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WIND TUNNEL MEASUREMENTS AT M = 2.47 OF THE MUTUAL AERODYNAMIC
INTERFERENCE BETWEEN A GUIDED BOMB AND ITS BOOST UNIT DURING
THE SEPARATION PHASE

by

J. A. Lang

Aerodynamics Department, RAE, Farnborough

SUMMARY

Loads on boost motors in the vicinity of a guided bomb have been measured
over a range of positions and incidences likely to occur during separation in
order to provide data from which the trajectory may be determined. The loadings
and local pressures induced on the bomb by the aerodynamic interference from the

boosts have also been measured.

L)

The influence of deflected rear surfaces on the boosts has been investi-
gated as a means of limiting the boost 1incidence, attained through the angular

momentum acquired after release of the forward constraint.

.

* Replaces RAE Technical Note Aero 2822, ARC 25060.
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1 INTRODUCTION

As a development of the stand off bomb, to extend its range and cruising
speed, 1t was proposed to replace the rocket motor by four ramjets; further, to
boost the bomb to a speed suitable for the efficient operation of these ramjets,
the addition of two solid fuel boost motors was proposed. Ref.l contains the
basic data on the unboosted configuration whereas the present investigation is
concerned with the interference forces and moments experienced during the
separation of the boost from the bomb. The boost arrangement proposed consisted

of twin boost motors mounted above the bomb as shown in Fig,la.

The purpose of the measurements was to provide aerodynamic data from which
the dynamic behaviour of the boost during separation could be calculated.
Measurements had therefore been made of the normal force and pitching moment
separately on the bomb and its boost over a range of attitudes and positions of

the boost,

Further pressure measurements have been made on the body of the bomb to
determine the magnitude of the locally increased aerodynamic loading on the

structure during the separation phase.

OR 1159 requiring the long range development of Blue Steel was in fact
cancelled after the completion of a large proportion of the experimental pro-
gramme. The results were not therefore analysed to the extent of using them
for dynamic response calculations. However, it is hoped that the published

results of the aerodynamic forces may prove of general interest,

2 DESCRIPTION OF MODELS

For the sake of expediency the model used was a 1/48 scale model of the
early version of Ref.2 modified, as described in Ref.l, with nascelle units at
-5° and the upper fin removed (Fig.la). The boost units constructed of thin
walled tubing were mounted on twin internal strain gauge sting supports. These
twin stings are joined together at the rear, and the combination is carried on a
variable incidence mounting attached to a traverse gear. Three different chord
sizes for the aerofoil connecting the rear ends of the two boosts were tested,

details of which are given in Table 1.

The small differences between the model tested and the proposed version of

Blue Steel are listed in Table 2.

The distribution of pressure plotting holes drilled in the body is shown
in Fig.3, these holes were plugged, and the tubing removed, prior to making

force measurements.
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3 TEST ARRANGEMENT AND PROCEDURE

i,

The tests were made in the RAE No.8 supersonic wind tunnel, a continuous

flow non-return circuit tunnel with a 9 in.square working section, at a Mach

1

number of 2.47, The stagnation pressure was atmospheric, and the stagnation
temperature was approximately AOOC, which gave a Reynolds number in the working
section of 0.26 x 10° per in. The humidity was kept at less than 0.00015 1b of

water per 1lb of dry air.

For the pressure plotting tests, made before the force measurements, the
plpe connections from the bomb were carried aft over the windshield and out to

a multitube mercury manometer.

Normal forces and pitching moments on the bomb were measured using the
sting balance described in Ref.3. For the majority of the force measurements
the bomb was at zero 1incidence with zero fore plane control angle setting, n;
however, a few tests were made at +7.3° incidence with the fore plane set at
n = +80, as being representative of the expected trim state of the full scale

vehicle at the moment of release of the twin boost unit,

[

The twin boost unit was mounted on 1ts separate twin sting support on the

tunnel traverse gear projecting down from the top of the working section as

{»

shown in Fig.2. The incidence could be varied from -1° to +20°, and the boost
unit traversed vertically at any required fore and aft position relative to the
bomb, whilst the tunnel was in operation. A twin boost unit incidence greater
than +20° was precluded from tunnel blockage considerations, and the proximity

of the upper liner.

3.1 Accuracy

Prior calibration of the wind tunnel had shown the Mach number to be
2,47 £ 0.015, with flow angle variations of +0,2° maximum. No corrections were

made for these variations.

The twin boost unit was set optically at each required incidence whilst
the tunnel was running. The angular deflection of the bomb from its initial
(wind off) setting under the induced loads due to the proximity of the twin
sting unit was less than 0.1°. The spatial position of the twin boost unit
relative to the bomb could be set by the traverse gear, to an accuracy of

0.1 mm., The estimated accuracy of the measurements is given below

ot

T
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Bomb model Twin boost unit model
C , +0.0025 C , X*0.0009
z 2y
C_ , %0.0012 c_ , $0.0003
m T m,
C , *0.005 o , $0.2°
p b
a . iO.lo

n . +0.05°

4 PRESENTATION OF RESULTS

The forces and moments measured on the bomb and the boosts were each
referred to their respective body-fixed axes but were reduced to coefficient
form using, for convenience of comparison, the same reference area and length.
These were respectively the gross wing area of the bomb § (5.757 in2), and
the corresponding mean aerodynamic chord, : (2.182 in). The moments on the
bomb have been quoted about the apex of the gross wing, whereas those for the
twin boost have been in general quoted about a point 2.500 in aft of the base
of the nose cone. The recorded data were reduced to coefficient form by
Mathematical Services Department using a DEUCE electronic computer, -

The orientation of the twin boost unit model to the bomb has been speci-
fied with respect to the wind-fixed x'0'z' axes shown in Fig.lb. The x’
axis 1s streamwise and the origin Q' was chosen 0.634 in above the body
centre line and in tﬁe plane of the rear of the bomb. The position of the
boost 1s then specified by a rotation of oy about Q' together with trans-
lations x' and z' of the point 0,. At a = & with x' =2z' =0 the

b
boost position approximates to the full scale position prior to the release of

1

'
the boosts. =x and z' were measured on a traverse gear calibrated in metric

units, so for convenience, these distances in these units have been retained.

5 SCOPE OF TESTS

5.1 Pressure plotting tests

Tests were made first of all with the bomb in isolation, at zero incidence
and with a foreplane setting of zero, and then with the twin boost unit at the
datum reference position (x' = z' = Q) with each of the three aerofoils
fitted 1n turn. The twin boost unit incidence was varied up to a, = 100; this
was the highest obtainable at this datum position of the unit without fouling

its sting support on the pressure plotting tubes issuing from the rear of the



bomb model, The tests were then repeated with the largest chord rear aerofoil
(0.70 in chord) at +12° incidence to the boost unit axis. Additional measure- a
ments were made with solid blockage added between the boosts, as shown in

Fig.20, to simulate the effects of possible attachment and release mechanism.

i»

5.2 Force measurements with the models in isolation

Force and moment measurements were initially made at M = 2,47 with the
bomb model alone in the tunnel, at o =1 = 00, and at a = +7.3°, n = +8°,
to determine the reference values of Cm and Cz at these two basic con-

figurations, uninfluenced by the proximity of the twin boost unit.

Similarly, force and moment measurements were made with the twin boost
unit alone in the tunnel at M = 2.47, first with each of the three different
chord sizes of rear aerofoil at zero inclination to the boosts, and then with
the two larger sizes (0.50 in and 0.70 in chord) at +12° to the boosts. Tests
were also made with no rear aerofeil fitted. All these tests were made over the

incidence range a = 0° to 20°.

5.3 Measurements of mutual interference loads

in

Normal force and pitching moment measurements were recorded concurrently

on both the bomb and the twin boost unit, as the latter was varied through the

(e

.. o o . .
incidence range a, = 0 to 20, and with a spatial coverage from x' = 0 to

b
2cem and 2' =0 to 5 cm in 1 em incremental steps. The tests were repeated

with each of the three aerofoi{s fitted over the same range of ay and z',
but at x' = 0. They were also limited to x' = 0 for the 0.70 in chord rear
aerofoil at 12° setting. With the bomb at an incidence of 7.3% and a control
setting of n = +8°, only the boost arrangement with the largest chord

(0.70 iﬂ) was tested.

6 RESULTS AND DISCUSSION

6.1 Twin boost unit in isolation

For the various arrangements of rear aerofoil the Cz and Cmb are
b

given in Figs.4 and 5, and the corresponding CP positions are shown in Fig.6.
For comparison, estimates for an isolated boost are included in Figs.4 and 6
using the method given in Ref.4. Estimates have also been made of the mutual
interference at small incidences applying the method given in Ref.6. Using the

complex velocity potential derived in Ref.5, we find for the two boosts that

TS
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where b 1is the distance separating the axes of the boosts and r 1is radius

of their base.

The 'term in brackets can be recognized as an interference factor which,
as suggested in Ref.7 using a.ﬁore intuitive._approach, can be regarded as arising
from equal contributions from the buoyancy and upwash field produced by one body
at the location of the other. It would therefore seem logical to apply a factor
of
2

r2 r4
1 +—+0—

to the cross flow velocity when estimating the viscous contribution to the lift.

So that we have
C =5{41rr2 1+2ﬁ+0(i)i|+c aA|:1+ﬁ+0(£)}
zy S bZ bA Dc P b2 b4

where Ap is the planform area of the bodies.

CD is the cross flow drag coefficient, taken as 1.2. The normal force
c
calculated in this way has been included in Figs.4b and 7, where it is seen
clearly to underestimate the experimental values, seemingly a result of the

inadequacy of the estimates of the viscous contribution.

6.1.1 Effects of fitting the rear aerofoil to the twin boost unit

The increments in the normal force coefficient AQ—Cz) and pitching
moment coefficient, ACm, on adding various rear aerofoils are shown in Fig.8.
The variation of A(-Cz) with incidence was, for all rear aerofoils tested,
markedly non-linear. Estimates based on linearised theory are also included in
Fig.8a, for Fomparison, and it is seen that these exceed the measured values.
The pitching moment increment shown in Fig.8b indicates that the point of action

of the incremental load due to the aerofoil is ahead of its leading edge.



6.2 Bomb in isolation

The following normal force and pitching moment coefficients were measured

at M = 2,47 with the bomb alone in the tunnel:

Configuration of the bomb _Cz Eg' i
a = 0° n = o° -0.002 +0.0072
a = 7.3° n = 8° 0.285 -0.0510

6.3 Aerodynamic interference loads on-the twid boost unit in the presence of
the bomb -

6.3.1 Bomb at zero incidence

t T

The -C versus o plot of the results obtained at the x' and =z

z
b
positions covered are shown in Figs.l0 to 13, and the corresponding

C versus o, curves, in Figs.l5 to 18 inclusive, for the various rear aero-

m b
foils tested, It should be noted that at high boost incidences the datum zero

vertical positioning could not be obtained at x' =1 and 2 em aft of the bomb,

because of fouling between the two sting supports. In these specific cases the =

test points were made at the minimum vertical displacements, the actual values

{n

of z' being indicated in the figures. The corresponding coefficients for the
'twin boost unit in isolation' tests (labelled x' = 2z' = ») are included
dotted in Figs.l0 to 18, so that the interference effect of the bomb is readily
assessed.

{(a) Interference loads with rear aerofoils at zero setting to the twin
boost unit .

With all rear aerofoils tested, the normal forces on the twin boost unit
in the presence of the bomb were always greater than the x' = z' = = valuyes
at all spatial positions tested, up to a boost unit incidence of 15° approxi-
mately (Figs.l1l0 to 12). Above this incidence there was a slight relative loss
in normal force when the twin boost unit was over 2 c¢m above the bomb. In
addition, it will be noted that the incremental load changes on the twin boost
unit, due to increasing the rear aerofoil sizes, were up to o = 150, not
significantly influenced by the proximity of the other model; and comparable
to those obtained with the twin boost unit in isolation. At higher incidences
the relative effectiveness of the rear aerofoil became less, indicating
increasing local interference effect from the bomb at the rear end of the twin :

boost unit as the ay incidence was increased above 15°, However, as would be
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expected, the largest overall increments of interference load were obtained with
the twin boost unit in the closest proximity to the bomb (i.e. x' = z' = 0).
The pitching moment characteristics of the twin boost unit, (Figs.1l5 to
17), relative to the x' = z' = » results, were altered by the presence of the
bomb so that, in general, there was a marked nose-up increment in pitchirg
moment coefficient at all spatial positions tested, up to a, = 12° approxi-
mately. At higher incidences, however, a large nose-down increment is seen to
exist with the boost unit close to the bomb (z' = 0), but this has disappeared

when the displacement has increased by 1 cm (2' = 1),

The overall effects of the presence of the bomb at zero incidence on the
normal force and pitching moment of the twin boost unit have been presented in
Fig.37 for the configuration with the 0.70 in chord rear aerofoil both at
x" = 2" =0 and at x' = z' = », These results have been adjusted to a
reference datum point 51.27% of the boost length aft of the nose, this being
representative of the likely CG of the full scale unit with both front and rear
attachment points released. These curves show that there was not only a
nose-up trim change imposed on the twin boost unit by the close proximity of the
bomb, but that the CP moved increasingly aft with incidence above oy = 6°,
Similar curves could be drawn for other selected x' and z' combinations, but
have been omitted for clarity; however, the general effect would be for these
intermediate curves to indicate a reasonably smooth transition to the
x' = z' = » regults alsc shown on this figure.

(b) Interference airloads with the largest rear aerofoils (0.7 in chord)
set at +129

Because of the initial nose-up pitching moment inecrement, it seemed
reasonable to assume that a positive incidence setting of the rear surface
connecting the boosts, would be advantageous in producing an extra restoring
moment and parting force when the rear attachment point was released.
Additional measurements were therefore made with the largest aerofoil set at
120. These measurements, made only at x' = 0, are shown plotted in Figs.13
and 18. The results at z = 0 have also been shown in Fig.37, on the
-Czb versus C plot, with C corrected to a reference datum of 51.27%
of the boost unit length aft of the nose, as explained in (a) above. A large
nose~down pitching moment increment due to the 12° deflection of the rear aero-
foil was obtained at low boost incidences (Fig.37), but, as was noted with the
twin boost unit in isolation, the increment of normal force fell sharply as

.. . 0
incidence was i1ncreased above ab = 107.
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6.3.2 Bomb at cruising incidence

With the bomb set at +7.3° incidence, and with a fore plane setting of 80,

to simulate the expected trim condition just prior to jettisoning of the twin

boost unit, a limited number of tests were completed with the largest chord

(0.70 in) rear aerofoil on the twin boost unit. Tests were terminated at this

gtage because of the cancellation of the project.

The normal force and moment characteristics for the boosts are included
in Figs.l4 and 19, again with the corresponding x' = 2' = = characteristics
for comparison.

With the bomb at 7.3° incidence, the twin boost unit forces and moments
were measured over the range o = 8° to 200, and relative to the x' =2' = =
results at the same incidence, they showed a marked loss of normal force at all
incidences, this loss being substantially independent of x' at =z' =0, but
diminishing as the vertical displacement was increased up to the maximum tested

(z' = 5 ¢cm). These losses 1n normal force were accompanied by a very large

nose-up trim change on the twin boost unit, see Fig.19. A comparison of Figs.12

7

and 14 with 17 and 19 shows that the flow field around the boost is considerably

modified as the incidence of the bomb is increased, thereby influencing to a

Ta

marked extent the forces experienced by the twin boost unit.

6.4 Interference loads on the bomb due to the presence of the twin boost unit

6.4.1 Bomb at zero incidence

(a) Results of pressure plotting tests

Static pressures were measured at the positions indicated in Fig.3 on the
upper surface of the bomb model both with and without the twin boost unit in

close proximity. The results are given in coefficient form in Table 3.

During the tests the twin boosts were maintained at the datum zero
reference position (x' = z' = 0), whilst their incidence was varied from
a = 0% to 100, the highest obtainable at x' = 0 without the twin boost unit
support system fouling the pressure tubing issuing from the rear of the bomb

model.

It was found, by traversing the twin boost unit forward at o = 100, that

for adjacent pressure points the pressures depended only on their relative

position to the twin boost unit. This fact was made use of to provide the

-

supplementary points shown flagged in Fi1g.20. Such traverses were made at

3
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a = 10° with the 0.70 in chord rear aerofoil on, and with the gap between 1its
trailing edge and the twin boosts partially blocked. The degree of this blockage
1s shown in Fig.20. These results have been plotted in Fig.20 as an increment
ACP, of static pressure coefficient above that with the model in isolation. An
additional scale, &p/ptz, has been included to show the ratio of measured
pressure to stagnation pressure behind a normal shock at M = 2.47. The
corresponding flow pattern for the case with the 0.70 in chord rear aerofoil
without blockage has been reproduced in Fig.2l from schlieren photographs taken
during these tests, The wing leading edge and nacelle shock systems have been
omitted for clarity, since in the original schlieren pictures they tended to

obscure the shock at the leading edge of the 0.70 in chord aerofoil.

The marked influence of the rear aerofoil configuration on the local
pressures on the top of the bomb is apparent, as is also the undulating nature
of the static pressure field ahead of the influence of the rear aerofoil. This
latter is undoubtedly caused by the complex threedimensional nature of the shock
system emanating from the twin nose cones of the boosts, and subsequently

reflected to and fro between the two models.

Measurements at plane 'C' (Fig.3), i.e. at holes 2, 13 and 14, situated
below the rear aerofoil showed that the pressure disturbances were a maximum on
the top of the fuselage over the range covered. Unfortunately it was not
possible with the present model to extend this range sufficiently far forward
to include the pressure field from the reflections of the bow shock system from

the boosts, where regions of high pressure may also exist.

{(b) Measured interference loads

The forces and pitching moments imposed on the bomb at zero incidence by
the proximity of the twin boost unit, are shown plotted in Figs.22 to 24 and
F1gs.27 to 29 respectively, at the various x' and z' positions and boost
incidences for the three different sizes of rear aerofeil on the boost unit.
Further measurements, at x' = 0 only, were made with the largest (0.70 in
chord) rear aerofoil at 12° incidence to the boost unit. These measurements are
shown plotted in Figs.25 and 30. It can be seen from Figs.22 to 24 and
Figs.27 to 29 that, at z' = 0, a downward force and a slight nose-down
pitching moment are induced on the bomb by the presence of the boost unit at
zero incidence. The si1gn of this induced force is not affected by incidence of

the boosts. The nose-down pitching moment remains until the boost incidence,

o . . . .
o exceeds 5, then a nese-up pitching moment occurs which increases rapidly

'b,
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with increasing oy - It can be inferred from Fig.30 that with the 0.70 in
chord rear aerofoil at +12° to the boost unit, the increased local download at .

the rear of the bomb {cf. Fig.20) has apparently been cancelled by some

13

upstream effect.

The normal force and pitching moment on the bomb due to aerodynamic
interference varied with vertical displacement (z'), at a given x' position
fore and aft. A maximum is reached, for constant twin boost unit incidence

at zome z' value between O and 5 cm, for all boost unit incidences up to

o
b!

. o . . . ..
approximately oy = 12°. At higher oy the maximum value at a given incidence
occurred at z' = 0. Examination of schlieren pictures, taken concurrently,

showed that this maximum --Cz and Cm value occurred in general when the twin
boost unit bow shock enveloped the wing of the bomb. At higher twin boost unit
incidences the area of planform of the bomb influenced by the pressure field of
the boost unit rapidly diminished as the boost unit was traversed upwards at
any given incidence. The attitudes of the boosts when they cease to interfere
with the bomb were deduced from schlieren photographs and are indicated in

curves at varying z' therefore formed an

b A
envelope curve giving the maximum possible interference loading on the bomb for

Fig.32. The -Cz versus o

any given twin boost unit x' and 2z' position over the range of o tested.

{ui

This envelope curve was governed by low boost unit incidence settings, at large
vertical displacements, and high boost unit incidences, (generally of the order
of ab = 200) at the datum zero reference pogition. These envelope curves for
the normal force imposed by interference on the bomb, due to the proximity of
the various twin boost unit configurations, have been reproduced in Fig.33.
Very similar characteristics were obtained with the pitching moments induced on

the bomb by the presence of the twin boost unit, as showm in Fig.35.

There was little systematic variation of the envelope values with rear
aerofoil chord size, although in the majority of cases the largest chord rear
aerofoil did give slightly larger normal force and pitching moment increments

at small vertical displacements between the models.

6.4.2 The bomb at the cruising incidence

i As mentioned in section 6.3.2 the bomb cruise condition considered
corresponded to an incidence of 7.3° with a foreplane setting of 8°. The only

boost configurations considered was that with the 0.70 in chord rear aerofoil.

-

i

The normal force and pitching moments induced on the bomb by the boosts are

shown in Figs.26 and 31 for a range of o from 8° to 20°. By comparing

&
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Fig.24 with 26, and Fig.29 with 31, it appears that, in the pre-release
position {(i.e. o W x' = 2z' = 0), there is only a very small influence of
the bomb incidence o on the forces induced on the bomb by the boosts. The
comparison also shows that the trends in these forces with boost displacement,
and incidence, are very similar at both the bomb incidences considered.

Envelope curves are shown in Figs.34 and 36.
7 CONCLUSTONS

7.1 Static aerodynamic characteristics were measured to provide the information
necessary to calculate the trajectory of the separating boost unit from a guided

bomb.

7.2 The measured normal force variation with incidence, at M = 2,47, produced
by the twin boost was very non-linear. Estimates were made, including the
effects of mutual interference between the boost and viscous cross flow, but

these were gignificantly less than the measured values.

7.3 The maximum force and moment coefficients induced on the bomb by the twin
boosts up to a boost incidence of 20° were 0.21 and 0.28 respectively, these

coefficients being based on the bomb wing area and mean aerodynamic chord.

7.4 Without any inclination of the rear aerofoil on the boost unit the aero-
-dynamic force on the boost was small when the bomb was at zero incidence. The
force was greater, in the sense that it tended to part the boost from the bomb,
when the bomb was at its cruising incidence. It was demonstrated that this

parting force could be increased by suitably inclining the rear aerofoil.

7.5 Pressure distributions, measured on the bomb with the blockage presented
by the boost attachment crudely simulated, showed that relatively large local

loading could be experienced.
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Table 1

MODEL DETATLS

BLUE STEEL

As detailed in Technical Note Aero 2566 but with the top fin removed and

twin ramjet units added at each tip at -5 to body axis.

TWIN BOOST UNIT

Bodies Parallel portion

Nose cone

Disposition

Rear aerofoills

Planform
Span
Chord(s)

Section

Location

6 in by 0.375 in diameter.

40° apex angle, 0.375 in diameter

base; 0.52 in long.

Axes parallel and 0.57 in apart.

Rectangular.
0.8 in.
0.35 in, 0.50 in and 0.7 in.

Flat plate 0,035 in thick with 20°
wedge at LE.

Trailing edge 0.375 in forward of

rear of boost unit.
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Table .2
" FULL SCALE COMPARISON OF TWIN .BOOST MODEL -AND PROPOSED UNITS
Item Model ‘Proposed unit
Nose Cone .angle 40° .40°
Length - .2 ft 073 in 1 ft 11.36 in
Body .Diameter 1 ft.6 in 1 ft 4.5 1n
Length 724 ft O in 21 ft O 1n
.Distance -apart between 2 ft 3.36 in -2-ft 5.52 1n
centres
Distance above Blue Steel EL 2-ft 6.42 1n 2 ft 6.42 1n
Rear aerofoils
Section Flat plate with 20° LE Same section
i wedge angle
Thickness ‘1,68 in 1.5 in
N Span 3°fe 2.4 in 3 £t .4.52 in
“"Chord (s) "2 °ft79:6 in .2 ft 6 in
.2 .ft 0 in
\ "l ft 48 in

.Location_.of TE

~+Forward of -rearvend -6f unit 1°ft 6 1in 'l ft16-1in
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RESULTS

Table 3

OF PRESSURE PLOTTING

TESTS AT M = 2,47

)

Bomb
con-
figuration

. . .
Twin boost unit configuration

1

at presf

ure point numbers as shown in Fig.3

Rear
aerofoil

*b

'X' dist.

'z2' dist.

5

8

10

11

12

13

14

o
a=1n=0

Not fitted

+0.0425 |-0.0027

-0

.0079
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Table 3 (Contd)
Bomb Twin boost unit configuration ? Cp at pressure point numbers as shown in Fifg.3
con- R 1 J
figuration ear, X' dist. [Z' dist.| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
aerofoil ﬁ
a =n=010.07 1n 02 0 -0, 0565 |+0.2022 +0.1d16 +0.0545 {+0,0101 |-0.0069 |-0,0186 -0.0839 -0.016d ~0.0029 |+0.0467 [+0.0075 0.0434 { +0.0598
chord 20 -0.0826 |+0. 4634 }+0.2309+0.0075 |+0.0180 |-0.0251 |-0.0709 L0.0905 -0,0265 10,0186 {+0.0010 {~0.0134 [-0.0500 | +0.1055
plus 4 -0.1361 |+0.4676 |+0. 4192 [ +0.0102 |-0.0225|-0.0577 |-0. 0747 |-0,0656 |-0.0421|-0.0316 |-0.0029 |-0.0303 (0, 1592 +0.1526
'block~ 62 -0.1375 |+0. 4284 |+0. 4244|-0.0146 |~0,0185 |-0.0721 |-0.0381 }-0.0120 |-0.0604j|-0.0106 {-0.0120 |-0.0316 [+0,1775 § +0.1317
age' 8o ~0.0983 |+0. 5616 +0.0%86 -0.0420]-0.0016 [+0.0063 |-0.0420 |[-0.0093 |-0. 0069} |-0.0016 |-0.0289 [-0.0225 {+0.2337 | +0.2076
100 0 =0.0905 |+0. 4153 +0.0493 ~-0.0133|+0.0337|-0.0106 |-0.0133 1+0.0390 |-0.0186}}|+0. 0050 |+0. 0050 [+0.0063 {+0.1383 | +0.2298
100 ) -0,0709 |+0. 4388 +0.08?9 -0.0055 |+0.0429{-0.0029 [-0.0069 |+0, 0481 [-0.0146|{+0.0128 |+0.0103 {+0. 0141 |+0.1252 +0.2232
100 0.098 in =0.1034 |+0. 4846 40.32}2 -0.0186 ]+0,0769|+0.0180|-0.,0093 {+0.0403 |-0.0029}!+0, 0075 {+0, 0037 |+0. 0103 {+0.0925 | +0,2010
10o 0.197 in -0.1034 |+0.1055 [+0.6558 -0.0238|+0.0455]+0.0363 |-0.0106 |+0. 0350 |+0.0037{[+0.0089 |-0.0029 [+0.0075 |-0.0251 | +0.1657
100 0.295 in -0,1061§-0.0577 +O.50§8 -0.0263|+0.0233|+0.0559 {-0.0093 |+0.0286 |+0.0115]|+0. 0063 |-0.0081 |-0.0016 |-0.0460 | +0.1383
100 0.394 in =0.0773]-0.0447 +0.24§7 -0.0055 |+0, 0115 }+0.0494 |-0.0106 [+0.0272 |+0.0154{|+0. 0089 [ +0,0075|-0.0055 |-0.0303 | +0.1016
100 0.500 in ~0.00551-0.0525 +0.56?5 +0.0598{+0.0010[+0.0520|-0.0093 |+0.0207 | +0. 0089]|40. 0141 {+0, 0573 |-0.0029 {-0. 1022 | +0.0925
10o 0 -0.0695|+0.4663 +0.07§9 -0.0055 {+0.0416[-0.0029 {-0.0069 [+0.0481 |-0.0172|[+0.0115[+0.0103 | +0. 0141 [+0. 1526 | +0.1696
0 0 -0.0773]+0.5068 +0.l3ﬁ3 +0,03371-0.00291-0.0120|-0.0316 {-0.1100 —0.017% -0.0055[+0.0337|+0.0063 |-0.0447 | +0.0337
¢ =n= 00 0.70 in 0o 0 +0.0921]+0.2033 +0.1298 +0.,0449 [-0.0009|-0.0115|-0.0233 |-0.0704 [-0.0102}|-0.0009 | +0. 0488]-0.0036 |[+0.0016 | +0.0%46
chord 20 +0,1405}+0.2950 +0.26%0 +0.0173|-0.0128|-0.0403{-0.0599 |-0.0888|-0.0403[|-0.0259| +0.0042 |-0.0206 |+0.0776 | +0.1392
at 12° 42 +0,2295]4+0. 3042 +0.2399 +0.0108 |-0.0285|~0.0547|-0.0770}-0.0508|-0.04424-0.0298]-0.0009{-0.0298 |+0.0566 | +0.1392
to 60 +0.2610|+0.4155 +0.05§p -0.0180|-0.0075|-0.0586 {-0.0220|-0.03771-0.0508{-0.0036|-0,0089 |-0.0272 |+0. 1444 | +0.1483
boost 80 +0.2990]+0.4274 +0.02?9 -0.0180|-0,0180]|-0.0069|-0.0350]-0.0075}-0,0049|-0.0135}{-0.0140|-0.0232 [+0.1851 | +0.1837
unit 10 +0.2859|+0. 4536 | +0.0004[+0,0148 |+0.0619|-0.0049 | +0.0056 {+0.0737 |-0.0088]+0.0161| +0,0279|+0.0226 +0.1929 | +0.1706
centre :
line h
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SYMBOLS

gross span = 3.25 in
mean aerodynamic chord = 2.182 in

M

qSE

Mb

qSe

pitching moment (on the bomb) see Fig.lb
pitching moment (on twin boost unit) see Fig.lb
kinetic pressure = isz
gross wing area = 5,757 in2

normal force (on the bomb) see Fig.lb

normal force (on twin boost unit) see Fig.lb

incidence angle (the bomb) see Fig.lb

incidence angle (twin boost unit) see Fig.lb

foreplane setting (the bomb)

co-ordinates defining the boost position (in cm) see Fig.lb

pitching moment coefficient on the boost about an axis 51.27 of the boost

length from the nose (see 6.3.1(a))

-]
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IN THE PRESENCE OF THE TWIN BOOST UNIT WITH
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FIG.32. LOCUS OF TWIN BOOST UNIT
POSITIONS FOR IMPINGEMENT OF ITS BOW

SHOCK ON THE REAR EDGE OF THE BOMB
AT ZERO INCIDENCE.
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FIG.33. ENVELOPE VALUES OF NORMAL FORCE INCREMENT ON THE
BOMB (WHEN AT ZERO INCIDENCE)DUE TO PRESENCE OF THE TWIN
BOOST UNIT, ALL CONFIGURATIONS, M:2-47
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FIG.34. ENVELOPE VALUES OF NORMAL FORCE INCREMENT ON THE
BOMB (WHEN AT 7-3° INCIDENCE) DUE TO PRESENCE OF THE TWIN

BOOST UNIT WITH THE O-70C REAR AEROFOIL, M = 2:47.
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FIG.35'ENVELOPE' VALUES OF PITCHING MOMENT

INCREMENT ON THE BOMB (WHEN AT ZERO

INCIDENCE)DUE TO PRESENCE OF THE TWIN BOOST
UNIT, ALL CONFIGURATIONS, M=2-47.
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FIG.36.ENVELOPE' VALUES OF PITCHING MOMENT
INCREMENT ON THE BOMB (WHEN AT 7-3°INCIDENCE)

DUE TO PRESENCE OF THE TWIN BOOST UNIT
WITH THE O-70"C REAR AEROFOIL,M=2-47
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ARC.CP 1161
May 1962

Lang,J A

WIND TUNNEL MEASUREMENTS AT M = 2 47 OF
THE MUTUAL AERODYNAMIC INTERFERENCE
BETWEEN A GUIDED BOMB AND TS BOOST
UNIT DURING THE SEPARATION PHASE

Loads on boost motors in the vicimty of a guided bomb have been measured over a range
of positions and incidences hikely to occur dunng separation n order to provide data from
whuch the trajectory may be determined The loadings and local pressures induced on the
bomb by the aerodynamic mterference from the boosts have also been measured

The influence of deflected rear susfaces on the boosts has been nvestigated as a means of
hmrting the boost incidence, attained through the angular momentum acqured after
release of the forward constraint
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