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SUMMARY 

In previous publxcations the so-called. serial/matrix technique has been 
developed for the response analyszs of systems defmed by time-invariant 
ordinary differential equations. One paper describes how an explloit formu- 

/ 
lation for the output function may be easily obtained when the input function 
is determmistx. A second gives the output autocorrelation function and out- 
put mean square value when the input is a stationary random process. 

This paper gives computer programmes in ALGOL which implement these 
ideas. The programmes are described primarily from the point of view of the 
user with illustrative examples to demonstrate the use of prepared data sheets 

but sufficient information 1s mcluded to enable users to develop the pro- 
grammes further if required. 

*Replaces R.A.E. Technics.1 Report 69140 - A.R.C. 31816 
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INTRODUCTION 

In previous papers methods were darelopped to simplify the respon& 
analysis of time-invariant linear systems when subjected to detertist'io 132 

or random inputs 3 . It was podxxl out that although they could be employed 

in relatively small scale desk-type calculations these methods would be 
particularly useful when programmed for a digital computer. 

The mayor part of this programming work has now been done,' the pro- 
grammes having been written in ALGOL. As at present oonstltuted they are 
explicxtly for the Elliott 503 computer but requxre only minor modlfibations 

of input and output instructions in order to be usable on any moderately 
sized computer with an ALGOL compiler. They could also be used, with small 

modifications indicated herein, on a large multipurpose computer such as 
ATLAS which lnoludes an Ellxott 503 ALGOL compiler in its range. 

This paper describes the programmes and the way in which they are to 
be used together with illustrative examples. Everything relating to the 
determinxtx input programme is discussed in Part I. The extension to 
random inputs is dealt with in Part II, but, to minimise repetdion, reference 
is made to sections of Part I. The paper 1s meant to be used. in conJunction 
with Refs.2 and 3. 

PART I- DE!I!ERMINISTIC IM'UT FUNCTIONS 

2 BACKGROUND INFOIlMATION AND THE SCOPE OF PROGW I 

Many problems ln engineering are formulated as a set of time-invariant 
linear ordinary differential equations. Usually, such equations are solved 
by the use of Laplace transform teo&ques and at some stage in the process 
a transfer function relating the required response variable and the input 
variable is obtained. Engineers working.on control systems may build up a 
composite transfer function for a complicated system from the tiovm transfer 

functions of simple elements. The next stage in the conventional application 
of Laplace transforms is to transform the Input, express the resultrng funo- 
tion for the transformed response variable in partial fraction form and then 
perform the xwerse transformation. The serial/matrix method desorlbed in 
Ref.2, eliminates this tedious last stage. Once the factorised transfer 
function is specified, together with the input function, an explicit formula- 
tion of the output response may be obtained by precise matrix operations 

without having to resort to partial fraction expansions and inverse 
transformations. 
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The construction and male of operation of the programme written to 
perform these operations together with detailed instructions for its use are 
described in this first part of the paper. The programme may be described as 

a basic programme wxth its ~tsrting point at the transfer function stage. 
Extensions are envlsagec? which will increase its usefulness but these have 
not yet been programmed. 

We assume then that the problem is formulated in the form of a system 
transfer function and deterministic input function of time which belongs to 
a large class of functions to be descrlbd shortly. 'The numerator and 

denominator of the transfer function have each to be factorxw.3 Into linear 
or quadratic factors, thus avoiding the use of complex roots. (This factorisa- 

tion may be done as convenient depending upon the programmes avadable but for 
the testing work on the programme we have been using the programme TRIPLE 
LENGTH BAIRSTOW-QUADRATIC FACTORS OF A POLYNOMIAL written by Wilkinson for 
Deuce; Ref.494 (RPO4 T/l).) To each factor there corresponds a physIcally 
realisable filter and the overall transfer function is represented by a 
sequence of these filters. The input function is in effect passed through 
each of these elementary fdters in turn. 

The elementary filters which have to be allowed for in the programme 
are: 

constant gain K, s, s + k, s2 + 2ns + m 
2 

with n < m 

and 

l/s, l/(s + k), l/b2 +2ns+m2)withn<m . 

The rnput function is assumed to be any linear combination of functions 
of the following types: 

(i) generalised functions, 9(t), *a. , u4(t) (T(t) is a mt 
impulse), 

(ii) unit step function u,(t), t, t2, t3, 

(iii) esat, temat, t2eSat, 

(iv) sin wt, cos wt, 

(v) e-atsi.n wt, esatoos wt. 

(The parameter 'a' is, of course, generally not the same in both groups (xii) 

aJla (VI.1 



There may be more than one s'oup of each of the last three types, dlf- 
fering in their values of a and/or w, but if any one member of a group 

OCGUTS in the input it is assumed that the other member(s) also occur(s) but 
with zero multiplying coefficients. The input function is then of the form 

x,(t) = &E(t) 

where a is TOW vector of coefficients and x(t) is a column vector of 
functions making up the Input funotlon set. Now, with each of the six pos- 

sible types of factor occurring in the system transfer function, and for the 
particular input function vector z(t), can be associated a so-called~ 
response matrix. 

The analogue of passing an Input function through the elementary filters 
in turfi becomes that of successive multiplications of the input coefficient 

vector a by the response matrxes associated with the various filters. The 
programme is therefore concerned primarily with classification of the input 
function, the construction of the response matrices of appropriate order and 
the successive matrix multiplications. 

3 MODE OF OPERATION 

This section contains a brief discussIon of the maJor processes m the 

programme. It is primarily for the programmer wishing to extend the programme 
u some way or to alter it so that it can be run on a computer other than the 

Elliott 503. 

The programme contains identifiable chapters labelled by the transfer 
functions of the elementary filters s, l/(s + k) etc. Since the programme 
was too large to be run whole on the Elliott 503 computer at Westcott it was 

split into two parts. The first tape contains the input chapter, the l/(s + k) 
and l/(s2 + 2ns + "2) chapters; the second. tape oontszxs the s, s +k, 
2 + 2ns + m 2 

S and l/s chapters together with a chapter for the output of 
results. The output tape from the first part of the programme 1s used as 
the input data tape for the second part. 

The two parts of the programme are shown separately 111 Appendix A sections 
(b) and (c) and their corresponding flow diagrams in Fig.1. The alterations 
which would be required in order to run the programme whole on a larger computer 

are discussed in section 3.4. 
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3.1 Input chapter 

The input chapter 1s that shown in the first column of Appendix A 

section (b). In addition to putting in input function and transfer function 

data It serves to set up the input coefficient vector and to determine the 
order of the final coefficient vector. The input coefficient Vector is aug- 

mented by the ddltion of zero elements so as to be of the same order. By 
this device all the response matrices can be set up as square matrIces cf 

order q[12] x q[lZl. 

In accordance wzth the normal structure of an ALGOL programme, various 
procedures used in the programme are also stored in this chapter. The most 
lmpcrtant of these are 'mxprod', 'convert', 'testc' and. 'normalise'. The 

purpose of these ~111 be explaind as we come to them in this discussion. 

For nomenclature, the array 'b' 1s used to store the values of a and 
w occurring m the components of the input functwn vector; arrays 'c' and 
'e' represent Input and. output coefficient vectors respeotlvely and array 'd' 

1s used to represent the response matrix. 

3.2 Response matrIces 

The six types of response matrz, corresponding to the six possible 
types of filter m the transfer function, are cc&and in quite distinct 

chapters of' the programme. During execution a particular chapter 1s not 
entered if its corresponding type of filter is not present in the transfer 

function (as indicated by the value of y[i]). These chapters are all very 
similar in structure so we shall discuss, as a typical one, the 

l/b2 
2 + 2ns + m ) chapter. This is shown in thefIrst half of the third 

column of Appendix A section (a) following the heading: 

comment l/(s 
2 2 + 2ns + m ) Response Section; . 

See also the second half of the first column of the flow diagram, (Fig-l). 

The various processes involvd are as follows. Firstly, all the elements 

Of response matrix 'cl' are set to zero by use of the procedure 'set zero'. The 
elements of the response matrix corresponding to the 'stand&' input functions 
up, . . . , t3 are set up. Lf any one of these functions is absent (i.e. has 
a zero coefficient) the corresponding elements in the response matrix are left 
as zeros. The remaining functions are dealt with similarly, with a block cf 

elamts set uP in the appropriate p& of the matrix for each independent pair 
ofvalues of a and w. 
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When the response matrix is complete it 18 multiplied. by the Input 

coeffxient vector '0' and the resulting output coefficient vector is 

stored in array 'e'. This is done by the procedure 'mxprod(e,c,d)'. The 

elements of the array 'e' are then transferred back to the array 'c' using 

the 'convert' procedure and the elements of the array '0' are made of order 

unity by dlvidlng them all by their average value, using the procedure 

'normalue'. The normalxing factor then multipliks the content of store 

'cg', whxh at the start of the calculation contains the constant gain Of 

the transfer function. 

It frequently happens dwlng ths sequence of operations that, owing to 

Inaccuracies In the computation, oertaln coefficients of the output coeffloient 

vector appear as small numbers of the order of 10 -a to 10 
-6 when they should 

In fact, be zero. The programme sets any coefficient to zero by means of the 

'testc' procedure lr after normalisation of the vector the coefflclent 1s 
-6 lessthan5xlO . 

A I/&* + 2ns + m2) filter mth 0 < n < m ~111 generate exponential- 

trlgonometrlc functions. On output from a filter of thu type, the coef- 

flclents of such generated functions are stored in the coefficient vector 

duectly below those of existlng input functions (and thus overwriting zeros 

userted at the input stage). These generated functions are then Incorporated 

fully into the input function format by modifying the input coefficient 

vector 'c' and the array lb'. That completes the cycle for one such falter 

and the complete process 1s repeated for further fdters of the same type. 

The chapters for other types of fdter are basically the same as that 

just described but with minor modxfications. The 'numerator' fdters s, 

s + k, s* 2 + 2ns + m do not gen&ate new functxons m the manner described 

above so the last stage for lncorporatlng generated functions Into the input 

vector 1s not required. 

The l/(s + k) filter produces exponential-polynomial functions. The 

processes of settug up the response matrx and for dealing with the generated 

functions differ in some respects from those described above since we allow 

for the posslbilzty of the fdter l/(s + k) being up to three-fold repeated 

and, as a consequence, the posslbdlty of an exponential-polynomial input 

group wdh the same parameter 'k' as the filter. 

The l/s filter chapter also differs from the standard case in that 

we allow functions of the type tn, with n>3, to be generated by the 

fdter. Although, such functions do not fit Into the standard input function 
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format, thex lntrcduction at this stage presents no difficulties since this 

l/s chapter is the last to be executed before output. 

when all these matrix calculations are complete the current coefficient 

vector 1s multiplied by the current constant gain to give the fIna output 

coefficxnt vector. 

Should an Errol occur at any stage, use is made of the two prcced.~es 
'write(string)' and 'outerror'. The first gives a prmt-out of the error 

indication (discussed in section 4.2), the second reads in any remakng 
data for the case that has failed. Any further cases on the data tape can 

then be run using the standard Elliott procedure 'restart'. 

3.3 output of result+ 

The relevant part of the programme is shown in the third column of 

Appendix A section (c) and consists of three main parts. 

The first gives a printout of the output function in explicit algebraic 
form following the programme heading and data title. The second part 1s 
headed: 

comment Output to Programme II (Mean Square Programme); 

This section is relevant only when the input is a random process and is dis- 
cussed in Part II. When the problem ccncerns only deterministic input func- 
tlons the parameter SAF has to be set to zero. This 1s done automatically 
by the use of the data sheet which contains the necessary zero immediately 
above the tabulation section. 

The third part ccncerns tabulation of the output function. If no 
tabulation is required 'del' should be set to zerc and this section 1s not 
entered during execution. Otherwise the tabulation data are read m and 
the output function 1s computed for to(h,)tf, the values of t 0' h, $nd 
tf being reassIgned for each change of interval of the tabulation. 

3.4 Comments on the two-part programme 

Since the exlsting programme is in two parts an explanation is nm 

given of how the data is passed from the first half of the programme to the 
second. 

By means of the first programme tape, the data title is read in ad 
reproduced on the Output tape but without the right hand string quote (the 

7 character). The input function and transfer function data are red in 
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2 
and the response calculations for the j/(s + k) and 1/(s2 + 2ns + m ) 

filters are performed. If these calculations are completed without error 

the right hand string quote is punched on the output tape, followed by a 1, 
the remaining transfer function data, the current input fun&Ion data and 

finally the tabulation data. If an error does occur the appropriate error 

indication is punched out followed by a right hand string quote and a zero. 

When the output tape from the first part is read in as input data to 

the second part of the programme the programme title is punched out together 
with the information between string quotes on the data tape. If no error 
occurred sn the first part the next character on the tape is a 1; the computer 
takes this as an indication that the computation is correct so far, continues 
to read in the remaining data and proceeds with the calculation. If, on the 

other hand, the next character is a zero the string already reproduced contains 
the error indication ani the computer performs no further calculations on that 

case. 

When several cases are to be dealt with at the same time they should all 
be punched on the same data tape. Part I calculations are performed on all 
the oases and then followed by all the Part II calculations. 

It should be possible to run the programme in one piece on an Elliott 
503 computer with more than 12K words of storage. The few alterations which 
would have to be made to,the existing tapes before Joining them together are 

listed in Appendix A section (a). 

If the programme is to be used on a computer which will not accept 
Elliott 503 ALGOL (ATLAS is one computer which does have such a compiler), 
some alterations will have to be made to the programme. The computer 
should be one having an on-line teleprinter and two other fast output 
devices,(in the existing programmes these are referred to as punch (3) snd * 
punches (1) and (2) respectively). 

Those sections of the programme which are most likely to require 
alteration are indicated by a vertical line at the side of the printed pro- 

gramme in Appendix A sections (a) and (b). The more obvious alterations are 
the switch lists, not required on most compilers, the input and output pro- 
cedures and their associated setting procedures. 

The existing programme also contains the following Elliott software 

procedures - all of which will have to be altered: 'elllot', 'restart', 
t location' , 'address' , ' size' and 'range' . The 'elliot' procedure is used 
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in the boolean procedure 'key(n)'. This allows the user, if he wishes, to 
control various steps in the computation by switching on apprcprlate key(s) 

on the computer console. 'restart' has already been mentioned and the 

remaining procedures are used in the 'mxprcd' procedure. A matrix multipli- 

cation procedure could of course, have been written in standard ALGOL but 
usmg the above procedures helps to cut down the operating time. 

Fmnally, many machines are capable of converting a programme in a 
given code to one in a different code, so It is possible that the necessary 

alteratxons could be done by the computer. 

3.5 Further facdlties on the Elliott 503 computer 

By running the programme with key(l) on, the data title of each case 

is printed on the teleprinter together with any error indications and the 
word 'NXDATA when each case has been completed. This makes it possible to 
keep a watch On the progress Of the CCmQUtatlCnS. However, it is advisable 
to use this facility sparagly since the teleprinter operates so slowly 

(c IO characters/set). 

If the coefficvent vector needs to be examined before and after every 
filter of the transfer function this can be achxved by running the programme 
with kqy(2) on, whereupon the coefficient vectors are all fed. to punch (2). 
This facility is useful for checking any results obviously incorrect but which 
do not throw up any error in&cations (possibly due to faulty data punching). 

4 THE USE OF THE PROGRAMME 

In this section is contaxxcl all the znformation needed in order to be 
able to use the programme. It is therefore co&med primarily with the, 
Qrep&ticn of the data sheet, the format of the results produced by the 
computer, and possible causes of failure of the progr?mme. 

4.1 PEQaTStiCn of the data sheet and OUtQUt fOrmat 

A Copy Cf a blank data sheet is given in Fig.2. It may be seen to 
divide into the three main sections:- transfer function, input function and 

tabulation of results. 

4.1.1 The title 

The first piece Of information to be punched on the data tape ls the 

t1t1e. Each set of data m on the computer muat have a title ccntaix&g 
not more than thirty characters. 
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The opening character of the title must be a +E, ad the closing character 

a 9. The title may not contain any other Z or 7 characters. 

b-l.2 Transfer function 

All information relating to the transfer function goes into the appropriate 

part of, the left hand column. 

The first parameter to be entered is the constant gain. There follcws a 
block of constants y[l] to y[61 which'dictate the structure of the transfer 

function by udlcating the number of factors of each of the sn types which may 
be present (see section 3). If any type is absent, the appropriate y[il 
should be set equal to zero. 

Taking them m order, y[l] is the number of l/(s + k) factors present. 

This includes re-+eated factors l/(s + k)' where r is restricted m the 
present programme to be not greater than three. As an example,,the transfer 
functxon l/(s + 1) (s + 6.1)2 (s + 3.9)3 would have y[l] entered as 6. 

Y[21 is the number of quadratw factors of the form l/b2 + 2ns + m2) 

where n<m and m 1s not zero. Repeated factors of this form have not 
been allowed for in the programme. y[3] is the number of s factors, i.e. 
the uidex r of ST. Y[41 is the number of (s + k) factors present, 
incluilng repeated factors (s + k)', in the same wa.y as y[l] but, 
generally speaking, there is no restriction on the value of r. y[5] and 
y[6] are obtained m a similar manner of y[2] and y[3]. All the constants 

y[il should be written as mtegers. 

The parameters occurring in the transfer function are then entered in 
the blocks below. If my y[il is-Zero, the corresponding block is left 
blank. When entering the values of k corresponding to l/(s + k) factors, 
the k's of nonrepeated factors must precede those of any repeated factor. 

The k's of a repeated factor must be entered in consecutive squares. If 
there is more than one repeated factor the order in whxh they are taken is 
immaterial. 

On the data sheet (Fig.2) space for only six factors of a given type 
has been allowed but extra rows can be added to any block if required. 

When the data tape is bang prepared, data should be punched in the 
order ndioated by the dotted. line, starting at the title, and. ending at 

the label A. 
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4.1.3 The input function 

The sectun on the upper right hand side of the data sheet is for setting 
up the input function. 

The fuxt block concerning the input functions u&(t) to t3 must 

always be completed. If any one of these functions i:, present m the Input 
function, the coefficient multiplying it is inserted on the appropriate line 
of the block; otherwise a zero is inserted. 

The three blocks whch follow cover the other three classes of function 
allowed for in the programme. Consider the exponentid-polynomial group 

e-"t(auo(t) + fit + yt2). As mentioned in section 3 the programme does not 
allow for functions of higher order in t, such as i>3e-"t , etc. When all 

the exponential terms are grouped so as to comply with this format, the number 

P[ 91 1s the number of independent groups, i.e. the number of different para- 

meters 'a' occurring In the exponential functions. The value of p[91 must 
be inserted even if It is zero. For each independent 'a' the block of 
multiplying coefficients (a,p,y) is inserted and, in the lower block of the 
same column, the value of 'a' itself. For mch value of 'a', the user has 
to insert a zero opposite the corresponding value of 'w'. Precisely p[91 
sets of data (a,@,~) and (a,~) have to be inserted. The sheet does not 
allow for p[ 91 > 3 but the user may add extra blocks if he wishes. 

p[10] 1s the number of functions of the type (a sin wt + p cos wt) 
present in the input. When p[10] * 0 the blocks in the second column must 
be filled in as described for tile exponential-polynomial functions. For each 
independent 'w', the corresponding 'a' must be written as zero. 

P[lll indicates the presence or absence of exponential-trlgonometrio 
functions, and the data sheet is filled in in just the same way as for the 
other #'unctions. 

When the data tape isbeing prepared the punching order is indicate& 
by the dotted line, starting at the label A and ending at the label C. 

4.1.4 The output function ad tabulation 

The section on the lower right hand side of the (data sheet is used for 

defining the format of the output function. 

Fzrstly, the output function is always produced in explxit algebraic 

form &nmediately following the heading, thus: 
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Response of lxrar systems 
(title of data). 
Output function. 

Programme I 

Secondly, should the user require It, the output function will be computed 
and tabulated at tunes dxtated by the quantltles entered in the block headed 

'TABLILATION'. 

The quantltxs tc, t,, t2, . . . , are the tunes at whxh the tabulatxn 
either starts or finishes, or at whch the tabulation interval h 0' hl 
changes in magnitude. Thus, of the user wanted to tabulate for t = 0(0.1)5 
and. t = 5(0.2)10 he would enter to = 0, hc = 0.1, t, = 5, h2 = 0.2, and 
t2 = IO. In this case the number of large time intervals, 'dell, would be 

two. 

The programme has a great deal of flexibility, smce the Input is ccm- 
puted from an explicit formula. The user may, if he ashes, start the 
computation at txme t 0 not equal to zero. Agam, by suitable manipulation 
of the tabulation blocks he can jump a large tame interval without doing any 
lntermedlate calculations. 

The number of large time intervals, 'del', is the suffix of the final 
value of t. If no tabulation 1s required, 'dell should be set equal to 

zero. The user may add extra rows to the tabulation block to allow for "cre 
than 4 large time intervals If required. 

The zerc following the label C must always be mserted. The slgmfi- 
canoe of this zerc is "entlond. m section 3.3. 

The data for the problem should be punched on Elliott 503, 8 hole paper 
tape, begInning with a new lme, and ending with a new line, each number 
being separated from the previous one by a new line. 

Should theuser wish to run "c1*e than one set of data on the computer, 

he should include all the sets of data on one tape allowing, say, three 
inches of run-out between each set. It should be borne in mind that a case 
consists of all three ingredxents: transfer function, input function and 
tabulation. The user is advised. to give each set of data a different title, 
otherwise confusion may occur ever the sets of results cbtalned from the 

computer. 

4.1.5 Illustrative example 

As an illustration of the way 111 which the data sheet should be filled 

in, Fig.3 shows a completed sheet for the follwang problem. Since it has 

no particular physxcal significance, the response has not been computed. 
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Transfer function: 

0.634102(s2 + 2 x 8.8949s + 10.32652) (s2 - 2 x 4.7884s + 5.26’)~ 
(s - 0.31401)(9 + 5.549)’ (s2 + 2 x 3.7372s + 6.21034') 

. 

Input function: 

3.507 + 6.25t2 - 2.9131e-2'799t + (0.5928t + 0.3160t2)e-1'304t 

+ 5.3857e-1’94a6t cos (7.2619t) . 

Tabulation: 

For t = 3(0.1)5 and 6(0.05)10.5 . 

4.2 Failure cases 

As lndxatd. m section 2, the programme copes with an extensive, but 

bounded range of Input functions. Suce it 1s posslblt: to produce incorrect 
answers by going beyond the xndicated bounds, certain error indications have 
been budt Into the programme, and these ~111 now be briefly discussed. 

4.2.1 Transfer function numerator errors 

These are caused by the attempt to pass higher order generalised func- 
tions through dlfferentlating elements. Details of the two error indications 
in this class ~111 be found in Appendix B section (a). Here a typical one 

will be considered. 

For example, suppose that the problem involved calculating the Impulse 
response of a system wdh the follow- transfer function 

(3 + k,) (s + %, ( s + $) (s + k4) (s + k5, 

(s + ko) s5 

and the results tape contained only the programme title, the data title, and 
the following error indlcatlons: 

u&(t) into filter number 6 . 

The input fun&Ion is u4(t), and. the 'fllter number' the stage in the com- 
putation when the error occurred, which in our example is the sixth filter 
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in the chain, (s + k 
5 

). (When determining the number of the filter, It should 

be remembered. that the order of computation is the same as that indicated when 
setting up the factors of the transfer function on the data sheet.) 1 

The passing of a u (t) function through the (s + k ) filter would 4 5 
cause a u (t) function to be generated. 

5 
This function lies outsIde the 

llmlts of the input function (see section 2), and would, therefore, not be 
acceptable to the next filter in the cham. 

Ths fault is therefore seen to arise from the conjunction of an untypi- 
cal form of transfer function (with the l/s5 term) together inth the order in 

whwh factors are dealt with in the programme. Nevertheless, even this case 

could be satisfactorily computed by the devxe of breaking it up rnto two 

stages 

u,(t) ,(s+k,) b+k2) (s+$) (3 + k4) (s + k5) 

(s + ko) s3 
2 

S 

The problem is then run as two separate cases, the input function for the 
second one being the output function from the first. 

4.2.2 Transfer function denominator errors 

These errors occw during the passing of an input function through 
l/(s + k) or 1/(s2 + 2ns + m2) filters of the transfer function. Details 

of these errors will be found in Appendix B seotlon (b), and again we rLl1 
discuss a typical one. 

For example, suppose the problem involved calculating the response of a 
system with the following transfer function: 

S(S2 + 2ns + m2) 

(s + $1 (8 + $1 (3 + k3,’ 

for the input fun&Ion te -k3t , and the results tape conttined only the pro- 
gramme title, the data title, and the following error indxcation: 

fallure case II filter number 3 . 

The third filter in the transfer function is the first of the filters 

l/(s + k3)> and the passing of the function te -%jt (which 1s one of the 



components of the output vector from the 
fAter l/(s + k+* 

l/(s + k2) fdter)through the 
will cause a t3,+3t fun&Ion to be generated. This 

function lies outside the bounds of allowable Input functions, and would 
therefore not be acceptable to the next filter in the chain. 

-“3” te _ 1 1 2 -k3t 
(S+k) 

2t e 
1 !&3 _ 

-k3t 

3 
--(s+k) 3 

Although the t3e-k3t function is not generated until the second filter of 

the type l/(s + k3), it should be noted that the filter number given in the 
error Indication will be that of the first filter of this type. Thu also 

applies to the failure cases I and III (see Appendix B section (b)). 

The only method of dealing with the problem would be to remove the 
offending fdter from the transfer function, and complete the calculation for 
this filter by hand using as input function the output function f'rom the 
oomputer for the 'reduced' transfer function. 

4.2.3 Discussion of error cases 

It must be stressed that these error indications were bult into the 
programme more as a safeguard than a restriction. Provided that the user 
has set up his input function and transfer function correctly on the data 
sheet he should have little trouble from errors, suxe they are unlikely 

to occur in most physxal problems. 

5 DISCUSSION 

In a large comprehensive programme such as this there are numerous 
possibdities for error which have tobe rooted out. The programme has been 

tested m severalways both by comparing results with those obtained by other 
methods and by a unique self-checking property of the method which will bk 
discussed shortly. 

The following is an example run to produce results whxh could be 
compared with those obtained another way; it also serves to illustrate the 

whole computational procedure uwolved. This example was taken from a paper 
by Stelglitz5 for no other reason but that it provided a complicated looking 
transfer function for which the unpulse and stq, responses were presented. 

The transfer function was: 

0.02191~~ + 0.05325~~ - 2.01~~ + 11.93~~ - 35.32~' + 59&s* - 56.20s + 23.94 
8 s + 0.823~~ + 30.52s 6 + 86.42~~ + 1L2.6s4 + 189.%s3 + 169.6~~ + 89.29s + 23.00 



The roots of the numerator and denominator polynomials were obtained by the 
Deuce programme mentloned in section 2, and are tabulated in F1g.5. Each 
complex pair had to be manipulated to give the constants in a quadratic factor. 
The data sheet was then filled in as illustrated in Fig.4 for a unit impulse 
input function, tabulation of the response being requested for , 
t = 0(0.1)4(0.05)9(0.1)10. Since we expected the response function to have 
a peak around t = 6.3 sea we arranged for the function to be tabulated 

at closer i&ervals in this region. 

Fq.5 shows part of the tabulation and a plot of the response. As far 

as can be ascertained from the graph in Ref.5, our results and those of 
Steiglxt.2 agree precisely. As a further check the responses to a unit step 
were also computed. and again they agree with those given in Ref.5. According 

to Laplace transform theory, working from the transfer function, the asymp- 
totio value of the response at t + m should be 23.04/23.00 or 1.00173913. 

The value given by the programme was, in fact, 1.0017391 and this, It should 
be remembered, was after several matrix operations. 

The self-checking property of the method mentioned above rklies on 
the fact that, lf numerator and denominator both contan preo~ely the same 
factors, the output function should be Glentloal mth the Input function. 
This provides an excellent way both of cheohng the programme for alstakes 
and of @wing some idea of the accuracy that is attamable. 

An example is provided m Fig.6, .;hioh shows a oomprehenslve input 
function, lncorporatlng nearly every possible type of component funotlon, 
into a transfer function with a factor of each type. It can be seen that 
the cocfflcients in the output function differ only in the last decimal 
plaoe from those of the Input function, and that functions generated by the 
denominator filters emerge with zero coefficients (as, of course, they 
should). 

This is a good example with Very little error arxing. Experience 
with the programme .u, as yet, too limited for us to be able to say that 
such nccuracy ~111 always be attamable, and some recent calculations suggest 
t!lat aocwaoy 1s lost when the denominator constants aye small in magnitude 
111 comparison with the other constants in the transfer function. It 1s too 
early to draw oonclus~ons on this point but It may turn out that dlfflcult 
cases will be better dealt with when run on a computer mth a longer word 

length. For example, ATLAS has 6 word length of 44 BITS (12-13 slgnlficant 
/ 

figures) ns opposed to 32 BITS (8-9 slgnlflcant figures) on Che Elliott 503. 
, . 



18 

Tumng nc~ to the question of economical computer usage, the time 

needed to run a case varies, of course, with the computer and its peripheral 

equipment but the following are approximate times for the first example quoted 
above when run on the Elliott 503 computer at Westcott. 

To run on 1st tape of programme - 20 seconds 

To compute response with 1st tape - 10 seconds 
To run in 2nd tape of programme - 20 seconds 

To compute resocnse with 2nd tape - 10 seconds 
To ounch out tabulated response (151 points) - '50 seconds 

This gives a total of 1 minute 50 seconds. If we allow time for the 
operators to load the tape readers, reset the oomoutel- eta., the total time 
could be around 2 minutes 15 seconds. However, if several cases had been 

computed in sequence, 40 seconds per case would have been saved by not 
having to run in the programm‘e tapes each time. Also, the actual formulation 
of the output function 1s obtalned in only 20 seconds, the remaimng com- 
putlng time being required for the tabulation of the output which would take 

at least as long by any other method. 

With regard to further applications, a potential user may have a problem 
in which the Input function is not of the reqnred type. He could, however, 
use the programme to derive the unit impulse response from the transfer func- 
tion and use this In a convolution programme. 

With regard to extensions of the programme whxh are envisaged, a great 
deal of work is currently being done on methods of analysis of multivarlable 
systems by the state space approach. It has been shown4 that the serial/ 
matruc technique could be usefully employed 111 connection with this; all 
the necessary algebraic formulations have been worked out an& It 1s x?cended 

that they be programmed for computer. 

PART II - RANDOM INPUT FUNCTIONS 

6 INTRODUCTION AND BACKGROUND INFORMATION 

The extension of the method to stationary random processes in'linear 
systems is described in Ref.3. That paper, in two parts , gives two methods 
of obtaining the output autocorrelation function 4 oc(~) of the process when 
the input autocorrelation functxn $ii(~) 1s a linear combination of 
certain prescribed autocorrelation functions. Once #cc(T) is known the 
output mean square value is given by setting 7 = 0. 
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The system autocorrelation function method is based upon the equation 

Lw 
$,,(t) = L tJ,,w $ii(t - T) d.T . 

$,,cT) is the system autocorrelat~on function which is derived from the 
system unit impulse function h(t) and defiped by 

m 

$hhl’) = h(t) h(t + T) dt . 

Smce h(t) 1s given analytically as a linear combination of Icnc,:r, 5mctions 

of t by the determlnlstx input programme? simple matrix operations lead to 
#,('G). Further matrix operations may then give #cc(t) by the first equatwn 
above. 

'Iks particular method was not programmed In full generality; it was 
decided to take It only as far as the determination of output mean square 
value using the equation 

?&$ = ~hh(~) ~ii(~) do , 

since $ii( -7) = $ii( T) . 

This Mean Square programme is discussed in section 7 and details are to be 
found in Appendix C. It 13 a supplementary programme following on from 
Programme I a.@ using as input an output tape from that programme. 

An allowable input autocorrelation function is any linear combination 

of functions of the following types: 

(i) generalised function T(T), 

(ii) e-al~l, 171e-a171, l~12e-al~l, 

(iii) eqalTc( sin "ITI, eva17' ccs v/'cJ. 

The transfer function of the system giving unit impulse function h(t) 
1s restricted to having no factor 'l/s, i.e. the pure integration of a 
stationary random process is not considered. 
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The second method (the 'serial' method) 1s quite self contamed and the 

programme based on It makes no use of Programmes I or II. In essence it is 

very similar to the deterministic input method. The input autocorrelation 

function is written as a linear combination of functions of the types listed 
above; an autocorrelation response matrix is defined for each of the filters 

in the filter than representing the transfer function. The output autocorre- 

latlon function is given by multiplylng the Input coefficient vector by these 
response matrxes In turn. 

The Autocorrelatlon function programme implementing this method is dis- 
cussed in section 8 and details are given in Appendix D. 

7 PROGFLUME II - MEAN SQUARE PBOGFLAMME 

7.1 Mode of operation 

A copy of the programme is given in Appendz C and the flow diagram in 
F1g.7. 

Data specifying the system transfer function 1s used in ConJunction 
wrth Programme I to give the system unit impulse response function h(t). The 
parameter S.A.F. is set to the value one thus indicating to the computer that 
the data has to be prepared for Programme II. The data title, and the analytic 
expression for h(t) are printed out at the second punch followed by the input 
autocorrelation function which is reproduced directly from the data tape. This 
second data tape is then fed in with/ Programme II to produce the system auto- 
corre$ation function and output mea square. 

i 
The two procedures key(n) and mxprod are used. With key(l) on, the data 

title for each case followed by the word 'NXDATA' upon completion of that case 
are printed out on the on-line teleprinter. mxprod is a matrix product proce- 
dure as mentlond in section 3. 

The coefficient vector of the system autocorrelation function is deter- 
mined from the matrxx product 

C = aAB . 

The programme reads In a, the coeffi&nt vector of h(t), and matrix B 
is constructed as an assembly of small sub-matrices involving only the compo- 
nents of a. The elements of A are then determined from the variables con- 
tained(in the component functions of h(t), i.e. the values of a and w 
in the exponential and exp-trig functions. Having computed c the computer 
prints out the system autocorrelation function In a standard format. 
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The input autocorrelation function is read m, it3 coefficient vector 
being denoted by cc. The matrix E is set up, its elements being defYned by 

the variables m the component functions of the S.A.F. and the input auto- 
correlation function. The programme then produces mean square value 3 by 
the calcu&tion 

3 = cEcc . 

Having prmted out s it goes on to the next case. 

7.2 Use of the programme 

In this section is contained all the information needed In order to be 
able to use the programme. It is concerned with the preparation of the data 
sheet and the format of the results produced by the computer. 

A copy of a blank data sheet 13 shown in Flg.8 and may be seen to 
divide into two main sections headed transfer function and Input autocorrela- 
tlon function. There 13,in addition, a string of O's and l's in the upper 

right hand corner which are used. by the computer u? conjunction with the 
transfer function data to produce the system autocorrelatlon function. Thu, 
together wxth the input autocorrelatlon function, gives the output mean square 

value. 

The data title and the transfer function data are set up in the manner 
described in sections 4.1.1 and 4.1.2. 

The first block of the input autocorrelation function section contains 
the coeffvxent of U,(T). A constant must always be inserted here. If 
U,(T) 13 not a component term of the Input then the coeffxient 13 set to 
zero. 

The two blocks whch follow cover the two classes of function allowed 
for m the programme. Consider the exponential-polynomial &up 

(The 
P 

rogramme does not allow for functions of hqher order m 7 
2 -aTI 

than 
7 e .) All the exponentuxl terms are grouped so as to comply with 
ths format, and the number ppl is the number of independent groups, i.e. 
the number of different parameters 'a' occurring in the exponential functions. 
The value of ppl must be Inserted even if It is zero. For each independent 
'a' ) the block of multiplying coefficients (a,p,y) is inserted, and in the 
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lower block of the same column, the value of 'a' itself. PreoiselY PPl sets of 
data (a,p,y) ana (a) are required. The sheet does not allow for ppl greater 

than three but the user may add extra blocks If necessary. 

e-4d 
pp2 is the number of functions of the type 
(cc sinw171 + p 00s wlcl, p resent in the input autocorrelation function. 

When pp2 * 0 then the blocks m the second column must be fdled in as 

described for the exponential-polynomial expressions. 

When the data tape is being prepared, the punching order 1s that indl- 

cated by the dotted line. The data should be punched on Elliott 503, 8 hole 

paper tape beginumg with a new line, and enduxg with a new line, each number 
being separated from the previous one by a new line. 

Should the user wish to run more than one set of data on the computer, 
he should include all the sets of data on one tape, allowing, say, three 
inches of blank tape between each set and giving each set of data a title. 

The results tape lnll contain: 

Title: Response of Linear Systems Programme II. 

Data title. 

System autocorrelation function m analysic form. 

Value of the mean square response. 

Since Programme I is used m the computation, if any errors occur the 
error indications wdlbe those discussed ~fl section 4.2. 

8 PROGRAMME III - AUTOCORRELATION FUNCTION PROGUMVE 

-Because of the slmibrzty between this programme and Programme I, 
reference will be made to sections 3 and I+ containing the description of 
Programme I. 

8.1 Mole of operation 

This section contains a brief discussion of the mayor processes in the 

programme. The programme is shown in Appendur D and ~t,s correspond&g flow 
diagram m Fig.9. 

The programme contains easily dentxfiable chapters corresponding to 
input, the elementary filters, output and tabulation. The mcde of operation 
of these chapters is as described for Programme I In section 3, but with the 

restrictions that there should be no l/s fdter in the transfer function, 
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and that the Input function should contain only a unit impulse, exponential - 
polynomial and exponential - trigonometric functions. The names of some of 
the variable3 in this programme drffer from the corresponding varmbles used 

in Programme I; however, they should be easrly identified by comparing the 

lists of variables m Appendix Asection (a) and Appendix D sectIon (a). Pro- 
gramme III is all on one tape. 

The facdlty of using the keys on the computer console is,available, 

and depressing the keys has the same effect as that described m section 3.5. 

8.2 Use of the programme 

A copy of a blank data sheet is given in Wg.10. The information 
requred for the title and transfer function is as described for Programme I 

in sections 4.1.1 and 4.1.2. For the input function, the coefficient of 
U,(T) must always be fdled in (even if it 1s zero), and the method for 
setting up the coeffuxxnts of the exponential - polynomial and exponential - 
trigonometric functions is also the 3ame as for Programme I (sectIon 4.1.3). 

The information required for the output tabulation, is exactly that described 
m section 4.1.4. 

The failure uYlications given by the programme are almost identical 

with those of Programme I (section 4.2) but, for exactness, they are listed 
in Appendn E. 
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Appendix A 

PROGRAMME I - DETERMIXISTIC INPUT FUNCTIONS 

(a) List of varubles and~procedures 

a, k, 71, n, m real 
A[O:IO] integer 
b[l:r[12], I:21 real 

00[1:8] real 

% real 

count integer 
cr1:1, l:q[1211 Yeal 

dl.q[121, 1:9[1211 real 

e[l:l, 1:q[l211 real 
de1 integer 

flr~:Y[~ll real 
f21[1:yr211 real 

f22[l:yr211 real 

f4[1:y[411 real 
f51[l:Y[511 real 

f52[1:y[511 real 

iA uteger 

ny[ol integer 

nYrl1 integer 

nyr21 integer 
etc. integer 

P[ll integer 

P[21 integer 

variables m I.F. and T.F. 

stores data title 
holds i% and w values, 
b[l,l] ~3 a, b[i,2] q w 
holds frst 8 input coefficients 
constant gain of T.F., later used 

for normalising factor 
number of factors dealt wdh 
input coefficient vector 

response matrix 
output coefficient vector 
number of large tabulation 
1nterva:ts 
holds k's of l/(s + k) factors 
holds n's of l/(s2 + 2ns +m2) 
factors 
holds m's of 1/(s2 + 2ns + m2) 

-factors 
holds k's of (s + k) factors 
holds n's of (s2 + 2ns i m2) 
factors 
holds m's of (s2 + 21x3 + m2) 
factors 
constant used in storing data 
title 

not sqruficant, always zero 
number of factors of each 

l/(s + k)n type (i.e. 
value of index n), 
excltirng n = 1 

value 1 2.f U4(t) present m 
input, otherwise 0 

value 1 if u3(t) present in 

input, otherwise 0 
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P[ 31 

pr41 

PC51 

p[61 
pr71 
p[81 
P[91 
PLIOI 
pl-Ill 

q[ 91 

q[101 

s[lll 

qr 121 

I-1 

RI 

x-2 

R2 

d91 

d101 

r[lll 

x-r121 

SAF 

Y[ll 
yL21 

Y[31 

mteger 

integer 

integer 

integer 

integer 
mteger 

mteger 
mteger 
mteger 

mteger 

mteger 

mteger 

integer 

mteger 

integer 

integer 
integer 

1 
mteger 

integer 

integer 

Integer 

integer 

mteger 
integer 

integer 

value 1 if u2(t) present m input, 

othemnse 0 
value 1 If l+(t) present m mput, 

othemase 0 
value 1 if u,(t) present in Input, 
otherwise 0 
value 1 of' t present in input, othermse 0 
value I If t2 present m mput, otherwise 0 
value I If t3 present m input, otherwise 0 

number of exp-poly functions m input 
number of trig. functions m mput 
number of exp-trig. functions in mput 

position of last coefficient of exp-poly 
flmctlons In input vector 
posltlon of last coefficxnt of trig. funo- 
tions in Input vector 
position of last coeffiment of exp-trig. 
functions m Input vector 
length of fmal ooeffx&mt vector 

used in l/(s + k) chapter when input func- 

tion is passed through repeated 
factors 

position of last a, vi values in exp-poly 
fns in b array 
position of last a, w values in trig. fns 

in b XTay 
position of last a, w values in exp-trig. 
fns in b array 
length of fIna b array 

value 1 If data present for Programme II, 

othervase 0 

number of l/(s + k) factors 
number of 1/(s2 + 2ns + m2) factors 

number of s factors 
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yr41 
Y[51 
y[61 

YYI 
YY2 

mteger number of (s + k) factors 
integer number of (s 2 + 2ns + 2) f-actors 

mteger number of l/s factors 

mteger total number of factors in l/(s + k)n terms 
number of terms of the type l/(s + k) n integer 

Variables in l/(s + k) chapter 

ak 

akn 

Integer position of exp-poly input functun wrth para- 

meter k for a single l/(s + k) factor 
(otherwise zero) 

mt eger posltion of exp-poly input functun vnth paa- 
meter k for a repeated l/(s + k) factor 

(otherwise zero) 

dl real auxiliary vanable 

g integer positun of 1st coeffuzient of generated exp- 
poly function 

m2 mteger value of pr101 + pr111 
ml mteger used in computation of l/(s + k)n term; deter- 

mines the current factor 

dl:31 real coefficients of generated exp-poly functions when 
transferring to correct oosltun in input 

Vardcles in 1/(s2 + 211s + rn2) chapter 

Xl real In2 - n2 
x2 real ($ - "2); 

Variables in 'outuut to Tape 2' section 

cc real 

1 

stores to read data into computer and reproduce 
cc.5 real on output tape 

Vanable m (s2 + 211s + m2) chapter 

x3 real m2 - n2 

Variable in l/s block 

extra mt eger for functions in input of type tn, n ’ 3, 
extra is index n minus 3 

Variables in tabulation block 

B2 integer nunhr of tune increments in one large time 
interval 
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fn real value of function at time t 

hl real time increment 

ID2 Integer count variable 

R4 mteger used m tabulation of first value of function 

to real lnltial txne value in one large time interval 

tf real flnal time value in one large time interval 
t real current value of time 

List of procedures 

key(n) takes loglcal value TRUE or FALSE If the key on the ccm- 

puter console of value n is switched on. 
wrlte(strmg) prints string on output devxe, and on teleprinter If 

key(l) on. String 1s a set of characters between the 

P string quotes. 
If tp(n) then - equivalent to: rf p[nl * 0 then - 
if ty(n) then equivalent to: if y[n] * 0 then 
readr(n,B) reads m values of the real array B[i] for I taking 

values from 1 to n. 

mxprd(A,B,C) 
setzero 
testc 

c cnvert 

normalise 

set(n) 

outerror 

used in the section of programme which determines the 

l/(3 + k)n terms by testing values of k. 

reds in SAF data (if any) and tabulation data (if any). 
If key(l) on, prints NXDATA on teleprinter and then 
restarts the programme. Uses real varxble ccc to red 
in the real numbers. 
performs matrix operation A: = B x C 
sets all elements of R.M. to zero. 
tests coefficients of 1st 8 fns in the Input, and sets 
corresponding p tb zerc or 1 as required. 
converts elements of e array to corresponding elements 
in c array. 
normalises input coeffxxent vector; nn used to accumu- 
late coeffxlents and find the mean; normal~~ng factor 
accumulated in cg. 
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(a) Alterations needed to produce programme on single tape 

Alteratuns to tape I. 

(a) Remove 'Tape 1' from the title of the programme. 

(6) Insert the variable 'extra' in the first integer declaration. 

Cc) The last but one u&xuction in the 'outerror' procedure should 

read: 

print~:l2210'~ ; 

extra:=0 ; 

1 4 9 Response of Linear Systems Programme I & 1299 ; 

(e) The line reading: 

instead of 

print~&ul~06.1r107~ ; 

(d) Before the first call of the procedure 'instring' insert the 

print ZZ lq 33, sameline, outstrlng (h,iA) ; 

should be replaced by: 

outstrug (A& ; 

(f) The a sslgnment of the variable q[121 should now read: 

q[12] := q[ll] + 3:(y[11 - yyl + yy2) + 2"y[21 + y[61 ; 

Altcratlons to tape 2. 

(g) The calls of 'wrote' should be altered. For example, replace 

write (6: u&(t) into filter number 7) ; 

write (Z S(t) into 7) ; 

Ihvmg made these alterations the complete programme is obtained by 

Jclnzng the part of the first tape from the.title up to, but not Including, 

the comment "Output of data for Input to Tape II" to that section of the 

second tape from, and includmg, the title comment s Response Chapter to the 

end. 
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Error mdicatron Cause of error mdication Method of correction 

d+(t) Into filter number x A u&(t) function has been passed through: 

(a) s, generating u+t) function, 

(b) s + k, generating u (t) function, 

Cc) s2 
2 5 

+ 2ns t m ) generatmg y(t) 
function. Break transfer func- 

These are unacceptable to the next filter tlon up mto two 
of the chain. stages, and run as 

u3(t) into filter number x A u (t) fmotlon has been passed through shown m the example 
32 2 

an s + 2ns + m fdter, thus generatmg in section 4.2.1. 

a y(t) function. Thm function is 
unacceptable to the next filter of the 
ahan. 



Error udxation Cause of error udlcation Method of correctzon 

Failure case I fdter number x A tzeekt functmn has been passed 

through: 
Re-run wdhout filter, 

(a) l/(s + k), generatmg t3 .-kt and calculate the response 

) generatmg t4cki (b) I/($ + k)* 
of that fdter by hand. 

, or, 
(0) l/(s + kj3, generatmg t5e-kt. 

Failure case II filter A te-kt functmn has been passedthrough x refers to the first 

number x (=) l/(s + k)* 
3 -kt , generatmg t e or, fdter of the type (see 
4 -kt' 

(b) l/(s + d3 , generatmg t e . section 4.2.2.) 

Fadure case III fdter An e -kt functmn has been passed 

number x through a l/(s + k)3 filter, generating 
t3e-kt 

Fadwe case IV fdter In a\ l/(s2 + 2ns + In*, fdter, then Re-factorue the 
number x either: (S2 + 2ns + 2) factor and 

(a) n* = In*, repeat the calculation.: 

(b) n* > m*, or, 

( ) m = 0. 
Failure case V fdter number x (1) An .-=t( s1n wt, ccs wt) has been Rerun wlthout fdter, and 

passed through a I&* + 2ns + m*) fd- calculate the response of 
ter where a = n, 2 2 2 and w = m - n , or that filter by hand. In 

(b) A l/(s* + 2ns + m2)' has been (b), x refers to the 

used in the transfer functmn. :,econd filter of the type. 
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PROGRAMME II - MEAN SQUARE PROGRAMME 

(a) List of variables 

Section derlvlng system autocorrelation function (S.A.F.) 

fl[l:pl 1 

f2[1-1, 1:p21 

f2[2:2, l.p21 

A[l:m, l:m] real 

a[l:l, 1:ml real 

B[l:m, l:m] real 

b[l:l, l:m] real 

o[l-I, 1:ml real 

real 

real 

real 

k,K,x,n,nl,w,wl,d real 

In 

P' 

P2 
z[0:101 

z7. 

integer 

integer 

integer 

mt eger 

integer 

matrix A of Ref.3, part I 
coefficients of Input vector 
matrxx B of Ref.3, part I 
used to store matrix product sA 

used to store matrix product aAE (r.e. 
coefficients of S.A.F.) 
holds a's of exp-poly functions in I.V. 
and S.A.F. 
holds a's of exp-trig functions m 1.V: 

and S.A.F. 
holds w's of exp-trig functions in I.V. 

and S.A.F. 
store coefficients when setting up A and 
B matrices (also used m setting up E 

matrix) 
number of coefficients in input vector (I.V.) 
nunber of exp-poly functions in I.V. 
number of exp-trig functions in I.V. 
stores data title 

constant used in storing data title 
Mean square evaluation section. 

bb[l:l, l:mm] real used to store matrix product cE 

cc[l:mm, 1:1] real holds coefficients of input autocorrelatlon 
function (I.A.F.) 

me 
E[l:mm, l:mm] 

fflrl:ppll 
ffZ[l:l, l:pp21 
ff2[2:2, l:pp2] 
mm 

PP 

real 
real 
real 
real 

real 
integer 
integer 

PP' integer 

coefflclent of u,(T) in I.A.F. 
matrix F of Ref.3, part I 
holds a's of exp-poly functions III I.A.F. 
holds a's of exp-trig functions in I.A.F. 
holds w's of exp-trig functions m I.A.F. 
number of coefficients in I.A.F. 
value 1 if U,(T) present in I.A.F., 
otherwise zero 
number of exp-poly functions in I.A.F. 
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PP2 
s[l:l, I:11 

v 

number of erp-trig functions in I.A.F. 

usd to store natrlx product &cc (i.e. 

mean square value 1 
used to stare coeffxxnts whde setting 

u,, E matrix 
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PROGRAMME III - AUTOCORRELATION FUNCTION PROGRAMME 

(a) List of variables and procedures 

a,v,k,m,n 
bl[l:r31 

b2l-1 :r31 
C& 

cnt 
ccc 

D[I:q3, l:q31 

de1 

dl:l, I:@1 
exq 

exr 

dl:l, I:,$] 

ny[Ol 
ny[ll 
ny[21 
etc. 1 

P 

PP 

P' 

P2 
s' 

s2 

s3 

real 
real 

real 
real 

integer 

real 
mteger 

integer 

mteger 

mteger 

mteger 
mteger 
integer 

1nt eger 

integer 

variables in I.F. and T.F. 

holds a's of exp-poly and exp-trig mput 

functions 
holds v's of exp-trig mput functions 
constant gam of T.F., later used for 

normalising factor 
number of factors dealt with 
holds coeffxient of u,(7) on mput 
response matrix 
number of large tabulation intervals 

output coefficient vector 

number of locations requxed in the coefficient 
vectors to accommodate the coeffxients of the 

generatea functions 
number of locations required m the bl and 
b2 arrays to accommodate the a's and v's 
of the generated functions 

input coeffxient vector 
not slgnlf1cant, always zerc 
number of factors of each l/(s + k)n type 

t , 
(i.e. value of the index n), excluding 
I?=1 
value 1 if U,(T) present in l"put, other- 
wise zero 
value 1 if u,(7) present xn input, other- 
wise zero 
number of exp-poly functions in input 
number of exp-trig functions m input 
position of last coefficient of exp-poly 
function In input vector 
position of last coefficient of exp-trig 
functions in input vector 

length of final coefficient vector 
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rrl 

n-2 
RR1 

RR2 1 

l-1 

I-2 

r3 
tlrl:Y[lll 
t21[1:y[211 . 
t22r1 :yr211 

t4[1:y[411 
t51r1:yr511 
t52[1:d511 
Y[‘l 
Y[Zl 
yr31 
Y[41 
Y[51 

YY’ 

YY2 

zs 

2[0:101 . 

integer 

integer 

integer 

mteger 
red 
red 
real 
real 
real ^ 
red 

integer 
integer 
integer 
integer 
integer 
integer 

integer 

integer 
integer 

Appendix D 

used in l/(s + k) chapter when input funo- 
tion is passed through repeated factors 

position of the last a, v values in exp- 
poly functions ~fl the bl a-d b2 arrays 

position of the last a, v values in exp- 
trq functions In the bl and b2 arrays 

length of flnal bl and b2 arrays 
holds k's of l/(s + k) factors 
holds n's of l/(s' + 2ns +-III') factors 
holds m's of 1/(s2 + 2ns + m2) factors 
holds k's of (s + k) factors 

holds n's of (s2 + 2ns + 13') factors 

holds m's of (s2 + 2ns + m2) factors 

number of l/(s + k) factors 
number of l/(s' + 2ns + III') factors 
number of s factors 

number of (s + k) factors 
number of (s2 + 2x1s + m2) factors 

total number of factors in l/(s + k)n 
terms 
total number of terms of the type 

l/(s + k)n 
constant used in storq data title 
stores data t1t1e 

Variables in l/(s + k) chapter 

ak integer position of exp-poly input function with 
parameter k for a single l/(s + k) factor 

(otherwise zero) 
ah integer position of exp-poly input function,with 

parameter k for a repeated l/(s + k) fac- 

tor (otherwise zero) 
d real auxiliary variable 
ml xdzeger use.3 in computation of l/(s + k)n terms, 

determines the current factor 
x integer position of first coefficient of generated 

exp-poly function 
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Varubles in l/(s' + Zns + m*) chapter 

0 real + m2y 

a real 
y+ m2 _ ,;24a2 II2 

el,e2,e3,e4 
fl,fZ,f3,f4 

d,kP,g3,& 1 
real auxiliary variables 

x integer posltlon of fu-st coeffxient of generated 
exptr1g fmctron 

xl real ';2 - n2)F 

x2 real m - n2 

Variables III (s2 + 2ns + m2) chapter 

C,d real 
x2 real 

Variables in tabulation block 

B1 

B2 

fn 
hl 
m2 

to 
tf 
t 

List of procedures 

key(n) 

readr (n,B) 

outerror (strmg) 

set(n) 

real 
real 
mteger 
real 
real 

real 

aux.xl~ary varxbles 
2 2 m -n 
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used m tabulation of fust value of function 
number of tlme Increments m one large time 
interval 
value of function at time t 

time uxrement 
count vanable 
lnltlal time value in one large tune interval 
flnal time value In one large time u?cerval 

current value of tane 

takes loguxl value TRUE or FALSE if the key on the com- 
puter console of value n 1s switched on 
reads in values of the real array B[i] for 1 taking 
values from 1 to n 
prints the string on the output denoe, and on the tele- 
printer if key(l) 1s on. String TS a set of characters 
between the .P &rug quotes. Reads in tabulation data 

(ti any). If key(l) on prints NXDATA on the teleprinter 
and then restarts the programme. Uses real variable co 
to read in the real numbers 

Used in the section of the programme which deternunes the 
l/(s + k)n terms by testing values of k 
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mxprod (A,B,C) 
setzero 
testg 

convert 

normalise 

performs matrn operation A:= B x C 
sets all elements of R.M. to zero 
tests coefficients of U,(T) and U,(T) and sets the 
corresponding p and. pp to zero or 1 as required 
converts elements of the e array to corresponding 
elements 1x1 the g array 
normalises the Input coeffxient vector; we used to 
accumulate coefficients, and find the mean; normalising 
factor accumulated in og 

2 

+ 







Error Inalcatlon cause of errcr lndlcatlon Method of correction 

~3'7) Into fdter number x A u (7) functun has been passed through: 
3 

(a) s, generating u (T) function, 
5 

(b) s + k, generating 5 u (T) function, 

Cc) s2 
2 

+ zns + m ) generating =p) 

function. 

These are unacceptable to the next filter Break transfer func- 

of the chain. tmn up into two 

IA(T) Into fdter number x A U,(T) fun&Ion has been passed through stages, and run as 

2 2 
an s + zns + m fdter, thus generatug shown in the example 

a u (T) function. Thus func'non is for Programme I in 
5 

unacceptable to the next filter of the sectmn 4.2.1. 

chain. 



Error uxixation Cause of error inalcatlon Method of correction 

Failure case I filter number x A 1~1 e ' -k'T' functmn has been passed Re-run without filter, 
through: and calculate the 
(a) l/(s + k), generating ~~~~~~~~~~ response of that 
(b) l/(s + k)', generating ITl'+c-kld fdter by hand. 
(0) l/(s + k)3, generating I.&+f Or' x refers to the 

Failure case II filter number x A l~le-~"' function has been passed fust fdter of the 

through: tYPe 

(a) l/(s + k)', generating lT13e-klTl or 
(b) l/(s + k)3, generating ,&+I' . 

Failure case III filter number x An e -k'T' function has been passed thro gh 
a 1(s+k)3 J filter generating I#,-&' . 

Fadwe case IV fdter number x 2 In a l/(s* + 2ns + m ) filter, then either: If (a) or (b), refao- 
(a) n2 = m2, torise the 
(b) n* > m2, b2 

2 + 2ns + m ) factor 

(cl m = 0, or, and repeat the calcu- 

(a) n = 0. lation. If Cc) OL‘ (a), 
transfer function is 
madmusible. 

. IY ,;r *, 
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Fig 5 Results for worked example (section 5) 



Input function 

3 21 u,(t) +4--21 u,(t) + 5.24 u,(t) +6.21 lJ,(t.J 

+ 2t+ st2+4t3 
+ e-t (6 25 + 3*25ttO-25t2) 
+ 5 2 sin (b5t)+.2 co5 (I-5t) 

t a-2.5t (6 33 sin (3+) + 6.22 cos (3 9t)) 

Transfer function 

(S+ 3*2)(S2+ 3.25 + lb.491 5 
(S+ 3 2)(S2 + 3.25+ 18.49)s 

Output function 

Response of linear systems progromme1 

Test Chl.23456 SOI) 

Output function 

3~2100000 u3(t) 
4~2100004 u2(t) 
5.2099996 U(t) 

6 210000~ u o(t) 
1.9999990 t+i 

2.9999999 t*2 

3.9999998 I33 

exp(-at)*(u(t),t,t*2) a=~50000000 
6.2499999 
3*2500000 
.24999996 

exp(-at)*(u(t),t,t42) a= 3 2000000 
~00000000 
00000000 

~00000000 

sinwt,coswt w=i-5000000 
5.2000002 
'19999996 

exp(-ot)*(sinwt,coswt)a= 2~5000000 W=3~9000000 
6.3300000 
6.2200001 

exp (-at)~(sinwt,coswt) 0-1~6000000 W=3+9i2404 
*oooooooo 
00000000 1 

Fig. 6 Example for test of occurocy 
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