
C.P. No. I I24

MINISTRY OF TECHNOLOGY

AERONAU J/CAL RESEARCH COUNClL

CURREN J PAPERS

ALGOL Programmes for the Response
Analysis, of Linear Systems

with Deterministic or
Random Inputs

L. 1. Hazlewood and E. Hontley

Aerodynamics Dept., R.A.E., Bedford

LONDON: HER MAJESTY’S STATIONERY OFfICE

I970

PRICE f/ OS Od NET

U.D.C. 518.5 : 621.374.32 : 519.283 : 512.831 : 519.242 : 517.511

c.P. NO. 1124*
July 4969

ALGOL PROGILAMMES FOR THE RESPONSE ANALYSIS OF LINEAR
SYSTEMS WITH DETERMINISTIC DR RAM)OM IX'UTS

L. J. Hazlewood
E. Huntley

Aerodynamics Dept., R.A.E., Bedford

SUMMARY

In previous publxcations the so-called. serial/matrix technique has been
developed for the response analyszs of systems defmed by time-invariant
ordinary differential equations. One paper describes how an explloit formu-

/
lation for the output function may be easily obtained when the input function
is determmistx. A second gives the output autocorrelation function and out-
put mean square value when the input is a stationary random process.

This paper gives computer programmes in ALGOL which implement these
ideas. The programmes are described primarily from the point of view of the
user with illustrative examples to demonstrate the use of prepared data sheets

but sufficient information 1s mcluded to enable users to develop the pro-
grammes further if required.

*Replaces R.A.E. Technics.1 Report 69140 - A.R.C. 31816

CONTENTS Page

3
3

3
5
6

6

a

a

10

10

10

10

11

12

12

13
14
14

15
16

16
18

18

20

20

21

22

22

23
24

29

31
33
37
39

Figures I-IO

1 INTRODUCTION
PART I - DETERMINISTIC INPUT FUNCTIONS

2 BACKGROUND INFORMATION AND THE SCOPE OF PROGRAMME I

3 MODE OF OPERATION

3.1 Input chapter

3.2 Response matrices

3.3 output of results

3.4 Comments on the two-part programme

3.5 Further facilities on the Ellutt 503 computer

4 THE USE OF THE PROGRAMME

4.1 Preparation of the data sheet and output format

4.1 .I The title
4.1.2 Transfer‘function

4.1.3 The input function

4.1.4 The output function and tabulation

4.1.5 111ustrat1ve example

4.2 Failure cases

4.2.1 Transfer function numerator error-8
4.2.2 Transfer function denomuator errcrs

4.2.3 Discussion of errcr cases

5 DISCUSSION

PART II - RANDOM INPUT FUNCTIONS
6 INTRODUCTLON AND BACKGROUND INFORMATION

7 PROGF?AMME II - MEAN SQUKRE PROGRAMME -

-7.1 Mode of operation

7.2 Use of the programme

8 PROGRAMME III - AUTOCORFZLATION FUNCTION PROGRkME
8.1 Mode of operation
8.2 Use of the programme

Appendix A Programme I - Deterministic input fun&Ions
Appendix B Error Indications in Programme I

Appendix C Programme II - Mean square programme
Appendix D Programme III - Autocorrelation function programme
Appendix E Error udications in Programme III
References

Illustrations
Detachable abstract cards

INTRODUCTION

In previous papers methods were darelopped to simplify the respon&
analysis of time-invariant linear systems when subjected to detertist'io 132

or random inputs 3 . It was podxxl out that although they could be employed

in relatively small scale desk-type calculations these methods would be
particularly useful when programmed for a digital computer.

The mayor part of this programming work has now been done,' the pro-
grammes having been written in ALGOL. As at present oonstltuted they are
explicxtly for the Elliott 503 computer but requxre only minor modlfibations

of input and output instructions in order to be usable on any moderately
sized computer with an ALGOL compiler. They could also be used, with small

modifications indicated herein, on a large multipurpose computer such as
ATLAS which lnoludes an Ellxott 503 ALGOL compiler in its range.

This paper describes the programmes and the way in which they are to
be used together with illustrative examples. Everything relating to the
determinxtx input programme is discussed in Part I. The extension to
random inputs is dealt with in Part II, but, to minimise repetdion, reference
is made to sections of Part I. The paper 1s meant to be used. in conJunction
with Refs.2 and 3.

PART I- DE!I!ERMINISTIC IM'UT FUNCTIONS

2 BACKGROUND INFOIlMATION AND THE SCOPE OF PROGW I

Many problems ln engineering are formulated as a set of time-invariant
linear ordinary differential equations. Usually, such equations are solved
by the use of Laplace transform teo&ques and at some stage in the process
a transfer function relating the required response variable and the input
variable is obtained. Engineers working.on control systems may build up a
composite transfer function for a complicated system from the tiovm transfer

functions of simple elements. The next stage in the conventional application
of Laplace transforms is to transform the Input, express the resultrng funo-
tion for the transformed response variable in partial fraction form and then
perform the xwerse transformation. The serial/matrix method desorlbed in
Ref.2, eliminates this tedious last stage. Once the factorised transfer
function is specified, together with the input function, an explicit formula-
tion of the output response may be obtained by precise matrix operations

without having to resort to partial fraction expansions and inverse
transformations.

4

The construction and male of operation of the programme written to
perform these operations together with detailed instructions for its use are
described in this first part of the paper. The programme may be described as

a basic programme wxth its ~tsrting point at the transfer function stage.
Extensions are envlsagec? which will increase its usefulness but these have
not yet been programmed.

We assume then that the problem is formulated in the form of a system
transfer function and deterministic input function of time which belongs to
a large class of functions to be descrlbd shortly. 'The numerator and

denominator of the transfer function have each to be factorxw.3 Into linear
or quadratic factors, thus avoiding the use of complex roots. (This factorisa-

tion may be done as convenient depending upon the programmes avadable but for
the testing work on the programme we have been using the programme TRIPLE
LENGTH BAIRSTOW-QUADRATIC FACTORS OF A POLYNOMIAL written by Wilkinson for
Deuce; Ref.494 (RPO4 T/l).) To each factor there corresponds a physIcally
realisable filter and the overall transfer function is represented by a
sequence of these filters. The input function is in effect passed through
each of these elementary fdters in turn.

The elementary filters which have to be allowed for in the programme
are:

constant gain K, s, s + k, s2 + 2ns + m
2

with n < m

and

l/s, l/(s + k), l/b2 +2ns+m2)withn<m .

The rnput function is assumed to be any linear combination of functions
of the following types:

(i) generalised functions, 9(t), *a. , u4(t) (T(t) is a mt
impulse),

(ii) unit step function u,(t), t, t2, t3,

(iii) esat, temat, t2eSat,

(iv) sin wt, cos wt,

(v) e-atsi.n wt, esatoos wt.

(The parameter 'a' is, of course, generally not the same in both groups (xii)

aJla (VI.1

There may be more than one s'oup of each of the last three types, dlf-
fering in their values of a and/or w, but if any one member of a group

OCGUTS in the input it is assumed that the other member(s) also occur(s) but
with zero multiplying coefficients. The input function is then of the form

x,(t) = &E(t)

where a is TOW vector of coefficients and x(t) is a column vector of
functions making up the Input funotlon set. Now, with each of the six pos-

sible types of factor occurring in the system transfer function, and for the
particular input function vector z(t), can be associated a so-called~
response matrix.

The analogue of passing an Input function through the elementary filters
in turfi becomes that of successive multiplications of the input coefficient

vector a by the response matrxes associated with the various filters. The
programme is therefore concerned primarily with classification of the input
function, the construction of the response matrices of appropriate order and
the successive matrix multiplications.

3 MODE OF OPERATION

This section contains a brief discussIon of the maJor processes m the

programme. It is primarily for the programmer wishing to extend the programme
u some way or to alter it so that it can be run on a computer other than the

Elliott 503.

The programme contains identifiable chapters labelled by the transfer
functions of the elementary filters s, l/(s + k) etc. Since the programme
was too large to be run whole on the Elliott 503 computer at Westcott it was

split into two parts. The first tape contains the input chapter, the l/(s + k)
and l/(s2 + 2ns + "2) chapters; the second. tape oontszxs the s, s +k,
2 + 2ns + m 2

S and l/s chapters together with a chapter for the output of
results. The output tape from the first part of the programme 1s used as
the input data tape for the second part.

The two parts of the programme are shown separately 111 Appendix A sections
(b) and (c) and their corresponding flow diagrams in Fig.1. The alterations
which would be required in order to run the programme whole on a larger computer

are discussed in section 3.4.

6

3.1 Input chapter

The input chapter 1s that shown in the first column of Appendix A

section (b). In addition to putting in input function and transfer function

data It serves to set up the input coefficient vector and to determine the
order of the final coefficient vector. The input coefficient Vector is aug-

mented by the ddltion of zero elements so as to be of the same order. By
this device all the response matrices can be set up as square matrIces cf

order q[12] x q[lZl.

In accordance wzth the normal structure of an ALGOL programme, various
procedures used in the programme are also stored in this chapter. The most
lmpcrtant of these are 'mxprod', 'convert', 'testc' and. 'normalise'. The

purpose of these ~111 be explaind as we come to them in this discussion.

For nomenclature, the array 'b' 1s used to store the values of a and
w occurring m the components of the input functwn vector; arrays 'c' and
'e' represent Input and. output coefficient vectors respeotlvely and array 'd'

1s used to represent the response matrix.

3.2 Response matrIces

The six types of response matrz, corresponding to the six possible
types of filter m the transfer function, are cc&and in quite distinct

chapters of' the programme. During execution a particular chapter 1s not
entered if its corresponding type of filter is not present in the transfer

function (as indicated by the value of y[i]). These chapters are all very
similar in structure so we shall discuss, as a typical one, the

l/b2
2 + 2ns + m) chapter. This is shown in thefIrst half of the third

column of Appendix A section (a) following the heading:

comment l/(s
2 2 + 2ns + m) Response Section; .

See also the second half of the first column of the flow diagram, (Fig-l).

The various processes involvd are as follows. Firstly, all the elements

Of response matrix 'cl' are set to zero by use of the procedure 'set zero'. The
elements of the response matrix corresponding to the 'stand&' input functions
up, . . . , t3 are set up. Lf any one of these functions is absent (i.e. has
a zero coefficient) the corresponding elements in the response matrix are left
as zeros. The remaining functions are dealt with similarly, with a block cf

elamts set uP in the appropriate p& of the matrix for each independent pair
ofvalues of a and w.

7

When the response matrix is complete it 18 multiplied. by the Input

coeffxient vector '0' and the resulting output coefficient vector is

stored in array 'e'. This is done by the procedure 'mxprod(e,c,d)'. The

elements of the array 'e' are then transferred back to the array 'c' using

the 'convert' procedure and the elements of the array '0' are made of order

unity by dlvidlng them all by their average value, using the procedure

'normalue'. The normalxing factor then multipliks the content of store

'cg', whxh at the start of the calculation contains the constant gain Of

the transfer function.

It frequently happens dwlng ths sequence of operations that, owing to

Inaccuracies In the computation, oertaln coefficients of the output coeffloient

vector appear as small numbers of the order of 10 -a to 10
-6 when they should

In fact, be zero. The programme sets any coefficient to zero by means of the

'testc' procedure lr after normalisation of the vector the coefflclent 1s
-6 lessthan5xlO .

A I/&* + 2ns + m2) filter mth 0 < n < m ~111 generate exponential-

trlgonometrlc functions. On output from a filter of thu type, the coef-

flclents of such generated functions are stored in the coefficient vector

duectly below those of existlng input functions (and thus overwriting zeros

userted at the input stage). These generated functions are then Incorporated

fully into the input function format by modifying the input coefficient

vector 'c' and the array lb'. That completes the cycle for one such falter

and the complete process 1s repeated for further fdters of the same type.

The chapters for other types of fdter are basically the same as that

just described but with minor modxfications. The 'numerator' fdters s,

s + k, s* 2 + 2ns + m do not gen&ate new functxons m the manner described

above so the last stage for lncorporatlng generated functions Into the input

vector 1s not required.

The l/(s + k) filter produces exponential-polynomial functions. The

processes of settug up the response matrx and for dealing with the generated

functions differ in some respects from those described above since we allow

for the posslbilzty of the fdter l/(s + k) being up to three-fold repeated

and, as a consequence, the posslbdlty of an exponential-polynomial input

group wdh the same parameter 'k' as the filter.

The l/s filter chapter also differs from the standard case in that

we allow functions of the type tn, with n>3, to be generated by the

fdter. Although, such functions do not fit Into the standard input function

8

format, thex lntrcduction at this stage presents no difficulties since this

l/s chapter is the last to be executed before output.

when all these matrix calculations are complete the current coefficient

vector 1s multiplied by the current constant gain to give the fIna output

coefficxnt vector.

Should an Errol occur at any stage, use is made of the two prcced.~es
'write(string)' and 'outerror'. The first gives a prmt-out of the error

indication (discussed in section 4.2), the second reads in any remakng
data for the case that has failed. Any further cases on the data tape can

then be run using the standard Elliott procedure 'restart'.

3.3 output of result+

The relevant part of the programme is shown in the third column of

Appendix A section (c) and consists of three main parts.

The first gives a printout of the output function in explicit algebraic
form following the programme heading and data title. The second part 1s
headed:

comment Output to Programme II (Mean Square Programme);

This section is relevant only when the input is a random process and is dis-
cussed in Part II. When the problem ccncerns only deterministic input func-
tlons the parameter SAF has to be set to zero. This 1s done automatically
by the use of the data sheet which contains the necessary zero immediately
above the tabulation section.

The third part ccncerns tabulation of the output function. If no
tabulation is required 'del' should be set to zerc and this section 1s not
entered during execution. Otherwise the tabulation data are read m and
the output function 1s computed for to(h,)tf, the values of t 0' h, $nd
tf being reassIgned for each change of interval of the tabulation.

3.4 Comments on the two-part programme

Since the exlsting programme is in two parts an explanation is nm

given of how the data is passed from the first half of the programme to the
second.

By means of the first programme tape, the data title is read in ad
reproduced on the Output tape but without the right hand string quote (the

7 character). The input function and transfer function data are red in

9

2
and the response calculations for the j/(s + k) and 1/(s2 + 2ns + m)

filters are performed. If these calculations are completed without error

the right hand string quote is punched on the output tape, followed by a 1,
the remaining transfer function data, the current input fun&Ion data and

finally the tabulation data. If an error does occur the appropriate error

indication is punched out followed by a right hand string quote and a zero.

When the output tape from the first part is read in as input data to

the second part of the programme the programme title is punched out together
with the information between string quotes on the data tape. If no error
occurred sn the first part the next character on the tape is a 1; the computer
takes this as an indication that the computation is correct so far, continues
to read in the remaining data and proceeds with the calculation. If, on the

other hand, the next character is a zero the string already reproduced contains
the error indication ani the computer performs no further calculations on that

case.

When several cases are to be dealt with at the same time they should all
be punched on the same data tape. Part I calculations are performed on all
the oases and then followed by all the Part II calculations.

It should be possible to run the programme in one piece on an Elliott
503 computer with more than 12K words of storage. The few alterations which
would have to be made to,the existing tapes before Joining them together are

listed in Appendix A section (a).

If the programme is to be used on a computer which will not accept
Elliott 503 ALGOL (ATLAS is one computer which does have such a compiler),
some alterations will have to be made to the programme. The computer
should be one having an on-line teleprinter and two other fast output
devices,(in the existing programmes these are referred to as punch (3) snd *
punches (1) and (2) respectively).

Those sections of the programme which are most likely to require
alteration are indicated by a vertical line at the side of the printed pro-

gramme in Appendix A sections (a) and (b). The more obvious alterations are
the switch lists, not required on most compilers, the input and output pro-
cedures and their associated setting procedures.

The existing programme also contains the following Elliott software

procedures - all of which will have to be altered: 'elllot', 'restart',
t location' , 'address' , ' size' and 'range' . The 'elliot' procedure is used

IO

in the boolean procedure 'key(n)'. This allows the user, if he wishes, to
control various steps in the computation by switching on apprcprlate key(s)

on the computer console. 'restart' has already been mentioned and the

remaining procedures are used in the 'mxprcd' procedure. A matrix multipli-

cation procedure could of course, have been written in standard ALGOL but
usmg the above procedures helps to cut down the operating time.

Fmnally, many machines are capable of converting a programme in a
given code to one in a different code, so It is possible that the necessary

alteratxons could be done by the computer.

3.5 Further facdlties on the Elliott 503 computer

By running the programme with key(l) on, the data title of each case

is printed on the teleprinter together with any error indications and the
word 'NXDATA when each case has been completed. This makes it possible to
keep a watch On the progress Of the CCmQUtatlCnS. However, it is advisable
to use this facility sparagly since the teleprinter operates so slowly

(c IO characters/set).

If the coefficvent vector needs to be examined before and after every
filter of the transfer function this can be achxved by running the programme
with kqy(2) on, whereupon the coefficient vectors are all fed. to punch (2).
This facility is useful for checking any results obviously incorrect but which
do not throw up any error in&cations (possibly due to faulty data punching).

4 THE USE OF THE PROGRAMME

In this section is contaxxcl all the znformation needed in order to be
able to use the programme. It is therefore co&med primarily with the,
Qrep&ticn of the data sheet, the format of the results produced by the
computer, and possible causes of failure of the progr?mme.

4.1 PEQaTStiCn of the data sheet and OUtQUt fOrmat

A Copy Cf a blank data sheet is given in Fig.2. It may be seen to
divide into the three main sections:- transfer function, input function and

tabulation of results.

4.1.1 The title

The first piece Of information to be punched on the data tape ls the

t1t1e. Each set of data m on the computer muat have a title ccntaix&g
not more than thirty characters.

11

The opening character of the title must be a +E, ad the closing character

a 9. The title may not contain any other Z or 7 characters.

b-l.2 Transfer function

All information relating to the transfer function goes into the appropriate

part of, the left hand column.

The first parameter to be entered is the constant gain. There follcws a
block of constants y[l] to y[61 which'dictate the structure of the transfer

function by udlcating the number of factors of each of the sn types which may
be present (see section 3). If any type is absent, the appropriate y[il
should be set equal to zero.

Taking them m order, y[l] is the number of l/(s + k) factors present.

This includes re-+eated factors l/(s + k)' where r is restricted m the
present programme to be not greater than three. As an example,,the transfer
functxon l/(s + 1) (s + 6.1)2 (s + 3.9)3 would have y[l] entered as 6.

Y[21 is the number of quadratw factors of the form l/b2 + 2ns + m2)

where n<m and m 1s not zero. Repeated factors of this form have not
been allowed for in the programme. y[3] is the number of s factors, i.e.
the uidex r of ST. Y[41 is the number of (s + k) factors present,
incluilng repeated factors (s + k)', in the same wa.y as y[l] but,
generally speaking, there is no restriction on the value of r. y[5] and
y[6] are obtained m a similar manner of y[2] and y[3]. All the constants

y[il should be written as mtegers.

The parameters occurring in the transfer function are then entered in
the blocks below. If my y[il is-Zero, the corresponding block is left
blank. When entering the values of k corresponding to l/(s + k) factors,
the k's of nonrepeated factors must precede those of any repeated factor.

The k's of a repeated factor must be entered in consecutive squares. If
there is more than one repeated factor the order in whxh they are taken is
immaterial.

On the data sheet (Fig.2) space for only six factors of a given type
has been allowed but extra rows can be added to any block if required.

When the data tape is bang prepared, data should be punched in the
order ndioated by the dotted. line, starting at the title, and. ending at

the label A.

12

4.1.3 The input function

The sectun on the upper right hand side of the data sheet is for setting
up the input function.

The fuxt block concerning the input functions u&(t) to t3 must

always be completed. If any one of these functions i:, present m the Input
function, the coefficient multiplying it is inserted on the appropriate line
of the block; otherwise a zero is inserted.

The three blocks whch follow cover the other three classes of function
allowed for in the programme. Consider the exponentid-polynomial group

e-"t(auo(t) + fit + yt2). As mentioned in section 3 the programme does not
allow for functions of higher order in t, such as i>3e-"t , etc. When all

the exponential terms are grouped so as to comply with this format, the number

P[91 1s the number of independent groups, i.e. the number of different para-

meters 'a' occurring In the exponential functions. The value of p[91 must
be inserted even if It is zero. For each independent 'a' the block of
multiplying coefficients (a,p,y) is inserted and, in the lower block of the
same column, the value of 'a' itself. For mch value of 'a', the user has
to insert a zero opposite the corresponding value of 'w'. Precisely p[91
sets of data (a,@,~) and (a,~) have to be inserted. The sheet does not
allow for p[91 > 3 but the user may add extra blocks if he wishes.

p[10] 1s the number of functions of the type (a sin wt + p cos wt)
present in the input. When p[10] * 0 the blocks in the second column must
be filled in as described for tile exponential-polynomial functions. For each
independent 'w', the corresponding 'a' must be written as zero.

P[lll indicates the presence or absence of exponential-trlgonometrio
functions, and the data sheet is filled in in just the same way as for the
other #'unctions.

When the data tape isbeing prepared the punching order is indicate&
by the dotted line, starting at the label A and ending at the label C.

4.1.4 The output function ad tabulation

The section on the lower right hand side of the (data sheet is used for

defining the format of the output function.

Fzrstly, the output function is always produced in explxit algebraic

form &nmediately following the heading, thus:

13

Response of lxrar systems
(title of data).
Output function.

Programme I

Secondly, should the user require It, the output function will be computed
and tabulated at tunes dxtated by the quantltles entered in the block headed

'TABLILATION'.

The quantltxs tc, t,, t2, . . . , are the tunes at whxh the tabulatxn
either starts or finishes, or at whch the tabulation interval h 0' hl
changes in magnitude. Thus, of the user wanted to tabulate for t = 0(0.1)5
and. t = 5(0.2)10 he would enter to = 0, hc = 0.1, t, = 5, h2 = 0.2, and
t2 = IO. In this case the number of large time intervals, 'dell, would be

two.

The programme has a great deal of flexibility, smce the Input is ccm-
puted from an explicit formula. The user may, if he ashes, start the
computation at txme t 0 not equal to zero. Agam, by suitable manipulation
of the tabulation blocks he can jump a large tame interval without doing any
lntermedlate calculations.

The number of large time intervals, 'del', is the suffix of the final
value of t. If no tabulation 1s required, 'dell should be set equal to

zero. The user may add extra rows to the tabulation block to allow for "cre
than 4 large time intervals If required.

The zerc following the label C must always be mserted. The slgmfi-
canoe of this zerc is "entlond. m section 3.3.

The data for the problem should be punched on Elliott 503, 8 hole paper
tape, begInning with a new lme, and ending with a new line, each number
being separated from the previous one by a new line.

Should theuser wish to run "c1*e than one set of data on the computer,

he should include all the sets of data on one tape allowing, say, three
inches of run-out between each set. It should be borne in mind that a case
consists of all three ingredxents: transfer function, input function and
tabulation. The user is advised. to give each set of data a different title,
otherwise confusion may occur ever the sets of results cbtalned from the

computer.

4.1.5 Illustrative example

As an illustration of the way 111 which the data sheet should be filled

in, Fig.3 shows a completed sheet for the follwang problem. Since it has

no particular physxcal significance, the response has not been computed.

14

Transfer function:

0.634102(s2 + 2 x 8.8949s + 10.32652) (s2 - 2 x 4.7884s + 5.26’)~
(s - 0.31401)(9 + 5.549)’ (s2 + 2 x 3.7372s + 6.21034')

.

Input function:

3.507 + 6.25t2 - 2.9131e-2'799t + (0.5928t + 0.3160t2)e-1'304t

+ 5.3857e-1’94a6t cos (7.2619t) .

Tabulation:

For t = 3(0.1)5 and 6(0.05)10.5 .

4.2 Failure cases

As lndxatd. m section 2, the programme copes with an extensive, but

bounded range of Input functions. Suce it 1s posslblt: to produce incorrect
answers by going beyond the xndicated bounds, certain error indications have
been budt Into the programme, and these ~111 now be briefly discussed.

4.2.1 Transfer function numerator errors

These are caused by the attempt to pass higher order generalised func-
tions through dlfferentlating elements. Details of the two error indications
in this class ~111 be found in Appendix B section (a). Here a typical one

will be considered.

For example, suppose that the problem involved calculating the Impulse
response of a system wdh the follow- transfer function

(3 + k,) (s + %, (s + $) (s + k4) (s + k5,

(s + ko) s5

and the results tape contained only the programme title, the data title, and
the following error indlcatlons:

u&(t) into filter number 6 .

The input fun&Ion is u4(t), and. the 'fllter number' the stage in the com-
putation when the error occurred, which in our example is the sixth filter

15

in the chain, (s + k
5

). (When determining the number of the filter, It should

be remembered. that the order of computation is the same as that indicated when
setting up the factors of the transfer function on the data sheet.) 1

The passing of a u (t) function through the (s + k) filter would 4 5
cause a u (t) function to be generated.

5
This function lies outsIde the

llmlts of the input function (see section 2), and would, therefore, not be
acceptable to the next filter in the cham.

Ths fault is therefore seen to arise from the conjunction of an untypi-
cal form of transfer function (with the l/s5 term) together inth the order in

whwh factors are dealt with in the programme. Nevertheless, even this case

could be satisfactorily computed by the devxe of breaking it up rnto two

stages

u,(t) ,(s+k,) b+k2) (s+$) (3 + k4) (s + k5)

(s + ko) s3
2

S

The problem is then run as two separate cases, the input function for the
second one being the output function from the first.

4.2.2 Transfer function denominator errors

These errors occw during the passing of an input function through
l/(s + k) or 1/(s2 + 2ns + m2) filters of the transfer function. Details

of these errors will be found in Appendix B seotlon (b), and again we rLl1
discuss a typical one.

For example, suppose the problem involved calculating the response of a
system with the following transfer function:

S(S2 + 2ns + m2)

(s + $1 (8 + $1 (3 + k3,’

for the input fun&Ion te -k3t , and the results tape conttined only the pro-
gramme title, the data title, and the following error indxcation:

fallure case II filter number 3 .

The third filter in the transfer function is the first of the filters

l/(s + k3)> and the passing of the function te -%jt (which 1s one of the

components of the output vector from the
fAter l/(s + k+*

l/(s + k2) fdter)through the
will cause a t3,+3t fun&Ion to be generated. This

function lies outside the bounds of allowable Input functions, and would
therefore not be acceptable to the next filter in the chain.

-“3” te _ 1 1 2 -k3t
(S+k)

2t e
1 !&3 _

-k3t

3
--(s+k) 3

Although the t3e-k3t function is not generated until the second filter of

the type l/(s + k3), it should be noted that the filter number given in the
error Indication will be that of the first filter of this type. Thu also

applies to the failure cases I and III (see Appendix B section (b)).

The only method of dealing with the problem would be to remove the
offending fdter from the transfer function, and complete the calculation for
this filter by hand using as input function the output function f'rom the
oomputer for the 'reduced' transfer function.

4.2.3 Discussion of error cases

It must be stressed that these error indications were bult into the
programme more as a safeguard than a restriction. Provided that the user
has set up his input function and transfer function correctly on the data
sheet he should have little trouble from errors, suxe they are unlikely

to occur in most physxal problems.

5 DISCUSSION

In a large comprehensive programme such as this there are numerous
possibdities for error which have tobe rooted out. The programme has been

tested m severalways both by comparing results with those obtained by other
methods and by a unique self-checking property of the method which will bk
discussed shortly.

The following is an example run to produce results whxh could be
compared with those obtained another way; it also serves to illustrate the

whole computational procedure uwolved. This example was taken from a paper
by Stelglitz5 for no other reason but that it provided a complicated looking
transfer function for which the unpulse and stq, responses were presented.

The transfer function was:

0.02191~~ + 0.05325~~ - 2.01~~ + 11.93~~ - 35.32~' + 59&s* - 56.20s + 23.94
8 s + 0.823~~ + 30.52s 6 + 86.42~~ + 1L2.6s4 + 189.%s3 + 169.6~~ + 89.29s + 23.00

The roots of the numerator and denominator polynomials were obtained by the
Deuce programme mentloned in section 2, and are tabulated in F1g.5. Each
complex pair had to be manipulated to give the constants in a quadratic factor.
The data sheet was then filled in as illustrated in Fig.4 for a unit impulse
input function, tabulation of the response being requested for ,
t = 0(0.1)4(0.05)9(0.1)10. Since we expected the response function to have
a peak around t = 6.3 sea we arranged for the function to be tabulated

at closer i&ervals in this region.

Fq.5 shows part of the tabulation and a plot of the response. As far

as can be ascertained from the graph in Ref.5, our results and those of
Steiglxt.2 agree precisely. As a further check the responses to a unit step
were also computed. and again they agree with those given in Ref.5. According

to Laplace transform theory, working from the transfer function, the asymp-
totio value of the response at t + m should be 23.04/23.00 or 1.00173913.

The value given by the programme was, in fact, 1.0017391 and this, It should
be remembered, was after several matrix operations.

The self-checking property of the method mentioned above rklies on
the fact that, lf numerator and denominator both contan preo~ely the same
factors, the output function should be Glentloal mth the Input function.
This provides an excellent way both of cheohng the programme for alstakes
and of @wing some idea of the accuracy that is attamable.

An example is provided m Fig.6, .;hioh shows a oomprehenslve input
function, lncorporatlng nearly every possible type of component funotlon,
into a transfer function with a factor of each type. It can be seen that
the cocfflcients in the output function differ only in the last decimal
plaoe from those of the Input function, and that functions generated by the
denominator filters emerge with zero coefficients (as, of course, they
should).

This is a good example with Very little error arxing. Experience
with the programme .u, as yet, too limited for us to be able to say that
such nccuracy ~111 always be attamable, and some recent calculations suggest
t!lat aocwaoy 1s lost when the denominator constants aye small in magnitude
111 comparison with the other constants in the transfer function. It 1s too
early to draw oonclus~ons on this point but It may turn out that dlfflcult
cases will be better dealt with when run on a computer mth a longer word

length. For example, ATLAS has 6 word length of 44 BITS (12-13 slgnlficant
/

figures) ns opposed to 32 BITS (8-9 slgnlflcant figures) on Che Elliott 503.
, .

18

Tumng nc~ to the question of economical computer usage, the time

needed to run a case varies, of course, with the computer and its peripheral

equipment but the following are approximate times for the first example quoted
above when run on the Elliott 503 computer at Westcott.

To run on 1st tape of programme - 20 seconds

To compute response with 1st tape - 10 seconds
To run in 2nd tape of programme - 20 seconds

To compute resocnse with 2nd tape - 10 seconds
To ounch out tabulated response (151 points) - '50 seconds

This gives a total of 1 minute 50 seconds. If we allow time for the
operators to load the tape readers, reset the oomoutel- eta., the total time
could be around 2 minutes 15 seconds. However, if several cases had been

computed in sequence, 40 seconds per case would have been saved by not
having to run in the programm‘e tapes each time. Also, the actual formulation
of the output function 1s obtalned in only 20 seconds, the remaimng com-
putlng time being required for the tabulation of the output which would take

at least as long by any other method.

With regard to further applications, a potential user may have a problem
in which the Input function is not of the reqnred type. He could, however,
use the programme to derive the unit impulse response from the transfer func-
tion and use this In a convolution programme.

With regard to extensions of the programme whxh are envisaged, a great
deal of work is currently being done on methods of analysis of multivarlable
systems by the state space approach. It has been shown4 that the serial/
matruc technique could be usefully employed 111 connection with this; all
the necessary algebraic formulations have been worked out an& It 1s x?cended

that they be programmed for computer.

PART II - RANDOM INPUT FUNCTIONS

6 INTRODUCTION AND BACKGROUND INFORMATION

The extension of the method to stationary random processes in'linear
systems is described in Ref.3. That paper, in two parts , gives two methods
of obtaining the output autocorrelation function 4 oc(~) of the process when
the input autocorrelation functxn $ii(~) 1s a linear combination of
certain prescribed autocorrelation functions. Once #cc(T) is known the
output mean square value is given by setting 7 = 0.

19

The system autocorrelation function method is based upon the equation

Lw
$,,(t) = L tJ,,w $ii(t - T) d.T .

$,,cT) is the system autocorrelat~on function which is derived from the
system unit impulse function h(t) and defiped by

m

$hhl’) = h(t) h(t + T) dt .

Smce h(t) 1s given analytically as a linear combination of Icnc,:r, 5mctions

of t by the determlnlstx input programme? simple matrix operations lead to
#,('G). Further matrix operations may then give #cc(t) by the first equatwn
above.

'Iks particular method was not programmed In full generality; it was
decided to take It only as far as the determination of output mean square
value using the equation

?&$ = ~hh(~) ~ii(~) do ,

since $ii(-7) = $ii(T) .

This Mean Square programme is discussed in section 7 and details are to be
found in Appendix C. It 13 a supplementary programme following on from
Programme I a.@ using as input an output tape from that programme.

An allowable input autocorrelation function is any linear combination

of functions of the following types:

(i) generalised function T(T),

(ii) e-al~l, 171e-a171, l~12e-al~l,

(iii) eqalTc(sin "ITI, eva17' ccs v/'cJ.

The transfer function of the system giving unit impulse function h(t)
1s restricted to having no factor 'l/s, i.e. the pure integration of a
stationary random process is not considered.

20

The second method (the 'serial' method) 1s quite self contamed and the

programme based on It makes no use of Programmes I or II. In essence it is

very similar to the deterministic input method. The input autocorrelation

function is written as a linear combination of functions of the types listed
above; an autocorrelation response matrix is defined for each of the filters

in the filter than representing the transfer function. The output autocorre-

latlon function is given by multiplylng the Input coefficient vector by these
response matrxes In turn.

The Autocorrelatlon function programme implementing this method is dis-
cussed in section 8 and details are given in Appendix D.

7 PROGFLUME II - MEAN SQUARE PBOGFLAMME

7.1 Mode of operation

A copy of the programme is given in Appendz C and the flow diagram in
F1g.7.

Data specifying the system transfer function 1s used in ConJunction
wrth Programme I to give the system unit impulse response function h(t). The
parameter S.A.F. is set to the value one thus indicating to the computer that
the data has to be prepared for Programme II. The data title, and the analytic
expression for h(t) are printed out at the second punch followed by the input
autocorrelation function which is reproduced directly from the data tape. This
second data tape is then fed in with/ Programme II to produce the system auto-
corre$ation function and output mea square.

i
The two procedures key(n) and mxprod are used. With key(l) on, the data

title for each case followed by the word 'NXDATA' upon completion of that case
are printed out on the on-line teleprinter. mxprod is a matrix product proce-
dure as mentlond in section 3.

The coefficient vector of the system autocorrelation function is deter-
mined from the matrxx product

C = aAB .

The programme reads In a, the coeffi&nt vector of h(t), and matrix B
is constructed as an assembly of small sub-matrices involving only the compo-
nents of a. The elements of A are then determined from the variables con-
tained(in the component functions of h(t), i.e. the values of a and w
in the exponential and exp-trig functions. Having computed c the computer
prints out the system autocorrelation function In a standard format.

21

The input autocorrelation function is read m, it3 coefficient vector
being denoted by cc. The matrix E is set up, its elements being defYned by

the variables m the component functions of the S.A.F. and the input auto-
correlation function. The programme then produces mean square value 3 by
the calcu&tion

3 = cEcc .

Having prmted out s it goes on to the next case.

7.2 Use of the programme

In this section is contained all the information needed In order to be
able to use the programme. It is concerned with the preparation of the data
sheet and the format of the results produced by the computer.

A copy of a blank data sheet 13 shown in Flg.8 and may be seen to
divide into two main sections headed transfer function and Input autocorrela-
tlon function. There 13,in addition, a string of O's and l's in the upper

right hand corner which are used. by the computer u? conjunction with the
transfer function data to produce the system autocorrelatlon function. Thu,
together wxth the input autocorrelatlon function, gives the output mean square

value.

The data title and the transfer function data are set up in the manner
described in sections 4.1.1 and 4.1.2.

The first block of the input autocorrelation function section contains
the coeffvxent of U,(T). A constant must always be inserted here. If
U,(T) 13 not a component term of the Input then the coeffxient 13 set to
zero.

The two blocks whch follow cover the two classes of function allowed
for m the programme. Consider the exponential-polynomial &up

(The
P

rogramme does not allow for functions of hqher order m 7
2 -aTI

than
7 e .) All the exponentuxl terms are grouped so as to comply with
ths format, and the number ppl is the number of independent groups, i.e.
the number of different parameters 'a' occurring in the exponential functions.
The value of ppl must be Inserted even if It is zero. For each independent
'a') the block of multiplying coefficients (a,p,y) is inserted, and in the

22

lower block of the same column, the value of 'a' itself. PreoiselY PPl sets of
data (a,p,y) ana (a) are required. The sheet does not allow for ppl greater

than three but the user may add extra blocks If necessary.

e-4d
pp2 is the number of functions of the type
(cc sinw171 + p 00s wlcl, p resent in the input autocorrelation function.

When pp2 * 0 then the blocks m the second column must be fdled in as

described for the exponential-polynomial expressions.

When the data tape is being prepared, the punching order 1s that indl-

cated by the dotted line. The data should be punched on Elliott 503, 8 hole

paper tape beginumg with a new line, and enduxg with a new line, each number
being separated from the previous one by a new line.

Should the user wish to run more than one set of data on the computer,
he should include all the sets of data on one tape, allowing, say, three
inches of blank tape between each set and giving each set of data a title.

The results tape lnll contain:

Title: Response of Linear Systems Programme II.

Data title.

System autocorrelation function m analysic form.

Value of the mean square response.

Since Programme I is used m the computation, if any errors occur the
error indications wdlbe those discussed ~fl section 4.2.

8 PROGRAMME III - AUTOCORRELATION FUNCTION PROGUMVE

-Because of the slmibrzty between this programme and Programme I,
reference will be made to sections 3 and I+ containing the description of
Programme I.

8.1 Mole of operation

This section contains a brief discussion of the mayor processes in the

programme. The programme is shown in Appendur D and ~t,s correspond&g flow
diagram m Fig.9.

The programme contains easily dentxfiable chapters corresponding to
input, the elementary filters, output and tabulation. The mcde of operation
of these chapters is as described for Programme I In section 3, but with the

restrictions that there should be no l/s fdter in the transfer function,

23

and that the Input function should contain only a unit impulse, exponential -
polynomial and exponential - trigonometric functions. The names of some of
the variable3 in this programme drffer from the corresponding varmbles used

in Programme I; however, they should be easrly identified by comparing the

lists of variables m Appendix Asection (a) and Appendix D sectIon (a). Pro-
gramme III is all on one tape.

The facdlty of using the keys on the computer console is,available,

and depressing the keys has the same effect as that described m section 3.5.

8.2 Use of the programme

A copy of a blank data sheet is given in Wg.10. The information
requred for the title and transfer function is as described for Programme I

in sections 4.1.1 and 4.1.2. For the input function, the coefficient of
U,(T) must always be fdled in (even if it 1s zero), and the method for
setting up the coeffuxxnts of the exponential - polynomial and exponential -
trigonometric functions is also the 3ame as for Programme I (sectIon 4.1.3).

The information required for the output tabulation, is exactly that described
m section 4.1.4.

The failure uYlications given by the programme are almost identical

with those of Programme I (section 4.2) but, for exactness, they are listed
in Appendn E.

24

Appendix A

PROGRAMME I - DETERMIXISTIC INPUT FUNCTIONS

(a) List of varubles and~procedures

a, k, 71, n, m real
A[O:IO] integer
b[l:r[12], I:21 real

00[1:8] real

% real

count integer
cr1:1, l:q[1211 Yeal

dl.q[121, 1:9[1211 real

e[l:l, 1:q[l211 real
de1 integer

flr~:Y[~ll real
f21[1:yr211 real

f22[l:yr211 real

f4[1:y[411 real
f51[l:Y[511 real

f52[1:y[511 real

iA uteger

ny[ol integer

nYrl1 integer

nyr21 integer
etc. integer

P[ll integer

P[21 integer

variables m I.F. and T.F.

stores data title
holds i% and w values,
b[l,l] ~3 a, b[i,2] q w
holds frst 8 input coefficients
constant gain of T.F., later used

for normalising factor
number of factors dealt wdh
input coefficient vector

response matrix
output coefficient vector
number of large tabulation
1nterva:ts
holds k's of l/(s + k) factors
holds n's of l/(s2 + 2ns +m2)
factors
holds m's of 1/(s2 + 2ns + m2)

-factors
holds k's of (s + k) factors
holds n's of (s2 + 2ns i m2)
factors
holds m's of (s2 + 21x3 + m2)
factors
constant used in storing data
title

not sqruficant, always zero
number of factors of each

l/(s + k)n type (i.e.
value of index n),
excltirng n = 1

value 1 2.f U4(t) present m
input, otherwise 0

value 1 if u3(t) present in

input, otherwise 0

Appendix A 25

P[31

pr41

PC51

p[61
pr71
p[81
P[91
PLIOI
pl-Ill

q[91

q[101

s[lll

qr 121

I-1

RI

x-2

R2

d91

d101

r[lll

x-r121

SAF

Y[ll
yL21

Y[31

mteger

integer

integer

integer

integer
mteger

mteger
mteger
mteger

mteger

mteger

mteger

integer

mteger

integer

integer
integer

1
mteger

integer

integer

Integer

integer

mteger
integer

integer

value 1 if u2(t) present m input,

othemnse 0
value 1 If l+(t) present m mput,

othemase 0
value 1 if u,(t) present in Input,
otherwise 0
value 1 of' t present in input, othermse 0
value I If t2 present m mput, otherwise 0
value I If t3 present m input, otherwise 0

number of exp-poly functions m input
number of trig. functions m mput
number of exp-trig. functions in mput

position of last coefficient of exp-poly
flmctlons In input vector
posltlon of last coefficxnt of trig. funo-
tions in Input vector
position of last coeffiment of exp-trig.
functions m Input vector
length of fmal ooeffx&mt vector

used in l/(s + k) chapter when input func-

tion is passed through repeated
factors

position of last a, vi values in exp-poly
fns in b array
position of last a, w values in trig. fns

in b XTay
position of last a, w values in exp-trig.
fns in b array
length of fIna b array

value 1 If data present for Programme II,

othervase 0

number of l/(s + k) factors
number of 1/(s2 + 2ns + m2) factors

number of s factors

26 Appendix A

yr41
Y[51
y[61

YYI
YY2

mteger number of (s + k) factors
integer number of (s 2 + 2ns + 2) f-actors

mteger number of l/s factors

mteger total number of factors in l/(s + k)n terms
number of terms of the type l/(s + k) n integer

Variables in l/(s + k) chapter

ak

akn

Integer position of exp-poly input functun wrth para-

meter k for a single l/(s + k) factor
(otherwise zero)

mt eger posltion of exp-poly input functun vnth paa-
meter k for a repeated l/(s + k) factor

(otherwise zero)

dl real auxiliary vanable

g integer positun of 1st coeffuzient of generated exp-
poly function

m2 mteger value of pr101 + pr111
ml mteger used in computation of l/(s + k)n term; deter-

mines the current factor

dl:31 real coefficients of generated exp-poly functions when
transferring to correct oosltun in input

Vardcles in 1/(s2 + 211s + rn2) chapter

Xl real In2 - n2
x2 real ($ - "2);

Variables in 'outuut to Tape 2' section

cc real

1

stores to read data into computer and reproduce
cc.5 real on output tape

Vanable m (s2 + 211s + m2) chapter

x3 real m2 - n2

Variable in l/s block

extra mt eger for functions in input of type tn, n ’ 3,
extra is index n minus 3

Variables in tabulation block

B2 integer nunhr of tune increments in one large time
interval

Appendix A 27

fn real value of function at time t

hl real time increment

ID2 Integer count variable

R4 mteger used m tabulation of first value of function

to real lnltial txne value in one large time interval

tf real flnal time value in one large time interval
t real current value of time

List of procedures

key(n) takes loglcal value TRUE or FALSE If the key on the ccm-

puter console of value n is switched on.
wrlte(strmg) prints string on output devxe, and on teleprinter If

key(l) on. String 1s a set of characters between the

P string quotes.
If tp(n) then - equivalent to: rf p[nl * 0 then -
if ty(n) then equivalent to: if y[n] * 0 then
readr(n,B) reads m values of the real array B[i] for I taking

values from 1 to n.

mxprd(A,B,C)
setzero
testc

c cnvert

normalise

set(n)

outerror

used in the section of programme which determines the

l/(3 + k)n terms by testing values of k.

reds in SAF data (if any) and tabulation data (if any).
If key(l) on, prints NXDATA on teleprinter and then
restarts the programme. Uses real varxble ccc to red
in the real numbers.
performs matrix operation A: = B x C
sets all elements of R.M. to zero.
tests coefficients of 1st 8 fns in the Input, and sets
corresponding p tb zerc or 1 as required.
converts elements of e array to corresponding elements
in c array.
normalises input coeffxxent vector; nn used to accumu-
late coeffxlents and find the mean; normal~~ng factor
accumulated in cg.

28 Appendix A

(a) Alterations needed to produce programme on single tape

Alteratuns to tape I.

(a) Remove 'Tape 1' from the title of the programme.

(6) Insert the variable 'extra' in the first integer declaration.

Cc) The last but one u&xuction in the 'outerror' procedure should

read:

print~:l2210'~ ;

extra:=0 ;

1 4 9 Response of Linear Systems Programme I & 1299 ;

(e) The line reading:

instead of

print~&ul~06.1r107~ ;

(d) Before the first call of the procedure 'instring' insert the

print ZZ lq 33, sameline, outstrlng (h,iA) ;

should be replaced by:

outstrug (A& ;

(f) The a sslgnment of the variable q[121 should now read:

q[12] := q[ll] + 3:(y[11 - yyl + yy2) + 2"y[21 + y[61 ;

Altcratlons to tape 2.

(g) The calls of 'wrote' should be altered. For example, replace

write (6: u&(t) into filter number 7) ;

write (Z S(t) into 7) ;

Ihvmg made these alterations the complete programme is obtained by

Jclnzng the part of the first tape from the.title up to, but not Including,

the comment "Output of data for Input to Tape II" to that section of the

second tape from, and includmg, the title comment s Response Chapter to the

end.

. ., . .> . .,

.

Error mdicatron Cause of error mdication Method of correction

d+(t) Into filter number x A u&(t) function has been passed through:

(a) s, generating u+t) function,

(b) s + k, generating u (t) function,

Cc) s2
2 5

+ 2ns t m) generatmg y(t)
function. Break transfer func-

These are unacceptable to the next filter tlon up mto two
of the chain. stages, and run as

u3(t) into filter number x A u (t) fmotlon has been passed through shown m the example
32 2

an s + 2ns + m fdter, thus generatmg in section 4.2.1.

a y(t) function. Thm function is
unacceptable to the next filter of the
ahan.

Error udxation Cause of error udlcation Method of correctzon

Failure case I fdter number x A tzeekt functmn has been passed

through:
Re-run wdhout filter,

(a) l/(s + k), generatmg t3 .-kt and calculate the response

) generatmg t4cki (b) I/($ + k)*
of that fdter by hand.

, or,
(0) l/(s + kj3, generatmg t5e-kt.

Failure case II filter A te-kt functmn has been passedthrough x refers to the first

number x (=) l/(s + k)*
3 -kt , generatmg t e or, fdter of the type (see
4 -kt'

(b) l/(s + d3 , generatmg t e . section 4.2.2.)

Fadure case III fdter An e -kt functmn has been passed

number x through a l/(s + k)3 filter, generating
t3e-kt

Fadwe case IV fdter In a\ l/(s2 + 2ns + In*, fdter, then Re-factorue the
number x either: (S2 + 2ns + 2) factor and

(a) n* = In*, repeat the calculation.:

(b) n* > m*, or,

() m = 0.
Failure case V fdter number x (1) An .-=t(s1n wt, ccs wt) has been Rerun wlthout fdter, and

passed through a I&* + 2ns + m*) fd- calculate the response of
ter where a = n, 2 2 2 and w = m - n , or that filter by hand. In

(b) A l/(s* + 2ns + m2)' has been (b), x refers to the

used in the transfer functmn. :,econd filter of the type.

31

Appendix C

PROGRAMME II - MEAN SQUARE PROGRAMME

(a) List of variables

Section derlvlng system autocorrelation function (S.A.F.)

fl[l:pl 1

f2[1-1, 1:p21

f2[2:2, l.p21

A[l:m, l:m] real

a[l:l, 1:ml real

B[l:m, l:m] real

b[l:l, l:m] real

o[l-I, 1:ml real

real

real

real

k,K,x,n,nl,w,wl,d real

In

P'

P2
z[0:101

z7.

integer

integer

integer

mt eger

integer

matrix A of Ref.3, part I
coefficients of Input vector
matrxx B of Ref.3, part I
used to store matrix product sA

used to store matrix product aAE (r.e.
coefficients of S.A.F.)
holds a's of exp-poly functions in I.V.
and S.A.F.
holds a's of exp-trig functions m 1.V:

and S.A.F.
holds w's of exp-trig functions in I.V.

and S.A.F.
store coefficients when setting up A and
B matrices (also used m setting up E

matrix)
number of coefficients in input vector (I.V.)
nunber of exp-poly functions in I.V.
number of exp-trig functions in I.V.
stores data title

constant used in storing data title
Mean square evaluation section.

bb[l:l, l:mm] real used to store matrix product cE

cc[l:mm, 1:1] real holds coefficients of input autocorrelatlon
function (I.A.F.)

me
E[l:mm, l:mm]

fflrl:ppll
ffZ[l:l, l:pp21
ff2[2:2, l:pp2]
mm

PP

real
real
real
real

real
integer
integer

PP' integer

coefflclent of u,(T) in I.A.F.
matrix F of Ref.3, part I
holds a's of exp-poly functions III I.A.F.
holds a's of exp-trig functions in I.A.F.
holds w's of exp-trig functions m I.A.F.
number of coefficients in I.A.F.
value 1 if U,(T) present in I.A.F.,
otherwise zero
number of exp-poly functions in I.A.F.

32 Appendix C

PP2
s[l:l, I:11

v

number of erp-trig functions in I.A.F.

usd to store natrlx product &cc (i.e.

mean square value 1
used to stare coeffxxnts whde setting

u,, E matrix

33

Appendx D

PROGRAMME III - AUTOCORRELATION FUNCTION PROGRAMME

(a) List of variables and procedures

a,v,k,m,n
bl[l:r31

b2l-1 :r31
C&

cnt
ccc

D[I:q3, l:q31

de1

dl:l, I:@1
exq

exr

dl:l, I:,$]

ny[Ol
ny[ll
ny[21
etc. 1

P

PP

P'

P2
s'

s2

s3

real
real

real
real

integer

real
mteger

integer

mteger

mteger

mteger
mteger
integer

1nt eger

integer

variables in I.F. and T.F.

holds a's of exp-poly and exp-trig mput

functions
holds v's of exp-trig mput functions
constant gam of T.F., later used for

normalising factor
number of factors dealt with
holds coeffxient of u,(7) on mput
response matrix
number of large tabulation intervals

output coefficient vector

number of locations requxed in the coefficient
vectors to accommodate the coeffxients of the

generatea functions
number of locations required m the bl and
b2 arrays to accommodate the a's and v's
of the generated functions

input coeffxient vector
not slgnlf1cant, always zerc
number of factors of each l/(s + k)n type

t ,
(i.e. value of the index n), excluding
I?=1
value 1 if U,(T) present in l"put, other-
wise zero
value 1 if u,(7) present xn input, other-
wise zero
number of exp-poly functions in input
number of exp-trig functions m input
position of last coefficient of exp-poly
function In input vector
position of last coefficient of exp-trig
functions in input vector

length of final coefficient vector

34

rrl

n-2
RR1

RR2 1

l-1

I-2

r3
tlrl:Y[lll
t21[1:y[211 .
t22r1 :yr211

t4[1:y[411
t51r1:yr511
t52[1:d511
Y[‘l
Y[Zl
yr31
Y[41
Y[51

YY’

YY2

zs

2[0:101 .

integer

integer

integer

mteger
red
red
real
real
real ^
red

integer
integer
integer
integer
integer
integer

integer

integer
integer

Appendix D

used in l/(s + k) chapter when input funo-
tion is passed through repeated factors

position of the last a, v values in exp-
poly functions ~fl the bl a-d b2 arrays

position of the last a, v values in exp-
trq functions In the bl and b2 arrays

length of flnal bl and b2 arrays
holds k's of l/(s + k) factors
holds n's of l/(s' + 2ns +-III') factors
holds m's of 1/(s2 + 2ns + m2) factors
holds k's of (s + k) factors

holds n's of (s2 + 2ns + 13') factors

holds m's of (s2 + 2ns + m2) factors

number of l/(s + k) factors
number of l/(s' + 2ns + III') factors
number of s factors

number of (s + k) factors
number of (s2 + 2x1s + m2) factors

total number of factors in l/(s + k)n
terms
total number of terms of the type

l/(s + k)n
constant used in storq data title
stores data t1t1e

Variables in l/(s + k) chapter

ak integer position of exp-poly input function with
parameter k for a single l/(s + k) factor

(otherwise zero)
ah integer position of exp-poly input function,with

parameter k for a repeated l/(s + k) fac-

tor (otherwise zero)
d real auxiliary variable
ml xdzeger use.3 in computation of l/(s + k)n terms,

determines the current factor
x integer position of first coefficient of generated

exp-poly function

Appendn D

Varubles in l/(s' + Zns + m*) chapter

0 real + m2y

a real
y+ m2 _ ,;24a2 II2

el,e2,e3,e4
fl,fZ,f3,f4

d,kP,g3,& 1
real auxiliary variables

x integer posltlon of fu-st coeffxient of generated
exptr1g fmctron

xl real ';2 - n2)F

x2 real m - n2

Variables III (s2 + 2ns + m2) chapter

C,d real
x2 real

Variables in tabulation block

B1

B2

fn
hl
m2

to
tf
t

List of procedures

key(n)

readr (n,B)

outerror (strmg)

set(n)

real
real
mteger
real
real

real

aux.xl~ary varxbles
2 2 m -n

35

used m tabulation of fust value of function
number of tlme Increments m one large time
interval
value of function at time t

time uxrement
count vanable
lnltlal time value in one large tune interval
flnal time value In one large time u?cerval

current value of tane

takes loguxl value TRUE or FALSE if the key on the com-
puter console of value n 1s switched on
reads in values of the real array B[i] for 1 taking
values from 1 to n
prints the string on the output denoe, and on the tele-
printer if key(l) 1s on. String TS a set of characters
between the .P &rug quotes. Reads in tabulation data

(ti any). If key(l) on prints NXDATA on the teleprinter
and then restarts the programme. Uses real variable co
to read in the real numbers

Used in the section of the programme which deternunes the
l/(s + k)n terms by testing values of k

36 Appendix D

mxprod (A,B,C)
setzero
testg

convert

normalise

performs matrn operation A:= B x C
sets all elements of R.M. to zero
tests coefficients of U,(T) and U,(T) and sets the
corresponding p and. pp to zero or 1 as required
converts elements of the e array to corresponding
elements 1x1 the g array
normalises the Input coeffxient vector; we used to
accumulate coefficients, and find the mean; normalising
factor accumulated in og

2

+

Error Inalcatlon cause of errcr lndlcatlon Method of correction

~3'7) Into fdter number x A u (7) functun has been passed through:
3

(a) s, generating u (T) function,
5

(b) s + k, generating 5 u (T) function,

Cc) s2
2

+ zns + m) generating =p)

function.

These are unacceptable to the next filter Break transfer func-

of the chain. tmn up into two

IA(T) Into fdter number x A U,(T) fun&Ion has been passed through stages, and run as

2 2
an s + zns + m fdter, thus generatug shown in the example

a u (T) function. Thus func'non is for Programme I in
5

unacceptable to the next filter of the sectmn 4.2.1.

chain.

Error uxixation Cause of error inalcatlon Method of correction

Failure case I filter number x A 1~1 e ' -k'T' functmn has been passed Re-run without filter,
through: and calculate the
(a) l/(s + k), generating ~~~~~~~~~~ response of that
(b) l/(s + k)', generating ITl'+c-kld fdter by hand.
(0) l/(s + k)3, generating I.&+f Or' x refers to the

Failure case II filter number x A l~le-~"' function has been passed fust fdter of the

through: tYPe

(a) l/(s + k)', generating lT13e-klTl or
(b) l/(s + k)3, generating ,&+I' .

Failure case III filter number x An e -k'T' function has been passed thro gh
a 1(s+k)3 J filter generating I#,-&' .

Fadwe case IV fdter number x 2 In a l/(s* + 2ns + m) filter, then either: If (a) or (b), refao-
(a) n2 = m2, torise the
(b) n* > m2, b2

2 + 2ns + m) factor

(cl m = 0, or, and repeat the calcu-

(a) n = 0. lation. If Cc) OL‘ (a),
transfer function is
madmusible.

. IY ,;r *,

39

REFERENCES

NO. Author Title, etc -

1 J. F. Koenig A method for obtaining the time response of any
linear system.
I.E.E.E. T~EXIS on Automatic control, AC 9, N0.4,
October 1964

2 E. Huntley A matrix formulation for the time response of time-
invariant linear systems to discrete inputs.
R.A.E. Technical Report 66038 (A.R.C. 28188) (1966)
Int. J. Control, 1966, Vo1.4, No.1, 49-72

3 E. Huntley Matrix methods for the analytic determination of the

output autocorrelation functions of linear systems
for stationary random inputs.

R.A.E. Technical Report 66387, (1966)
Part I System autocorrelation function method.

(A.R.C. 29278)
Part II Serial methcd (A.R.C. 29279)
Int. J. Control Vol. 10, No.l,l-12 and 13-27

4 E. Huntley The response analysis of linear multivariable
systems by an extension of the serial/matrix
technique.
ht. J. Control, 1967, Vo1.5, No.5, 437-450

5 K. Steiglitz Rational transform approximation via the Laguerre
Spectrum.

Jo. of Franklin Institute, Nov. 1965, 387-39$

i

Fig 5 Results for worked example (section 5)

Input function

3 21 u,(t) +4--21 u,(t) + 5.24 u,(t) +6.21 lJ,(t.J

+ 2t+ st2+4t3
+ e-t (6 25 + 3*25ttO-25t2)
+ 5 2 sin (b5t)+.2 co5 (I-5t)

t a-2.5t (6 33 sin (3+) + 6.22 cos (3 9t))

Transfer function

(S+ 3*2)(S2+ 3.25 + lb.491 5
(S+ 3 2)(S2 + 3.25+ 18.49)s

Output function

Response of linear systems progromme1

Test Chl.23456 SOI)

Output function

3~2100000 u3(t)
4~2100004 u2(t)
5.2099996 U(t)

6 210000~ u o(t)
1.9999990 t+i

2.9999999 t*2

3.9999998 I33

exp(-at)*(u(t),t,t*2) a=~50000000
6.2499999
3*2500000
.24999996

exp(-at)*(u(t),t,t42) a= 3 2000000
~00000000
00000000

~00000000

sinwt,coswt w=i-5000000
5.2000002
'19999996

exp(-ot)*(sinwt,coswt)a= 2~5000000 W=3~9000000
6.3300000
6.2200001

exp (-at)~(sinwt,coswt) 0-1~6000000 W=3+9i2404
*oooooooo
00000000 1

Fig. 6 Example for test of occurocy

t. *

a- - - -

DETACHABLE ABSTRACT !ARD
I

----------------~--- ---- -- ------m

In previous publlcatlons t,,? so-called serlal/!mtrlx t.ecMque ha been
developed for Lhe response analysis or systems derlned by time-1nvarlenC
ordinary dirre~mhl ~uathns, one paper describes bow an exp11c1c
romlatlon ror t10 output ImcClon my be easily obtained &en the

In prevlom puhllcatlone fb? so-xlled serial/matrix Gshnipue has been
:

;

developed ror the response aUaUxls of syst.enB defined by tt6%-kmrlent
ordinary dirrerentlal equations. One paper describes hm an erpllcIC
rommlatlan ror the output rUnc.tlon may be easily obtalned niten the

input rmtion 1s detemlnlstlc. A s?cmd gives the output autacorrela- i input flcneflrm 1s detemln1st1c. A second elves the OlDpn autommela-
t1on mlstion and outp.lt loearl eipare value-men the Input 1s a smt1anery ! t1.m nmcflon and output m z3lmu-e value mlM?n the lnps is a station4ry
l-an- pmcess. i t-mdm pmeess.

- I 621.374.32 :
A.R.C. C.P. No. 1124 518.5 t w 1969 62lJ74.32 : 1 A.R.C. C.P. No. 112'. 518.5 :

519.283 : ; Jo4 1969
Kaalerood. L. .I.
Ehmntlcvg. E. 512.831 : : Haslenaod. L. J.

519.283 :

mtlw*
E- 512&l :

519.242 : SlYAl :
mLP~mRraeAEgwrsE~sIsoPLI~

i

8mEtL¶ Nfm fEl!smfNfWC
517.511 1 AlmLPR~smRmnE~BAbLTaf8oP~ 517.511

OR RANoal fN.Pma

rnls paPer gives com@er proSre5nes in AImL allelI lmpl.em?nt these
ideas. The: PI-O-S are described primarily rm the point or vlea

: Z+E-6 15
: IQ-215
: @?r,lS

: ZC'tlLE'lZ9
: S'ELS

ml8 paper gives complter proglames 1n AImI. dllcb Implearent these
Ideas. The prog-s we described prlnmrily rm the point or r1er

: of the user with 111ustmtlve exmples to demmstmte the “se of pre-
: pared data sh?ets but sufficient inlomtlon is Incluied to enable users
, to develop the pmmes further If required.

- , - - - - - -B-v - -m--D

, I I .

A ---------------- a
I

C.P. No. I 124

Published by

To be purchased from
49 H,gh Holborn, London W cl

13a Castle Street, Edmburgh EH2 3AR
109 St Mary Street, Carddf CPl IIW

Bmzerrio~ Street, Manchester 2
50 Fa,dax Street, Bristol BSI 3DE

258 Broad Street, Birmwham 1
7 Llllmhdl street, Belfast BT2 8AY

or through any bookseller

C.P. No. I 124
SBN 11 470312 4

