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Comparison of Helicopter Rotor MC&~ Tests 
of Aerodynsmx mmg with Theoretzcal Estxnates 

G.J. Sxsmgh, Dr. - Ing. Habil. 

The present report deals with the aerodynsmlc dampug of a rotor 
oscillating 111 Fitch (or roll) and 1 s mamly concerned wLth the 
comparison between theory and experiment. Both the free and forced 
osclllatlons of a rotor system plvoted below the rotor centre are 
investigated. 

The results csx be summar~zed as follows:- 

(a) The behaviour of a rotor osclllatlng m pitch or roll depends 
on a parameter, which 1s the ratlo p of two non-dlmensxxxil quantltlcs, 

p = (frequency ratio of the osclllatlon)/(speclfx 
damgmg of the rotor blade). 

(b) It 1s shown that the ordxnary quasi-static theory holds only for a 
certm range of th1.3 parameter p. Generally, the oscillatrons of the 
full-scale aucraft lie mslde and those of model tests outslde this 
range. This means that the qunsx-static theory IS valzd for the full- 
scale hellcopter but m most cases not for model tests. 

(c) The frequency response theory outlined U-I this report explains 
the results obtaIned from model tests. 

(d) The lntcrprctatlon of model tests for applacatlon to full scale work 
should bc dohe by usmg the frequency response method given m this report. 
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1 Introduction 

If a rotor with hinged blades LS subjected to angular osc?llatlons in 
pitch or roll, the blades perform a perx&.c flapping motion whrch can be 
interpreted as an osclllatlon of the tip-path plane relative to the rotor 
shaft. In the fx-st approxamatlon it can be assumed that the thrust vector 
of the rotor IS, at any tme, normal to the tlp-path plane, whxh means that 
the thrust vector oscillates in relntlon to the azrcraft. It 1s cbvlous ' 
that this oscillation of the thrust vector 1s one of the xnportant 
aerodynamic characterxtics of the rotor. 

The present report deals with the aerodynamic damping of an osclllatlng 
rotor m the hcverlng condltxn and 1s mainly concerned with a comparison 
between theory and experrment. Previous investlgatxzxs, based on the 
0rdum-y quasi-statrc rotor theory, whxh seems to gave the correct value 
for the full-scale aircraft, have shown that in scme model tests the tneory 
8.~9 not give good agreement. Until now a satxfactory explanation for 
this discrepancy could not be offered, though there were posslbllltles 
suggested such as the "down-wash lag" theory by Hchenemser, see Ref. 3. 
The present lnvestlgatrons lndlcate that the "quasi-static" theory holds 
only for a cortaln range of condltlons and that outsldc this range the 
complete equation of mctlcn for the flapping of the blades must be used. 

2 The aerodynamic damping of a rotor oscxllating in pltoh 

2.1 Determination of the frequency equation 

The follcwlng dynamic problem IS lnvestlgated: a rotor, with 
radius R and a flapping hange offset eR, osctilntcs rn pitch about a 
pivot located hR below the rotor Centre. The system is constrained by 
spring forces and - in ndd~tlon to the aerodynarmc damping of the rotor - 
damped by a v~~cus damper. If u. denotes the angular displacement 
about the pivot (posltlve nose-up), the equation of motlcn for the 
oscillatvon in pitch can be written as 

I; + Do a + C a - Maal x al = 0 (1) 

The terms of equatxon (1) represent the moment of the xxertla forces, the 
damplng of the system with tne rotor bsczllatlng but not rotating, the 
restralnlng moment of the sprlng,forces and finally the moment due to the 
longltudlne.1 tilt a1 of' the tippath pla'ne. The latter gives the coupling 
term lntroduolng the flapping motion of the blades and can be expressed 
ns:- 

Ma1 = ThR + k beP3, (2) 

0 where T = rotor thrust, assumed to be always normal to the tip-path 
pl&l*e 

. 
b = number of blades 

F, = centrifugal force of one blade 

Equation (2) states that 1~ oonslsts of two components, one due to the 
tilt of the thrust vector, &I another due to lnertla forces. The latter 
1s proportional to the flapplng hinge offset and the centrifugal forces 
of all blades, 
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The second degree of freedom which has to be taken into account 
1s the flapping motion of the blades. The equation of motion for the 
longitudinal tilt al of the tip-path'plane can be written as, see Ref. 1. 

I  

il + 6 = Kn(a 4;" - *1) (3) :  

3 

In this equation ' 
rB4 

K = specific damping of the rotor blade, K = - 
16 

n = angular speed of rotor, 

%J 
= rate of change of al with tip speed ratio u 

Though equatmn (3) is exactly true for centrally arranged flapping hmges 
only, it can also be used for offsethinges (as a first approxmation). 
It can easily be seen that for a state of steady rotation mth the angular 
velocity 6, equation ,(3) becomes the well known "quasi-static" equataon: 

where in our case 

16 h 

. 
‘p,-ha- 

n 

Substituting from equation (5), equation (3) can be written as . 

Al + KRal + Ir(l + KhalJ = 0 

(4) 

, I  

(5) 

(6) 

It will be seen later that in most'cases 1 >> Khal . ThlS means thet 
the effect of the linear velocl‘ty of ‘the rotor cen%re can be neglected. 
&quatmns (1) (6) lead to the following frequency equation in h 

A3 + %A2 + Alh + A =o 0 

where 

A2 = KC + Do/I 

1 

3: 

Al = ! m, + C + Ma1 (J- + -Q,$ /I (8) '- 

A0 = CKC/I 
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If the Slapping mctun of the blades 1s considered as a sequence of steady 
cond.ltuns,lnsertlng equatuns (4) (5) m equation (1) gzves 

IId + !DcKn + Ma1 (1 + Kha$)] h+ CKR = 0 (9) 

!Dns means that the damping coeffxznt k UI the amplitude equation 

-kt a = a, e (10) 

aIncunt9 to 

DcKn + Ma1 Cl+% 1 
k= 01) 

2IKR 

since M, 
1 

IS propcrtlonal $9 It follows from equatun (11) that for 
the qua -static theory the damping coafflclent k uxrEases linearly 
with the angular speed of the rotor. 

2.2 Comparison with model tests (free oscillations) 

The only ccmprehenslve measurements on oscillatxng rotors publIshed 
to date are those recorded in Ref. 2. The tests were cnrrled cut on n 
model with the fol1cwu.g prlnclpal data:- 

Rotor radius R=6ft 

Number of blades b=3 

Flapping hinge offset eR = 0.1876 ft 

Height of rotor centre above pltchlng axu hR = 1.475 ft 

Inertia number of rotor blade Y = 3.52 

Thrust at 200 r.,.,. (8' pltch sottlng) T 2oo = 18.2 lb 

Centrifugal force at 200 r.p.m. F c200 = 289 lb 

From the data lzsted above and w.th B = 0.97 It follows 

fQ+ - = 0.195 
16 

("al)200 
= (T200hR + -$ beR F,200) = 108 lb ft 

M x 108 lb ft 
"1 

’ Pa 



Further, with K = 0.195, h = 0.246, and the assumed flgwe al = 0.4 
1t follows thatxha1 = 0.02 whxh means that the lux%r velotlty of the 
rotor centre can be neglected. 

To cover n wide range of the frequency ratlo ;, the tests were 
conducted with two rigs having different natural perlods of osciLlatron: 

Rig 0 *,I : 

Period of osoillatlon To = 0.97 s 

C1roular frequency v = 6.47 s-l 

Total moment of lnertla I = 105 lb ft s2 

Damping oonstant Do = 3.57 lb ft s 

Spring constant: 

component due to sprrng force + 4380 lb ft/rad 
We&t moment without blades + 55 lb ft/rad 
Weight moment of blades 47 lb ft/rad 

C = 4388 lb ft/rad .* 

Rig 19 B" 

To k 4.0 s 
5 Period of oscillation 

circular frequency 

Total moment of ux?rtla 

Spring constant: 

!J = 1.57 s-1, % 

I = 266 lb ft s2 

Component due to spring force + 648 lb ft/ra?i 
#eight moment without blades + 55 lb ft/rad 
Weight moment of blades - 47 lb ft./r& 

For comparison the dampmg 
has been calculated with 

c= 656 lb ft/rad 

. . . 

coefflclent k of the amplitude equation (10) 

(1) The complete equation 3f motion for the flapplng, and 

(2) The ordinary "quasi-statx?' theory. 

The theoretxd results, together with the exparlmental ones for Rig. A 
and Rig B are given in Figs. 1 and 2 respect.lv_ely. The curves show the 
dampIng coefflovent k and the parameter p = v/K against the rotor revs. 

'The unpotiance-offhe ptrrameter p 1s d~3oussed in more datazl in 
Para. 3. 

Moreover, for "Rig 11" the effect of the damping with the rotor 
osclllatxng but not rotating has been uwestlgated. Aocordmg to 
Table II bf Ref. 2, the measured damping coeffxzent for n = 0 was 
k = 0.017 whxh means that the amplitude of an oscdlatlon i's halved 
in 4.0 sets. As no viscous damper had been installed, It must be assumed 
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that this damping is mainly due to friction. For sunplwlty, ilowever, 
in the theoretical lnvestlgatlon the friction has been replaced by a 
VILSCOUS damper with D - 21k = 3.57 lb ft s, whxh results .zn the same 
damplng coefficient ky - 

The effect of Do has been evaluated for eaoh case (quasi-static 
and expanded theory) and the two curves have been plotted in Fzg. 1. 

In the'fourves llall the term Do has been taken Into account, and in the . 
curves "b" this effect has been neglected. Fig. 1 shows that the effect of 
Do 1s independent of rotor speed, and results m an ucrease in k by 
approximately 

Ak = Do/21 (13) 

However, since the value of Do was Introduced to evaluate what was probably 
a frlctlon Influence, the effact of Do may not east to any extent at the 
higher rotatIona speeds and the curves of Fig. 1 should be interpreted 
accordingly. 

In Fig. 2 where, due to the hlghcr moment of uzrtla of "Rig B" 
the effect 1s much smaller, the damprng with the rotor statx (I.e. 
osclllat&ng but not rotating) has been neglected. 

Fig. 1 shows that the tests conducted with the Rig A lie in the 
range p>O.5 and that for those tests the quasi-statlo theory brepks 
dOWP.. The expanded theory, however, 1s In a fairly good agreement 
with the experiment. 

‘5 

In the tests with Rig B, see Fig. 2, 0.13< pcO.39. The curves 
of F&g. 2 show that In thrs range the results obtalned with the q~asl- 
static and the expanded theory lx very close together. Apart from 
the test with n'= 600 r.p.m. the agreement between theory and experiment 
IS very good. For n = 600 r.p.m. the measured damping coefficient 1s 
about 20s greater than the theoratzcal value. It may be that here another 
effect comes'lnto the pxture which has not yet been mentioned vu the 
changes zn the Induced velocity caused by changes In the dlstributlon 
of: the thrust around the rotor disc. Thx effect wiL1 bedealt with 
in a later report. 

Another model test on osclllatzng rotors 1s reported in Ref. 3. 
lpi thlS cnse 

I = 2.26 mugs* 

c = 67 mkgfrad 

Do = 0.25 okgs 

Mq = 3%5 d&-ad 

h = 0.34 

yz8.0 * . 

n = 40.8 s -1 
. 
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With B = 0.97 and an assumed flgure:'of aI = 0.46 It follows I-t 
I 

K = 0.51 

Khy 0.083 

Inserting the flguras listed above III equation (8) leads to the 
following frequency equatxon I 

h3 + 20.800~~ + 4.8.66;1\ + 612.42 = 0 

whxh has the roots 

hl= - 19.90 

?y3 = - 0.45 L 5.53 1 

-1 The two ocmplex roots owrespond to a dampea oscillation with k = 0.45 s 
and To = 1.13 s. The experimental results were k = 0.50 s-1 8.d 
% = 1.05 s; the agreement between theory and experiment is again 
satisfactory. 

3 Investlgatlons on the motion 'of the trp path plane for a rotor 
subjected to forced osclllntrons 

Another item dealt with xn Ref. 2 IS the qsclllation of the tip path 
plane due to a forced oscllla:lon of the sh%ft with constant tiplitude 
aO* In a forced oscdlatlon the behaviour of a rotor I.S characterised 
by 

(a) The amplltuC!e ratio r = (amplitude of the osciLlatlon of the 
tip-path plane)/(amplltude a, of the whole system), arid 

(b) The phase angle E between the two oscfilatlons mentxoned 
above. 

The charaoterxtlc quantltles r, E oan best be investigated bi veotor 
methods. If al denotes the amplitude of the motion of the tip path plane 
relative to-the shaft, Its absolute a~plltude can be expressed as the 
veotor sum a0 + al. 
G, 

The amplitude rat.10 r is obtamed by dividing 
+ al) by ao, 1.e. 

(14) 

L 

In the vector &agram of Fig. 3, Oc ='l and OD = adao whioh means that 

r is gxven by the length of the ve0to.r OE an< that the phase angle E =&XJXJ. 
As shown in Ref. 1, the vector 100x for a.,/, 1s a senuc~rcle with 0.5 radius 
and centre at the point B (-0.5 + 01). It ?ollows that A0 = CC,@ = OE, 
and lg = @ Thx means that the two character~stlc quantities r,E 
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*can be cbtamed du-ect from the,vector 10~1 by connectmg A with D where 
the pomt D is Yxced by the parameter 

. (15) 

cf the enfqrced oscdlation. The length AD in Fig. 3 equals to the 
amplitude ratm r and ~corresponds to the,phase angle E . 
As indxated in Fig. 3, all qmntltles of the vector dugram can be 
expressed as simple functmns of the parameter p. Wzth regard to 
r and E the following equations hold 

r = (1 + p2+ 

tan 13 = p (17) 
I 

Another mterestrng feature 1s that - due to the geometric conflguratum 
of the vector lock - the tune lag of the flappmg motion BG happens to 
be equal to the phase angle s. 

In the model test described in Ref. 2 the fcllcwir@ results were 
cbtamed from Fig. 6. 

r = 0.84 1 
(18) 

With regard to the phase angle E of thm experment, it must be noted, 
that the oscillat~onsweremumally excited and therefore not purely 
sinusodal. The figure given above 1s the average lag of 5 osciU.et~ons, 
where the indlvxlual phase angles scatter between 26 and 58 deg. In this 
test 

Permd of oscdlatmn To = 0.9 s 

Angular speed of r'ctor n = 62.8 red/s 

With K = 0.195 - see equatmn (12) of the pregent report - it foilcws 
from eqwG.on (15) 

' 
27% 

P= 0.9 x 62.8 x 0.195 
= 0.57 

and from equations (16) and (17) the theoretxd.mp1ztud.e ratio and 
phase,angl.e are:- 

1 

E = arc tan 0.57 = 30 deg. 
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Comparuon of the theoretical results,equation (19),with the experimental 
results of equation (18) shows that the agreement IS quite satisfactory, 
especially of' we bear In rend that the osoillatlons were probably not 
exactly sinusodal. The theoretrcal fAgures can, of course, also be 
obtained by the graphxal method described above and evaluated in the 
vector loci of Fig. 4. 

F'lg. 4 also gives some useful mformatlon about the valdlty range 
of the "quasi-statx" theory. If the flapplng motion of the blades 
1s considered as a sequence of steady conditions, the tUne lag of the 
flapping motion becomes zero and Its amplitude can be expressed as 

1; " 
alzIKn=- u.o.K~' 

whxh mans that the vector loci couuxde with the negative part of tha 
umgmary ans. By oomparuon of the true vector 1001 with those of the 
quasz-static theory It follows that the latter holds good only for 
approximately C/K c 0.3. 

For an average present day full-scale hekcopter 

_ 

1.e. 

To = 15 s 

n = 25 ~~a/6 

y =12 

B = 0.97 

v = - = 0,017 
W 

K=$=o.66 

p = ;/K = 0.026 

The figure p = 0.026 lies cl&-ly m the validity range of the quasi- 
static theory. This means that for the full-scale heluzopter - in 
opposltlon to most model tests - the slmpl~fud. quasi-static theory oan 
practically always be used. 

4 Conclusions 
. 

It 1s shown that the dynmc charaoterxtws of an oscillating 
rotor depend only on one parameter, namely the quantkty p = G/K where 
; = frequency ratlo of the osclllatmn and K = ~pec~f~~ dsmplng of the 
rotor blade. 

The result can be sumrmrleed as follows. For p < 0.3 (appr.) 
the complete equdlon of motion for the flapping of the blades can be 
replaced by the orduxuy "quasi-statlo'! equation. This slmpllfwatlon 

10. 



however, no longer holds If values of pbO.3 occur. The apparent 
discrepancy between theory and experiment observed an previous 
xwestlgations 1s mainly due to this fast. Existing model tests on 
osoillat~ng rotors, especially those of RAF, T.N. No Aero 2049, 1950, 
compare fauly well with theory if the complete equation of motion 
for the flsppwg of the blades 1s considered. 

Unf'ortunately, the osclllatlons of most model tests lie xn the range 
~~0.3 and those of the full-scale helicopter in the range pcO.3. !Chis 
means that the results of model tests cannot be applied direatly to the 
full-scale aircraft but must be converted by theory. 

List of Symbols 

R 

hR 

eR 

b 

= rotor radws, ft. 

= height of rotor centre above pivot, ft. 

= flapplng hinge offset, ft. 

= number of blades 

= mertm number of blade 

= tip loss factor 
.YB4 

= speo~flc damplhg of blade, X = - 
16 

= rotor speed, revs. Per minute 

= angular rotor speed, rad/sec 

-z.rotor thrust, lb. 

= centrifugal force of one blade, lb. 

= angular dlsplaoement about pivot, posltlve nose up, rsd. 
a=a 633, vt 0 

= amplxtude of-pztchrng os,czllatlon, rad. 

= circular frequency of pltch1ng oscillation, s -1 

Z frequency ratlo, G ='v/n 

= non-dimensional Ijarameter, p = c/K 

= amplitude ratlo An a foroed 0sciLlatlon with 0oWtant 

amplitude a, 

r = 
I 
amPlltude of' the, osclllatlon of the tip-path plane)/ 
amplitude ao of the pltchng oscillation). 

= phase angle, rad 

= total moment of2inertla of the oscillating system about the 
pivot, ft.1b.s 

11. 



I  

Lx.t of Symbols (Contd) 

C = spring constant, lb.ft/rad. 

Do = damping constant, lb.ft/rsd/sec 

al : l&gztdmal tilt of trp-path plane, rd.. 

IJ = t1p speed rat10, fi = - hl?/n 

a1P 
= rate of change of al with I.L, rad. 

M = pltchlngmoment about pivot, positive nose up, lb.ft. 

"a1 = rate of change of M with al, lb.ft/rsd 
Ma1 = (ThR + $ hem,) 

%>A23 5 = coeffxclents pf frequency equation, see equation (8) 

t = tlmc, s 

To = period of oscillation, s. To = 24v 

k = damping coefflclent m the amplitude equation, s-l 
a = cXo eBkt 

The subscrlpt 200 refers to a rotor speed of 200 r.p.m. 
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2 
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