Appendix B 

see equation (~-8) 

see equation (~-8) 

see equation (B-14) 

right hand Dirac delta function 

see Appendix B 

complex eigenvalue 

redlpartof )r 
frequency parameter = Ill/v 
see equation (B-12) 

gt/e 
imaginary part of X 

relative damping ratio 
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Fig. 12 British method solutions (V = I.6)-frequency 
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Fig.14 British method solutions ( V= 2.6) -frequency 
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