

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

ALGOL Programmes for the Response Analysis of Linear Systems with Deterministic or Random Inputs
 by
 L. J. Hazlewood and E. Huntley
 Aerodynamics Dept., R.A.E., Bedford

LUMRARY
SOPAL SIRCRAFT ESTAELISHMFEX gedroro.

```
U.D.C. 518.5 : 621.374.32 : 519.283 : 512.831 : 519.242 : 517.511
```

C.P. No. 1124*

July 1969

ALGOL PROGRAMMES FOR THE RESPONSE ANALYSIS OF IINEAR SYSTEMS WITH DETERMINISTIC OR RANDOM INPUTS

by
L. J. Hazlewood
E. Huntley
Aerodynamics Dept., R.A.E., Bedford

SUMMARY
In previous publıcations the so-called serial/matrix technique has been developed for the response analysis of systems defined by time-invariant ordinary differential equations. One paper describes how an explıcit formulation for the output function may be easlly obtained when the input function is deterministic. A second gives the output autocorrelation function and output mean square value when the input is a stationary random process.

This paper gives computer programmes in ALGOL which implement these ideas. The programmes are described primarily from the point of view of the user with illustratuve examples to demonstrate the use of prepared data sheets but sufficient information is ancluded to enable users to develop the programmes further if required.

[^0]CONTENTS
Page
1 INTRODUCTION 3
PART I - DETERMINISTIC INPUT FUNCTIONS 3
2 BACKGROUND INFORMATION AND THE SCOPE OF PROGRAMME I 3
3 MODE OF OPERATION 5
3.1 Input chapter 6
3.2 Response matrices 6
3.3 Output of results 8
3.4 Comments on the two-part programme 8
3.5 Further facilities on the Elllott 503 computer 10
4 THE USE OF THE PROGRAMME 10
4.1 Preparation of the data sheet and output format 10
4.1.1 The tatle 10
4.1.2 Transfer function 11
4.1.3 The input function 12
4.1.4 The output function and tabulation 12
4.1.5 Illustratıve example 13
4.2 Fallure cases 14
4.2.1 Transfer function numerator errors 14
4.2.2 Transfer function denominator errors 15
4.2.3 Discussion of error cases 16
5 DISCUSSION 16
PART II - RANDOM INPUT FUNCTIONS 18
6 INTRODUCTION AND BACKGROUND INFORMATION 18
7 PROGRAMME II - MEAN SQUARE PROGRAMME - 20
-7.1 Mode of operation 20
7.2 Use of the programme 21
8 PROGRAMME III - AUTOCORRELATION FUNCTION PROGRAMME 22
8.1 Mode of operation 22
8.2 Use of the programme 23
Appendix A Programme I - Deterministic input functıons 24
Appendix B Error Indications in Programme I 29
Appendix C Programme II - Mean square programme 31
Appendix D Programme III - Autocorrelation function programme 33
Appendix E Error andications in Programme III 37
References 39
Illustrations Figures 1-10
Detachable abstract cards

INTRODUCTION

In previous papers methods were developed to simplify the response analysis of time-invariant linear systems when subjected to determinastic ${ }^{1,2}$ or random inputs ${ }^{3}$. It was pointed out that although they could be employed in relatively small scale desk-type calculations these methods would be particularly useful when programmed for a digital computer.

The major part of this programming work has now been done,' the programmes having been written in ALGOI. As at present constututed they are explicatly for the Elliott 503 computer but require only minor modifications of input and output instructions in order to be usable on any moderately slzed computer with an ALGOL compiler. They could also be used, with small modifications undicated herein, on a large multipurpose computer such as ATLAS which includes an Elliott 503 ALGOL compiler in its range.

This paper describes the programmes and the way in which they are to be used together with illustrative examples. Everything relating to the determinıstic input programme is discussed in Part I. The extension to random inputs is dealt with in Part II, but, to minimize repetation, reference is made to sections of Part I. The paper is meant to be used in conjunction wath Refs. 2 and 3.

PART I - DETERMINISTIC INPUT FUNCTIONS

2 BACKGROUND INFORMATION AND THE SCOPE OF PROGRAMME I

Many problems in engineering are formulated as a set of time-invariant linear ordinary differential equations. Usually, such equations are solved by the use of Laplace transform techniques and at some stage in the process a transfer function relating the required response variable and the input variable is obtained. Engineers working, on control systems may build up a composite transfer function for a complicated system from the known transfer functions of simple elements. The next stage in the conventional application of Laplace transforms is to transform the input, express the resulting function for the transformed response variable in partial fraction form and then perform the inverse transformation. The serial/matrix method described in Ref.2, eliminates this tedious last stage. Once the factorised transfer function is specafied, together with the input function, an explicit formulation of the output response may be obtained by precise matrix operations without having to resort to partial fraction expansions and inverse transformations.

The construction and mode of operation of the programme written to perform these operations together with detailed instructions for its use are described in this first part of the paper. The programme may be described as a basic programme wath its starting point at the transfer function stage. Extensions are envisaged ${ }^{4}$ which will increase its usefulness but these have not yet been programmed.

We assume then that the problem is formulated in the form of a system transfer function and deterministic input function of time which belongs to a large class of functions to be described shortly. The numerator and denominator of the transfer function have each to be factorised into linear or quadratic factors, thus avoiding the use of complex roots. (This factorisation may be done as convenient depending upon the programmes avazlable but for the testing work on the programme we have been using the programme TRTPLE LENGTH BAIRSTOW-QUADRATIC FACTORS OF A POLYNOMIAL written by Wilkinson for Deuce; Ref. 494 (RPO4 T/1).) To each factor there corresponds a physically realisable filter and the overall transfer function is represented by a sequence of these filters. The input function is in effect passed through each of these elementary filters in turn.

The elementary filters which have to be allowed for in the programme are:

$$
\text { constant gain } K, s, s+k, s^{2}+2 n s+m^{2} \text { with } n<m
$$

and

$$
1 / s, 1 /(s+k), 1 /\left(s^{2}+2 n s+m^{2}\right) \text { with } n<m .
$$

The input function is assumed to be any linear combination of functions of the following types:
(i) generalised functions, $u_{1}(t), \ldots, u_{4}(t)\left(u_{1}(t)\right.$ is a unnt impulse),
(ii) unit step function $u_{0}(t), t, t^{2}, t^{3}$,
(iii) $e^{-a t}, t e^{-a t}, t^{2} e^{-a t}$,
(iv) $\sin \omega t, \cos \omega t$,
(v) $e^{-a t} \sin \omega t, e^{-a t} \cos \omega t$.
(The parameter ' a ' is, of course, generally not the same in both groups (iii) and (v).)

There may be more than one group of each of the last three types, differing in thear values of a and/or ω, but if any one member of a group occurs in the input it is assumed that the other member(s) also occur(s) but with zero multiplying coefficients. The input function is then of the form

$$
x_{1}(t)=\underline{a} \underline{x}(t)
$$

where a is row vector of coefficients and $\underline{x}(t)$ is a column vector of functions making up the input function set. Now, with each of the six possible types of factor occurring in the system transfer function, and for the particular input function vector $\underline{x}(t)$, can be associated a so-called, response matrix.

The analogue of passing an input function through the elementary filters in turn becomes that of successive multiplications of the input coefficient vector a by the response matrices associated with the various filters. The programme is therefore concerned pramarily with classification of the input function, the construction of the response matrices of appropriate order and the successive matrix multiplications.

3 MODE OF OPERATION

This section contains a brief discussion of the major processes in the programme. It is primarily for the programmer wishing to extend the programme in some way or to alter it so that it can be run on a computer other than the Elliott 503.

The programme contains identifiable chapters labelled by the transfer functions of the elementary filters $s, 1 /(s+k)$ etc. Since the programme was too large to be run whole on the Elliott 503 computer at Westcott it was split into two parts. The first tape contains the input chapter, the $1 /(\mathrm{s}+\mathrm{k})$ and $1 /\left(s^{2}+2 n s+m^{2}\right)$ chapters; the second tape contans the $s, s+k$, $s^{2}+2 n s+m^{2}$ and $1 / s$ chapters together wath a chapter for the output of results. The output tape from the first part of the programme is used as the input data tape for the second part.

The two parts of the programme are shown separately in Appendix A sections (b) and (c) and their corresponding flow diagrams in Fig.1. The alterations which would be required in order to run the programme whole on a larger computer are discussed in section 3.4.

3.1 Input chapter

The input chapter is that shown in the first column of Appendix A section (b). In addition to putting in input function and transfer function data it serves to set up the input coefficient vector and to determine the order of the final coefficient vector. The input coefficient vector is augmented by the addrtion of zero elements so as to be of the same order. By this device all the response matrices can be set up as square matrices of order $q[12] \times q[12]$.

In accordance with the normal structure of an ALGOL programme, various procedures used in the programme are also stored in this chapter. The most Important of these are 'mxprod', 'convert', 'testc' and 'normalise'. The purpose of these wall be explained as we come to them in this discussion.

For nomenclature, the array ' b ' is used to store the values of a and ω occurring in the components of the input function vector; arrays ' c ' and 'e' represent input and output coefficient vectors respectively and array 'd' is used to represent the response matrix.

3.2 Response matrices

The six types of response matrix, corresponding to the six possible types of filter in the transfer function, are contanned in quite distinct chapters of the programme. During execution a particular chapter is not entered if its corresponding type of filter is not present in the transfer function (as indicated by the value of $y[i]$). These chapters are all very similar in structure so we shall discuss, as a typical one, the $1 /\left(s^{2}+2 n s+m^{2}\right)$ chapter. This is shown in the first half of the third column of Appendix A section (a) following the heading:

$$
\text { comment } 1 /\left(s^{2}+2 n s+m^{2}\right) \text { Response Section; }
$$

See also the second half of the first column of the flow diagram, (Fig.1).
The various processes involved are as follows. Firstly, all the elements of response matrix 'd' are set to zero by use of the procedure 'set zero'. The elements of the response matrix corresponding to the 'standard' input functions $u_{4}(t), \ldots, t^{3}$ are set up. If any one of these functions is absent (i.e. has a zero coefficient) the corresponding elements in the response matrix are left as zeros. The remaining functions are dealt with similarly, with a bloak of elements set up in the appropriate part of the matrix for each independent pair of values of a and ω.

When the response matrix is complete it is multiplied by the $1 n p u t$ coefficient vector ' c ' and the resulting output coefficient vector is stored in array ' e '. This is done by the procedure ' $\operatorname{mxprod}(e, c, d)$ '. The elements of the array ' e ' are then transferred back to the array ' c ' using the 'convert' procedure and the elements of the array ' c ' are made of order unity by dividing them all by their average value, using the procedure 'normalise'. The normalısing factor then multiplies the content of store 'cg', which at the start of the calculation contains the constant gain of the transfer function.

It frequently happens during this sequence of operations that, owing to inaccuracies in the computation, certain coefficients of the output coefficient vector appear as small numbers of the order of 10^{-8} to 10^{-6} when they should In fact, be zero. The programme sets any coefficient to zero by means of the 'testc' procedure if after normalisation of the vector the coefficient is less than 5×10^{-6}.

A $1 /\left(s^{2}+2 n s+m^{2}\right)$ filter with $0<n<m$ will generate exponentialtrigonometric functions. On output from a filler of this type, the coefficcents of such generated functions are stored in the coefficient vector directly below those of existing input functions (and thus overwriting zeros inserted at the input stage). These generated functions are then incorporated fully into the input function format by modifying the input coefficient vector ' c ' and the array ' b '. That completes the cycle for one such falter and the complete process is repeated for further filters of the same type.

The chapters for other types of filter are basically the same as that just described but with minor modifications. The 'numerator' filters s, $s+k, s^{2}+2 n s+m^{2}$ do not generate new functions in the manner described above so the last stage for incorporating generated functions into the input vector is not required.

The $1 /(s+k)$ filter produces exponential-polynomial functions. The processes of setting up the response matrix and for dealing wath the generated functions differ in some respects from those described above since we allow for the possibiluty of the filter $1 /(s+k)$ being up to three-fold repeated and, as a consequence, the possibılıty of an exponential-polynomial input group wath the same parameter ' k ' as the filter.

The $1 / \mathrm{s}$ filter chapter also differs from the standard case in that we allow functions of the type t^{n}, with $n>3$, to be generated by the filter. Although, such functions do not fit into the standard input function
format, theur introduction at this stage presents no difficulties since this $1 / \mathrm{s}$ chapter is the last to be executed before output.

When all these matrix calculations are complete the current coefficient vector $1 s$ multiplied by the current constant gain to give the final output coefficient vector.

Should an error occur at any stage, use is made of the two procedures 'write(string)' and 'outerror'. The first gives a prant-out of the error indication (discussed in section 4.2), the second reads in any remaining data for the case that has failed. Any further cases on the data tape can then be run using the standard Elliott procedure 'restart'.

3.3 Output of results

The relevant part of the programme is shown in the third column of Appendix A section (c) and consists of three main parts.

The first gives a printout of the output function in explicit algebraic form following the programme heading and data title. The second part is headed:
comment Output to Programme II (Mean Square Programme);
This section is relevant only when the input is a random process and is discussed in Part II. When the problem concerns only deterministic input functions the parameter SAF has to be set to zero. This is done automatically by the use of the data sheet which contains the necessary zero immediately above the tabulation section.

The third part concerns tabulation of the output function. If no tabulation is required 'del' should be set to zero and this section is not entered during execution. Otherwise the tabulation data are read in and the output function is computed for $t_{0}\left(h_{1}\right) t_{f}$, the values of t_{0}, h_{1} and t_{f} being reassigned for each change of interval of the tabulation.
3.4 Comments on the two-part programme

Since the exlsting programme is in two parts an explanation is now given of how the data is passed from the first half of the programme to the second.

By means of the first programme tape, the data title is read in and reproduced on the output tape but without the right hand string quote (the ? character). The input function and transfer function data are read in
and the response calculations for the $1 /(s+k)$ and $1 /\left(s^{2}+2 n s+m^{2}\right)$ filters are performed. If these calculations are completed without error the right hand string quote is punched on the output tape, followed by a 1 , the remaining transfer function data, the current input function data and finally the tabulation data. If an error does occur the appropriate error indication is punched out followed by a right hand string quote and a zero.

When the output tape from the first part is read in as input data to the second part of the programme the programme title is punched out together with the information between strung quotes on the data tape. If no error occurred in the first part the next character on the tape is a 1 ; the computer takes this as an indzcation that the computation is correct so far, continues to read in the remaining data and proceeds with the calculation. If, on the other hand, the next character is a zero the string already reproduced contains the error indication and the computer performs no further calculations on that case.

When several cases are to be dealt with at the same time they should all be punched on the same data tape. Part I calculations are performed on all the cases and then followed by all the Part II calculations.

It should be possible to run the programme in one piece on an Ellatt 503 computer with more than 12 K words of storage. The few alterations which would have to be made to, the existang tapes before joining them together are listed in Appendix A section (d).

If the programme is to be used on a computer which will not accept Elliott 503 ALGOL (ATLAS is one computer which does have such a compler), some alterations will have to be made to the programme. The computer should be one having an on-line teleprinter and two other fast output devices, (in the exlsting programmes these are referred to as punch (3) and punches (1) and (2) respectively).

Those sections of the programme which are most likely to require alteration are indicated by a vertical line at the side of the pranted programme in Appendix A sections (a) and (b). The more obvious alterations are the switch lists, not required on most compilers, the input and output procedures and their associated setting procedures.

The existing programme also contains the following Elliott sof'tware procedures - all of which will have to be altered: 'ellıot', 'restart', 'location', 'address', 'size' and 'range'. The 'elliot' procedure is used

In the boolean procedure 'key (n) '. This allows the user, if he wishes, to control various steps in the computation by switching on appropriate key (s) on the computer console. 'restart' has already been mentioned and the remaining procedures are used in the 'mxprod' procedure. A matrix multiplication procedure could of course, have been written in standard ALGOL but using the above procedures helps to cut down the operating time.

Finally, many machines are capable of converting a programme in a given code to one in a different code, so $1 t$ is possible that the necessary alterations could be done by the computer.

3.5 Further facilities on the Elliott 503 computer

By running the programme with $k e y(1)$ on, the data title of each case is printed on the teleprinter together with any error indications and the word 'NXDATA' when each case has been completed. This makes it possible to keep a watch on the progress of the computations. However, it is advisable to use this facility sparingly since the telepranter operates so slowly (c 10 characters $/ \mathrm{sec}$).

If the coefficient vector needs to be examined before and after every filter of the transfer function this can be achzeved by running the programme with key(2) on, whereupon the coefficient vectors are all fed to punch (2). This facility is useful for checking any results obviously incorrect but which do not throw up any error indications (possibly due to faulty data punching).

4 THE USE OF THE PROGRAMME
In this section is contanned all the information needed in order to be able to use the programme. It is therefore concerned primarily with the preparation of the data sheet, the format of the results produced by the computer, and possible causes of failure of the programme.

4.1 Preparation of the data sheet and output format

A copy of a blank data sheet is given in Fig.2. It may be seen to divide into the three main sections:- transfer function, input function and tabulation of results.

4.1.1 The title

The first piece of information to be punched on the data tape is the title. Each set of data run on the computer must have a title containing not more than thirty characters.

The opening character of the title must be a $£$, and the closing character a?. The title may not contain any other $£$ or ? characters.

4.1.2 Transfer function

All information relating to the transfer function goes into the appropriate part of the left hand column.

The first parameter to be entered is the constant gain. There follows a block of constants $y[1]$ to $y[6]$ which dictate the structure of the transfer
 be present (see section 3). If any type is absent, the appropriate $y[i]$ should be set equal to zero.

Taking them 1 n order, $y[1]$ is the number of $1 /(s+k)$ factors present. This includes reveated factors $1 /(s+k)^{r}$ where r is restricted in the present programme to be not greater than three. As an example, the transfer function $1 /(s+1)(s+6.1)^{2}(s+3.9)^{3}$ would have $y[1]$ entered as 6.
$y[2]$ is the number of quadratic factors of the form $1 /\left(s^{2}+2 n s+m^{2}\right)$ where $n<m$ and m ls not zero. Repeated factors of this form have not been allowed for in the programme. $y[3]$ is the number of s factors, i.e. the andex r of $s^{r} . y[4]$ is the number of $(s+k)$ factors present, including repeated factors $(s+k)^{r}$, in the same way as $y[1]$ but, generally speaking, there is no restriction on the value of r. $y[5]$ and $y[6]$ are obtained in a similar manner of $\mathrm{y}[2]$ and $\mathrm{y}[3]$. All the constants $y[i]$ should be written as integers.

The parameters occurring in the transfer function are then entered in the blocks below. If any $y[i]$ is zero, the corresponding block is left blank. When entering the values of k corresponding to $1 /(s+k)$ factors, the $\mathrm{k}^{\prime} \mathrm{s}$ of nonrepeated factors must precede those of any repeated factor. The k 's of a repeated factor must be entered in consecutive squares. If there is more than one repeated factor the order in which they are taken is immaterial.

On the data sheet (Fig.2) space for only six factors of a given type has been allowed but extra rows can be added to any block if required.

When the data tape is beang prepared, data should be punched in the order indicated by the dotted line, starting at the title, and ending at the label. A.

4.1.3 The input function

The section on the upper right hand side of the data sheet is for setting up the input function.

The first block concerning the input functions $u_{4}(t)$ to t^{3} must always be completed. If any one of these functions is present in the anput function, the coefficient multiplying it is inserted on the appropriate line of the block; otherwise a zero is inserted.

The three blocks which follow cover the other three classes of function allowed for in the programme. Consider the exponential-polynomial group $e^{-a t}\left(\alpha u_{0}(t)+\beta t+\gamma t^{2}\right)$. As mentioned in section 3 the programme does not allow for functions of higher order in t, such as $t^{3} e^{-a t}$, etc. When all the exponential terms are grouped so as to comply with this format, the number p[9] Is the number of independent groups, i.e. the number of different parameters 'a' occurring in the exponential functions. The value of p [9] must be inserted even if' It is zero. For each independent 'a' the block of multiplying coefficients (α, β, γ) is inserted and, in the lower block of the same column, the value of ' a ' itself. For each value of ' a ', the user has to insert a zero opposite the corresponding value of ' ω '. Precisely p [9] sets of data (α, β, γ) and (a, ω) have to be inserted. The sheet does not allow for $p[9]>3$ but the user may add extra blocks if he wishes.
$p[10]$ Is the number of functions of the type $(\alpha \sin \omega t+\beta \cos \omega t)$ present in the input. When $\mathrm{p}[10] \neq 0$ the blocks in the second column must be filled in as described for the exponential-polynomial functions. For each independent ' ω ', the correspondang ' a ' must be wratten as zero.
p [11] indicates the presence or absence of exponential-trigonometric functions, and the data sheet is filled in in just the same way as for the other functions.

When the data tape is being prepared the punching order is indicated by the dotted line, starting at the label A and ending at the label C.

4.1.4 The output function and tabulation

The section on the lower right hand side of the data sheet is used for defining the format of the output function.

Furstly, the output function is always produced in explicit algebraic form immediately following the heading, thus:

Response of linear systems Programme I
(title of data).
Output function.
Secondly, should the user require at, the output function will be computed and tabulated at times dictated by the quantities entered in the block headed ' tabulation'.

The quantities $t_{0}, t_{1}, t_{2}, \ldots$, are the times at which the tabulation either starts or finishes, or at which the tabulation interval h_{0}, h_{1} changes in magnitude. Thus, if the user wanted to tabulate for $t=0(0.1) 5$ and $t=5(0.2) 10$ he would enter $t_{0}=0, h_{0}=0.1, t_{1}=5, h_{2}=0.2$, and $t_{2}=10$. In this case the number of large time intervals, 'del', would be two.

The programme has a great deal of flexzbility, since the input is computed from an explicit formula. The user may, if he wishes, start the computation at time t_{0} not equal to zero. Again, by suitable manipulation of the tabulation blocks he can jump a large time interval without doing any antermediate calculations.

The number of large tame intervals, 'del', is the suffix of the final value of t. If no tabulation is required, 'del' should be set equal to zero. The user may add extra rows to the tabulation block to allow for more than 4 large time intervals if required.

The zero following the label C must always be inserted. The sagnificance of this zero is mentioned in section 3.3.

The data for the problem should be punched on Elliott 503, 8 hole paper tape, beginning wath a new line, and ending with a new line, each number being separated from the previous one by a new line.

Should the user wish to run more than one set of data on the computer, he should include all the sets of data on one tape allowing, say, three inches of run-out between each set. It should be borne in mind that a case consists of all three ingredients: transfer function, input function and tabulation. The user is advised to give each set of data a dafferent title, otherwise confusion may occur over the sets of results obtalned from the computer.

4.1.5 Illustrative example

As an lllustration of the way in which the data sheet should be filled in, Fis. 3 shows a completed sheet for the following problem. Since it has no particular physical signıficance, the response has not been computed.

14

Transfer function:

$$
\frac{0.634102\left(s^{2}+2 \times 8.8949 s+10.3265^{2}\right)\left(s^{2}-2 \times 4.7884 s+5.26^{2}\right) s}{(s-0.31401)(s+5.549)^{2}\left(s^{2}+2 \times 3.7372 s+6.21034^{2}\right)}
$$

Input function:

$$
\begin{aligned}
3.507 & +6.25 t^{2}-2.9131 e^{-2.799 t}+\left(0.5928 t+0.3160 t^{2}\right) e^{-1.304 t} \\
& +5.3857 e^{-1.9486 t} \cos (7.2619 t)
\end{aligned}
$$

Tabulation:

$$
\text { For } t=3(0.1) 5 \quad \text { and } \quad 6(0.05) 10.5
$$

4.2
 Failure cases

As indicated in section 2, the programme copes with an extensive, but bounded range of input functions. Since it is possable to produce incorrect answers by going beyond the andicated bounds, certann error indications have been bualt anto the programme, and these wall now be briefly discussed.

4.2.1 Transfer function numerator errors

These are caused by the attempt to pass higher order generalised functions through dafferentiating elements. Details of the two error andications in this class whll be found in Appendix B section (a). Here a typical one will be considered.

For example, suppose that the problem involved calculating the ampulse response of a system with the following transfer function

$$
\frac{\left(s+k_{1}\right)\left(s+k_{2}\right)\left(s+k_{3}\right)\left(s+k_{4}\right)\left(s+k_{5}\right)}{\left(s+k_{0}\right) s^{5}}
$$

and the results tape contained only the programme title, the data title, and the following error indications:

$$
u_{4}(t) \text { into filter number } 6
$$

The input function is $u_{4}(t)$, and the 'filter number' the stage in the computation when the error occurred, which in our example is the sixth filter
in the chain, $\left(s+k_{5}\right)$. (When determining the number of the filter, it should be remembered that the order of computation is the same as that indicated when setting up the factors of the transfer function on the data sheet.).

The passing of a $u_{4}(t)$ function through the $\left(s+k_{5}\right)$ filter would cause a $u_{5}(t)$ function to be generated. This function lies outside the limats of the input function (see section 2), and would, therefore, not be acceptable to the next filter in the chain.

Thys fault is therefore seen to arise from the conjunction of an untypical form of transfer function (with the $1 / \mathrm{s}^{5}$ term) together with the order in which factors are dealt with in the programme. Nevertheless, even this case could be satısfactorily computed by the device of breaking it up into two stages

$$
\frac{u_{1}(t)}{\left(s+k_{1}\right)\left(s+k_{2}\right)\left(s+k_{3}\right)} \frac{\left(s+k_{0}\right) s^{3}}{\frac{\left(s+k_{4}\right)\left(s+k_{5}\right)}{s^{2}}}
$$

The problem is then run as two separate cases, the input function for the second one beang the output function from the first.

4.2.2 Transfer function denominator errors

These errors occur during the passing of an input function through $1 /(s+k)$ or $1 /\left(s^{2}+2 n s+m^{2}\right)$ fulters of the transfer function. Details of these errors will be found in Appendix B section (b), and again we will discuss a typical one.

For example, suppose the problem involved calculating the response of a system with the following transfer function:

$$
\frac{s\left(s^{2}+2 n s+m^{2}\right)}{\left(s+k_{1}\right)\left(s+k_{2}\right)\left(s+k_{3}\right)^{2}}
$$

for the input function $t e^{-\mathrm{k}_{3} t}$, and the results tape contained only the programme title, the data title, and the following error indıcation:
fallure case II filter number 3 .
The third filter in the transfer function is the first of the filters $1 /\left(s+k_{3}\right)$, and the passing of the function $t e^{-k} t$ (which is one of the
components of the output vector from the $1 /\left(s+k_{2}\right)$ filter) through the filler $1 /\left(s+k_{3}\right)^{2}$ will cause a $t^{3} e^{-k_{3} t}$ function to be generated. This function lies outside the bounds of allowable input functions, and would therefore not be acceptable to the next filter in the chain.

Although the $t^{3} e^{-k_{3} t}$ function is not generated until the second filter of the type $1 /\left(s+k_{3}\right)$, it should be noted that the filter number gaven in the error indication will be that of the first filter of this type. Thas also applies to the failure cases I and III (see Appendix B section (b)).

The only method of dealing with the problem would be to remove the offending filter from the transfer function, and complete the calculation for this filter by hand using as input function the output function from the computer for the 'reduced' transfer function.

4.2.3 Discussion of error cases

It must be stressed that these error indications were bualt into the programme more as a safeguard than a restriction. Provided that the user has set up his input function and transfer function correctly on the data sheet he should have little trouble from errors, since they are unlikely to occur in most physzcal problems.

5 DISCUSSION

In a large comprehensive programme such as this there are numerous possibilities for error which have to be rooted out. The programme has been tested in several ways both by comparing results with those obtained by other methods and by a unique self-checking property of the method which will be discussed shortly.

The following is an example run to produce results which could be compared with those obtained another way; it also serves to illustrate the whole computational procedure involved. This example was taken from a paper by Steiglitz ${ }^{5}$ for no other reason but that it provided a complicated looking transfer function for which the impulse and step responses were presented.

The transfer function was:
$\frac{0.02191 s^{7}+0.05325 s^{6}-2.01 s^{5}+11.93 s^{4}-35.32 s^{3}+59.84 s^{2}-56.20 s+23.04}{s^{8}+8.823 s^{7}+30.52 s^{6}+86.42 s^{5}+142.6 s^{4}+189.8 s^{3}+161.6 s^{2}+89.29 s+23.00}$

The roots of the numerator and denominator polynomials were obtained by the Deuce programme mentioned in section 2, and are tabulated in Fig.5. Each complex pair had to be manipulated to gave the constants in a quadratic factor. The data sheet was then filled in as illustrated in Fig. 4 for a unit ampulse input function, tabulation of the response being requested for $t=0(0.1) 4(0.05) 9(0.1) 10$. Since we expected the response function to have a peak around $t=6.3 \mathrm{sec}$ we arranged for the function to be tabulated at closer intervals in this region.

Fig. 5 shows part of the tabulation and a plot of the response. As far as can be ascertained from the graph in Ref.5, our results and those of Steiglitz agree precisely. As a further check the responses to a unit step were also computed and again they agree with those given in Ref.5. According to Laplace transform theory, working from the transfer function, the asymptotic value of the response at $t \rightarrow \infty$ should be $23.04 / 23.00$ or 1.00173913 . The value given by the programme was, in fact, 1.0017391 and this, it should be remembered, was after several matrix operations.

The self-checking property of the method mentioned above relies on the fact that, If numerator and denominator both contan precisely the same factors, the output function should be adentical with the anput function. This provides an excellent way both of cheoking the programme for mastakes and of gaining some idea of the accuracy that is attanable.

An example is provided in Fig.6, which shows a comprehensive input function, incorporating nearly every possible type of component function, into a transfer function with a factor of each type. It can be seen that the cocfficients in the output function differ only in the last decimal place from those of the input function, and that functions generated by the denominator filters emerge wath zero coefficients (as, of course, they should).

This is a good example with very little error arısing. Experience with the programme is, as yet, too limited for us to be able to say that such accuracy will always be attannable, and some recent calculations suggest that accuracy $1 s$ lost when the denominator constants are small in magnitude In comparison wath the other constants in the transfer function. 'It is too early to draw conclusions on this point but it may turn out that difficult cases will be better dealt with when run on a computer with a longer word length. For example, ATLAS has a word length of 44 BITS (12-13 signlficant figures) as opposed to 32 BITS ($8-9$ signıfıcant figures) on the Elliott 503.

Turning now to the question of economical computer usage, the time needed to run a case varies, of course, with the computer and its peripheral equioment but the following are approximate times for the first example quoted above when run on the Elliott 503 computer at Westcot.

To run on 1st tape of programme - 20 seconds
To compute response with 1 st tape - 10 seconds
To run in 2nd tape of programme - 20 seconds
To compute resoonse with 2nd tape - 10 seconds
To ounch out tabulated response (151 points) - 50 seconds
This gives a total of 1 minute 50 seconds. If we allow time for the operators to load the tape readers, reset the oomouter etc., the total time could be around 2 minutes 15 seconds. However, if several cases had been computed in sequence, 40 seconds per case would have been saved by not having to run in the programme tapes each time. Also, the actual formulation of the output function is obtained in only 20 seconds, the remaining computing time being required for the tabulation of the output which would take at least as long by any other method.

With regard to further applications, a potential user may have a problem in which the input function is not of the requzred type. He could, however, use the programme to derive the unit impulse response from the transfer function and use this in a convolution programme.

With regard to extensions of the programme which are envisaged, a great deal of work is currently being done on methods of analysis of multivariable systems by the state space approach. It has been shown ${ }^{4}$ that the serial/ matrix technique could be usefully employed in connection with this; all the necessary algebraic formulations have been worked out and it is intended that they be programmed for computer.

PART II - RANDOM INPUT FUNCTIONS

6 INTRODUCTION AND BACKGROUND INFORMATION

The extension of the method to stationary random processes in 'linear systems is described in Ref.3. That paper, in two parts, gives two methods of obtaining the output autocorrelation function $\phi_{00}(\tau)$ of the process when the input autocorrelation function $\phi_{i i}(\tau)$ is a linear combination of certain prescribed autocorrelation functions. Once $\phi_{00}(\tau)$ is known the output mean square value is given by setting $\tau=0$.

The system autocorrelation function method is based upon the equation

$$
\phi_{00}(t)=\int_{-\infty}^{\infty} \phi_{h h}(\tau) \phi_{i j}(t-\tau) d \tau
$$

$\phi_{h h}(\tau)$ is the system autocorrelation function which is derived from the system unit impulse function $h(t)$ and defined by

$$
\phi_{h h}(\tau)=\int_{-\infty}^{\infty} h(t) h(t+\tau) d t
$$

Since $h(t)$ Is given analytically as a linear combination of kncin functions of t by the determinastic input programme, simple matrix operations lead to $\phi_{h h}(\tau)$. Further matrix operations may then give $\phi_{o 0}(t)$ by the farst equation above.

This particular method was not programmed in full generalıty; it was decided to take $1 t$ only as far as the determination of output mean square value using the equation

$$
\sigma_{0}^{2}=\phi_{00}(0)=\int_{-\infty}^{\infty} \phi_{h h}(\tau) \phi_{i i}(\tau) d \tau,
$$

since $\phi_{i i}(-\tau)=\phi_{i i}(\tau)$.
Thas Mean Square programme is discussed in section 7 and details are to be found in Appendix C. It is a supplementary programme following on from Programme I and using as input an output țape from that programme.

An allowable input autocorrelation function is any linear combination of functions of the following types:
(i) generalised function $u_{1}(\tau)$,
(ii) $\quad e^{-a|\tau|},|\tau| e^{-a|\tau|},|\tau|^{2} e^{-a|\tau|}$,
(i工i) $e^{-a|\tau|} \sin \nu|\tau|, e^{-a|\tau|} \cos \nu|\tau|$.
The transfer function of the system giving unit ampulse function $h(t)$ Is restricted to having no factor $1 / \mathrm{s}$, i.e. the pure integration of a stationary random process is not considered.

The second method (the 'serial' method) is quite self contalned and the programme based on $2 t$ makes no use of Programmes I or II. In essence it is very similar to the deterministic input method. The input autocorrelation function is written as a linear combination of functions of the types listed above; an autocorrelation response matrix is defined for each of the filters in the filter chain representing the transfer function. The output autocorrelation function is gaven by multiplyıng the input coefficient vector by these response matrices in turn.

The Autocorrelation function programme amplementing this method is discussed in section 8 and details are gaven in Appendix D.

7 PROGRAMME II - MEAN SQUARE PROGRAMME

7.1 Mode of operation

A copy of the programme is glven in Append $1 x$ C and the flow diagram in Fig. 7.

Data specifying the system transfer function is used in conjunction with Programme I to give the system unct impulse response function $h(t)$. The parameter S.A.F. is set to the value one thus indicating to the computer that the data has to be prepared for Programme II. The data title, and the analytic expression for $h(t)$ are printed out at the second punch followed by the input autooorrelation function which is reproduced directly from the data tape. This second data tape is then fed in with Programme II to produce the system autocorrelation function and output mean square.

The two procedures $k e y(n)$ and mxprod are used. With key (1) on, the data title for each case followed by the word 'NXDATA' upon completion of that case are printed out on the on-line teleprinter. mxprod is a matrix product procedure as mentioned in section 3 .

The coefficient vector of the system autocorrelation function is determined from the matrix product

$$
c=a A B
$$

The programme reads in a, the coefficient vector of $h(t)$, and matrix B is constructed as an assembly of small sub-matrices involving only the components of a. The elements of A are then determined from the variables contained, in the component functions of $h(t)$, i.e. the values of a and ω in the exponential and exp-trig functions. Having computed c the computer prints out the system autocorrelation function in a standard format.

The anput autocorrelation function is read in, its coefficient vector being denoted by cc. The matrix E is set up, its elements being defined by the variables in the component functions of the S.A.F. and the input autocorrelation function. The programme then produces mean square value s by the calculation

$$
s=c E c c
$$

Having pranted out s it goes on to the next case.

7.2 Use of the programme

In this section is contained all the information needed in order to be able to use the programme. It is concerned with the preparation of the data sheet and the format of the results produced by the computer.

A copy of a blank data sheet is shown in Fig. 8 and may be seen to divide into two main sections headed transfer function and input autocorrelation function. There Is, in addition, a string of $0^{\prime} s$ and $1^{\prime} s$ in the upper right hand corner which are used by the computer in conjunction with the transfer function data to produce the system autocorrelation function. This, together with the input autocorrelation function, gives the output mean square value.

The data title and the transfer function data are set up in the manner described in sections 4.1.1 and 4.1.2.

The first block of the input autocorrelation function section contains the coefficient of $u_{f}(\tau)$. A constant must always be inserted here. If $u_{1}(\tau)$ Is not a component term of the input then the coefficient is set to zero.

The two blocks which follow cover the two classes of function allowed for in the programme. Consider the exponential-polynomial group

$$
e^{-a|\tau|}\left(\alpha+\beta|\tau|+\gamma|\tau|^{2}\right)
$$

(The programme does not allow for functions of higher order in τ than $\tau^{2} e^{-a|\tau|}$.) All the exponential terms are grouped so as to comply wath this format, and the number pp1 is the number of independent groups, i.e. the number of different parameters ' a ' occurring in the exponential functions. The value of pp1 must be inserted even if it is zero. For each independent ' a ', the block of multıplying coefficients (α, β, γ) is inserted, and in the
lower block of the same column, the value of 'a' itself. Precisely ppl sets of data (α, β, γ) and (a) are required. The sheet does not allow for ppl greater than three but the user may add extra blocks if necessary.
$-a|\tau| p^{2}$ is the number of functions of the type
$e^{-\alpha \mid}(\alpha \sin \omega|\tau|+\beta \cos \omega|\tau|)$ present in the input autocorrelation function. When $\mathrm{pp} 2 \neq 0$ then the blocks in the second column must be falled in as described for the exponential-polynomial expressions.

When the data tape is being prepared, the punching order is that inducated by the dotted line. The data should be punched on Elliott 503, 8 hole paper tape beginning with a new line, and ending with a new line, each number being separated from the previous one by a new line.

Should the user wish to run more than one set of data on the computer, he should include all the sets of data on one tape, allowing, say, three anches of blank tape between each set and giving each set of data a title.

The results tape wall contain:
Title: Response of Linear Systems Programme II.
Data title.
System autocorrelation function in analysic form.
Value of the mean square response.
Since Programme I is used in the computation, if any errors occur the error indications wall be those discussed in section 4.2.

8 PROGRAMME III - AUTOCORRELATTION FUNCTION PROGRAMME
-Because of the similaraty between this programme and Programme I, reference will be made to sections 3 and 4 containing the description of Programme I.

8.1 Mode of operation

This section contains a brief discussion of the major processes in the programme. The programme is shown in Appendix D and ats corresponding flow diagram In Fig. 9.

The programme contains easily identifiable chapters corresponding to input, the elementary filters, output and tabulation. The mode of operation of these chapters is as described for Programme I in section 3, but with the restrictions that there should be no $1 / \mathrm{s}$ filter in the transfer function,
and that the input function should contain only a unit impulse, exponential polynomial and exponential - trigonometric functions. The names of some of the variables in this programme duffer from the corresponding variables used in Programme I; however, they should be eascly identified by comparing the lists of varıables in Appendix Asection (a) and Appendix D section (a). Programme III is all on one tape.

The facalaty of using the keys on the computer console is, available, and depressing the keys has the same effect as that described in section 3.5.

8.2 Use of the programme

A copy of a blank data sheet is given in Fig.10. The information required for the title and transfer function is as described for Programme I in sections 4.1.1 and 4.1.2. For the input function, the coefficient of $u_{1}(\tau)$ must always be filled in (even if it is zero), and the method for setting up the coefficients of the exponential - polynomial and exponential trigonometric functions is also the same as for Programme I (section 4.1.3). The information required for the output tabulation, is exactly that described in section 4.1.4.

The failure andications given by the programme are almost identical with those of Programme I (section 4.2) but, for exactness, they are listed in Appendix E.

Appendix A

PROGRAMME I - DETERMINISTIC INPUT FUNCTIONS

(a) List of variables and procedures
a, k, w, n, m real
$\mathrm{A}[0: 10]$
b[1:r[12], 1:2]
cc[1:8] real
cg real
count
c[1:1, 1:q[12]]
$\mathrm{d}[1 \cdot \mathrm{q}[12], 1: q[12]]$
e[1:1, 1:q[12]]
del
f1[1:y[1]]
f21[1:y[2]]
f22[1:y[2]]
flt [1:y[4]]
f51[1:y[5]]
f52[1:y[5]]
iA
ny[0]
ny[1]
ny[2] $\}$
etc.
p[1]
p [2]
real
integer
real
integer
real
real
real
integer
real
real
real
real
real
real
integer
integer
integer
integer
integer
integer
integer
variables in I.F. and T.F.
stores data title
holds a and w values,
$b[1,1] \equiv a, b[i, 2] \equiv w$
holds furst 8 input coefficients
constant gain of T.F., later used
for normalising factor
number of factors dealt wath
input coefficient vector
response matrix
output coefficient vector
number of large tabulation intervals
holds k 's of $1 /(s+k)$ factors
holds n^{\prime} s of $1 /\left(s^{2}+2 n s+m^{2}\right)$
factors
holds m's of $1 /\left(s^{2}+2 n s+m^{2}\right)$
factors
holds k 's of ($s+k$) factors
holds $n^{\prime} s$ of $\left(s^{2}+2 n s+m^{2}\right)$ factors
holds $m^{\prime} s$ of $\left(s^{2}+2 n s+m^{2}\right)$
factors
constant used in storing data title
not slgnıficant, always zero
number of factors of each
$1 /(s+k)^{n}$ type (i.e.
value of index n),
excluding $\mathrm{n}=1$
value 1 if $u_{4}(t)$ present in input, otherwise 0
value 1 if $u_{3}(t)$ present in input, otherwise 0

p [3]	anteger	value 1 if $u_{2}(t)$ present in input, otherwase 0
$p[4]$	integer	value 1 If $u_{1}(t)$ present in input, otherwise 0
p [5]	integer	value 1 if $u_{0}(t)$ present in input, otherwase 0
p [6]	integer	value 1 if t present in input, otherwase 0
p [7]	integer	value 1 if t^{2} present in input, otherwise 0
p [8]	integer	value 1 if t^{3} present in anput, otherwise 0
p[9]	Integer	number of exp-poly functions in input
p [10]	integer	number of trig. functions in input
$p[11]$	integer	number of exp-trig. functions in input
q[9]	integer	position of last coefficlent of exp-poly functions in input vector
q[10]	Integer	position of last coefficient of trig. functions in input vector
q[11]	ınteger	position of last coefficuent of exp-trig. functions in input vector
q [12]	integer	length of final coefficient vector
r1	integer	
R1	integer	used in $1 /(s+k)$ chapter when input function is passed through repeated
r2	integer	factors
R2	integer	
$r[9]$	integer	position of last a, w values in exp-poly fns in b array
$r[10]$	integer	position of last a, w values in trig. fns in b array
$\mathrm{r}[11]$	integer	position of last a, w values in exp-trig. fns in b array
$r[12]$	Integer	length of final b array
SAF	integer	value 1 af data present for Programme II, otherwase 0
$\mathrm{y}[1]$	integer	number of $1 /(s+k)$ factors
$\mathrm{y}[2]$	integer	number of $1 /\left(s^{2}+2 n s+m^{2}\right)$ factors
$y[3]$	integer	number of s factors

$y[4]$	Integer	number of $(s+k)$ factors
$y[5]$	integer	number of $\left(s^{2}+2 n s+m^{2}\right)$ factors
$y[6]$	integer	number of $1 / s$ factors
$y y 1$	integer	total number of factors in $1 /(s+k)^{n}$ terms
$y y 2$	integer	number of terms of the type $1 /(s+k)^{n}$
Variables in $1 /(s+k)$ chapter		

ak	integer	position of exp-poly input function with parameter k for a single $1 /(s+k)$ factor (otherwise zero)
$a k n$	Integer	position of exp-poly input function with parameter k for a repeated $1 /(s+k)$ factor (otherwise zero)
d1	real	, auxiliary variable
g	integer	position of 1st coefficient of generated exppoly function
m2	Integer	value of $p[10]+p[11]$
m1	integer	used in computation of $1 /(s+k)^{n}$ term; determines the current factor
$z[1: 3]$	real	coefficients of generated exp-poly functions when transferring to correct nosition in input

Varlables in $1 /\left(s^{2}+2 n s+m^{2}\right)$ chapter

x 1	real	$m^{2}-n^{2}$
x 2	real	$\left(m^{2}-n^{2}\right)^{\frac{1}{2}}$

Variables in 'output to Tape 2' section
\(\left.\begin{array}{ll}co \& real

coe \& real\end{array}\right\} \quad\)| stores to read data into computer and reproduce |
| :--- |
| on output tape |

Varıable $\ln \left(s^{2}+2 n s+m^{2}\right)$ chapter
$x 3$ real $m^{2}-n^{2}$

Variable in $1 / \mathrm{s}$ block

extra Integer for functions in anput of type $t^{n}, n>3$,\quad| extra is index n minus 3 |
| :--- |

Variables in tabulation block
B2 nuteger number of tame increments in one large time interval

fn	real	value of function at time t
$h 1$	real	time increment
$m 2$	Integer	count varıable
$R 4$	Integer	used in tabulation of first value of function
to	real	anctial tıme value in one large time interval
$t f$	real	final time value in one large time interval
t	real	current value of time

List of procedures
$\operatorname{key}(\mathrm{n})$
write(string)

If $\operatorname{tp}(n)$ then
if $\operatorname{ty}(n)$ then
readr (n,B)
$\operatorname{set}(n)$
outerror
$\operatorname{mxprod}(A, B, C)$
setzero
testc
convert
normalise
takes logical value TRUE or FALSE if the key on the computer console of value n is switched on. prints string on output devace, and on telepranter if $\operatorname{key}(1)$ on. String is a set of characters between the $£^{?}$ string quotes.
equavalent to: If $p[n] \neq 0$ then
equavalent to: if $y[n] \neq 0$ then
reads in values of the real array $B[i]$ for I taking values from 1 to n.
used in the section of programme which determines the $1 /(s+k)^{n}$ terms by testing values of k. reads in SAF data (if any) and tabulatıon data (if any). If key (1) on, prints NXDATA on teleprinter and then restarts the programme. Uses real varlable coe to read in the real numbers.
performs matrix operation $A:=B \times C$ sets all elements of R.M. to zero. tests coefficients of 1 st 8 fns in the input, and sets corresponding p to zero or 1 as required. converts elements of e array to corresponding elements in c array.
normalises input coefficient vector; nn used to accumulate coefficients and find the mean; normalising factor accumulated in cg.
(d) Alterations needed to produce programme on single tape

Alterations to tape 1.
(a) Remove 'Tape 1' from the title of the programme.
(b) Insert the variable 'extra' in the first integer declaration.
(c) The last but one instruction in the 'outerror' procedure should read:
print £ \& 12 r 10 の 0 ;
instead of
print ££ulつO£1r10? ? ;
(d) Before the first call of the procedure 'instring' insert the following:
extra :=0 ;
prınt ££ 1 4 ? Response of Linear Systems Programme I£ 1 2 ? ? ;
(e) The line reading:
print $\& \& l_{q}{ }^{n 7}$, sameline, outstring (A,iA) ;
should be replaced by:
outstring (A,iA) ;
(f) The assignment of the variable $q[12]$ should now read:

$$
q[12]:=q[11]+3:\left(y[1]-y y^{1}+y y 2\right)+2 * y[2]+y[6] ;
$$

Altorations to tape 2.
(g) The calls of 'write' should be altered. For example, replace write ($£ u_{4}(t)$ into filter number ?) ;
by

$$
\text { write (£ } u_{+}(t) \text { into ?) ; }
$$

Having made these alterations the complete programme is obtained by joining the part of the first tape from the title up to, but not ancluding, the comment "Output of data for input to Tape II" to that section of the second tape from, and including, the title comment s Response Chapter to the end.


```
ond;
end;
```



```
if key (1) then print punch
ond;
```



```
value \(n ;\) interar n;
\(t y:=7 n]+0\),
```



```
if sarto then
\(1=4 *(1+j)\).
into
ntor
than
```



```
benin for then \(1:=1\) stop 1 until \(2 \cdot d o l+1\) do roand 00
```



```
\(\frac{\text { ond; }}{\text { procedure }}\) \%
```



```
begin
write(Emaxprod orror)
outorror
```



```
\(\frac{\text { ond; }}{\text { location }(\mathrm{j})}:=\) =un
\(\frac{\text { end, }}{\text { abt }=a b+r b 2}\)
and \(\frac{\text { end }}{}\);prod;
```



```
if \(\mathrm{kog}(2)\) ehen
print punch(2),esf 10147 ?,outatring (A, iA), ETape 1
```



```
nd: print punch(3), eq172,outatring( \(A, i \Lambda)\)
```

 $\frac{1 f}{1 f}$ ty (1) then $\begin{aligned} & \text { then } \\ & \text { thed }\end{aligned}$

$\frac{\text { ond }}{1:=\text { ny }}[0]:=$ =y $1:=y y^{2} 2=0$,

ond
ond; ${ }^{-12}$ ond

ond;
resir
roand
ren

 ond $\frac{\text { end }}{\text { end }}$,

$\frac{1}{\text { for } 1 \text { it }=1 \text { stop } 1 \text { until } q[12] \text { do } \mathrm{c}[1,1]:=0[1,1]}$

for $i:=1$ step 1 until $q[12]$ do $n n:=n n+a b a(c[1, i])$
if koy (2) then print punch(2), \&\&147?,

begin oc 1,11$]=c[1,1] /$ nn
if
koy (2)
then

ormal so
comment $1 /(0+k)$ Responce chaptor

$\frac{\frac{\text { bond }}{}}{\frac{\text { ond }}{\text { Olos }}}$

begnin $\mathrm{d}(5,5):=1 / \mathrm{k} ; \mathrm{d}[5, \mathrm{k}]:=-\mathrm{d}[5,5]$

$\ln a:=b[1,1] ; j:=6+3 * i$,
it $a b s(k-n))_{n}=6$ then

$\frac{\text { begin }}{\substack{\text { outitorror } \\ \text { outa }}}$

$\frac{\text { end, }}{\mathrm{kkn}}:=\mathrm{j}$
$\frac{\text { ond }}{\frac{\text { ana }}{\text { and }}}$
and

 and

nd, end

解d

App.A(b) Programme 1, Tape 1

App．A（b）（cont＇d）

II ty

 $\frac{\text { ond，}}{x 2!=\operatorname{sqrt}(x)}$ ）；

$\frac{\text { ond }}{\text { if }}$ tp) then

$\frac{\text { end }}{2 I^{2}} \frac{10}{2(7)}$ then

d; $\alpha(7,8+1):=-\alpha[7,5]$

$\frac{\text { ond }}{\text { II }}$ tp (9) thon

ond; $\frac{\text { on }}{}$
convort;
noronlile;
toesto;

器
骨这
ond $\frac{\text { ond }}{14}$

$\frac{\text { and; }}{\text { II }}$; ${ }^{\text {annto }}$ than

goto is
LS:

$\left.\begin{array}{l}\text { begin } \\ \text { ond } \\ b: j \\ j\end{array}, 1\right]:=b[J-1,1] ; b[j, 2]:=b[J-1,2]$
ond; ${ }^{\text {and }}$

ond；${ }^{\text {end }}$

$d[j, 3]==d[j+1, j+1]:$
$d[j+1, k+1]==-d[1, j] ;$

ond
路

$d 1:=($（ $a-n)+2+1+1-\pi+2)+2+4 *(\mathrm{a}-\mathrm{n})+2+12$ ；\quad ond；
$d[j, j]:=d j+1, j+1] s=((\pi-n)+2+x+2+2) / d 1 ;$

ond；

exprode（o，o，d）；
 convort； nornet 1 iso； toteto

$\frac{\text { ond }}{2010}$ ond，${ }^{\text {ond }}$
$\frac{\text { ond }}{j:=8+3 * p[9]+2 * p[10]+1 \text { ，}, ~, ~}$

ond

$\frac{\text { berin }}{\text { read }}$ eos；
ond；and

ond；

Oxin interor arry P[1:11],q,r[9: 12],y[3:6],A[0;20],
Oxin interor arry P[1:11],q,r[9: 12],y[3:6],A[0;20],

end; (doverito(atring);
end; (doverito(atring);
lol
lol
Moino,1modzorro(gz),ooum
Moino,1modzorro(gz),ooum

Muen, interer n
Muen, interer n
OMcen
OMcen
\avuen, intoger
\avuen, intoger

Sad, SAF,
Sad, SAF,
Sil
Sil
if nto thon
if nto thon
ond;
ond;

\# I koy(1) thon print punch(3),\&E12FNXDATA?,
\# I koy(1) thon print punch(3),\&E12FNXDATA?,
mint gem
mint gem
ond;
ond;
Mrcodure mxprod(}A,B,C)
Mrcodure mxprod(}A,B,C)

Mai=Addros(A), as:=nizo(A)+an-1;
Mai=Addros(A), as:=nizo(A)+an-1;
*)
*)
IN
IN

merin outomror
merin outomror

lol
lol
0111ott(3,0, ra2,0,2,4,0);
0111ott(3,0, ra2,0,2,4,0);
Ond;
Ond;
end;
end;
Md, mxprod;
Md, mxprod;

xtra: $=1 \mathrm{~A}:=$

outatring $(A, i A)$
if key (2) thon
bopin $A \mathrm{~A}:=0 ;$

end;
If key (1) then
begin $4 t:=0:$
print Punch(3), eq1p7,outstring ($1,1 \Lambda$)

restart
ond,

ond
$\frac{\text { ond }}{\text { in }}$ tp $\operatorname{tp}(10) \frac{\text { the }}{120}$

ond

d; ${ }^{\text {ond }}$
ond

ond;
coment ($\mathrm{s}+\mathrm{k}$) Rosponso ohaptor;
if $\operatorname{ty}(4)$ th
Mand

$\frac{\text { borin }}{\text { end }}$

entin $d\{8,71:=3$,

ond ${ }^{\text {dLI }}$

and
ond; ${ }_{\text {If }}{ }^{\text {ond }}$

ond
ond,

convert;
notrantige;
tosto
ond

App.A(c)(cont'd)

Coment (ar2+2ns+at2) Response chaptor;
$\frac{\text { if }}{} \frac{t y}{}(5)$ then

 ${ }_{\text {bearin }} d[8,6]:=6 ; d[8,7]:=6+n ;$ d $[8,8]:=a+2$

 ond部;

 nd, ${ }^{\text {ond }}$ $\frac{\text { ond }}{\text { II }}$ tp

ond

```
ond;
c convort;
normine
nosto
tost
```

and,
ment $1 / 3$ Rosponso chaptor
If ty (6) then

Error Indication	Cause of error indication	Method of correction
u4. t) Into filter number x	A $u_{4}(t)$ function has been passed through: (a) s, generating $u_{5}(t)$ function, (b) $s_{2}+k$, generating $u_{5}(t)$ function, (c) $s^{2}+2 n s+m^{2}$, generating $u_{6}(t)$ function. These are unacceptable to the next filler of the chain.	Break transfer function up into two stages, and run as
$u 3(t)$ into filter number x	A $u_{3}(t)$ function has been passed through an $s^{2}+2 n s+m^{2}$ filter, thus generating a $u_{5}(t)$ function. Thas function is unacceptable to the next filter of the ohazn.	shown in the example in section 4.2.1.

Error indication	Cause of error indication	Method of correction
Failure case I filter number x Failure case II filter numb er x Failure case III filter number x	A $t^{2} e^{-k t}$ function has been passed through: (a) $1 /(s+k)$, generating $t^{3} e^{-k t}$, (b) $1 /(s+k)^{2}$, generating $t^{4} e^{-k t}$, or, (c) $1 /(s+k)^{3}$, generating $t^{5} e^{-k t}$. A te ${ }^{-k t}$ function has been passed through (a) $1 /(s+k)^{2}$, generating $t^{3} e^{-k t}$, or, (b) $1 /(s+k)^{3}$, generating $t^{4} e^{-k t}$. An $e^{-k t}$ function has been passed through a $1 /(s+k)^{3}$ filter, generating $t^{3} e^{-k t}$	Re-run wathout filter, and calculate the response of that filter by hand. x refers to the first filter of the type (see section 4.2.2.)
Failure case IV filter number x	In al $1 /\left(s^{2}+2 n s+m^{2}\right)$ filter, then either: (a) $n^{2}=m^{2}$, (b) $n^{2}>m^{2}$, or, (c) $m=0$.	Re-factorise the $\left(s^{2}+2 n s+m^{2}\right)$ factor and repeat the calculation.:
Failure case V filter number x	(a) An $e^{-a t}(\sin \omega t, \cos \omega t)$ has been passed through a $1 /\left(s^{2}+2 n s+m^{2}\right)$ filter where $a=n$, and $\omega^{2}=m^{2}-n^{2}$, or (b) A $1 /\left(s^{2}+2 n s+m^{2}\right)^{r}$ has been used in the transfier function.	Rewrun wathout filler, and calculate the response of that filter by hand. In (b), x refers to the :econd falter of the type.

Appendix C

PROGRAMME II - MEAN SQUARE PROGRAMME

(a) List of variables

Section derıving system autocorrelation function (S.A.F.)

$A[1: m, 1: m]$	real
$a[1: 1,1: m]$	real
$B[1: m, 1: m]$	real
$b[1: 1,1: m]$	real
$c[1 \cdot 1,1: m]$	real
$f 1[1: p 1]$	real
$f 2[1 \cdot 1,1: p 2]$	real
$f 2[2: 2,1 . p 2]$	real
$k, K, x, n, n 1, w, w 1, d$	real

m	integer	number of coefficients in input vector (I.V.)
$p 1$	integer	number of exp-poly functions in I.V.
p2	integer	number of exp-trig functions in I.V.
$Z[0: 10]$	integer	stores data title
$z z$	integer	constant used in storing data tatle

Mean square evaluation section.
$\mathrm{bb}[1: 1,1: \mathrm{mm}]$
real
real

coe	real
$\mathrm{E}[1: \mathrm{mm}, 1: \mathrm{mm}]$	real
ff1[1:pp1]	real
$\mathrm{f} \mathrm{f}^{2}[1: 1,1: p \mathrm{p} 2]$	real
$\mathrm{ff} 2[2: 2,1: p \mathrm{p} 2]$	real

mm
pp
pp1 integer
used to store matrix product cE
holds coefficients of input autocorrelation function (I.A.F.)
coefficlent of $u_{1}(\tau)$ in I.A.F.
matrix F of Ref.3, part I
holds a's of exp-poly functions in I.A.F. holds a's of exp-trig functions in I.A.F. holds $w^{\prime} s$ of exp-trig functions in I.A.F. number of coefficients in I.A.F. value 1 if $u_{1}(\tau)$ present in I.A.F., otherwise zero
number of exp-poly functions in I.A.F.

pp2	integer	number of exp-trig functıons in I.A.F.
$s[1: 1,1: 1]$	real	used to store matrix product cEcc (i.e.
mean square value)		
v	real	used to store coefficients while setting \quadup matrix

Responce of Linear syatess Programe II E.funtiey L.J.feslocrood;

booloan procedure koy(n);

end;

Mrray A, B, C;

erin int
an:=addrean(A); *at=B1xo(A)+ea-1
$a b=a d d r e s a(B), a c i=a d d r o s i(C) ;$
re2t $=$ range $(A, 2) ;$ rbai $=$ range $(B, 2$
for ant =an atop ras until san do
for $3:=a \operatorname{atep} 1$ unt11 jatop do
berin mi=matart $t=$ matart $t+1 ;$

-1110tt(3, $0, r=2,0,2,4, n)$;
and; 100 tion ($)$) $=$ =aum
$\stackrel{\text { and; }}{\mathrm{abs}=\mathrm{ab}+\mathrm{rba}}$

```
end mxprod
M nnd mapre
    Mmpmg
```

2nt $=0$;

ti koy (1) then
281=0;
print punoh(3),e2127,outatring $(z, x=)$

ond;

$B[j, j]:=a[1, j] ;$
$B[j, j+1) z=B[j+1, j]:=A[1, j+1]$,
$B[j, j+2] s=B[j+2, j] z=A[1, j+2] ;$
$B[j, j+2] z=B[j+2, j] t=+1$
$B[j+1, j+1]:=2 * a(1, j+2]$

$B[j, j+1]:=B[j+1, j]:=a$
$B[j+1, j+1]=a[1, j+1] ;$
$B[j, j] t=a[1, j+1]$
ond
end;
ooment formentin
$\frac{\text { II pito }}{\text { begin for } \mathrm{h}} \mathrm{h}=1$

$A[i, j]:=1 / d ;$
$A[1+1, j]:=1 / d+2$
$A[1+2, j] t=A[1+1, j+1] s=2 / d t 3 ;$
$A[1+2, d+1]:=6 / d f 4 ;$
$A[1+2, j+1] s=6 / d f 4 ;$
A $[1+2,+2]:=2 / d+5 ;$
if $h \neq \mathrm{r}$ then
if $h+\mathrm{r} \frac{\text { then }}{\text { berdn }} A[1, j, 1]=1 / d 12$;
$A[1,+2]:=2 / d+3 ;$
$A[i+1, j+2]:=6 / d+4$
and
ond
ond; $\begin{aligned} & \text { ond } \\ & \text { if } p 2 t o \text { then } \\ & \text { begin for } h s=1\end{aligned}$

$A[1, j+1]:=2 * \pi+x / d+2 ;$
$A[1, j+2]:=2 * \pi+(3 * x+2-\pi+2) / d+3 ;$
$A[1, j+2]:=2+* *(3$
$A[1+1, j]:=\pi / d ;$
$A[1+1, j]:=x / d ;$
$A[i+1, j+1]:=(x+2-12) / d i 2 ;$

$A[1+1, j+2]:=6 / d ;$
,
$\mathrm{B}[\mathrm{j}, \mathrm{j}] \mathrm{s}=\mathrm{al}[1, j] ;$
$\mathrm{B}[\mathrm{j}, j+1] \mathrm{z}=\mathrm{B}[j+1, j]$
$A[i, j]:=1 / d$
$A[1, j]:=W / d ;$
$A[1, j+1]:=2=\pi+x / d+2 ;$
oonopht syatea Autooorrolation Punotion standard Print Out;

11 PTol then

and
and
end; end
$\frac{\text { and }}{12} \mathrm{P}^{2 t 0}$ then

borin $j:=3^{* * p} 1+2+1-1 ; \quad{ }^{15}$ do

and
ond;
print eq127n;

congent Mean Square Beotion;

[f $[1: 1,1: 1], f 11[1 ; \mathrm{pp} 11,1 f 2[1: 2,1: \mathrm{pp} 2]$;

if
$\underset{\text { bend }}{\text { end }}$ for $1:=p p+1$ ates. 1 until m do road $00[1,1]$;
end; 140 then

$\frac{\text { oompent }}{\text { if pifo thention of metrix } \mathrm{s} \text {; }}$
$\frac{00}{\text { if } p+i \neq 0}$ then
Berin for $h_{i}=1$

$\mathrm{E}[1+1,1]:=\mathrm{E}[i+2,1]:=0$
end;
If pp 1to then
begin for
Fis
atop 1 until
begin for $\frac{10 n}{5 \pi 1}$ atop 1 until pp 1 do

$\mathrm{K}[1, j+2] \mathrm{f}=\mathrm{B}[1+1, j+1]:=\mathrm{B}[\{+2, j]:=4 / d+3$;
$\mathrm{E}[1, j+2]:=\mathrm{B}[1+1, j+1]:=\mathrm{E}[1+2, j]:=$
$\mathrm{B}[1+1, j+2]: \mathrm{B}[i+2, j+1]:=12 / \mathrm{dt}$,
$\mathrm{B}[i+2, j+2]:=48 / \mathrm{dtS}$
and
and;
lif pp2to then
berin for $r:=1$

$\mathbf{E}[1 ; j+1]:=2 *(k+K) / d ;$

$\mathrm{B}[1+1, f+1]:=2 *((k+K)+2-v+2) / d+2$,
$\mathrm{B}[1+2, j]:=4 * v *(3 *(k+K)+2-v i 2) / d \uparrow 3$,
$\mathrm{B}[1+2, j+1] z=4 *(\mathrm{~K}+\mathrm{K}) *((\mathrm{~K}+\mathrm{K})+2-3 * v+2) / \mathrm{dt3}$
ond
nd; and
end; 1 pito thon

and; $\mathrm{Ef} \mathrm{i}+1,1]:=$
and;
If pp ito then
Berin for $\mathrm{F}:=1$

$\mathrm{B}[1, \mathrm{j}]:=2+\mathrm{m} / \mathrm{d} ;$
K
$\mathrm{i}+1, j]:=2 *(\mathrm{n}+\mathrm{K}) / \mathrm{d} ;$
$\mathrm{K}[1+1, j]:=2 *(n+K) / d ;$
$B[1, j+1]:=4=4 *(n+K) / d+2$
$\mathrm{K}[1+1, \mathrm{j}]:=2=(\mathrm{n}+\mathrm{K}) / \mathrm{d} ;$
$\mathrm{B}[1, \mathrm{j}+1]:=4=0+\mathrm{n}+\mathrm{K}) / \mathrm{d}+2 ;$
$\mathrm{S}[1+1, j+1]:=2 *(n+\mathrm{n}) / \mathrm{d} 2 \mathrm{2} ; 12) / \mathrm{dt2} ;$
$B[1, j+2]: 2=4=2 *(3 *(n+K)+2-w+2) / d+3$
$\mathrm{g}[1+1, j+2]:=4 *(n+K) *((n+K)+2-3 *+2) / d t 3$
and

$d:=(n+K)+2+(n+v)+2 ; x:=(n+K)$
$\mathrm{B}[1, j]:=(n+K) / x-(n+K y / d$,
$B[i+1, j+1] z=(n+K) / x+(n+K) / d ;$

$E[i+1, j]:=(w+v) / d-(v-v) / x_{1}$
$E[i, j+1]:=(w+v) / d+(w-v) / x$
ond

If $r=h$ then

$A[i+1, j] t=m / d ;$
$A[i+1, j+1]:=(x+n t 2) / d / n$
$A[i+1, j+1]_{i=(x+n+2)} / d / n$
Ond

$x s=(n+n 1)+2+(v+m 1+2 ; d z=(n+n 1)+2$
$A[1, j] z=((n+n 1) / d-(n+n 11 / x) 4,5 ;$
$A[t+1, j] s=((v+1) / x+(v-1) / d)=.5 ;$
$A[1, f]:=((n+n 1) / \Delta-(n+n 11 / x) *, 5 ;$
$A[+1, j]:=((0+1) / x+(0-1) / d) *, 5$

end
end
end

end;
$\operatorname{lnd} ;(b r o d(b, a, A) ;$
$\operatorname{mprod}(a, b, B) ;$

Append..x D

PROGRAMME III - AUTOCORRELATION FUNCTION PROGRAMME

(a) List of varıables and procedures

a, v, k, m, n	real	variables in I.F. and T.F.
b1[1:r3]	real	holds a's of exp-poly and exp-trig input
		functions
b2[1:r3]	real	holds $\mathrm{v}^{\prime} \mathrm{s}$ of exp-trig input functions
cg	real	constant gain of T.F., later used for normalusing factor
cnt	Integer	number of factors dealt with
coe	real	holds coefficient of $u_{1}(\tau)$ on anput
$D[1: q 3,1: q 3]$	real	response matrix
del	integer	number of large tabulation intervals
$e[1: 1,1: q 3]$	real	output coefficient vector
exq	integer	number of locations requared in the coefficient
exr	integer	generated functions number of locations required in the b 1 and b2 arrays to accommodate the $a^{\prime} s$ and $v^{\prime} s$ of the generated functions
$g[1: 1,1: q 3]$	real	input coeffizcient vector
ny[0]	anteger	not slgnificant, always zero
$\operatorname{ny}[1]$		(number of factors of each $1 /(s+k)^{n}$ type
$\left.\begin{array}{l} \text { ny[2] } \\ \text { etc. } \end{array}\right\}$	integer	$\left\{\begin{array}{l} \text { (i.e. value of the index } n \text {), excluding } \\ n=1 \end{array}\right.$
p	anteger	value 1 if $u_{3}(\tau)$ present in input, other-
		wase zero
pp	integer	value 1 if $u_{1}(\tau)$ present in input, otherwise zero
p1	Integer	number of exp-poly functions in anput
p2	integer	number of exp-trig functions an input
q1	integer	positzon of last coefficient of exp-poly
		function in input vector
q^{2}	Integer	posction of last coefficuent of exp-trig
		functions in input vector
q3	integer	length of final coefficient vector

Variables in $1 /(s+k)$ chapter

ak	integer	position of exp-poly input function with
		parameter k for a single $1 /(s+k)$ factor (otherwise zero)
$a k n$	integer	position of exp-poly input function with parameter k for a repeated $1 /(s+k)$ factor (otherwise zero)
d	real	auxiliary variable
m1	integer	used in computation of $1 /(s+k)^{n}$ terms, determines the current factor
X	integer	position of farst coefficient of generated exp-poly function

Varlables in $1 /\left(s^{2}+2 n s+m^{2}\right)$ chapter
integer used in tabulation of first value of function integer number of tame increments an one large time interval
value of function at time t time increment count variable anıtal time value in one large tame interval final time value in one large time interval current value of time

List of procedures
$\operatorname{key}(n)$
readr (n, B)
outerror (string)
$\operatorname{set}(n)$
takes logical value TRUE or FALSE if the key on the computer console of value n is swatched on reads on values of the real array $B[i]$ for I taking values from 1 to n
prints the string on the output device, and on the teleprinter if key (1) Is on. String I's a set of characters between the ${ }^{〔}$ string quotes. Reads in tabulation data (If any). If key (1) on prints NXDATA on the teleprinter and then restarts the programme. Uses real variable co to read in the real numbers

Used in the section of the programme which determines the $1 /(s+k)^{n}$ terms by testing values of k
$\operatorname{mxprod}(A, B, C) \quad$ performs matrix operation $A:=B \times C$
setzero
testg
convert
normalise
sets all elements of R.M. to zero
tests coefficients of $u_{3}(\tau)$ and $u_{1}(\tau)$ and sets the corresponding p and $p p$ to zero or 1 as requared converts elements of the e array to corresponding elements in the g array
normalises the input coefficient vector; ave used to accumulate coefficients, and find the mean; normalising factor accumulated in cg


```
    berin illiot(7,0
```



```
    Mnd;
    *)
```



```
        IN koy(1), then print punch(
        mead dol;
        Bogin for thit=1 gtop 1 mmtil 2*dol+1 do read co
```



```
    rostart
踩;
```



```
rocoaure meprod( }1,\textrm{B},\textrm{C
M,
M,
    Ma:=|drons(A); m:=Eizo(A)+an-1;
    *)
```



```
                ond; Olliott( (3,0, ra2,0,2,4, m)
            looation(j):=sum
#nd
```

 value nilintorco,
 lol
 年d;
    ```
```

 |and;
    ```
        |and;
colt:zz:=(;)
colt:zz:=(;)
Mrint &ef142Rouponse of Linoer syatoms Programme IIIE12??
Mrint &ef142Rouponse of Linoer syatoms Programme IIIE12??
    Mz=0;
    Mz=0;
lol
lol
borin sz= =0; punch(3,selp?,outatring(z,zz)
```

```
borin sz= =0; punch(3,selp?,outatring(z,zz)
```

```


```

 II (ix=0;(2) then print punch(2),EEr wo147%,outstring(z, zz);
    ```


\section*{}






 ond
\(\frac{\text { ond; }}{\pi^{2} ;=3 ;}\) ond


\[
\frac{\text { and }}{3 * 0[0]}
\]








    procoduro onvort

    ond convort,


    ond toitgi
    Procodure normalise;
begin real ave; integer
i;
    avo: \(=0 ; 1\) gtop 1 until quan \(^{3}\) do ave: \(=a v o+a b s(g[1,1]), ~\)


        ond; if \(\operatorname{key}(2)\) then print punch(2), \(\mathrm{g}[1,2]\)





    begxn for \({ }^{2}:=r 2+1\) stop 1 until \(q^{3}\) do \(\mathrm{g}[1,2]:=0\)

    \(\frac{\text { ond, }}{f}\) oxrto then 1 until \(\mathrm{r}^{2}\) do \(\frac{\mathrm{rand}}{} \mathrm{b}[1], \mathrm{b} 2[1]\)

    \begin{tabular}{l}
\(\substack{\text { Ond, } \\
\text { normen } \\
\text { toaty, } \\
\hline}\)
\end{tabular}

App.D(b) Programme 3


\section*{App.D(b)(cont'd)}

\(\frac{\text { ondf }}{\mathrm{z}[1]}:=\mathrm{z}[1, x], z[2]:=\mathrm{g}[1, x+1], z[3]:=\mathrm{g}[1, x+2]\),

14:

\section*{}

\section*{ond}
\begin{tabular}{l} 
L32 \\
end; \\
\hline
\end{tabular}
comment \(1 /\) (at \(2+2\) nstat2) Reaponse chaptor




 sotzoro,
x: \(=2+1\)
if \(p+0\) the






 \({ }_{\text {and }}^{\mathrm{D}(\mathrm{j}} \mathrm{d}\)

\section*{mexprode, 0, en
convert;
normaliso;}

```

omont 8 Reaponso chaptar,
If y[3]t0 then

```

```

 *)
    ```

```

 |,
    ```

```

 D[J.2]!=-2*v, D[J +1,2]:=2**
 end; }\mp@subsup{}{}{\mathrm{ end}
 M=0,
    ```

```

 lol
    ```
ond; \({ }^{\text {ond }}\)
mont ( + +k) Rosponso ohaptor
if y[4]*0 then


                    ond \({ }^{\mathrm{DC}}\)


                ond
                ond;

and; \({ }^{\text {end }}\)
compont (at \(2+2\) ns + at 2 ) Response chaptor;
If \(y[5] \neq 0\) thon

\(\qquad\)





                    \(\underbrace{(2)}\)
                    ond, \(\xlongequal{\text { ond }}\)

mant ( \(a+\mathrm{k}\) ) Reaponso chaptor;
if \(y[4] \neq 0\) then
 \(\qquad\)


and
ond
\begin{tabular}{|c|c|c|}
\hline Error andication & Cause of error indication & Method of correction \\
\hline \(u 3^{\prime} \tau\) ) into filter number \(x\) & \begin{tabular}{l}
A \(u_{3}(\tau)\) function has been passed through: \\
(a) \(s\), generating \(u_{5}(\tau)\) function, \\
(b) \(s+k\), generating \(u_{5}(\tau)\) function, \\
(c) \(s^{2}+2 n s+m^{2}\), generating \(u_{7}(\tau)\) \\
function. \\
These are unacceptable to the next filter of the chain.
\end{tabular} & Break transfer functzon up into two \\
\hline u1( \(\tau\) ) into filter number x & A \(u_{1}(\tau)\) function has been passed through an \(s^{2}+2 n s+m^{2}\) filter, thus generating a \(u_{5}(\tau)\) function. Thas function is unacceptable to the next filter of the chain. & stages, and run as shown in the example for Programme I in section 4.2.1. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Error andication & Cause of error indication & Method of correction \\
\hline Failure case I filter number x & \begin{tabular}{l}
A \(|\tau|^{2} e^{-k|\tau|}\) function has been passed through: \\
(a) \(1 /(s+k)\), generating \(|\tau|^{3} e^{-k|\tau|}\) \\
(b) \(1 /(s+k)^{2}\), generating \(|\tau|^{4} e^{-k|\tau|}\), or, \\
(c) \(1 /(s+k)^{3}\), generating \(|\tau|^{5} \mathrm{e}^{-\mathrm{k}|\tau|}\).
\end{tabular} & \multirow[t]{3}{*}{Re-run wathout filter, and calculate the response of that filter by hand. \(x\) refers to the first filter of the type} \\
\hline Failure case II filter number x & \begin{tabular}{l}
A \(|\tau| \mathrm{e}^{-\mathrm{k} \mid \tau} \mid\) function has been passed through: \\
(a) \(1 /(s+k)^{2}\), generating \(|\tau|^{3} e^{-k|\tau|}\), or \\
(b) \(1 /(s+k)^{3}\), generating \(|\tau|^{4} e^{-k|\tau|}\).
\end{tabular} & \\
\hline Failure case III filter number x &  & \\
\hline Failure case IV filter number x & \begin{tabular}{l}
In a \(1 /\left(s^{2}+2 n s+m^{2}\right)\) filter, then either: \\
(a) \(n^{2}=m^{2}\), \\
(b) \(n^{2}>m^{2}\), \\
(c) \(m=0\), or, \\
(d) \(n=0\).
\end{tabular} & If (a) or (b), refactorise the \(\left(s^{2}+2 n s+m^{2}\right)\) factor and repeat the calculation. If (c) or (d), transfer function is nnadmıssible. \\
\hline
\end{tabular}

No.
Author
Title, etc

1 J. F. Koenig
E. Huntley
E. Huntley
E. Huntley
K. Steiglitz

A method for obtaining the time response of any linear system.
I.E.E.E. Trans on Automatic control, AC 9, No.4, October 1964

A matrix formulation for the time response of timeinvariant linear systems to discrete inputs. R.A.E. Technical Report 66038 (A.R.C. 28188) (1966) Int. J. Control, 1966, Vol.4, No.1, 49-72

Matrix methods for the analytic determination of the output autocorrelation functions of linear systems for stationary random inputs. R.A.E. Technical Report 66387, (1966)

Part I System autocorrelation function method. (A.R.C. 29278)

Part II Serial method (A.R.C. 29279)
Int. J. Control Vol. 10, No.1,1-12 and 13-27
The response analysis of linear multivariable systems by an extension of the serial/matrix technique.
Int. J. Control, 1967, Vol.5, No.5, 437-450
Rational transform approximation via the Laguerre Spectrum.
Jo. of Franklin Institute, Nov. 1965, 387-391+


RESPONSE OF LINEAR SYSTEMS PROGRAMME I



RESPONSE OF LINEAR SYSTEMS PROGRAMME I
TRANSFER FUNCTION HIE IE IMPULSE RESPONSE OF A TRANSFER ?


SEE RESULTS FROM OEUCE Pourromal factorisation programme (fig 5)
- - - - FUNCTION BY STEIGLITZ a title of up to 30 characters must be inserted between \(£ a n d\) ? characters, in the block above all the values of the integer array y [i, 6] must be filled in a zero must be written wherever a given type of factor is not present in the transfer function THE k's, n's AND m's NEED NOT BE FILLED in IF THEIR CORRESPONOING y is zero -UP_TO-SIX_FACTORS_OF_ONE-TYPE ARE-ALLOWED-FOR-ON-__this sheet, but the user may add extra rows to a block to allow for more than six factors if necessary
\[
\text { FACTORS OF THE TYPE } 1 /(3+k)^{n}(n \leqslant 3) \text { MUST BE DECLARED }
\] as \(1 /(s+k)(s+k)\), all the factors being allowed for IN y[1], AND "n" k 's being written in the " \(1 /(\mathrm{s}+\mathrm{k})\) factor" block ks of non-repeated factors must precede
those of any repeated factors


INPUT FUNCTION

UNIT IMPULSE, \(u,(t)\)

the integer array \(p\) [9, ,in] determines how many of each type of function are present in the input a zero must be written wherever a given type of function is not present the columns under each type of function need not be filled in if their corresponding " p " is zero only " \(p\) " of the \(\alpha\), ,,\((\gamma)\) and \(a, \omega\) blocks need be filled in spaces for only three of each type of function have been all owed for on this sheet, but the user may add extra rows to the appropriate block to allow for more than three of a given type if necessary in
 zero in the \(p\) [io] block, for each ' \(w\) ", its corresponding "a' must be written as zero
if no tabulation of the output function is required then the integer del" must be written as zero otherwise "del" is the number of large time intervals, ie the suffix of the final value of \(t\)
\(\rightarrow-\) - indicates the order in which the data must be punched
each number must be terminated by a new line

Numerator

> -132518217
> \(198042042 \pm 10536601929\)
> \(199310796 \pm 10698590264\)
> \(143718389 \pm 1146975862\)

Denominator \({ }^{\circ}\) - 0579371646
\(-543014026\)
\(-0506680077 \pm 10660091341\)
\(-0269898855 \pm 1139034011\)
\(-0630165014 \pm 1220596800\)

Results from Programme 1

\section*{Response of Linear Systems Programme I}
impulse response of a transfer function by Steiglitz
Output function
\(\exp (-a t) *(u(t), t, t+2) \quad 0=57937185\)
39767338
00000000
00000000
\(\exp (-a t) *(u(t), t, t+2) \quad a=54301403\)
27189447
00000000
00000000
\(\exp (-a t) *(\$ 1 n w t, \cos w t) \quad 0=50668008 \quad w=66009134\)
-50906952
-18236981
\(\exp (-\mathrm{ot}) \times(\$ 1 n \mathrm{wt}\), coswt) \(0=26989885 \mathrm{~W}=13903401\) 33784070
-) 5287643
\(\exp (-a t) *(3 i n w t, \cos w t) \quad a=63016501 \quad w=22059680\) 92167295
\(-33046917\)
Tabulated output function
\begin{tabular}{ccc} 
tume & function & interval \(=10000000\) \\
00000000 & 02195952 & \\
10000000 & 00439558 \\
20000000 & -01066167 & \\
30000000 & -01666600 & \\
1 & 1 \\
& 1 \\
0 & & \\
99000000 & -02310279 & \\
10000000 & -01004826
\end{tabular}


Plotted response
Fig 5 Results for worked example (section 5)

Input function
\(321 U_{3}(t)+4.21 U_{2}(t)+5.21 U_{1}(t)+6.21 U_{0}(t)\)
\(+2 t+3 t^{2}+4 t^{3}\)
\(+e^{-.5 t}\left(625+3.25 t+0.25 t^{2}\right)\)
\(+52 \sin (1.5 t)+\cdot 2 \cos (1.5 t)\)
\(+e^{-2.5 t}(633 \sin (3.9 t)+6.22 \cos (39 t))\)
Transfer function
\[
\frac{(s+3.2)\left(s^{2}+3.2 s+18.49\right) s}{(s+32)\left(s^{2}+3.2 s+18.49\right) s}
\]

Output function
Response of linear systems programme I
Test Ch 123456 sol)
output function
3.2100000 u3(t)
\(4.2100001 \mathrm{u2}(\mathrm{t})\)
\(5 \cdot 2099996\) ul(t)
62100001 u \(0(t)\)
\(1.9999998 \quad t \uparrow 1\)
2.9999999 tヶ2
3.9999998 t^3
\(\exp (-a t) *(u(t), t, t \uparrow 2) \quad a=-50000000\)
6.2499999
3.2500000
- 24999996
\(\exp (-a t) *(u(t), t, t+2) \quad a=32000000\)
.00000000
00000000
.00000000
sinwt, coswt w=1.5000000
\(5 \cdot 2000002\)
- 19999996
\(\exp (-a t) *(\sin w t, \cos w t) a=2.5000000 \quad w=3.9000000\)
6.3300000
6.2200001
\(\exp (-a t) *(\sin w t, \cos w t) a=1 \cdot 6000000 \quad w=3.9942404\)
-00000000 00000000

Fig. 6 Example for test of accuracy


Fig 7 Flow diagram for programme II







f of the user with illustrative examples to demonstrate the use of prepared data sheets but sufficient information is included to enable users to develop the progranmes further it required.
of the user with illustrative examples to demonstrate the use of prepared data sheets but sufficient information is included to enable users to develop the programes iurther if required.

\section*{© Crown copyright 1970}

Published by Her Majesty's Stationery Office

To be purchased from 49 High Holborn, London w c. 1 13a Castle Street, Edinburgh EH 2 3AR

109 St Mary Street, Cardiff CFl IJW Brazennose Street, Manchester 2 50 Farrfax Street, Bristol BS1 3DE 258 Broad Street, Birmingham 1
7 Linenhall Street, Belfast BT2 8AY or through any bookseller```


[^0]:    *Replaces R.A.E. Technical Report 69140 - A.R.C. 31816

