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SUMMARY 

A non-linear lifting surface theory is postulated which incorporates 
the leading edge separations, by extending Brown and Michael's slender wing 
model, but satisfies the Kutta trailing edge condition. Results of a numsri- 
cal application to a delta wing indicate acceptable trends compared with experi- 
mental data. 
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Notatmn 

X*Y, = Rectangular co-0raTLnate axes system 

Ua"sW Perturbation velocity components m x,y,z alrectlons 

A Aspect ratlo 

a2P+i,q 
Coeffxients zn serv2.s expansion for g,(X,y) in 

equation (58) 

y,bP + l,G,Y), s&P + l,q,%sr) 
Defined in equations (63) and (64) 

ad& + l,G,JiT) 

b 

c 

cL 

cP 

AC 
P 

Cm 
%ol 

Fy6), F,(F). F(z) 

Upwash coeffxxent corresponding to 
s2P+l,q 

I'ling span 

Wng root chord 
L 

= Lift coefficient 
$pP. SW 

z 
= Normal force coefficient 

+pva. s!# 

P - PCS = Pressure coefficient 
+pva 

= % - PCC 

$pv’ 
Pressure coeffxient on wing lower 

surface 

pu - PC0 = 
3pvg 

Pressure coefficient on wing upper 
surface 

= 
cP8 - cP, 

Loating coefficient 

Pztchlng moment coefficient about wing apex 

'A small tolerance (dquations (48), (49)) 

Defined m equations (WC), (45), (46) 

gq 
Coeffxxnts in series expansion for Fw(E) in 

equation (60) 
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g,,(q,%,y), g&&Y) Defmed by equatmns (65) and (66) 

d%%Y) Upwash coefflczent corresponding to gq 

k Slope of the mng starboard leading edge (i.e. y = lot) 

c Upper integer lmlt m series form for 7,(Z) in 
equation (60) 

Lift, force 

Upper integer linlt in series form for 
equation (58) 

QJY) .iJl 

Pitching moment about the wmg apex 

Upper integer limit in serzes form for 
equation (58) 

PJ9 Integer indices 

%i Wing planform sn s = 0 plane 

sT Trading sheet in s = 0 plane 
--- 
UJVJW @, v/v, w/v 

~,G,7vG), ~,G)),~,G,Yv(3, z,(3) 

v 

X 

Induced velocity in y E-directlons at the starboard 
vortex (equations (&Oj, (41)) 

Free stream velocity 

Force in x-direotlon 

Position of centre of pressure 

Locatzons of the starboard vortex 

Correction to spanwise posltion and height of the starboard 
vortex given by equations (50) and (51) 

Force in s-ds.rectLon 

Incidence 

Angle of deflectIon of streamlmes at the trailing edge . 

Trailing 'vortlcity', i.e. component of vorticity about 
x-dlrectlon 

the 

Part of trailing 'vorticity, tending to zero at the 
leadzng edge (equation (58)) 

. 



-5- 

6&&Y 1 

$(Y) 

G%4) 

Y(X,Y) 

Y,b'Y) 

Yg(X'Y) 

Part of trailing 'vortlcity' tending to a finite 
value at the leading edge (equation (5)) 

Trawling vorticity on the wake trailing sheet 

G/%Y/O)/+J 

Bound 'vorticity', i.e. component of 'vortxity' about 
the y-direction 

Part of bound 'vorticity' tending to eero at the 
leading edge 

I 

Equation(&) 

Part of bound 'vorticiQ' tending to a finite 
value at the leading edge 

YWC,Y/C)/v 

Circulation strength of starboard vortex above the wing 

Circulation strength of starboard vortex in the wake 

rW)/(c .v) 

Air density 

y/b .x) 

Trailing sheet 

Main vortex (or vortices) 

-wing planform 

,li' <Upper stiface of the wing 
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1. Introduction 

The qualitative flow pattern about a low aspect ratio wing with sharp 
leading edges at incidence is now well understood. Comprehensive experimental 
data has indicated the main features of the flow pattern, comprising the rolling 
up of the vortlcity shed from the leading edges into the two primary vortices, 
the attachment lines, the formation of the secondary vortices, and the character- 
istlc pressure dlstrzbutions with the high suctxons on the upper surfaces induced 
by the Primary vortices. 

Theoretical work has been developed along two fronts. 
based on the slender conical wing approximation, 

One front, 
has evolved through the models 

of Legendrel, Brown and Michael2, Mangler and Srmth3, Maskellb up to the detailed 
investz~ataon by Smith5; comparuon with the relevant experimental pressure 
data 1s good. Unfortunately the assumption of slenderness leads to a theory 
which is independent of Mach number, thus, 1~ general, the theory breaks down at 
1073 Mach numbers in the trailing edge regions because the Kutta trailing edge 
conditzon is not satisfied. The second front of approach attempts to extend the 
classical low speed lifting surface theory, incorporating the Kutta trailing edge 
condition, by includwg relatively crude representations of' the leading edge 
separations 

d 
The works of Gersten6, Garner and Lehrian7, and Sacks, Neilson 

and Goodwin all replace the wing with the usual form of bound vorticity but with 
some additional system of separated trailing vorticity although the rolling up 
process 1s neglected; distributions of loading are not obtained only the overall 
forces and moments. 

In this paper an attempt as made to combine these two approaches, the 
conventzonal lifting surface of vorticity xn the plane of wing is taken together 
with a more realistic pattern of rolled up trailing vorticity above the leading 
edge. 'This can be regarded as an extension of the slender ncng models to non- 
slender wings in which chordwise effects are significant. Obviously it u not 
feasible at this stage to generalise Smith's latest work since the numerical work 
already required in this slender wing case u formidable. So the task of genera- 
lising the 'simpler' model of Brown and Michael to non-slender wings is undertaken. 
It IS recognised that the model of Brown and blichael,in which the spiral vortex 
sheets from the leading edge are replaced by two concentrated line vortices of 
variable strength with two feeding "cuts" between the line vortices and the res- 
pective leading edges, is open to criticism and that quantitative results 
cannot be regarded with any confidence. But III the opinion of the authors it 1s 
essential to keep the model as simple as possible since it is expected that 
numerical work v&ll. be extensive. In any case the extension of the Brown and 
Mlohael's model will be an advance on the existing work. Wsn with this limited 
Objective the authors have not come up with a programme which can be plugged into 
the nearest computer, all that has been achieved 1s a grasp of what the solution 
entails and the order of magnitude of numerical effort which is required to give 
reliable quantitative answers relative to the assumed model. 

The flow past a finite thin symmetrical delta wing at incidence with 
separations all along the leading edge is considered. The a-zm IS to extend 
the Brown and Michael model to include the Kutta trailing edge condition. The 
basic model is shown in Fig. 1. 

The origin of Cartesian co-ordinates, x,y,s is placed at the apex 
of the wing and the x-axis is taken to Pass through the mid-pomt of the trail- 
ing edge. The strength of the starboard line vortex above the wing 1s denoted 
by r&=) ; and taking the axis of the 'out' 111 the plane normal to the wing 
surface the strength of the a- (4 'cut' is denoted by Yi . The vortex 

dx 

system/ 



system on the port side IS oyual and opposite to the starboard system. 

The wing surface SW ZLY to be replaced by a vortex sheet with dis- 
tributions of bound 'vorticity' Y(&Y) and trailing 'vorticlty' 6(x,y) . 
To satisfy the boundary condition that the upivash Just off the loading edge is 
finite the vorticity component parallel to the lea&ng edge tends to sore as 
,plJi whore d is the distance from the leading edge, then the vorticity 
compo;ent normal to the loading edge at the leading edge represents the strength 

of the 'cut' 
( 

~~,$4 
1.e. 

dX > 

The wake aft of the tralllng edge comprises the vorticity shod from 
the wing trailing edge together with the two convected separated loading edge 
vortex systems. 

Because of the velocity field mduced by the separated loading edge 
line vortices, the vorticity shod from the trallrng edge foods into the down- 
stream discrete vortices. This aspect is included in the present model by 
introducing an approximate form of the wake shown in Fig. 1. Y'llaments of vor- 
ticity which leave the trailing edge are deflected outwards at an angle p(y) 
under the influence of the spanwise velocity field duo to the main loading edge 
vortices. Downstream of the trailing edge it is assumed that those vortex 
lines remain straight at the same angle until reaching the side edges of the 
wake ( ,yj = s) where they are immediately convected into the main vortices 
via cuts JOinlng the side edge s of the wake to the main trailing vortices. 
This model crudely represents the absorption of the vorticity shod from the 
trailing edge into the leadvlg edge vortices and gives far downstream a complete- 
ly rolled up trailing vortex system. The rollrng up process has necessarily 
had to be incorporated into the present non-linear theory; the concept of a 
non-rolled up trailing vortex sheet extending from the trailing edge to infinity 
is only feasible and consistent within the framework of a linear theory. 

A numer~~l collocation method is developed. The wing vorticity 
G,Y) on SW IS expressed as a double Fourier series in terms of 20 unknown 
coefficients, while the strength of the leadzurg edge vortex is expressed a 
fifth order polynomial with 5 unknown constants. For a specified position of 
the loading edge vortex tho complete vorticity system (i.e. both 6(x,y) and 
Mx)) can be evaluated XII terms of these 25 unknowns. The upwash condition 
is satisfied at 20 points on the wing and the condition of zero load at the 
trailing edge IS satisfied at 5 discrete points. These last five equations are 
non-linear since there IS an interaction between the wing vorticity and the 
leading edge vortices. To cope with this difficulty a method requiring a double 
iteration proceuure is developed. First the position of the leading edge vortex 
1s assumed; the variation of the shedding angle p(y) of the trailing sheet 
vorticity from the trailing edge is assumed across the span, and the appropriate 
equations, which are now linear, are solved; it IS feasible to recalculate 
the shedding angle of the trailing sheet vorticity and this aspect can be itera- 
ted out further. Based on the results obtained the condition of zero force 
on the leading edge vortex system loads to a now position of the loading edge 
vortex and the whole process can be repeated. As will be discussed later, one 
of the maJor difficulties 1s that the two iterations cannot be accomplished 
one within the other, it is best to lot them develop in parallel. These diffi- 
culties are discussed from the experience of a norked example in Section III. 
In this worked example the intricacies of convergence have not been completely 
unravelled, however the theoretical results obtained are encouraging and the 
trends compare favourably with expoririental data. 

II ./ 



II. &athcmatical Formulation 

II.1 kodel and axes 

For a delta wing in a low speed flow of velocity V the 
orlgln Of the rectangular set of cartesian co-ordinates xIYt= =s 
located at the wing vertex. The x-axis is taken to pass through the 
mid-poutt of the trailing edge as shown in Fig. I. The dimensions of 
the delta wing are denoted by the root chord c , span Ss( = 2kc) and 
the leading edges are given by y = 2k.x . 

An uncambered wing surface at an incidence a is defined by 
$X,Y) = 0 . The wing surface area is denoted by SW . The extension 
aft of the trailing edge on the plane s = 0 of the wake strip 
( x s 0, IYI B s) is denoted by ST . These definitions of SW and ST 
differ from those in conventional linear theory where both SW and ST 
are usually projections on a plane parallel to the free stream. 

As mentioned previously the strength of the starboard vortex 
Over L+, IS denoted by l'v&x) , positive anti-clockwise, and its posi- 
tion is denoted by (x, y,(x), s,(x) ) . The strength of the port 
vortex is given by -TW(x) (in antl-clockwise sense) and its position in 
this symmetrical problem by (x, -y,(x), s,(x) ) . Aft of the trailing 
edge, x z o, above S T, the strength of the starboard vortex will be 
written as rW(c) + rT(x) . 

Since each of these line vortices increases in strength down- 
stream of the origin, the feeding of these line vortices 1s accomplished 
by the introduction of 'cuts'. In the region of the wing s each of 
the cuts extends from the leading edge to the neighbouring line vortex; 
in the region of the trailing sheet ST the cut extends from the side 
edge of sT to its neighbouring line vortex. The strength of the 'cuts' 
are equal to 

q&x) 
ObXSO 

3X 

and 
arT(x) 

06X<cc 
dX 

A 'bound vorticity' distribution y(x,y) and a 'trailing 
vorticity' distribution S(x,y) are introduced about mutually perpendi- 
cular directions as shown in Fig. 1. These vorticity Lstributions 
over the wing are related by the equation of continuity of vorticity 

aY(x,Y) WX,Y) 
=- **- (1) 

ay ax 

To comply with the conditions of leading edge separataon the 
upwash just off the leading edge must be finite. It should be noted that 
this condition does not imply zero loading at the leading edge although it 
does preclude an infinite loading there. 

Followmg/ 

. 
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Following the observations of Urown and Mxchael' finite upwash 
velocities off the leading edge are ensured zf.' the vortlcity parallel to 
the leading edge tends to zero as the square root of the dutance from 
the leading edge, the vorticity normal to the leadug edge at the leackng 
edge remins finite and represents the feedug vorticzty connected through 
a 'cut' to the main separated 'concentrated' vortices. In general., txe 
vorticlty on the wing SW can be written 

Y(X,Y) = 

f4X,Y) = 

where the functions y,(x,y) 
root of the dutance from the 
tmns Yg(X'Y) and Gg(X,Y) 

Y&Y) + Yg(X’Y) **- (2) 

+bY) + 6g(x’Y) --- (3) 

and 6,(x,y) both tend to zero as the square 
1eacluIg edge; at the leading edge the func- 
are both finite and their resultant vorticity 

13 normal to the leading edge. The 'vortulty' dutrbutlon representing 
yg(x,y) and Gg(x,y) in the present case of a delta wing IS assumed to 
comprue lines of constant vorticity on cucular arcs with the apex as theu 
centre. The resultant vor'ciclty at the leadug edge IS therefore at right- 
angles to it, as indicated in Fig. 2. 
6g(x'Y) can be written. 

The expressions for yg(x,y) and 

mW‘ X 

yg(x,y) = cos BL. - ( ) -=-W 

dx x=+g *‘a = (2 + 3)“’ * -2 ( > 2+&? II= 
x= - 

( > l+lP x= -TIT ( > 

drW Sg(x,y) = -sin eL - 
c > 

-;Y mW 

dr s+y up= (x” + ypya - -;;;; 

( ) 

( > S+$ r’a 
x= - x=- . 

, 
I+@ ( > l+P 

Next the conktlons at the trailing edge are discussed. 
Because Of the p&ward deflection of the streamlines and vortex lines at 
the trailing epge both y(o,y). %d+ 6(c,y) will exist. Straight fila- 
ments of vortL&ti leave the +i;ailmg edge at an angle p(y) in the 
present model a$ k?$.t.mue. down~>~.e.am Ftll reachug the edge of ST where 
they are 3mmediatel.y conliected uto the main vortex via the 'cut' to 
mcrease the voitik:&ength T,{x) . The angle p(y) .IS given by 

L 

~taJl$(y) = 
VJC,Y,d 

v cds a- + &(C,Y,O) 
a-0 (6) 

whe= vr(c,yl 0) Y+.<&: !$~~,y?~~~, are the velocity components induced at 
.,y% i.,. 

the trailing edge'.by.~~eparq~ed~i=~e-v?rtlCes. Smoe the zero load con- 
dltlon at the trailing edge is satisfied if 

Y(C,Y).(V co9 a + +,Y,o))- 6(C,Y). +Y,o)= 0 *a' (7) 

then from equatzons (6) and (7) 

y (C,Y)/ 
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Y(%Y) Vy(%Y*O) , 
= = tfm P(Y) - . _ 

NC,Y) v co9 n + u$c,y,o) 

A relationship between the vorticity shed at the trailing edge 
and the strength of 'trailing' vortices TT(x) can be deduced. By 
reference to Fig. 3, if A is a point on the trailing edge and D is a 
point on the side edge of ST such that AD is at an angle p(y) to the 

E-sxis, then the circulation about the strip along AD of width 6n is 
equal to 6(c,y).dy (= Y(~.Y).~) . The addition to the trailing vortex 
l'T(x) from the wake can therefore be written as 

or 

= Y(%Y) 

x = [(s-ybot B(Y)+cJ 

*-* (9) 

8 
rT(x = [(s-y) cot P(Y) + 01) = 

i‘ 
6(C,Y’) dy’ - -**(IO) 

Thus the vortacity distribution in the wake ST together with the vortex 
strength rT can be expressed in terms of the wing vortioity distrxbution 
over S w and the trailing edge shedding angle p(y) . 

The problem reduces to the determination of the following 
unlmovms : 

(i) the strength of vortacity components y,(x,y) and 6,(x.y) 
on the wing SW , 

(ii) the str ength of the main vortices r*(x) over the wing SW , 

(iii) P(Y) , 

(iv) the position of the main vortices over S,,, and ST . 

The boundary conditions to be applied for the oaloulation of 
these unknowns are: 

(i) the flow is tangential over the surface of the wing S,,, , 

(4 eero load at the trailing edge, 

(iii) zero force on the vortex-cut arrangement over both the wing 

SIV and the traalsng sheet ST ; zt is assumed in this paper 

that the force components in y- and s- directions are the 
important ones, the x-component force is not considered. 

II.2 Calculation of induced velwlties 

11.2.1 Veloczties induced by the wing vorticity distributions 
y x,y ) and 6 x.y 

The non-dimensional induced velocities -qqYp,) , 
$ cx, >q ,q and w (- 5 Z ) due to the vortxoi.ty distributions WXI~I~I 

T/ 

. 
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v(?.,y) and g(%,y) distributed over SW , in terms of the non- 
dimensional parameters defined in the Notation, are 

The subscript W on the velocity components indicates that the velo- 
cities are induced by the wing vortioity. As far as satisfying this 
condition of tangency of flow on 
Prr 

S,,, to a fxrst order, only 
(k ,p ,+O) from equation (13) is required, this is the classical 

llneari ed downwash integral where the integrand possesses the usual w 1 .a 
singular behaviour as 2, * 0 . The other velocity components 
-ii(E,,y,,Iz,) (equation (II)) and ?W(X,,~,,Z,) (equation 12)) will 
be required in the calculation of the velocity fields around the leading 
edge vortices. 

II.2.2 Velocities induced by the vorticity on % 
As described in Section I, the traiilng vortex sheet ST 

conszts of straight filaments of constant vorticity which leave the 
trailing edge at an angle p(y) . First the downwash due to the fila- 
merit AD (shown on Fig. 3) is derived. Taking x , y as a general point 
on the line AD the equation of AD may be writ&n fn non-dimensional 
ten&s, 

Thus the angle p(y) is given by 

using equation (8). 

First the important upwash velocity in the ?-direction is 
consxiered. The induced upwash due to AD at a general point 
P(+Y,'q , denoted by AEAI,, is 



Integration of equatmn (16) between the lmits 0,k 
yields the effect of the right-hand side of the trailing sheet ST in 
inducing upwash at a point P(~,,ji,,~,) ; wrzting thm term as 

then 

1 k 

after substituting for Z$ and 
G& 
- from equations (14) and (15). 
d? 

The analytic -reduction of I(y) is'dealt with in Appendix II. The 
corresponding expressmn for the induced upwash effect due to the left- 
hand sGie wake Pv 

TL 
is simply obtained by changing the sign of y, 

in the expression for W 
% 

, thus 

The total upwash effect due to trailirg vortex sheet ST is therefore 

The induced velocities UT and WT due to the wake can be derzved 

in a sirmlar manner to that outlined for W T above; it is found that 

X.2.3 Velocities induced by the discrete main line vortices 

Expressions for the velocities induced at a general point 
by the right-hand vortex are derived first. The three induced 
velocity components -i+ , due to right-hand vortex 

R 
FP 

a 
and iiP 

R 
of non-dimensional strength i'(F) can be written in the concise form 



I 
(Y$) - 5,) 

dZ”(Z) 

ax 
- (Z,(j;) - E,) dvg) 

azi 
f,(&x,,y,) = - . 

4x [(X - ",)a + (Y"(Z) - Y,)" + (2$) - ZJJ- 

dX”(F) 

1 G,W - 5,) - (% -?,) 

f,(',k,,y,,F.,) = - * 
a2 

4.x 1(X - fly + (Y,(X) - ?,)a + (Z,(x) - ",)P J"I 

(ii - 2,) 
GvG) 

1 dz 
- G,W - 5,) 

qx,x,,y,,q = - * 
43E [G - XJ+ (Qi) - Y,)" + (qi) - Z,ypa 

Since r(Z) has been separated into the form 

for 0 d X $ 1 (i.e. over the wing) 

. . . 

can also be 

an be wrdhen 

where 



= 

I? 
6(1,5') dY' 

x 
f$[(k - y) cot p(y) + l],X1,Y1,Z,) 

3 
Y 

x - 
c 

w(7) 
cot&y) - (k - y) cosd6'(?) - 

3 
.ay 

ay 
**a (34) 

= 
Ki 

s'( I ,y') a?' 
ii 

fw([(k - 5) cot P(Y)+ 1l,+?,,'z,) 
3 

k Y 
w(7) 

cotP(y) - (k - Y) co=caP(?) 7 
I 

ay * 
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The last three equations (33), (34) and (35) have been 
transformed into spanwise integrals since F (?) is known only as 
a function of y by the statement leading tg equations (10) and (II+), 
the transformation used is 

5i = (k - y) ootP(y) + 1 * 

Corresponding expressions for the induced velocities 
"r ad 

wL 
Gpp,) 3 y 

wL 
(+Fp,) , sTLt', 3, ,2, ) 

zrTL(x, 'Y, '2,) due to the left-hand vortex may be derived by changing 

the sign of y, 
~pwL(.,#Yp,) 

~JI equations (30), (32), (33) and (35), while 
and vr are given by changing the si@r 

TL 
(+T,G,) 

of y, and the overall si@s of equations (31) and (34). 

II.3 Application of the boundary conditions 

The boundary conditions representing the tangency of flow over 
wing and eero force on the vortex-cut arrangement are now formulated. It 
is assumed that the condition of zero pressure loading on the trailing vor- 
tex sheet need not be considered further since the wake model has been 
designed to neet this requirement. 

For a flat wing at incidence a the condition of tangency of 
flow over the wing surface in non-dimensional terms is 

q%,'y,,o) = - sin a . *a- (36) 

The induced upwash velocity G(x,,y,,o) includes the contributions from 
the vortioity on the wing surface SW , the vortioity on the trailing 

vortex sheet ST ard the a-&n concentrated vortices above both Sh, and 

'T ' therefore 

where all of these contributions have been defined in Seotion II.2. 

Zero loading of the vortex-cut combination 1s satisfied on the 
starboard system only, then by symmetry the port system will also be 
satisfied. Only the force components in the y- and a- directions 
are constiered sinoe it is thought that these flow forces are the signifi- 
cant ones, effectively the force components normal to the vortex should 
have been used but the extra oomputational effort is probably not justified 
at this stage. 

The force on F(F) at ( Z,~v,(Z),Z,(%)) is 

PVpo ./ 



in the Ckrection 

in the ~-direction. These relatlonships are to be applzed over both 
sw and s T ' 

The first terms in equations (38) and (39) represent the force 
on the vortex due to the free stream V . The second terms represent the 
force on the vortex due to the perturbation velocities F (k,y,(?),Z,(%)) 
and ii,(k,~,(S),Zv(X)) induced at the point (X,yv(%),sv x)) - l- on the 
starboard main vortex by the whole system of vortXity but excluding the 
starboard magi vortex itself. Theoretically since each main vortex is 
curved it lnducesanlnflmte velocity on~tself'; this lnflnite velocity is 
not zncluded in the subsequent analysis. Intuitively it would be expected 
that these self-induced velocities would be small compared with all the 
other induced velocztles but there appears to be no valid reason for ignor- 
mg this behaviour, in any case the authors were not sure how this effect 
should be ancorporated into the analysis m a simple way. The breakdown 
of the induced velocities from the various sources can be written 

. 

where the various terms are given in Section 11.2. 

The force components on the cut arise mainly from the free 
stream V because the streamwise perturbatzon velocities are small in 
comparison with V ; these force components are therefore 

pv% ./ 
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ti((x) 
pvsc.- ~ (iv(z) - k:) d.Z in the Wiirection ::. (&q 

dF(s;) 
and -pPc. - * 

dz 
Z,(X) in the g-direction *-* (43) 

Thus the total force components onthe vortex-cut arrangement in 5;- and 
% directions, combming equstlons (38), (39), (42), (43) are 

Fy(X) = - 2?(x) 
dZ$) 1 dqk) 

+ -. - * ?"(?) - 
d% F(E) dz 

Fz(5) = + 2?(x) 
d&&X) 1 di! (X) 

**a 04 

& 
+ -* -. (Y,(%) - kx) - ~+,~,(X),Z$)) . 

F(X) dz I 

In accordance with the boundary conditions these two forces Fy(j;) and 
F&z) are to be made Zero. As stated earlier, the numerical procedure 
is to assume an 'initial' vortex position and to apply the boundary condi- 
tions of tangency of flow and zero load at the trailin edge. 

~,(%i+),+)) and ~,(%j;,(%+)) 
And then 

the velocities csn be 
calculated at the 'Initial' vortex position so equations (44) and (45) can 
be used to estimate a 'new' vortex position. 
of sm.ith5 and the authors that the forces Fy(jl) 

It has been the experience 
and F&Z) are 

extremely sensitive to vortex position. To derive a new vortex position 
by simply equating the forces to zero can lead to large movements from 
the initial positions; in fact the authors found this procedure divergent. 

To avoid divergence, the movement of the vortex is restricted. 
A new vortex position is calculated only if the foroe on it exceeds a pre- 
specified 'tolerance' and then the vortex is moved a small amount. in the 
drrection of resultant force (components F 
position. Y 

and Fs) to a 'new' vortex 

The resultant force vector F(Z) at the starboard vortex is 
given by 

F(Z) = (F;(Z) + Fss(f))l's 

and its angle of inclination to xy- plane is given by 

'*a Q4.6) 

The 'corrections' to the slopes of the vortex geometry arts then 
given by 

" (A+)) = dtol * 
E 

dx F(%) 

F (z) 
i (A+)) = -dtol' z 

F(z) 

(if F(z) 3 Ftol) 

(if F(f) a Ftol) 
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where dto1 IS a small speclfled 'tolerance' m the slopes of the vortex 
geometry and Ftol is a small tolerance for the force. 

The actual 'corrections 
written 

' to the vortex geometry can then be 
2 - d 

A:# = 
i 

d, (AXv(X')) &' '*a (50) 
0 

k 

A+) = 
i 

" (Ayv(Z')) dE' 
Odx 

which leads to the 'new' positxon of the vortex 

a** (51) 

y,(E) = ?$k) + A@) 
new initial 

T,(E) = Z,(Z) + AZ,(X) 

new initial 

II.4 Numerxal method 

The unknowns 111 the present problem are: 

(i) the related vorticity distributions y(X,y) and -g(Z,y) Over 
the wing SW 

(xi) the main vortex strength ?&) over the wing % 

(iii) the main vortex positions y (E) and Z (Z) over both the 
w=%z Sg and the trailing Tortex sheetv ST 

The vorticity in the trailing vortex sheet ST and the partial 
contribution to the wake vortex F,(k) have been expressed in terms of 
the vortxity dastribution over the wing from the condition Of zero load 
at the trailing ed@ as indicated in Section II.1. 

As discussed in Section II.1 (equations (Z)-(5)) the vorticity 
distributions 6(Z,y) and y(%,y) over the wing E$, , are divided into 
two parts 

6&y) = 3,(&y) + Zg(f,y) l a-  (54)  

where g,(%,y) and y,(E,ji) are continuous functions &xh tend to sero 
at the lead& edge with the square root of the distance from the leading 
edge while 6g(%,y) and 9,(5&y) are related to the strength of the cut 

@,(a 

d% * 
In particular, equations (4) end (5) can be written in the 

non-dimensional form 
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11.4.1 Series expansions 

A series expansion for wing trailing vorticity 
is taken to be 

p=o q=o 

The conservation of vorticity 

leads to the related expansion for 7,(X,?) namely 

p=o q=3 

z, (%a 
It should be noted that the requirement that both 

end 7 (Z,y) tend to zero at the leading edge as the square 
1 

root of the distance from the leading edge, is built into equations 
(58) end (59). The 'expansions in equations (58) and (59) are taken 
as extensions of slender conical wing distributions omitting the 
leading edge singulsrities, thus the usual difficulties in rounding 
off the wing apex in conventional lifting surface theory do not arise. 

A polynomial series expansion is taken for the strength 
of the leading edge vortex F,(Z) over the wing SW in the form 

e 
F,(2) = --' g . x q . 

1 9 

q=l 

-*a (60) 
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The continuation into t&e wake 13 d~cussed later. 
The vortxity distrlbutuns bg(k,y) and F,(E,y) defined 
in equations (56) and (57) can be expressed in terms of the coeffi- 
cxents g -introduced in equation (60). 
slons for' 6(x,?) and j;(?,y) become 

The complete expres- 

S(X,sr) = r: -5 
z 1, a2p+,,q. a6(2p + 1, q,z, Y) 

p=o q=o 

e -_ 
+ 

1 gq * g&x ,x3 a *a* (61) 

q=l 

n m -7 ,-/ 
X%7) = 

1‘) ,L- 
a2p+, q. ay(2P + 1, qrI, 7) , 

p=o q=o 

8 _. 
+ 

) _gq -% (2P + 1, qr %,a *-- (62) 

q=l 
where 

as(2p + I, 9, ji,?) = Fq **’ (63) 

ay(2p + 1, q,x ,Y) = ?A,[ [A -(-.z)sJ~ 

+ 2p2p ,” ; 2 [, - (;)‘)y] *a* (64) 

Y 
kT&P,%Y) = - (Ta+ ya)l/a 

.q.(,‘:z;)T- -q g-1. 

(l+P)2 

A 
Y(Z" + 7") 2 

-1 
-** (65) 

(1 + ka) 2 
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As far as the wake is concerned (i.e. 2 > I) Tw(l) 

follows from equation (60) and the additional strength FT(x) can 
be expressed'in terms of the above coefficients using equation (IO), 

by 
n 

?;,(s; = [(k - y) cot@(F) + I]) = - ~' 
IL-L) 

a2p+, .a6(2P+l, s,l,Y') 
Y p=o qz 

e 

+ 
z' 

gq - qj(q, 1, F1) 1 aj;' 

q=l 

p=o q=o 
e 

- (1 + k')"' + 
(1 + Y',i 

+ 
(1 + kg)9 1 . 

q=l 

l *- (67) 

The strength of the out in the wake becomes 

e&a * 7 m 

( > 
= 

CG 1 z 
a2p+l,q . ay(2p + 1, q,l,F) . 

2 = [(k-y) ootP(y)+l] p=O q=O 
'$0 (68) 

II.4.2 Basic equations 

Substituting the series expansions for 6(%,^y) and 
v(?,y) into the upwash integral (equation 13)) the ir$uoed upwash 
velocities oat-be wz%tten 
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The upwash ET (Z ,y ,Z ) due to the contributions f;,(E) w 1 1 1 

from the two separated leading edge vortices over s together with 
the contr~butmn Fw(l) aft of the trailing edge is given by subati- 
tutzon of equatmn (60) into equation (32). 

where 

+ 
[ [ 

fw(W,,Y,,c) + fw(W,,-sr,,c) 
1 

azi (73) 

The upsash i?S(?,,y,,?,) due to vorticity on the right 

half of trailing vortex sheet ST , deftiea in equatmns (Ii')-( 
becomes, on substitution of equation (58) , 

%T~Z,,Y,,o) = -$+i[ f 2 a2p+,,q . as(2p + l,Qrl,T) 

y=o p=o q=o e + c gq * qj(&P)- 1 
q=l 

The upwash due to the right-hand wake main vortex f;,(x) , 

defined in equatlcn (35), substituting the expressmns in equations 
(58),* (67), becomes 
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* fw(' = (k - y) ootP(:) + l,f&,o) . I[ -cot p(y)-(k - y) cose8/3(?) 

end on substitution of equations (63) and (65), equation (75) becomes 

=rTJqY,,O) = [[ p paa+,,, [- 2p 1 3 (I -( $y 
0 p=o q=o c 
r c 

I + ,gs * 11 
(I + kqq+ 

(I + kS)G - (I + 7); 131 
q=l 

These two expressiotis for ET end i$ together with 
B % 

the symmetri'cal obntributiori frog the left-head wake can now be oom- 
bined to yield en expression of: the form 

sT(~,3,,o) + Er (x ,Y so) 
T" 

= 
a2p+l,q * + i,s,E,,Y,,) + awr (2~ + 

T 
l,q,%,Z,) 1 

p=o q=o 
c ? 

+ 
z [ gs - &FTh,~,,Y,) + q 

T 
(P,qY,) I 

q=l 
l *a (77) 

where/ 
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where the terms in square brackets involve integration in the 
y-dnectlon only and these terms are defined as follows 
._ 

1 
awT(2p + l,qS,,Y,) + awr 

T 
(2p + *,sS,,Y,) 1 

= aw L- TR(Z~ + 1,4,:,,7,) + awP 
TR 

(2~ + i,s,Z,,Y,) 1 - + 1 awTR(2p + l,qS,,-ji,)+ awr TR (2~ + 1,q,~,,-T,) 1 and 
[ PJT(S,~,Sl) + kYr 

T 
(s,~,,sr,) 1 

= L !PTR(q,y,) + ~pTR(91XI~LI)] 
+ c 5y (%X1.-~,) + swr R TR (q,Z, ,-Y-, 1 1 

where 

L- 
awT (2P + ~,G,d, -) 

R + awrTR(2p 
+ bq~~,,iq 1 

= -k,>-6 -~,)00ta(qpj 

= (k - ~)oot~(~)+i,?+',,O) 1 

I 
w . - cotP(y)-(k - 5) cosecap(?) - 

13 
a5 

a? 

and 
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-k I 
w 

-Y = 
4n' (1+3)1'n 

.q; 1 ;y.p -f, )-G-j;,) cota 1 0 
[ 1 I(Y) 

c (1 + 7w2 + (I +ky- 
q-1 

(1 +l&p 
I[ 

f,(% = (k - y) cctP(y) + l,i,,~,,c) 1 
W(Y) . - cotP(y)-(k - 5) ccse8/3(~) - 

ay 13 

Thus combining all the upwash terms in equations (69), (73), 
(77), the boundary condition of tangency of fjow on this wing, 
ticn (j6), becomes 

eqW3- 

m $7 

2L a2p+l,q . + 1,q,qq + 
[ 

a+P + G+T,) 

p=o q=o 

+ aw5(2p + LqG-+$) 
1 

q=l 

Ne& $F~equaticn> ~fcr satisfying the zero loading condi- 
tion cn the tr&lXng edge are developed. In non-dimensional form, 
equation (8) becomes 

. Ax1,T) - tea@(y). F(l,F) = 0 *** (81) 

After substitution of the series for 7(x,5) and %(f,y) 
from equations (61) and (62), equation (81) becomes 

n / c 
/ 

p=o 
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“, Jt 
ILL ,a2P+$,q * L- 

aY(2p + l,q,l,?) - tan@(Y) ag(2p + l,q,l,Y) 1 
p=o q=o 

e 
gy(q,l,Y) - tanP(T). qj(%l,i3 1 = 0 

*-* (82) 

The angle p(y) in equation (82) is given by equatxon (6) 
which xn non-dimensional form is 

tat-l P(Y) = 
v#,Y,o) 

v cos a + i+(l,y,o) 
l -* (83) 

this involves the spanwise and streamwIse velocities induced due to the 
two separated vortices. 

For a specifaed leading edge vortex position over both s 
and s T equatzons (80) and (82) can be set up. If P(Y) is assumed 
then equations (80) and (82) are linear in a 

2p+l,q aa g q ; so 
for a given number of coefficients the resClti.ng simultaneous equations 
have to be satlsfaed at the same number of collocat~op points. In 
the present solutaon the number of collocation points over the wing is 
deliberately restricted, because the present intent is to investigate 
whether the approach leads to a sensible solution and also to find out 
the extent of the computational task relative to a limited number of 
collocation points. So in this study the upwash conditions are sates- 
fied at 20 collocation points over half a wing (5 sema-spanwise points 
at 4 chordwlse statIons) whzle the condition of zero load on the trail- 
mg edge is satlsfled at 5 traallng edge points slang the semi-span, 
thus there are 20 coefficients a 
found. 2p+l,q 

and 5 coefficients g to be 
9 

The dlstrabution of the collocation points 111 spanwlse 
direction is based on hulthopp's rule for odd number of points over a 
span. The chordwise distribution of these collocation statlons is 
based on the intuitive feeling that as the effect of the wakes becomes 
more important towards the trailing edge region, the collocatzon 
points should be welelghted towards the trailing edge. So somewhat 
arbitrarily the chordwIse stations were distrzbuted according to ' 
biulthopp's rule over a diameter of 2c for an even number of points. 
The full 20 collocation points thus chosen are shown in Fig. 4. 

The positioning of 5 trailing edge points for the applxca- 
tion of the boundary condztion of zero load follows the same principle 
as the spanwise dastrzbutxon of collocation points. 

An Iterative procedure suggests itself for solving the 
complete non-linear equations starting with an initially assumed value 
of P(Y) - Equations (80) and (82) can then be solved and the resulting 
coefficients a 

2p+l,q and g can be substituted into equations (83) 

to give a new distrxbution of" p(y) , so the process csn be repeated. 
It was initially antzxpated that once p(y) had been iterated out 

the induced velocities at the assumed vortex position could be calcu- 
lated and a new vortex position found from the equations (44) and (45), 

representing/ 



representing zero force on the vortex-cut arrangement. 

As will be discussed later, this iteration cannot be used 
in such a simple fashion. 

11.4.3 Evaluation of upwash integrals 

Once the collocation points are decaded upon it is necess- 
ary to evaluate the upwash integrals 

I 

aww(2q + l,q,~,,T,) , 

a+P + w$*5$) + =y (2P + l,q,+Y,) , g"p tq,x,z$ , 
T 1 W 

[ 
@+b','i$) + @,(q>','~,) 1 and gww(q,x,,y,) in equation (80). 

T 
Of these aw,(2p +l,q,Z,,Y,) and gv$q,ji,,ji,) are functions involv- 
l"g double integration over the wing planform and need only be evalua- 
ted once, these are singular when Z, = 0 snd require speclalcare. 
The technique employed to deal with this type of integral is described 
in Appendix I. Of the reme;ming integrals, the integrals gwp (q,:,,?,) 
are functions Of vortex position, the 'combmed' integrals W 

L 
awT(2P + l,q,~,,?,) + awp (2~ + l,q,s,,?,) and 

T 1 
[ @&+,) + g”r (6,,j$) 1 depend on the deflection p(y) 

T 
of the vortex lines at the trailing edge as well as on the downstream . . Since both the vortex position and the angle ;v;7 position. 

vary during the iterative loops in the calculation, these last 
series of 'combined' integrals have to be re-evaluated several times. 
Fortunately these integrals are not singular. 

Expressions for 
L 

awT(2p + l,s,$,Y,) + ay (2~ + l,q,X,,?,) 
T 1 

and 
1 

mTw,'q + ql (eqF$ 1 gaven by reference to equations 
T 

(78) and (79) are line integrsls in terms of y . After trying the 
12-point, 24-point and @-point Gaussian integration rules to a 
typical case it was decided that the 24-point rule was sufficient for 
the more general oases. 

The expression for gwp (q,X,,,r,) given by equation (73) 
w 

involves some difficulty in accurate calculations using Gaussian 
quadrature methods especially in the region of the wing apex when 
Z and 5 are bothsmall. As a prelude, a test was made to evalu- 
ate numerically the upwash expression for a particular case of a pair 
of straght line vortices using Gaussian quadrature and to compare 
it with the exact analytical result. It was shown that splitting 
the integration ranges of 0 to 1 end 1 to infinity in equation (73) 
with small intervals was necessary. The Z integration from 0 to 
1 was split into a further 4 intervals, viz., 0 to 0.13, o'l3 to 
o-25, 0.25 to 0.57, o-57 to 1.0, and four figure accuracy was obtain- 
able using a J+&point Gaussian quadrature method for these four inter- 
vals . For the second range of E of 1 to infinity a 24-point 
mowled Gauss-Laguerrey rule was found sufficient. 
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The induced velocities at the right-hand vortex 
~,(~,~"(~Lq~) 1 , W,(k,j;,(%),%,(%)) depend on the wing vorticity, 

the trailing sheet vortioity and the left-hand vortex. As discussed 
in Section II.3 the effect of the n&t-hand vortex on itself has 
been neglected. The contrabutlon due to the wing vorticity was 
evaluated by a 24 by 24-point double lntegratzon Gaussian method. 
The contribution due to the trailing sheet vorticity was evaluated 
using the same 24-point Gaussian quadrature technique as used in 
the calculations of the upwash due to the trailing sheet at the wing 
collocation points. For the effect of the left-hand vortex on the 
right-hand vortex, the range of integration was split up in the same 
manner as for upwash estimates. 

II.5 Application of the theory 

Initially it was anticipated that once the number and position- 
ing Of the collocation points had been decided that the numerical pro- 
cedure would be as follows: 

(1) The upwash integrals awW(2p + l,q,%,,?,) and gw,(q,X,,y,) 
are evaluated. 

(2) An initial position of the vortex is specified. A convenient 
starting point is the Brown end Michael value of the spanwise 
position y,(X) and the height of the vortex Z,(g) together 

with their respectave slopes 
G-J3 

and 
qx) 

, given 
a% !Ei 

in a tabular form. Over the wake aft of the trailing edge 
initially the vortices are taken to be straight and parallel 
to the free stream direction. 

(3) A distribution of p(y) is specified. 

(4) The upwash integrals due to the vortices and the wake are 
evaluated. 

(5) The coefficients of equation (82) expressing the zero load con- 
dition at a disorete number of points at the trailing edge 
are estimated. 

(6) The solution of the 25 linear simultaneous equations (80) and 
(82) yield the values of unknowns ati+, q and g . 

, 4 

(7) P(7) can be reassessed from the same position of the vortex 
specified on step (2) using the vortex strength calculated in 
step (6). 

(8) Steps (4) to (7) are repeated to iterate out p(y) . 

(9) The force on the main vortex is calculated using equations (44) 
and (45). If the force exceeds a prespecafied 'tolerance' 
(factor Ftol ) then the slopes of vortex geometry (equations 

(48) and (49)) are calculated wit& a prespecifaed tolerance 
(factor dtol) . The 'corrections' to the slopes sre then 

integrated to yield a new vortex position. 

(IO)/ 
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(10) Steps (3) to (9) are repeated until the forces on the main 
vortex (step (9)) are below the prespecified 'tolerance' 
(factor Ftcl) . 

Thus this method envisaged a signtiicant iteration of p(y) 
for each vortex position, but preliminary experience showed that itera- 
tion of /3(y) could not be divorced from the iteration of the vortex 
position. It is necessary for both iterations to progress side by side, 
and the following modifications have been developed: 

Step (3) y--F($ibution of p(F) 1s SC chosen that it never exceeds 
. The reason for this empirical step is not evident 

but the calculations have shown that if p(y) exceeds 
tan-'(y) then the subsequent steps in calculations ield 
unrealistic negative values of vortex strength ?,(x -7 in 
the apex region of the wing. 

Step (8) In step (7) a new distribution of p(y) is calculated and 
compared with the initial value LII step (3). If the new 
value is higher or equal to the initial value in step (2), 
then the calculation IS taken directly forward to the stage 
of obtaining an estimate of the new vortex position 
(Steps (9) and (IO)). If the new distribution of p(y) 
is lower than the initial value in step (3), then the calcu- 
lation is taken back to step (4) with an intermediate value 
Of p(y) as a part of an iterative procedure to iterate 
out p(y) the empirical condition of ensuring p(y) to be 
below the 'critical' tsn-l (y) curve need no longer be 
conformed to. 

It is Of interest to note the effect of p(y) on the ooeffi- 
clents a2p+l,q ' gq in equation (82) which expresses the zero load 
condition at a discrete number of points on the trailing edge including 
the centre and tip. It has been observed that if p(y) never exceeds 
tti'((y) in step (2), then all the coefficients of equation (82) are 
positive. If P(5) exceeds the 'critical' value of tan-'(y) , the 
coefficients are negative for collocation points at the trailing edge 
near the tip which leads to negative values for the vortex strength in 
the apex region. 

This modified procedure is shown in a block diagram in 
Fig. 5. 

II.5.1 Computer prcgrammss 

The application of the numerical procedure is by means 
of four general digital computer programmes written in ago1 60 
language. During the developrcent period the input was 111 form of 
punched T-hole paper tape, but after development and during the 
'production' penxod the programmes were loaded XI the compiled form 
onto magnetic tape. The function of the programmes, whloh are 
tabulated II~ Table I, are:- 

(1) Frotramme I evaluates the upwash coefficients 
awV,(2p + l,q,X,,y,) from a knowledge of the equations 
of the leading edges of' the delta wing and the positlcns 
of the collocatxn 'mesh'. The upwash coefficients 

need/ 
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need only be calculated once and for all for 
a particular planform and a collocation 'mesh'. 

(2) P??ogramme II, similnr in structure to Programme I, 
evaluates the upwash coefficients q,(G, 3,) 
which again need to be calculated once and for all for 
a partxular planform and a collocation 'mesh'. 

(3) Programme III uses the upwash coefficients 
am,..(2~ + l,qS,,?,) s.nd @W(q,+Y,) calculated 
from Programmes I and II, the specsfled position of 
vortloes, and the 'Initial' value for the function 
p(y) to calculate first the upwash coefficients due 
to the wake and then solves equations (80) and (82) 
for the values of unknown a 

2p+l,q 
and. g . A 'new' 

value for the function p(y) as estimated: The pro- 
gramme can be made to compare the two values 'mitial' 
and 'new', of the function p(y) and if required, it 
can iterate on p(y) , producsng thus 'newer' sets for 
the values of unknowns 

a2P+l,q 
and g . This 

9 
programme also includes the estimated lift distribution 
on the wing. 

(4) Programme IV uses the calculated values of unknowns 
a2p+l,q and gq from the Programme III and produces 
a 'new' vortex geometry within a specified small toler- 
ance on the 'initial' geometry. 

The details of the store and computation time require- 
ments of the four computer programmes on the Atlas computer are 
show in Table I. It may be observed that the compiling store and 
computing times are both reduced for the programmes loaded on magoe- 
tic tape. The reductions are very significant for running of 
Programme III, which vnth paper tape input would need almost the 
whole of the Atlas core store. 

With the present collocation mesh (Fig. 4.) Programme I 
and II take a total of about & hours to compute 400 
awiy(2p + l,q,%,,y,) and 100 gv+j,(q,x,ry,) upvrash coefficients. 
This represents the largest proportion of computer time for the 
overall development programme of the theory. During the initial 
phase of numerical work it wss necessary to test various integration 
procedures in the calculation of upwash coefficients and therefore 
these two programmes were written to feature a certain amount Of 
generality and adaptibility. This in turn has required large exe- 
cution time on the computer. It is believed that starting afresh 
on another wing with the experience gained so far, it is possible 
to reprogram the inner and more repetitive calculation loops more 
efficiently and therefore reduce the computation times of Programmes 
I and II by a factor of 5. 

The number of times the Programmes III and IV are 
required to be run performing the necessary iterations on P(y) 
snd the position of the vortices is dependent on 'initial' eStlmates 
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and "arlous 'tolerances'. Experience of the worked example 
(Section III) suggests something of the order of one p(y) calcu- 
latmn (1 minute, executwn time) for each of the 7 iterations in 
vortex position (2 minutes execution time for each iteration) 
startlng with Brown and Michael values. It is anticipated that 
as the experience with the programme grows, improved initial estimates 
with 'proper' tolerances would reduce the computation time require- 
ments. 

III. A Worked Example 

The theory has been applied to the case of a delta wing of aspect ratio 
1 at incidence O-23 radian. 
lated by ~andal1.10 

The initial vortex position was based on that calcu- 

0 inFig.6. 
using Brown and Michael theory; this position is shown as 

The assumed distribution of p(y) chosen such that it did not 
exceed 'critical' tan-'(~) curve LS shown in Fig. 7b. With this information 
the coefficients 
strength T,(F) 

a2p+,,q and gq were evaluated. At this stage the vortex 
which is easier to visualise, is shown; its first value denoted 

as 0 is indicated in Fig. 7a. It shows a peak in the region near the apex, 
hence the feeding vorticity GW(Z)/& IS positive in the region near the apex 
but mostly negative over the rest of the wing. The 'calculated p(y) curve 
was found to be higher than the initial guessed p(y) curve (Fig. 7b) so the 
calculation was taken to the next stage of obtaining a 'new' vortex position. 

The force on the vortex was calculated as discussed in Section 11.3 
and two new positions 1 and 1' (shown in Fig. 6) based on tolerances 
d tol = O-005 and 0.01 respectively on the slopes of the initial position 0 
were determined. Two different 'tolerance' were introduced mainly to obtain 
some idea of their influence on the vortex movements. The general trends in the 
vortex movement, shown by positions 1 and I', relative to position 0, are 
outwards and downwards in the forward part of the wing and inwards and upwards 
over the rear part of the wmg. Aft of the wing the tendency for the vortices 
is to become parallel to each other. These positions 1 and 1' with a suitable 
p(T) distribution (bounded by the critical tan-'(y) curve) were then used to 
solve for the unknowns 

a2P+l,q 
and g . 

9 
The vortex strength based on position 

1 is shown in Fig. 7a (the Curve for I' is similar); it shows less peaks in the 
apex region than the previous estimate based on the position 0 thus increasing 
the feeding vorticit in the rear positions of the wing. 

-3 
Also the dafference 

between the two @(y curves, 'initial' and 'calculated', decreased slightly 
for the vortex position 1 (Fig. 7c) when compared with those for vortex positron 
0 (Fig. 7b). 

The calculation was continued by deriving a new vortex position 2 
from vortex position 1' within a tolerance of 0.01. Us* vortex position 2, 
and a guessed distribution p(y) the vortex strength lYW x) ?- (Fig. 7a) the 

wing vorticity distribution and a new p(y) distribution were calculated 
@lg. 7d). All of these quantities showed a much improved character and the 
feeding vorticity was for the first time positive over the whole Of the wing. 

It seems reasonable to stipulate that tolerance dtol should be 
reduced as the iterations progress and consequently the next vortex position 3 
(Fig. 6) was developed by a further iteration on the vortex position 2 with 
tolerance dtol = o-005 ) and the results of vortex strength and p(y) were 

observed to maintain the established trends. 

Further/ 
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Further iterations of thw example were not completed becam the 
tine allotted to the project ran out. 

However, there appears to be convergence of the vortex strength 
r@) and of the vortex positions but the convergence of the zero load condi- 
ken on the trailing edge indicated by the p(y) curves, is not too successful. 
The vortex positions in Fig. 6 are more 'kinky than mzght be intuitively expec- 
ted to occur in practrce but it is probable that this aspect IS a reflection of 
the small number of chorduise collocation points used here. Also it is lawns 
frown experience with the slender wing Broom and Michael model that at least seven 
spanwise collocation points are needed to give a numerical solutzon close to the 
analytical so1utJ.on, 111 the present three-dimensIona problem only 5 spanwise 
points have been taken. 

It has already been noted that rrlth the original vortex position over 
the wng assumed on the basis ,of the "two-dimensional" theory of Brown and 
Nichael, the vortex strength f,(F) over the front part of the wing showed a 
peak, and the corresponding strength of the cut d?,(Z)/& was found to be 
positive only in the forward part of the wing , and negative over most of the 
rear part. The pea&m the vortex strength over the front of the wng reduced 
as the vortex position was successively moved outboard and downwards over the 
forward half of the wig and inboard and upwards over the rear part of the wing. 

Mathematically the effect of 7 , mhach is much more dam-t than 
; 

g 
is to induce upward velocity over the forward part of the wing and downward 

v @' locity towards the rear part of the wing. To balance this effect, the main 
vortex has to be aligned closer to the wing surface over the forward part of the 
wing, and further away from the surface over the rear part of the wing. The 
movement of the vortex over the front part of the wing is downward, and in accord- 
ance with the usual Brown and Nknael trends, there is an outward movement Of ihe 
vortex. 

Iv. Comparison of the Nethcd with Experimental Results 

The calculated lift distribution for the flat delta wing at incidence 
of 0.25 radian has been compared in Fig. 8 with experimental results obtained 
at Queen Mary College (so far unpublzshed). 

First the overall force coefficients are 

cL = 0.495 
Ecperiment 

cL = 0.45 
Theory 

while the centres of pressure are 
5 = 0.61 

cpExperiment 

x = O-60 
cP Theory 

The agreement of these overall features is encouraging. 

For/ 



For the load distributions, JD Fig. 0, it should be noted that the 
theoretical curves are not at the same chordwise station as the experimental 
one.5. The general trends seem to be predicted. The fall off of lift towards 
the trawling edge is reasonable. Along the centreline the theoretical lift 
distribution is m remarkable agreement with experiment. The characteristic 
features of the basic Brown and Michael model where the suction peaks are out- 
ooard of the experimental peals is still present as might be expected. 

The theoretical distribution at the lea . 
-7 

edge shows a finite load 
which is proportional to the feeding vorticity 6,(X /d? ; this is Seen to 
tend to zero at the tip of the wing in accordance with the boundary conditions. 

Slight 'up-kmks' appear near the leading edge on the last two chord- 
wise stations. These are not reasonable but they are probably due to the res- 
triction of the number of terms in the .serie.s expansions. 

V. Concluding Remarks 

The theoretical approach outlined in this paper is an attempt to 
satisfy the zero load tral1in.g edge cond_lhon on a delta wing 111 the presence 
Of a separated vortex sheet from the leading edge of slender wings. 

The approach has been restricted to a simple model employj.ng a small- 
ish number of collocation points over the wing. Even though a complete itera- 
tlOn has not been achieved the ma2.n features of the loading predicted by the 
theory tie in encouragingly with the experimental trends. 

The application of the mathematical technique, apart from the numerical 
aspect, in solving this particular non-linear problem by iteration has shown up 
some interesting aspects, in particular the interaction of the two iterative pro- 
cedures relating p(y) and the vortex position. 

The numerical aspect has involved complicated programming to enable 
the computation time to be kept to a minimum at every stage, especially where the 
integration has occurred of a functaon which includes a variable andex but con- 
stant limits of integration. 

The estimated computation time for the present application is of the 
order of half an hour on 'Atlas' for each incidence wzth a reasonable lnltlal 
assumption of the position of main vortices. It IS estimated that the use of 
more collocation points would not greatly increase the computation per mcidenoe 
tine provided some of the numerical techniques could be further refined and if 
possible, use is made of machine code procedures for the 'inner' or more repeti- 
tive operations. 

To proceed further in the development of the present method, amproving 
the efflclency of the integration procedure, searching for faster iterative 
dodges, coping with more and more collocation points, the final result will only 
marginally be a better representation of the physzoal flow. By incorporating 
the Brown and Mzchael model into the llrting surface theory framework all the 
inherent faults of the model wiLl still remam; the leading edge vortloes mill 
be too far outboard, flnlte loads at the wing leatig edge will remain, and the 
suction peaks on the wing upper surface will be too high. Admittedly it is 
possible to superimpose on the theoretical results empirical factors based on the 
large fund of experience now available on the loadings of these types of vrlngs. 
But the question which needs at least reco&?Using before proceeding further 1s 
nhether it is worthwhile to incur large expenses utilising the resources of a 
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large computer for long periods when for the practxsl applicstxon empirical 
factors might have to be thrown in at the end somewhat arbitrarily. It is 
the hope of the authors that the present paper throws some light. on this parti- 
cular w.ng problem, and that some of the implxatxons and trends have been 
establxhed; what happens next depends largely on the reaction vrhuh this 
paper arouses. 
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AFPENDIXI 

Calculation of Upwash Integrals 

The upwash due to vortioity over the wmg surface 
equations (13) and (69) as 

is given by 

when the series for 7 and 6 are substituted. 

The problem is to obtain the upwash coefficients gr$q,51,,~,) and 
aww(2p + l,q,X,,y,) for various values of the indxes p,q (o <psn, 
06qdm) and various values of the positrons Z,>Y, , corresponding to each 
of the collocation points on the wing surface. 
XL3 SD3 S(%?) 

Smce the expressIons for 
contain powers of z and y it n-111 be sufficient to 

discuss the procedure corresponding to just one term of the above two series. 

Taking the case of awyy(2p + l,q,jr,,y,) the expression is expanded 
to reduce the order of singularity. Thus 

1 

- (Y - 7,) 
+ ; as(2P + l,q,+Y,) 

1. i(z - qs + (y - y,)’ +-2y 
a51 cly. 

SW 
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The last two mtegrals in the above equation can be reduced analytically to 
yzeld the following results with Z, = 0 

= sin h-l 
k - Y, 

+ sin h-l 
-k - 7, 

I - z, 1 - x, 

k 
sin h-l 

(k'+l)-(k?, + x,) 

+ (1 + kg)"' 
- sin h-' 

[k' + I)@, + 'jj,) - (kj$ + F,)']"' 

- (k?, + X1) 
[i(k' + I)(:; + j;,p) - (6, + %,)p]i'y 

k - (G, - q 

+ (1 + kg)"' 
sin h-* p - sin h-' 

i(kp + I)(?, + -4) - (ky, - -,,)p]i'p 

- (k' + 1) - (@,-%,) 

[(kg + I)(%; + y,p)- (6, - jl,)']"' 1 
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and c +loc 

ii 

-(Y-F,) 
dz dy 

0 -lar I;(? - “,y + (y - y, )” ] a’.2 

-1 
sm h-' 

(k'+ 1) - (X, + fi,) 

= (kg + I)"' [(kg+ I)(?, + q, - (Z, + kj$)a]i'a 

- sin h-l 
- (X1 + 6,) 

[(ks+ I)(%; + ?;) - (z, + ti,)pl"p I 

1 
sin h-l 

(ks + 1) - (E, - fi,) 

+ (k* + I)"' [(kg+ l)(q + 7; ) - (2, - k?,)' ]"I 

- sm h-l 
- 6-, - 6,) 

[(k*+ I)(?; + q) - (x1 - k+*li/' 1 
The first double integral in equation (Al) features an integrand 

whxh 1s zero at the point ? = Z, and 7 = Y, for all values of 1, . 
However, the behaviour of the integrand in the neighbourhood of this point is 
dependent on Z, and as Z decreases, 
are shown across the point &,y,) 

sharper variations of the rntegrsnd 

. This double integral therefore necessl- 

tates an efficient computing technique with Z, chosen in such a way that it 
makes only a smiLl difference in say the fifth or sixth figure of the overall 
value of the integral and thus a small value for ?,(z 1 x IUs) maybe pre- 
specrfied. 

In an effort to relate the efficiency of computation with accuracy 
obtainable for numerxal integration of the double integral, a number of methods 
were rnvestigated. One of the methods considered was that of double integra- 
tlon over a triangle developed by Bartholomew". Brxefly stated the mte- 
gratlon of a function ever a triangle can be calculated by summing the function 
evaluated at mid points of Its sdes with unity weighting. Thus the first 
approximation to the value of integral involves evaluation on the lntegrand at 
3 points (Fag. 9) and. second apprcximatxon involves 9 such points. These 
points for the second approximation, however, do not u-dude the points of 
evaluatxn for the first apprcxlmatxon and the method therefore can not be set 
up efficiently to work successively to a desired accuracy. The 'order' of 
the apprcxMat.z.on has therefore to be pre-specified. It was clucovered that 

the/ 
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the seventh-order approximation which involves 6Z@ evaluations of the mte- 
grand was capable of producing results to about 5 figures accuracy for the up- 
washes near the centre line of the wu~g but this accuracy reduced somewhat if 
the upwash calculation were ,requlred near the leading edges. 

The second method considered was of the application of Gaussian 
methods of quadratureI over the delta ~J.II~ sub-dlvded as shown 111 Fig. 10 
with a hxgher density of points for evaluation of the integrsnd in the neighbour- 
hood of pout Ti. = ji, and y = 7, . Three cases of Gaussun methods usvlg 
12, 24 and I.+8 points in each interval were-further investigated and the last one, 
using 48 points over an interval., was eventually &opted for double integration 
over the delta wing. 

JnENDM II/ 
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AFWNDIX II 

Reauctlon of Integral II(?)1 (Equation 18) 

By defuntion 

[I(Y) 1 
k 

1 
= 

cot p(y) + (1 - Tip+ (ye - $"+ z; IS'8 % 

k 

1 

1 
z 

T 

i 

7; [ 1 + cot'@(y) ] + ye [ - 5 cota p(y) + 2(1 - x,) cotp(y) - @,I 31ty8 

+ I(1 - 2,) + Y" cot'P(y) - 2(1 - 2,) cotp(jg y + y", +‘i" ] 
I 

[I(Y) 1 
This 1s recognaed as a standard form and on integration gives 

cot’&)(y ->) + (&, -5,) + cot P(Y)(l - ?,I 

Cf(l - ?,I + cot PWY, - ?)I” + 11 + cotZP(Y)l q 1 
x [I(1 - x,) + cot Iy(Y)(Y& - y)j2 + (Ye - y,)” + x; I 

1 
zz 

[i(l - 31,) + cot /3(Y)(j+ - y))” + (1 + COP p(4))?;]’ 

! 

6 - Y,) + cot P(i3(1 - “J 
[(I - Ti,y + (7 - 7,)” + 1; li’a 

+ 
(cot’j?(y) + l)(k -F) + cot p(y)(l - 2,) 

[I(1 - Z,) + (k - y) cot p(y)ja + (k - 5,)” + ?1” ]i’a 

. 
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TABLE I 

D&ads of Computatxon Store and T'lme Bequrement 
of the Four Computer Programnes on xtlas 

. I  .  

Programe 
Computation 

store 

compiling Execution 

Time 

complllng 

Sec. 
Execut 1on 

Time 
Execution for 

I 80 
40* 

40 

12 
1* 

18 

om aw#P + l,q,~,Z,) 
(For present 'collocation 
mesh' : 400 reaulred) 1 

II 80 
400 

40 12 
1* 

15 One q&q,:, 2,) 
(For present 'collocation 
mesh' : 100 requred) 

III 165 
80' 

80 40 
I* 

60 one value of p(y) at a 
given vortex posltlon 

lv 120 
70" 

60 20 140 Pretict1on of new vortex 
1* geometry speclf1ed at 15 

points 

* 
Programme loaded on magnetx tape for 

production runs 
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