C.P. No. 1110

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

The Estimation of the Loading on Swept Wings With Extending Chord Flaps at Subsonic Speeds

by
J. McKie

Aerodynamics Dept., R.A.E., Farnborough

RIERA明
 易OTAL AIRCRAFT ESTABLISTMAKN
 BEDFOR

```
U.D.C. 533.693.1 : 533.6.048.1 : 533.694.511 : 533.6.011.32
    533.6.013.13 : 533.6.013.127
```

C.P. INo. 1110*

February 1969

THE ESTIMATION OF THE LOADING ON SWEPT WINGS WITH EXTENDING CHORD FLAPS AT SUBSONIC SPEEDS
by
J. McKze

Aerodynamics Dept., R.A.E., Farnborough

SUMMARY

A method is given for estimating lift and vortex drag increments due to pari-span, extending chord flaps on thin, sweptback, tapered wings of large aspect ratio in inviscid, incompressible flow. It is a linear theory and may be consldered as a simple extension of the R.A.E. Standard Method for calculating loadings on such wings and retains similar means of accounting for sweepback, tip and centre effects. Spanwise loadings are obtained by Multhopp's quadrature methods, extended to include discontinuities in wing chord, and examples are given for some typzcal wing and flap layouts.
Page
1 INTRODUCTION 3
2 EQUIVALENT INCIDENCE 4
3 SPANWISE LOADING 12
4 EXAMPLES 15
5 CONCLUSIONS 18
Appendix A - The spanwzse load distribution with duscontinuzties 20
Appendix B - The effect of part-span flaps on the downwash factor 25
Symbols 27
References 29
Illustrations Figures 1-13
Detachable abstract cards

INTRODUCTION

This Report describes a method of estimating lift and vortex drag norements due to part-span flaps. It is applicable to thin, swept, tapered, isolated wings wath kinks in the leading and trailing edges occurring only on the line of symmetry. Plazn hinged tralling edge flaps that can extend the wing chord are considered. It is assumed that flap deflections are sufficiently small for the flow to reman attached over the flap and for linear aerofoul theory still to be applicable. Further, the flow is assumed to be both inviscid and incompressible (compressibility effects for subcritical Mach numbers can be included by means of the Prandtl-Glauert analogy).

The deflection of a flap changes the chordwise pressure dzstribution and for thin aerofoils introduces a second infinite suction peak at the flap hinge. A method which considers the double integral downwash equation as a whole would require a large number of chordwise pivotal points as well as spanwise ones, and thus a large amount of computation. Instead, Küchemann's planar vortex sheet theory ${ }^{1,2}$, which forms part of the foundations of the R.A.E. Standard Method, has been extended to include the discontinuities due to partspan flaps. It is assurred that the angle of nncidence of the aeroforl and the flap deflection angles are all sufficiently small as to justify neglecting the vertical vortex sheets which in practice are shed from the aerofonl and flap tips. Hence, the horizontal vortex sheets shed from the trailing edge are all assumed to lie in the same plane parallel to the free-stream direction.

Flap deflection is consıdered to apply camber to the baslc flat plate and to increase its angle of incldence by forming a new chordine. A chordwase loading is produced from the same loading equation as used for the basic aerofoll at angle of incidence, l.e. the same relation between downwash and the chordwise load distribution as used. Thus the effects of sweepback, aspect ratio and spanwise position on the loading equation are assumed to be independent of the chordwise shape of the aerofoil section, as as assumed for cambered wings ${ }^{3}$.

One of the essential features of Küchemann's method is a way of accounting for the effects of small aspect ratio on the induced angle of incidence through use of the downwash factor. Brebner and Lemazre ${ }^{4}$ have considered the effects of part-span flaps on this factor and have given qualıtative arguments to account for its modified dependency on sweepback
angle and aspect ratio. In order to judge the sensitivity of the spanwise load distribution to changes in the numerical value of the downwash factor, comparisons are made in this Report using a varying spanwise distribution obtanned using these ideas, and a constant value as used in Küchemann's method ${ }^{2}$.

The discontinuous distributions of angle of incidence and wing chord are dealt wath by the methods of Multhopp ${ }^{5}$, Weissinger ${ }^{6}$ and Weber ${ }^{7}$, suitably extended to handle any number of dzscontinuities.

The effects of part-span flaps on the lıft and vortex drag characteristzcs are shown as examples for some typzcal wing layouts.

2 THE EQUIVALENT INCIDENCE

Conscider the aerofoil to be a flat plate with a slmple hinged tranling edge flap of chord ratio C_{F}. Flap deflection induces an increment in sectional lıf't, and an 'equivalent angle of incldence' Δx can be defined as that angle of incidence the flat plate aerofoll section would have to be given in order to achleve the same increment in lift. For small flap deflections it is supposed that this equivalent angle of incldence is independent of the basic aeroforl incidence. Hence to calculate $\Delta \alpha$ it is sufficient to consider the basic aeroforl at zero incldence to the free-stream direction.

The chordlıne is defined as the strazght line joinzng the leading edge to the flap trazling edge and forms the x -coordinate axas (see Fig.1). To a first approximation the wing chord is unchanged, but the chordine is inclined at an angle δ to the free-stream direction, where for small flap deflections

$$
\begin{equation*}
\delta=c_{F} \beta \tag{1}
\end{equation*}
$$

The camber f of the aerofoil, defined as the ratio of the ordinate of the hinge to the chord, is approximately

$$
\begin{equation*}
f=c_{F}\left(1-c_{F}\right) \beta \tag{2}
\end{equation*}
$$

Using eather equation (2) or the exact relation, the camber for a 15° flap deflection, for example, is about 6.5% at the most, which is probably near the limit for linear aerofoil theory; the approxamations (1) and (2) are better than 1% for this flap angle.

As in classical aerofoll theory, Küchemann divided the vorticaty distribution on the aerofoil and in its wake into two parts ${ }^{2}$:
(1) spanwise system, producing chordwse loading
(ii) streamwise system, producing spanwise loading.

For swept wings of infinite aspect ratio with constant vorticity along lines parallel to the leading edge (and no trailing vorticity), the relation between the dowwash and the chordwase loading, both at the centreline and on the sheared part of the $\mathrm{w} i \mathrm{ng}$, can be approximated by ${ }^{2}$

$$
\begin{equation*}
\frac{\mathrm{v}_{z_{1}}(\mathrm{x})}{\mathrm{V}_{0}}=\frac{1}{2 \pi \mathrm{~V}_{0}}\left\{\int_{0}^{1} r_{x}(\xi) \frac{d \xi}{x-\xi}+\sigma(\varphi, y) \gamma_{x}(x)\right\} \tag{3}
\end{equation*}
$$

In the farst case σ is a function of sweep angle φ only; in the second case σ is zero. The same type of relation is assumed to hold at any spanwase station and also for wings where the spanwise vorticity is not constant along the span. It has also been used for large aspect ratio cambered wings and will be assumed valid for wangs with part-span flaps and aspect ratios not less than about 4.

It is necessary here to solve equation (3) as an integral equation for $\gamma_{x}(x)$ for prescribed downwash distribution $v_{z_{1}}(x)$. For this purpose the results of Carleman ${ }^{1,8}$ are convenient, and the solution which satisfies the Kutta-Joukowski condition reads:

$$
\begin{equation*}
\gamma_{x}(x)=\frac{2 \pi \sigma}{\sigma^{2}+\pi^{2}} v_{z_{1}}(x)-\frac{2 \pi}{\sigma^{2}+\pi^{2}}\left[\frac{1-x}{x}\right]^{n_{0}} \int_{0}^{1} v_{z_{1}}(\xi)\left[\frac{\xi}{1-\xi}\right]^{n_{0}} \frac{d \xi}{x-\xi} \tag{4}
\end{equation*}
$$

where the index n_{0} is given by

$$
n_{0}=\frac{1}{2 \pi} \cos ^{-1}\left[\frac{\sigma^{2}-\pi^{2}}{\sigma^{2}+\pi^{2}}\right]
$$

or, more convemiently,

$$
\begin{equation*}
\sigma=\pi \cot \left(\pi n_{0}\right) \tag{5}
\end{equation*}
$$

On infinzte sheared wings, or at mid semı-span of finlte aspect ratio wings, σ Is zero and thus n_{0} has the value one half. On the centreline it
has been found that provided the sweep angle φ is less than about 50°, then $\sigma=\pi \tan \varphi$ Is a good approximation. In this case, therefore, $n_{0}=\frac{1}{2}-\varphi / \pi$. For wings of finite aspect ratio, the wing tip is considered as the centre section of a wing of opposite sweep, i.e. $n_{0}=\frac{1}{2}+\varphi / \pi$ there. Küchemann introduced an interpolation function ${ }^{2} \lambda(y)$, related to the shif't of aerodynamic centre due to the centre effect, so that n_{0} can be expressed as a function of $\varphi, \mathrm{y}:-$

$$
\begin{equation*}
n_{0}=\frac{1}{2}\left[1-\lambda(y) \frac{\varphi}{\pi / 2}\right] \tag{6}
\end{equation*}
$$

Except for very highly swept wings, a suitable expression for $\lambda(y)$ is

$$
\begin{equation*}
\lambda(\mathrm{y})=\sqrt{1+\left(\pi \frac{b}{c} \eta\right)^{2}}-\sqrt{1+\left[\pi \frac{b}{c}(1-|\eta|)\right]^{2}}+\pi \frac{b}{c}(1-2|\eta|) \tag{7}
\end{equation*}
$$

where b is the wing span, c the local wing chord and η the nondzmensional spanwise coordnate. As the aspect ratio becomes infinitely large:-

$$
\begin{array}{ll}
\text { at the wing } \operatorname{tip}(\eta= \pm 1), & \lambda=-1 \\
\text { at mad semı-span }(\eta= \pm 0.5), & \lambda=0 \\
\text { at the wing centre }(\eta=0), & \lambda=+1
\end{array}
$$

In order to obtann the chordwise load distribution on the flapped aerofoll section, the downwash dustribution $\mathrm{V}_{z_{\uparrow}}(\mathrm{x})$ must be defined. The total velocity normal to the wing surface must satisfy the stream surface condition which in linear theory reads:

$$
\frac{v_{z}}{V_{x}}=\frac{\partial z}{\partial x}
$$

where $V_{z}=$ total velocity in z-direction at aerofoil surface
$V_{x}=$ total velocity in x-direction at aerofoil surface
x, z are nondimensional on local wing chord.
The total perturbation to the downwash is the sum of that due to the spanwise vorticity $\mathrm{v}_{\mathrm{z}_{1}}$ and that due to the streamwase vorticity $\mathrm{v}_{z_{2}}$:-

$$
v_{z_{1}}(x)+v_{z_{2}}(x)=v_{z}(x)
$$

Thus the stream surface condition becomes

$$
\begin{equation*}
\frac{v_{z_{1}}(x)+v_{z_{2}}(x)-v_{0} \sin \delta}{v_{0} \cos \delta}=\frac{\partial z}{\partial x} \tag{8}
\end{equation*}
$$

The downwash produced by the streamwise vorticity is assumed to be constant over the chord and an induced angle of ancrdence is defined thus

$$
\begin{equation*}
\delta_{1}=\frac{{ }^{v_{z}}}{v_{2}} \tag{9}
\end{equation*}
$$

For small flap deflection angles, the chordwase distribution of spanwise vorticity $\gamma_{x}(x)$ must satisfy the relation (3) and anduce a downwash distribution $v_{z_{1}}(x)$ which satisfies the boundary condztion (8), l.e.

$$
\begin{equation*}
\frac{v_{z_{1}}(x)}{v_{0}}=\frac{\partial z}{\partial x}+\delta-\delta_{i} \tag{10}
\end{equation*}
$$

In this equation, the dafference between the geometric angle of incldence δ and the induced angle of incidence δ_{1} is called the effective angle of incıdence. At any spanwise station the slope of the camber line is known, so that for the flapped aerofoll

$$
\left.\begin{array}{l}
\frac{\partial z}{\partial x}=-c_{F} \beta \quad \text { for } \quad 0 \leqslant x<1-c_{F} \tag{11}\\
\frac{\partial z}{\partial x}=\left(1-c_{F}\right) \beta \text { for } 1-c_{F}<x \leqslant 1
\end{array}\right\}
$$

These values may now be used to specify the downwash $v_{z_{1}}(x) / N_{0}$ through equation (10), and hence the required dustribution of spanwise vorticity $\gamma_{X}(x)$ can be obtained from equation (4). Thus for small angles β, there results the followng equation for $\gamma_{x}(x)$:-
$\frac{r_{x}(x)}{V_{0}}=\left(\delta-\delta_{1}\right) 2 \sin \left(\pi n_{0}\right)\left[\frac{1-x}{x}\right]^{n_{0}}-2 \sin \left(\pi n_{0}\right) \cos \left(\pi n_{0}\right) \beta\left[\begin{array}{l}1 \\ 0\end{array}\right]+$

$$
\begin{equation*}
+2 \sin \left(\pi n_{0}\right)\left[\frac{1-x}{x}\right]^{n_{0}}\left(1-c_{F}\right) \beta+\frac{2}{\pi} \sin ^{2}\left(\pi n_{0}\right)\left[\frac{1-x}{x}\right]^{n_{0}} \beta B^{\prime}(x) \tag{12}
\end{equation*}
$$

In this equation $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ means that the upper value holds ahead of the flap hinge, and the lower value over the flap. Also

$$
\begin{equation*}
B^{\prime}(x)=\int_{0}^{1-C_{F}}\left[\frac{\xi}{1-\xi}\right]^{n_{0}} \frac{d \xi}{x-\xi} \tag{13}
\end{equation*}
$$

The index n_{0}, called the chordwise loadzng parameter, is defined by equation (6). If in equation (12) the flap chord ratio o_{F} is put equal to unity, then δ equals β and

$$
\frac{r_{x}(x)}{v_{0}}=\left(\delta-\delta_{i}\right) 2 \sin \left(\pi n_{0}\right)\left[\frac{1-x}{x}\right]^{n_{0}}
$$

which represents the chordwise loadng on a flat plate aerofoll at an angle of inczdence δ (see equation (59) of Ref.2).

To calculate the chordwise load distribution, the following relation is used

$$
\begin{equation*}
\Delta C_{p}(x)=-2 \frac{r_{x}(x)}{V_{0}} \frac{\cos \varphi_{0}}{\sin \left(\pi n_{0}\right)} \tag{14}
\end{equation*}
$$

where $\cos \varphi / \sin \left(\pi n_{0}\right)$ is a factor introduced by Brebner ${ }^{3}$ to account for the fact that in general, the bound vortices on a swept wing are not parallel to the mean sweep direction. If equation (12) is used for $\gamma_{x}(x)$, then the crordwise load distrıbution becomes

$$
\begin{gather*}
\Delta C_{p}(x)=-4 \cos \varphi\left[\left(\delta-\delta_{1}\right)+\beta\left(1-c_{F}\right)\right]\left[\frac{1-x}{x}\right]^{n_{0}}+4 \cos \varphi \cos \left(\pi n_{0}\right) \beta\left[\begin{array}{l}
1 \\
0
\end{array}\right]- \\
-\frac{4}{\pi} \cos \varphi \sin \left(\pi n_{0}\right)\left[\frac{1-x}{x}\right]^{n_{0}} \beta B^{\prime}(x) \tag{15}
\end{gather*}
$$

The sectional lift coefficient is obtained by integrating this equation with respect to x from the leadung to trailing edges:-

$$
\begin{equation*}
C_{L}(\eta)=\frac{4 n_{0} \pi \cos \varphi}{\sin \left(\pi n_{0}\right)}\left[\left(\delta-\delta_{1}\right)+\beta\left(1-c_{F}\right)-\beta \frac{\sin \left(\pi n_{0}\right)}{\pi n_{0}} B_{n_{0}}\right] \tag{16}
\end{equation*}
$$

where*

$$
\begin{equation*}
B_{n_{0}}=\int_{0}^{1-c_{F}}\left[\frac{x}{1-x}\right]^{n_{0}} d x \tag{17}
\end{equation*}
$$

If the flap chord ratio is unity, then equation (16) reduces to

$$
C_{\underline{L}}(\eta)=\left(\delta-\delta_{i}\right) \frac{4 \pi n_{0} \cos \varphi}{\sin \left(\pi n_{0}\right)}
$$

which is the famliar form for the sectional lift coefficient of a flat plate aerofoil of large aspect ratio ${ }^{2}$. Since this is a linear theory, the sectional lift slope a is given by

$$
\begin{equation*}
a=\frac{C_{L}}{\left(\delta-\delta_{1}\right)}=\frac{4 \pi n_{0} \cos \varphi}{\sin \left(\pi n_{0}\right)} \tag{18}
\end{equation*}
$$

Thus to achieve the increment in lift produced by a plain flap of chord ratio C_{F}, deflected through a small angle β, the flat plate aerofoil would have to

* Note that B_{n} is a well known integral, being a particular form of the Incomplete Beta Function

$$
\beta_{x}(p, q)=\int_{0}^{x} \xi^{p-1}(1-\xi)^{q-1} d \xi
$$

whach is tabulated for certan values of x, p, q.
have an effective angle of incidence a_{e} (see equation (16)) where

$$
\alpha_{e}=\left(\delta-\delta_{i}\right)+\beta\left(1-c_{F}\right)-\beta \frac{\sin \left(\pi n_{0}\right)}{\pi n_{0}} B_{n_{0}}
$$

Operating at the same overall lift coefficient, the flapped aerofoil is assumed to have the same spanwise distribution of induced angle of incidence δ_{1} as the flat plate aerofoil. Hence the geometric equivalent angle of incldence Δa can be written as the sum of α_{e} and δ_{i}. Thus in view of equation (1), the equivalent angle of incidence of the flapped aerofoil is directly proportional to the angle of flap deflection β :-

$$
\begin{equation*}
\frac{\Delta a}{\beta}=\left[1-\frac{\sin \left(\pi n_{0}\right)}{\pi n_{0}} B_{n_{0}}\right] \tag{19}
\end{equation*}
$$

and the sectional lift slope 2 s the same as that for the flat plate aerofoil, given by equation (18).

The varıation of equivalent angle of incidence with n_{0} for a range of flap chord ratios is shown on Fig.2. The magnitude of the chordwise loading parameter is determined through wing geometry and spanwise position by equations (6) and (7). n_{0} is a function of two parameters, φ and λ : if one is fixed then $\Delta \alpha / \beta$ may be plotted against the other. Thus on Fig. 2 an alternative abscissa scale is given where n_{0} has been replaced by sweepback angle φ, and the ordinate shows the equivalent angle of incldence for unit flap deflection angle at the centre-section of a wing of infinute aspect ratio.

The sectional pitching moment referred to the local quarter chord position is given by

$$
c_{m}=-\int_{0}^{1}\left(\frac{1}{4}-x\right) \Delta C_{p}(x) d x
$$

The chordwise load distribution $\Delta C_{p}(x)$ is given by equation (15), thus for the aerofoil at zero angle of inczdence

$$
\begin{equation*}
C_{m}=C_{L}\left\{\frac{n_{0}}{2}-\frac{1}{4}-\frac{\sin \left(\pi n_{0}\right) c_{F}^{1-n_{0}}\left(1-c_{F}\right)^{1+n_{0}}}{2\left[\pi n_{0}-\sin \left(\pi n_{0}\right) B_{n_{0}}\right]}\right\} \tag{20}
\end{equation*}
$$

The local chordwase positaon of the centre of pressure as obtanned from the equation:

$$
\mathrm{x}_{\mathrm{CP}}=\frac{1}{4}-\frac{\mathrm{C}_{\mathrm{m}}}{\mathrm{C}_{\mathrm{L}}}
$$

and hence

$$
\begin{equation*}
x_{C P}=\frac{1}{2}\left[1-n_{0}\right]+\frac{\sin \left(\pi n_{0}\right) c_{F}^{1-n_{0}}\left(1-c_{F}\right)^{1+n_{0}}}{2\left[\pi n_{0}-\sin \left(\pi n_{0}\right) B_{n_{0}}\right]} \tag{21}
\end{equation*}
$$

This function is plotted on Fig. 3 aganst n_{0} for a range of flap chord ratios. Values at the centre-section of an inianate aspect ratio sweptback wang can be found using the alternative φ scale。 For the particular case of an unswept wang, n_{0} has the value $\frac{1}{2}$ everywhere. $A l$ so $B_{n_{0}}=\frac{1}{2}[\zeta-\sin \zeta]$ where $\zeta=\cos ^{-1}\left(1-2 c_{F}\right)$. Thus in this special case, equation (21) reduces to

$$
x_{\mathrm{CP}}=\frac{1}{4}\left[\frac{\pi-\zeta+\sin \zeta\left(2-\cos \zeta_{2}\right)}{\pi-\zeta+\sin \zeta}\right]
$$

which is the formula glven by Glauert ${ }^{9}$ appropriate to such wangs.
The values of the chordwise loading parameter and lift slope given by equations (6) and (18) are strictly valıd for wangs of large aspect ratio only. Indeed, for wings of smaller aspect ratio it is not correct to assume that the downwash produced by the streamwse vorticity $v_{Z_{2}}(x)$ is constant over the chord. Unfortunately, without this approximation it is not possible to easıly specify a chordwase dastribution of vortıcity $v_{z_{1}}(x)$ which is necessary for the solution of the spanwase vorticity equation (4). Hence in this Report the small aspect ratio corrections introduced by Kuichemann ${ }^{2}$ are not attempted. It is thought that such corrections are significant only for stralght wangs of aspect ratıo less than about 6, and for wangs swept back 45° of aspect ratio smaller than about 3 .

For small flap angles, the equivalent angle of incidence Δa is a linear function of the flap deflection angle β (equation (19)). Fig. 4 shows the
variation of the equivalent angle of incldence across the span of a wing of 45° sweepback and constant chord of aspect ratio 4. The full span trailing edge flap has constant flap chord ratio 0.35. The large loss in lift at the centre and gain at the tip is a sweepback effect. This figure also shows some values found on an electrolytic tank analogue computer by Malavard and Duquenne ${ }^{10}$, and the results of a calculation made by Brebner and Lemaire ${ }^{4}$ based on these values. Over the range $0.2<\eta<0.7$ the agreement is good, but there is considerable scatter in the tank test values at the wang tip, presumably due to experimental difficulties here. This scatter throws some doubt on the accuracy of the wing tip value which was used by Brebner and Lemaire in their calculation. At the wang centre-section the tank test result is much larger than the theoretical: this again may be due to scatter, or it may imply that the equivalent angle of incıdence due to flap deflection does not fall off at the centre of sweptback wings as rapidly as is given by the λ-variation of equation (7).

That the effects of sweepback and spanwise position on the equivalent angle of incldence are so large is a result of the fact that the chordwise loading $\Delta C_{p}(x)$ is completely changed by these effects. To Illustrate this, chordwise loadings at the centre-section of wings of large aspect ratio have been calculated by equation (15) for sweepback angles $\varphi^{\circ}=0,20,40$ and are shown on Fig.5. This figure may also be used to indicate the change in chordwise load distributions with spanwise position for fixed angle of sweepback. For the example of a large aspect ratio wing swept back 40°, the $\varphi=0$ curve represents the distribution of ΔC_{p} at mid semı-span, factored by $1 / \cos 40^{\circ}$. The $\varphi=20^{\circ}$ curve corresponds to the loading distribution at an intermedaate station near to the wing centre section, factored by $\cos 20^{\circ} / \cos 40^{\circ}$.

3 SPANWISE LOADING

The induced angle of incidence a_{i} at the spanwise position η is determined by the whole of the trailing vortex sheet:

$$
\begin{equation*}
a_{I}(\eta)=\frac{\omega}{2 \pi} \int_{-1}^{+1} \frac{d}{d \xi}\left[C_{L}(\xi) \frac{c(\xi)}{2 b}\right] \frac{d \xi}{\eta-\xi} \tag{22}
\end{equation*}
$$

(Here α_{1} has been written in pliws of δ_{i} to make this section rather more generally suitable: it slgnifies that the aerofozl itself may have an angle of incldence in addrtion to the equivalent angle due to flap deflection.

Similarly δ and ($\delta-\delta_{1}$) are now replaced by α and a_{e}, respectzvely.) The downwash factor ω is defined as the ratio of the mean value of the induced downwash over the chord at a given spanwase station, to one half the downwash at infinity at the same station. Although for most purposes in this Report the downwash factor will be assumed to be constant and equal to unily, It is written into equation (22) to facilutate the possible future application of a non-constant distribution of ω (see Appendıx B).

The spanwise loading $\gamma(\eta)$ is related to the spanwise distribution of inft coefficient $C_{L}(\eta)$ by

$$
C_{L}(\eta)=\frac{2 b}{c(\eta)} r(\eta)
$$

The boundary condition

$$
a=a_{e}-a_{i}
$$

amplies that

$$
\begin{equation*}
a_{i}(\eta)=a(\eta)-\frac{2 v r(\eta)}{a(\eta) c(\eta)} \tag{23}
\end{equation*}
$$

For physical reasons the spanwise loading $\gamma(\eta)$ must be a continuous function of spanwise position. However, as the wing chord and angle of incidence can both be dascontinuous at the flap tips, equation (23) shows that the induced angle of incidence may also be a discontinuous function of spanwise position.

Equations (22) and (23) can be combined to give an integral equation for $\gamma(\eta)$:-

$$
\begin{equation*}
\frac{2 b}{a c} r(\eta)=a-\frac{\omega}{2 \pi} \int_{-1}^{+1} \frac{d}{d \xi}[\gamma(\xi)] \frac{d \xi}{\eta-\xi} \tag{24}
\end{equation*}
$$

If $a_{1}(\eta)$ Is a continuous function of η then this equation can conveniently be solved by Multhopp's approxamate quadrature method ${ }^{5}$. It is assumed that the spanwise load distribution can be expressed as a Fourier series and equation (24) satisfied exactly at a finite number of given spanwise points. The values of $\gamma(\eta)$ at these points are found from a system of linear,
simultaneous, algebraic equations. Obviously the Fourier series technique Is invalldated if the spanwise distribution of wing chord or angle of incıdence in equation (24) is dıscontınuous. Multhopp gave a modıfied scheme ${ }^{5}$ for the case of known discontinulties in geometric incidence, and Weissinger ${ }^{6}$ has shown how the spanwise loading on an unswept wing of large aspect ratio may be calculated if at one point on the wing there is also a discontinuity in chord. For the general case of a swept wing of any aspect ratio where the lift slope is a function of spanwise position, Weber ${ }^{7}$ has glven a method for calculating the spanwise loadng if there is a discontinuity in geometric incldence, chord and lift slope at one point. In Appendıx A Weber's method has been extended to deal approximately with the situation of discontınulties in geometrac incldence and chord occurring at any number of spanwise points.

The spanwzse load distribution 1 s dıvided into two parts γ_{I} and γ^{*}. The former produces a discontinuous distribution of induced angle of incıdence $\alpha_{i_{O_{I}}}$ depending on the amount and posction of the discontinuities and the latter a continuous distribution. It is supposed that γ^{*} can be represented by a Fourler series and solved exactly at m spanwise Multhopp points (the v points) and at the k discontinulty points (the s points). It is further assumed that the calculation of γ at the ν points $2 s$ not seriously affected by the additional points η_{s}. The loading γ_{I} and its distribution of induced angle of incidence $a_{i_{O_{I}}}$, can both be expressed in terms of the values of γ^{*} at the s points. The $(m+k)$ values of γ^{*} are calculated from two coupled sets of linear, simultaneous, algebraic equations by an iterative method. With γ^{*} at the s points known, the loading γ_{I} may then be calculated and hence the complete spanwise load distribution $\gamma(\eta)$. Detanls of the method are given in Appendax A.

The spanwse distribution of lift coefficient $C_{L}(\eta)$ is related to the spanwase loading by

$$
C_{L}(\eta)=\frac{2 b}{c} r(\eta)
$$

and is thus discontinuous at the flap tips if the flaps extend the chord. The total laft is given by

$$
\begin{equation*}
\bar{c}_{L}=A \int_{-1}^{+1} \gamma(\eta) d \eta \tag{25}
\end{equation*}
$$

It is customary to refer \bar{C}_{I} and A to the wing area with flaps unextended. The spanwse distribution of drag due to lift $t^{1,2}$ can be approximated by

$$
C_{D}(\eta)=C_{D_{v}}(\eta)+\lambda(\eta) C_{L}(\eta)^{2} / a(\eta)
$$

where $\lambda(\eta)$ Is the spanwise interpolation function of equation (7). The term $\lambda C_{L}{ }^{2} / a$ arises from the changes in chordwase loading along the span on swept wings of finite aspect ratio. It represents a drag force at the wing centre and a corresponding thrust force at the tips; its sum over the whole wing span is zero. The term $C_{D_{v}}(\eta)$ is the local vortex drag coefficient given by

$$
C_{D_{V}}(\eta)=a_{i_{0}}(\eta) C_{L}(\eta)
$$

The overall drag due to lift, or vortex drag ls the integral of the local vortex drag:-

$$
\begin{equation*}
\bar{C}_{D_{v}}=A \int_{-1}^{+1} \gamma(\eta) a_{1_{0}}(\eta) d \eta \tag{26}
\end{equation*}
$$

where the aspect ratio is the same as that used in equation (25) for the total lift coefficient.

4 EXAMPLES

At present there appear to be no experimental data suitable for making comparisons with the results of this Report, i.e. no test results are available for plain hinged flaps on thin isolated wings. However, in Figs. 6 and 7 comparisons are made with some semı-empirical results of Brebner and Lemazre ${ }^{4}$, and the electrolytic tank test data ${ }^{10}$ upon which they were based. For the case of the unswept wing, the theoretical results derived by using a constant downwash factor, of value unity, agree very well wath the tank test results, in fact better than those of Ref. 4 .

For the swept wing, however, this is not so, the present method apparently underestimates the spanwise loading*(using the electrolytic tank tests as a standard). The first point to note 1 s that the tank value for the equavalent angle of incidence at the centre line (see Fig.4) is much higher than the theoretical, thus giving a higher overall loading. This discrepancy between tank results and those of theories similar to the present one has

[^0]been noted before ${ }^{4}$ and has not yet been explained. However, Küchemann's swept wing theory extended to thin cambered wings without flaps ${ }^{3}$ gives good agreement with wind-tunnel results, hence it seems possible that in Fig. 7 the tank test results have the grosser error.

The second point to note is that this theory assumes the downwash factor to be the same as on a wing without flap (i.e. unity, as an aspect ratio of 4 for 45° of sweepback is considered to be 'large') and thus constant across the whole span. This assumption may well be invalid on a wng with part-span flaps. Brebner and Lemaire used a constant value for the downwash factor, deduced from the tank test results, but introduced a spanwise loadung factor whach multiplied the loading γ_{I} due to the flap discontinuities. This factor is a function of spanwise position, is dependent on wing and flap geometry and is unity for straight wings. It cannot be determined theoretically, but its use appears to be an alternative to allowng ω to vary across the span. To investigate the effect of a non-constant downwash factor, Fig. 7 also shows the result of a computation using values of ω found after the manner outlined in Appendix B. The value of ω on the wing centreline was 0.85 , ω decreased to a minimum of about 0.8 at the flap tip and rose to 1.0 at the wing tip. Outboard of the flap the loadzng is not changed very much, whereas on the flap itself there is a considerable increase in spanwise loading. Tests using constant values of the downwash factor but not equal to uncty have resulted in
 nnboard of the flap discontinulty but decreasing it outboard). These experiments inducate that the effect on the spanwase loading of using a non-constant downwash factor distribution, such as could be produced by consideration of the downwash due to the flap tip traillng vortıces, can be important.

Effects of changes in flap or wing geometry are easily investigated by this method without recourse to any graphical anterpolation. Fig.8, for example, indzcates the effect of varying the span of an anboard flap on an 'Arbus' type of wing, all other parameters being kept constant. The downwash factor is unity, and the flaps do not extend the wing chord. The ordinate used is the increment of the local lif't coefficient made nondumensional on overall lıft, and the figure indicates how the peak sectional loading is influenced by flap span.

Part-span factors for the increments in lift due to flap, relevant to the loadings of Fig. 8 are shown on Fig.9. This factor is defined as the ratio of the lift increment due to the part-span inboard flap to that due to a similar
full-span flap. A comparison is made with factors determined from the Royal Aeronautical Soclety's Data Sheets ${ }^{11}$, and it appears that these can overestimate K_{L} by as much as 5%.

The vortex drag factor, defined as the ratio of the vortex drag on the whing wath flap to that of the same wang without a flap but twisted to glve elliptic loading, varıes from 5.434 for the flap of 20% span down to 1.016 for the full-span flap. The vortex drag coefficient can be written

$$
\begin{equation*}
\overline{\mathrm{C}}_{\mathrm{D}} \mathrm{~V}=\frac{1}{\pi \mathrm{~A}}\left[\mathrm{~K}_{1} \overline{\mathrm{C}}_{\mathrm{L}}^{2}+\mathrm{K}_{2} \Delta \mathrm{C}_{\mathrm{L}}^{2}+2 \mathrm{~K}_{3} \overline{\mathrm{C}}_{\mathrm{L}} \Delta \mathrm{C}_{\mathrm{L}}\right] \tag{27}
\end{equation*}
$$

where \bar{C}_{L} is the overall lift coefficient (produced by angle of incidence and flap deflection) and ΔC_{L} the increment due to flap deflection. The factor K_{1} represents the departure from elliptic loading of the basic wing and is unchanged by flap deflection if the whe chord remains unaltered. For the wing descrahed on Fig.8, K_{1} has the value 1.015. The method of the Royal Aeronautical Society's Data Sheets is to assume that vortex drag can be expressed as

$$
\begin{equation*}
\bar{C}_{D}=\frac{1}{\pi A} \bar{C}_{L}^{2}+K_{D}^{2} \Delta C_{L}^{2} \tag{28}
\end{equation*}
$$

where \bar{C}_{L} and ΔC_{L} are defined as for equation (27). From equation (27), vortex drag at zero $\operatorname{laf} t \overline{\mathrm{C}}_{\mathrm{D}_{v_{0}}}$ is given by

$$
\overline{\mathrm{C}}_{\mathrm{D}_{\mathrm{v}_{0}}}=\frac{\mathrm{K}_{2}}{\pi A} \Delta \mathrm{C}_{\mathrm{L}}^{2}
$$

and by equation (28)

$$
\bar{C}_{D_{V_{0}}}=K_{D}^{2} \Delta C_{L}^{2}
$$

The part-span factors K_{2} and $\pi A K_{D}^{2}$ are compared on Flg. 10 agannst relative flap span. Unlike K_{D}^{2}, for a full-span flap K_{2} is not necessarlly zero. Equation (28) assumes that K_{1} is unlty and that manmum vortex drag occurs at zero lift. From equation (27) this happens when

$$
\overline{\mathrm{C}}_{\mathrm{L}_{\mathrm{MD}}}=-\frac{\mathrm{K}_{3}}{\mathrm{~K}_{1}} \Delta \mathrm{C}_{\mathrm{L}}
$$

The factor K_{3} is also shown on Fig.10. It is numerically small compared with K_{1} and K_{2}, but as indıcated above is not necessarıly insignuficant.

Fig. 11 shows the effect on the spanwase load distribution of having a portion of the flap undeflected at a position typical for an engine installation. The wing is the same as for Fig.8, using a flap span of 80%. Both flaps are deflected equally and again there is no dascontinuity in the wing chord. The effect on the spanwise loadzng is considerable, especially outboard of the cutout. For comparison purposes, the figure shows the distribution for the continuous flap of the same span, and also that for the unflapped wang twisted to gave elliptic loadng.

The angle of incidence of the wing is zero and the dzscontinuzty in flap deflection produces a rise in the vortex drag factor from $1 \cdot 168$ to $1 \cdot 311$, $1 . e$. about 12\%. However, in a more typical case, for example at take-off with the wing at an angle of incldence of about 11° and a flap deflection of 15°, the loss in lift due to the cut-out requires an increase in angle of ancıdence of about 1° and the vortex drag factor 1 s raised by only 1%, from 1.026 to 1.039 (see Fig.12). If the flaps extend the wang chord, then the loading due to ancidence is also affected by the cut-out. Fig. 13 shows the effect of a 20% increase in wing chord, keeping the flap chord ratio constant. The comparison is made for $C_{L}{ }^{c}$ (or $2 b \gamma$) rather than for the sectional lift coefficient, since the latter is discontinuous at the flap tzps. The wing area has been increased, so that in order to maintain the same overall lift wath the same flap setting of 15°, the wing angle of incldence has been reduced to 10°; the vortex drag factor is increased by approximately 3% to 1.067 .

5 CONCLUSIONS

This Report describes a simple extension of the R.A.E. Standard Method for calculating spanwise loadings, to include the effects of part-span tranling edge flaps on wangs of large aspect ratio. The sectional lift produced by flap deflection $1 . s$ represented by the lift generated by an equivalent angle of incidence of the basic flat plate aerofoll section. The local lift slope is assumed not to be affected by deflection of a flap, and the chordwise load dzstrabution is modufied by sweepback and spanwise position in a simllar manner as that due to the angle of incidence of the basic aeroforl. Small aspect ratio and thickness effects are not included. As yet there is no suitable experimental evidence to indicate how better is this theory at predicting lift and vortex drag increments than exasting technaques.

Most calculations in this Report have been performed assuming the downwash factor ω to be unchanged from its constant value of unity approprate to rangs of large aspect ratio wathout flaps. However, a tentatuve scheme to Include part-span effects is put forward, using Ideas of Ref. 4 to generate a non-constant spanwise distributzon for ω, and an example is given which indicates the conslderable effect on the spanwise load distribution. To take this matter further would mean revising the theory of section 2 to 1 ncorporate a chordwise distribution of downwash due to streamwise vorticity that is not nearly constant over the wing chord. Further, the means of generating ω outlined in Appendix B would have to be considerably refined and put on a firmer basis. Nevertheless, the apparent sensitivity of the spanwise loading to the value of the downwash factor would seem to indicate that the matter merits further attention.

The theory enables the effects of flap or wing geometry changes to be easaly Investigated using a consistent set of assumptions. The vortex drag Increments due to part-span flap deflection Include the effects of sweepback and implied camber, which is an advance on the calculation method of the Royal Aeronautical Society's Data Sheets. Systematic investigations into the effects of aspect ratio, sweepback, taper ratio, flap chord ratio, etc., as requared for design work can easaly be carried out using this theory. As it is an extension of the R.A.E. Standard Method, a number of numerical methods which have been developed for classical aerofoil theory can be applıed so that a consistent and complete set of calculations can be carried out. The effects of cranks in the leading and tralling edges may be included by the method of Brebner ${ }^{12}$, and the effects of a fuselage by applying the method of Weber, Kırby and Kettle ${ }^{13}$.

The theory as developed is linear and numerous approxamations have been made (e.g. that in spite of deflecting the flap, linear aerofoll theory still applies; that the vortex sheets from the flap and undeflected parts of the trailing edge all lie un the plane $z=0$). The test of a mathematical model is how well it agrees with experimental facts. At present such a comparison cannot be made, so it is not possible to predict wath any degree of reliabality the practical limits of aspect ratio, sweepback, flap deflection angle, etc. for which the theory can be applied.

Appendix A

THE SPANWISE LOAD DISTRIBUTION WITH DISCONTINUTTIES

IN ANGLE OF INCIDENCE AND WING CHORD

Weber has given a method for the calculation of the spanwise loadng at the Multhopp points η_{ν} and one arbitrary point η_{s} at which there is a discontimulty in a or c (called a 'discontinuity' point). It was shown that the calculation of γ at the η_{ν} points is not affected by the additional discontunuaty point. However, if there is more than one discontanuaty, then It is difficult to produce an analogous method. An approximate scheme is given here whereby $1 t$ is assumed that the loading at the η_{ν} points is not affected by the k discontinuity pounts, and further, that at each of these points, the induced angle of incidence $a_{i_{0}}$ may be expressed in terms of the loading at the Mul thopp poants and the loading at that discontinuity point only. Thus the error is likely to be least, af the η_{s} points are well away from each other or from the η_{ν} points.

The spanwise load distribution is dıvided into two parts

$$
\begin{equation*}
\gamma(\eta)=\gamma_{I}(\eta)+\gamma^{*}(\eta) \tag{A-1}
\end{equation*}
$$

where γ_{I} produces a dıscontinuous distrıbution of induced angle of incldence $\alpha_{i_{O_{I}}}$, and γ^{*} a continuous distribution $\alpha_{I_{0}}^{*}$. Consider the point η_{S}, where there occurs a jump in the angle of incidence of amount σ_{s}, i.e.

$$
\begin{equation*}
\sigma_{s}=a\left(\eta_{s}+0\right)-a\left(\eta_{s}-0\right) \tag{A-2}
\end{equation*}
$$

and also a Jump in wang chord. Define

$$
\begin{equation*}
\tau_{s}=\frac{2 b}{a}\left[\frac{1}{c\left(\eta_{s}-0\right)}-\frac{1}{c\left(\eta_{s}+0\right)}\right] \tag{A-3}
\end{equation*}
$$

As the load distribution γ must be continuous at η_{S},

$$
\begin{aligned}
r\left(\eta_{s}+0\right) & =\gamma\left(\eta_{s}-0\right)=\gamma_{s} \\
& =\frac{a}{2 b} c\left(\eta_{s}+0\right)\left[a\left(\eta_{s}+0\right)-\omega a_{I_{0}}\left(\eta_{s}+0\right)\right] \\
& =\frac{a}{2 b} c\left(\eta_{s}-0\right)\left[a\left(\eta_{s}-0\right)-\omega a_{I_{0}}\left(\eta_{s}-0\right)\right]
\end{aligned}
$$

On equating these two expressions for γ_{s}, there resuits for the jump in induced angle of incidence

$$
\begin{equation*}
\alpha_{\mathrm{I}_{0}}\left(\eta_{s}+0\right)-a_{i_{0}}\left(\eta_{s}-0\right)=\frac{\tau_{s} \gamma_{S}+\sigma_{s}}{\omega} \tag{A-4}
\end{equation*}
$$

The lift slope a and downwash factor ω can both be functions of spanwze position. They are assumed here to be continous and evaluated at the appropriate point.

If the function $F\left(\vartheta, \vartheta_{s}\right)$ is defined as follows (see Multhopp ${ }^{5}$)

$$
\begin{equation*}
F\left(\vartheta, \vartheta_{\mathrm{s}}\right)=\frac{2}{\pi}\left[(\cos \vartheta-\cos \zeta) \log \left(\frac{\sin \frac{1}{2}(\vartheta+\zeta)}{\sin \frac{1}{2}|\vartheta-\zeta|}\right)+\zeta \sin \vartheta\right]_{\zeta=\vartheta_{\mathrm{S}}}^{\zeta=\pi} \tag{A-5}
\end{equation*}
$$

then the load distribution γ_{I} gaven by

$$
\begin{equation*}
\gamma_{I}(\vartheta)=\sum_{\mathrm{s}=1}^{\mathrm{k}} \frac{\gamma_{\mathrm{S}} \tau_{\mathrm{s}}+\sigma_{\mathrm{S}}}{\omega_{\mathrm{S}}} F\left(\vartheta, \vartheta_{\mathrm{S}}\right) \tag{A-6}
\end{equation*}
$$

produces a discontınuous distribution of induced angle of incidence $a_{1_{O_{I}}}$ with a jump at each discontinulty of the required amount.

$$
\alpha_{i_{\mathrm{o}_{\mathrm{I}}}}(\vartheta)\left\{\begin{array}{cl}
0 & 0 \leqslant \vartheta<\vartheta_{\mathrm{s}_{1}} \tag{A-7}\\
\frac{\tau_{1} r_{\mathrm{s}_{1}}+\sigma_{1}}{\omega_{\mathrm{s}_{1}}} & \vartheta_{\mathrm{s}_{1}}<\vartheta<\vartheta_{\mathrm{s}_{2}} \\
n \\
\text { etc. } & \frac{\tau_{2} r_{\mathrm{s}_{2}}+\sigma_{2}}{\omega_{\mathrm{s}_{2}}}
\end{array}\right.
$$

From equation ($\mathrm{A}-1$), the load distribution γ^{*} can be written:-

$$
\begin{equation*}
\gamma^{*}(\eta)=\frac{a c}{2 b}\left[a-\omega a_{i_{o_{I}}}-\gamma_{I} \frac{2 b}{a c}-\omega a_{I_{o}}^{*}\right] \tag{A-8}
\end{equation*}
$$

where a_{10}^{*} is the continuous distribution of induced angle of incidence generated by the loading γ^{*}. $a_{i_{0}}^{*}$ can be expressed in terms of γ^{*} at the Multhopp points and the discontinuity points:-

$$
\begin{align*}
& a_{i_{O_{\nu}}}=b_{\nu \nu} \gamma_{\nu}^{*}-\sum_{n=1}^{m} b_{\nu n} \gamma_{n}^{*} \tag{A-9}\\
& a_{i_{O_{S}}}=b_{s s} r_{s}^{*}-\sum_{n=1}^{m} b_{s n} r_{n}^{*} \tag{A-10}
\end{align*}
$$

The second of these two equations in conjunction with equation ($\mathrm{A}-7$) is in accordance with the assumption that at a discontinuity point, $a_{I_{0}}$ may be written in terms of the loading at the η_{ν} points and at that point. The coefficients $b_{\nu \nu}$ and $b_{\nu n}$ are the familiar Multhopp coefficients ${ }^{5} ; b_{s s}$ and $b_{s n}$ are given by Weber ${ }^{7}$ as

$$
\begin{align*}
& b_{s s}=\frac{m+1}{2 \sin \vartheta_{s}} \\
& b_{s n}=\frac{a_{s n} \sin \vartheta_{n}}{(m+1)\left(\cos \vartheta_{s}-\cos \vartheta_{n}\right)^{2}} \tag{A-11}
\end{align*}
$$

$$
a_{s n}= \begin{cases}\sin ^{2} \frac{(m+1) \vartheta_{s}}{2} & n \text { even } \\ \cos ^{2} \frac{(m+1) \vartheta_{s}}{2} & n \text { odd }\end{cases}
$$

In equation ($A-8$), substitute for $a_{i_{0}}^{*}$ from equations ($A-9$) and ($A-10$). For the Multhopp points there result m equations:-

$$
\left[b_{\nu \nu}+\frac{2 b}{a c \omega}\right]_{\nu} \gamma_{\nu}^{*}=\left[\frac{a}{\omega}\right]_{\nu}+\sum_{n=1}^{m} b_{\nu n} r_{n}^{*}-\left[a_{i_{0}}\right]_{\nu}-\left[r_{I} \frac{2 b}{\omega a c}\right]_{\nu} \quad(A-12)
$$

where subscript ν denotes evaluation at the spanwise position η_{ν}. For the d_scontinuzty points η_{s}, there is a choice of evaluating equation (A-8) at eather sade of the discontinuity: the ($\eta_{s}-0$) alternative is chosen here. Thus there are obtarned k equations

$$
\left[b_{s s}+\frac{2 b}{a c \omega}\right]_{s-} r_{s}^{*}=\left[\frac{a}{\omega}\right]_{s-}+\sum_{n=1}^{m} b_{s n} r_{n}^{*}-\left[a_{i_{o I}}\right]_{s-}-\left[r_{I} \frac{2 b}{\omega a c}\right]_{s-}(A-13)
$$

These two sets of linear, simultaneous equations are coupled through γ_{ν}^{*} and $\alpha_{1_{O_{I}}}, \gamma_{I}$ which are functions of γ_{s}^{*}, and it is convenient to use matrix methods for their solution. Values of r_{I} at the Multhopp and discontinuity points are given by equation (A-6) thus:-

$$
\begin{align*}
& \Upsilon_{I \nu}=\mathcal{F}_{\nu} \mathcal{L}_{1} \Upsilon_{s}+\mathcal{F}_{\nu} \mathcal{L}_{2} \tag{A-14}\\
& \Upsilon_{I s}=\mathcal{F}_{s} \mathcal{L}_{1} \Upsilon_{s}+\mathcal{F}_{s} \mathcal{L}_{2} \tag{A-15}
\end{align*}
$$

where

$$
\begin{aligned}
& \Upsilon_{I V} \text { is a column vector of the } m \text { values } \gamma_{I V} \\
& \begin{array}{llllllll}
Y_{I s} & " & " & " & " & " & k & " \\
r & " & " & " & " & " & " & k \\
\text { Is }
\end{array} \\
& r_{s} " \quad " \quad " \quad " \quad " \quad k \quad n \quad r_{s} \\
& \mathcal{L}_{2} " \text { " " " " } \quad \text { " } \quad \text { " } \sigma_{s} / \omega_{s} \\
& \mathcal{L}_{1} \text { is a diagonal matrix of the } k \text { values } \tau_{s} / \omega_{s} \\
& \mathcal{F}_{\nu} \text { is a } m \times k \text { matrax with } \nu^{\text {th }} \text { row: } \\
& F\left(\vartheta_{\nu}, \vartheta_{S_{1}}\right), \quad F\left(\vartheta_{v}, \vartheta_{S_{2}}\right), \ldots, F\left(\vartheta_{v}, \vartheta_{S_{k}}\right) \\
& \mathcal{F}_{s} \text { is a } k \times k \text { matrix with } s^{\text {th }} \text { row: } \\
& F\left(\vartheta_{s}, \vartheta_{s_{1}}\right), \quad F\left(\vartheta_{s}, \vartheta_{S_{2}}\right), \ldots, F\left(\vartheta_{s}, \vartheta_{S_{k}}\right)
\end{aligned}
$$

In vector notation, equation $(A-1)$ at the discontinulty point can be written

$$
\Upsilon_{s}=\Upsilon_{I s}+\Upsilon_{s}^{*}
$$

and similarly for the Multhopp points. $\quad \gamma_{s}$ can now be expressed in terms of \boldsymbol{r}_{S}^{*} by substitution into (A-15):-

$$
\Upsilon_{s}=\left[\left\{-\mathcal{F}_{s} \mathcal{L}_{4}\right]_{s}^{-1}\left[\Upsilon_{s}^{*}+\mathcal{F}_{s} \mathcal{L}_{2}\right]\right.
$$

where f is the unct matrix of order k, and the inverse operation is assumed to be non-singular. Hence γ_{I} and γI_{s} can also be written in terins of γ_{s}^{*} and known geometric terms only:-

$$
\begin{align*}
& \Upsilon_{I V}=\mathcal{F}_{\nu} \mathcal{L}_{1}\left[\left\{-\mathcal{F}_{s} \mathcal{L}_{1}\right]^{-1}\left[\Upsilon_{s}+\mathcal{L}_{1}^{-1} \mathcal{L}_{2}\right]\right. \tag{A-16}\\
& \Upsilon_{I s}=\mathcal{F}_{S} \mathcal{L}_{1}\left[\mathscr{g}-\mathcal{F}_{S} \mathcal{L}_{1}\right]^{-1}\left[\Upsilon_{s}+\mathcal{L}_{1}^{-1} \mathcal{L}_{2}\right] \tag{A-17}
\end{align*}
$$

If there are no discontinuities in chord, then \mathcal{L}_{1}^{-1} is singular, and in this case $\Upsilon_{I_{\nu}}$ is simply $\mathcal{F}_{\nu} \mathcal{L}_{2}$ and correspondingly for the η_{s} points.

Equations $(A-12),(A-13)$ and $(A-1),(A-7),(A-16),(A-17)$ constitute a sufficient set of simultaneous, linear equations for the ($m+k$) unknowns γ_{ν}^{*} and γ_{s}^{*}. They can be solved by an iterative process. Inctially assume that there are no discontinuities in chord (i.e. \mathcal{L}_{1} zero) so that $\gamma_{I V}$ and $\alpha_{I_{O_{I \nu}}}$ are determined solely by geometric quantities. Equation (A-12) can thus be solved for γ_{ν}^{*}. Substatute these values into (A-13) and solve for γ_{s}^{*} (applying equations ($A-17$), ($A-7$) and ($A-1)$) using the correct values of the dzscontinuities in chord. The values of Y_{s}^{*} thus found may be substituted into ($A-16$) and $(A-7)$ so that a new estimate of γ_{ν}^{*} may be obtained from ($A-12$), and so on.

Appendlx B
\section*{THE EFFECT OF PART-SPAN FLAPS ON THE DOWNWASH FACTOR}

Küchemann ${ }^{2}$ assumed that ω did not vary across the span of swept wing s and tnat it was an adequate approxamation to take ω equal to twice the value of n at the mad semi-span position. Thus for wings without flaps, ω is a function of A and φ only. For large aspect ratio wings, $\omega \rightarrow 1$ as $A \rightarrow \infty$; for small aspect ratios, $\omega \rightarrow 2$ os $\mathrm{A} \rightarrow 0$. However, for wings with part-span fiaps, the discontinuous distribution of angle of incidence may produce a spanwise load distribution whose slope is not small at spanwise stations outside the tip regions. In such cases it may no longer be an adequate approximation to take the downwash factor constant across the whole wing span.

In a previous attempt to determine the effects of part-span flaps on swept wings, Brebner and Lemaire ${ }^{4}$ considered the influence of the downwash produced by the strong traillng vortices at the flap tip discontinuitzes. They produced qualitative arguments for the effects af aspect ratio and sweepback and used them to assist in the analysis of electrolytic tank test data ${ }^{10}$. The spanwise distribution of the downwash factor due to an isolated trailing vortex is a function of the aspect ratio of the wang, its angle of sweepback and the chordwase position of the point of origin of the vortex (the hinge for a flap discontinuzty vortex). For unswept wings wathout flaps, it was argued that there would be little overall change in the distribution of ω and it would still be an adequate approximation to take it constant across the span. Fig. 6 compares the spanwise load dzstribution calculated by the method of this Report using $\omega=1 \cdot 0$ with electrolytic tank test results for an unswept wang with inboard flap. The agreement is very good, in fact better than that of Brebner and Lemaire which used a constant value for ω slightly greater than unly (small aspect ratio effects are just apparent on unswept wings of aspect ratio 4).

For swept wangs with part-span flaps, Brebner and Lemaire considered that there may well be sigmfficant departures from $\omega=$ constant, but were unable to give a quantıtative assessment of $\omega(\eta)$. In order to see what effect such a non-constant distribution of the downwash factor would have on the spanwse loadzng, a factor has been derıved which tends to unity as the angle of deflection, or chord ratio or span of the flap tends to zero. At
all spanwise stations, the mean value over the chord of the downwash produced by trailing vortices at the discontinuities spmnging from the local centres of pressure with the flaps deflected, was divided by the mean downwash produced by tralling vortices of the same strength but springing from the centres of pressure with the flaps undeflected. This factor thus varies with the proportion of the total lift that is due to the flap and as automatrcally unity when the flap is undeflected. For the purgoses of this exercice, this factor has been called the downwash factor, but it is not intended that this should nocessarily be the wey that ω should be estimated.

$\stackrel{3}{3}$	soctional lift slope, C_{L} / a_{e}
b	wıng span
c	local wing chord
${ }^{\circ} \mathrm{F}$	flap chord
k	number of discontinuaties in induced angle of incidence
m	number of spanwise Multhopp points
n_{0}	chordwlse loadıng parameter
	z-component of induced velocity
${ }^{3}, y^{y}, z$	rectangular coordinates: x in free stream director, zero at
	leading edge; y in spanwise darection, positive to starboarj; z positive vertically downards. x, z nondimensional on c
x_{v}	chordw?se point of origan of a traylang vortex
=	wing aspect ratio
$B_{n_{0}}$	$\int_{0}^{1-c_{F}}\left[\frac{x}{1-x}\right]^{n_{0}} d x$
$\mathrm{E}^{\prime}(\mathrm{x})$	$\int_{0}^{1-c_{F}}\left[\frac{\xi}{1-\xi}\right]^{n} 0 \frac{d \xi}{x-\xi}$
$C_{\text {d }}$	sectional vortex dras cocfficient
$\bar{C}_{D_{V}}$	overall vortex drag coefficient
$\bar{C}_{D_{v_{0}}}$	$\bar{C}_{D_{v}}$ at zero lıft
$\mathrm{C}_{\text {L }}$	sectional lift coefficlent
$\widetilde{C}_{\text {L }}$	overall lift coefficient
$\bar{C}_{\mathrm{L}_{\mathrm{MD}}}$	$\overline{\mathrm{C}}_{\mathrm{L}} \text { when } \overline{\mathrm{C}}_{\mathrm{D}_{\mathrm{V}}} \text { Is a minimum }$
	sectional pitching moment coefficient about quarter chord position
$K_{1,2,3}, K_{D}^{2}$	part-span drag factors
${ }_{\text {K }}$	part-span lift factor
V_{0}	free-stream veloczty
a	local angle of incldence (equals the sum of Δa and the angle of incldence of the aerofonl with undeflected flaps)
a_{e}	effective angle of incidence (equals a less the induced angle of inczdence a_{2})

SYMBOLS (Contd.)

α_{i}	induced angle of incidence
a_{1}	a_{1} on wings of large aspect ratio
β	angle of flap deflection (streamwise)
r	$\mathrm{C}_{\mathrm{L}} \mathrm{c} / 2 \mathrm{~b}$, nondimensıonal load distribution
γ_{I}	load distribution that produces a discontinuous distribution of a_{1}
γ^{*}	$\gamma-\gamma_{I}$
$r_{x}(x)$	dıstribution of spanwlse vortices along the chord
δ	angle between chordline and aerofoil ahead of the flap hinge
δ_{1}	value of α_{1} when the aerofoil with flaps undeflected is at zero angle of incıdence
\imath^{2}	$\text { spanwise coordinate } \quad \eta \eta=\cos \vartheta$
η	$" \quad "=2 y / b$
λ	spanwise interpolation function
σ	$\pi \cot \left(\pi n_{0}\right)$
φ	angle of sweepiuack of' mid-chord line
ω	downwash factor
$\Delta C_{p}(x)$	difference between pressure coefficients on upper and lower surfaces of the aerofoil
$\Delta \alpha$	equivalent angle of incidence due to flap deflection

TEFERENCES

No.	Author	Tıtle, etc.
1	B. Thwartes	Incompressible Aerodynamics.
		Ch.VIII, Oxford Unıversaty Press (1960)
2	D. Küchemann	A simple method of calculating the span and chordwase loading on straight and swept wings of any given aspect ratio at subsonz speeds. A.Z.C. R.\& M. 2935 (1952)
3	G. G. Brebner	The application of camber and twist to swept wings in incompressible flow. A.R.C. OPG! (195,
4	G. G. Brebner D. A. Lemaire	The calculation of the spanwise loadings of sweptback wings wh th flaps or all-moving tips at subsonic speeds. H.F.C. R.\& M. 348 ? (1955)
5	H. Multhopp	Die Berechnung der Auftrıebsverteilung von Tragflügeln. Luftfahrtforschung, 15, 153-169 (1938) Avarlable as 'The calculation of the lift dךstrıbution of aerofoils', translated by M. Flint (A.R.C. 8516)
6	J. Weassinger	Die Auftriebsvertellung von Tragfligeln mit Taefersprung. Ingen. - Arch., 20, 166 (1952)
7	J. Weber	Theoretical load distributions on a wing with vertical plates. $\text { L.E.r. 2.\& M. } 2900 \text { (1956) }$
8	T. Carleman	Sur la résolution de certalnes équations integrales. Ark. Mat. Astr. Fys., 16, 26 (1922)

No.

13 J. Weber
D. A. Kirby
D. J. Kettle
H. C. Garner

Doris E. Lehrian
R. Duquenne

Society
G. G. Brebner

Title, etc.
Theoretical relationships for an aerofoil with hinged flap.
A.R.C. R.\& M. 1095 (1927)
L. Malavard Étude des surfaces portantes par analogies
rhéoélectriques.
Rech. aero. 23, 3 (1951)
Available as 'The investigation of lifting surfaces by a rheoelectric analogy',
A.R.C. 15108 (1952)

Royal Aeronautical Aerodynamics Data Sheets Vol.4, Flaps 01.01 .07
(July 1956), Flaps 02.01.08 (April 1945)
The calculation of the loading and pressure distribution on cranked wings. A.R.C. R.\& M. 2947 (1953)

An extension of Multhopp's method of calculating the spanwise loading of wingfuselage combinations. A.R.C. R.\& M. 2872 (1951)

The theoretical treatment of slowly oscillating part-span control surfaces in subsonic flow。 NPL Aero Report 1303
(A.R.C. 31490) 1969

Fig. I Wing and flap geometry

Fig. 2 Variation of equivalent incidence with C_{F} and n_{0}

Fig. 3 Variation of chordwise centre of pressure with C_{F} and n_{0}

Fig. 4 Spanwise variation of equivalenr incidence

Fig. 5 Effect of sweepback on chordwise pressure distribution at centre of large aspect ratio wing

Fig. 6 Spanwise loading on an unswept wing with inboard flap

Fig. 7 Spanwise loading on a 45° sweptback wing with inboard flaps

Fig. 8 Effect of flap span on spanwise load distributions

Fig. 9 Comparison of part span lift factors

Fig. 10 Part span vortex drag factors

Fig.ll Effect of flap cut-out on spanwise loading at zero wing angle of incidence

Fig. 12 Effect of flap cut-out on spanwise loading with non-zero wing angle of incidence

Fig. 13 Effect of extending chord flaps on spanwise loading
the Royal Aircraft Establishment, Farnborough. Dd.501371. K.4.

A．R．C．C．P．No． 1210 February 1969	533．693．1：
	533．6．048．1：
	533．694．511：
Mokte ，J．	533．6．011．32：
	533．6．013．13：
the estimation of the loading on swept wincs with	533．6．013．127

THE ESTLMATION OF THE LDADING ON SNEPT WINGS WITH
533.6 EXIENDING CHORD FLAPS AT GUBSONIC SPEEDS

A method is given for estimating ilft and vortex drag increments the to part－span，extending chord tlaps on thin，sweptback，tapered wings of large aspect ratio in inviscid，incompressible flow．It is a innear theory and may be considered as a simple extension of the R．A．E．Standard Method for calculating loadings on such wings and retains similar means of accounting for sweepback，tip and centre effects．Spanwise loadings are obtalned by fillthopp＇s quadrature methods，extended to include discontinul－ ties in wing chord，and examples are given rar some typical wing and flap layouts．

deti pue suin teojdiz auos dod uents are setdubxe pus eproyo surm ul satz

してじを10•9゚を

： $1^{\circ} 8700^{\circ} 9^{\circ}$ 亿 $\varepsilon \varsigma$
$\left.: 1^{\circ} £ 69^{\circ} £ \varepsilon\right\}$
samads Inasens uy safta ayoin pilarsile

6961 A．sanme．

－Sinaker

 ： 115 T 769° 〔 ε
$: 1{ }^{\circ} 870^{\circ} 9^{\circ} \varepsilon \Omega 5$
$: 1^{\circ}$ ®69 $9^{\circ} £ \varsigma$
squms oincenis if safly ayoh aniansix：

6961 сremusoy

C.P. No. IIIO

© Crown copyrght 1970

Published by
Her Majesty’s Stationery Office
To be purchased from
49 High Holborn, London w c 1
13a Castle Street, Edinburgh EH 2 3AR
109 St. Mary Street, Cardiff crl lJw
Brazennose Street, Manchester 2
50 Fairfax Street, Bristol BS1 3DE
258 Broad Street, Birmingham 1
7 Linenhall Street, Belfast bT2 8ay or through any bookseller

[^0]: *Subsequent to completion of this Report, Garner and Lehrian ${ }^{14}$ have published an approximate theorctical method tor treating oscillating control surfaces They have considered examples similar to this, and have obtained better agreement with the electrolytic tank results

