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by
J. Pike
SUMMARY

Pressure distributions are presented for four conical wing shapes with
attached shock waves at their leading edges. The wings are those proposed
after Euromech 20 as reference shapes for the comparison of flow prediction
methods. The influence on the pressure distribution of wing incidence, free
stream Mach number or ratio of specific heats is demonstrated. Some pressure
distributions over the upper surface are also presented, assuming an isentropic

expansion at the leading edge.

* Replaces RAE Technical Report 71064 - ARC 33040
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1 INTRODUCT ION

Following Euromech 20 1 Roe has proposed two caret and two plane delta
wings2 to be used to compare results from various methods for predicting the
flow about such wings. In this Report the method of Ref.3 has been used to
predict the flow over these wings. This method is only applicable to wings
with attached shock waves. It uses a small perturbation technique behind a
plane shock wave combined with an empirical modification which tends to reduce
the second order errors. The results when compared with known flow
condit;lons3 show good agreement, except for flows with very large pressure
changes in the internal flow. Some comparisons with 'exact' numerical

calculations are also shown here (Figs.27-29).

The wing and flow conditions suggested by Roe are shown here in Figs.1-7
reproduced from Ref.2. Fig.l gives the details of the wings, Fig.2 shows how
certain flow regions are labelled. Line PQR represents shock wave detachment,
and line SQT the conditions for a plane shock wave. Figs.3-7 show the flow
conditions selected and their relation to the regions of Fig.2. The numbers
form part of a general labelling system, used to label Figs.8-39, of the

form:-

letter A to D denoting the wing as in Fig.l;

digit 0-9 denoting Mach number according to the code O for 2.6,
1 for 3, 2 for 3.5, 3 for 4, 4 for 4.5, 5 for 5, 6 for 6, 7 for 7.5,
8 for 8, 9 for 10;

digit 1-5 in order of ascending angle of incidence;

letter U or L denoting the flow over the upper or lower surfaces,
respectively;
below this label, the values of the flow variables y, M and a are
indicated, as also is the flow regime (A, B, C or D) according to the

classification of Fig.2.

For example, the plot in Fig.27 is labelled D31L, with 1.4, 4, 5, B
below. This denotes the lower surface of the delta wing with the leading edge
having a sweep angle of 50° at flow condition 31 (see Fig.7). Flow
condition 31 means M_=4 and o =5, as is shown in Fig.7. Also included
in the table is the information that vy = 1.4 and the flow regime is of

type B (see Fig.2).



2 THE PRESSURE DISTRIBUTIONS

Near the lines PU and SQ of Fig.2, the pressure distribution can be
obta1ned3 by linearising about either the free stream or the parallel flow
behind a plane shock wave. A simple semi-empirical formula has been developed3
which includes both of these cases in a single expression. This expression has
been shown to give good estimates of the pressure distributions over the whole
of regions A and B except near the boundary line PQT. It has also been applied
to the upper surfaces, although it is only theoretically justifiable for small

upper surface incidence.

Figs.8-10 each show the pressure distribution for a wing over a range of
incidence at the same Mach number. Fig.8 shows wing A at M = 10. Fig.9 shows
wing B for M = 5, Fig.10 shows wing D at M = 4. Both upper and lower surface
pressure distributions are shown for vy = 1.4 and 1.25. It can be observed that
changing vy makes very little difference to the pressure distribution at low
incidence, but near detachment significant changes occur both in the pressure

coefficients and the detachment conditions.

The results of a systematic investigation of all the conditions proposed
by Roe are summarised in Tables 1-4 for wings A to D, Wing A has finite
thickness, and for conditions 1, 12, 21, 42, 62 and 92 the upper surface is very

nearly streamwise. For region D, all the leading edge shock waves were found

i

to be detached including that of B33 (see Figs.4 and 5). The wing and flow
conditions where the leading edge is subsonic are listed in Tables 1-4. For
the conditions A4l, the upper surface shock wave is detached, causing an other—
wise attached lower surface shock wave to be detached also. It should be noted
that the lower surface pressure distribution of Fig.ll does not allow for upper

surface i1nfluence.

The lower surface pressure distributions for regions A and B are shown
in Figs.11~29 with y/ymax a spanwise coordinate normal to the ridge line.
The Cp ax1s has a false zero to accentuate the pressure changes. The ratio
of the Cp scale to the y/ymax scale is given by the value of r, shown near
the Cp axis. Each pressure distribution has been given a separate figure to
facilitate the comparison with other estimates. Only limited comment is
included here on the pressure distributions, a critical assessment being left s

until after the comparisons have been made.

i»

The region of constant pressure coefficient near the leading edge is

obtained from oblique shock wave theorya, and is exact over the conically
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supersonic region of the wing for inviscid flow. For the flow conditions of
region B, where an expansion occurs near the centre of the wing, the true
position of the conical sonic point is indicated. For region A, the pressure
rise shown may indicate the presence of a second shock wave and the conically
sonic position can no longer be obtained from the exact leading-edge
conditions. Near detachment 1n region B, the present theory predicts too
large a region of constant pressure, as shown particularly in Fig.26. For most
of regions A and B, away from the boundary line PQT the pressure distributions
have been found to be surprisingly accurate3. Comparison with the results

of Voskresensk.li5 for plane deltas is shown in Figs.27-29. Unfortunately

it is difficult to plot the results (taken from Ref.6) accurately on the
expanded scale used. However the best estimate of them corresponds closely
with the predicted pressures, except for the region of rapid pressure change

in D33, )

Figs.30-39 show a selection of upper surface pressure distributions,
which tend to indicate that the variation in the pressure on the upper surface

1s much smaller than on the lower surfaces.

In Figs.B8-39 the average pressure coefficient (Ep) is indicated. The
lift coefficient of the wing is of course the difference between Ep on the
upper surface, and Ep on the lower surface, Also shown is the pressure

coefficient on an unswept wedge at the same incidence and Mach number (pr).

The time to evaluate a pressure distribution using an ICL 4130 computer
was about } second to find Cpe and CPW’ plus 1/20 second for each pressure

value.



Al

All

Al2

A2l

A4l

A42

A43

Abl

A62

A63

A81

A82

AB3

A9l

A92

A93

AD4

A95

Table 1

WING A, Y = 1.4

Subsonic leading edge

Shock wave

ry]

detached

Subsonic leading edge

Shock wave
Fig.1ll NB.
Sheck wave
Shock wave
Fig.1l2

Fig.13

Shock wave
Fig.l4

Fig.15

Shock wave
Figs.8, 16
Figs.8 and
Figs.8, 18
Figs.8 and

Shock wave

detached
Upper surface shock wave detached
detached

detached

detached

detached .

and 30

{s

17
and 31
19

detached

i
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Table 2

WING B, y = 1.4

Bl1l Shock wave detached

B12 Shock wave detached

B13 Shock wave detached

B31 Fig.20

B32 Fig.21

B33 Shock wave detached

B34 Shock wave detached

B51 Figs.9, 22 and 32

B52 Figs.9, 23 and 33

B53 Thin wing leading edge subsonic
B34 Thin wing leading edge subsonic
B55 Shock wave detached

B71 Figs.24 and 34

B72 Thin wing leading edge subsonic
B73 Thin wing leading edge subsonic

B74 Equivalent wedge shock wave detached



Cl1

Ccl2

C13

Cc4l

C42

C43

c9l

c92

c93

Cc94

D31
D32

D33

Table 3

WING C, v = 1.4

Subsonic leading edge
Subsonic lea&ing edge
Shock wave detached
Shock wave detached
Shock wave detached
Shock wave detached
Figs.25 and 35
Figs.26 and 36

Shock wave detached

Shock wave detached

Table 4

WING D, y = 1.4

Figs.1l0, 27 and 37
Figs.l0, 28 and 38

Figs.10, 29 and 39
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L
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