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A method is described for calculating the first order effects 
of a small,conical ihiokness distribution on the separated flow past 
uncambered,slender delta wings. An extension to the case of small camber 
is possible, but this is not done here. 

The flow model utilised is that of Brown and Michael', but the 
technique could be applied using more sophisticated representations of the 
vortex sheets from the leading edges. 

Results are presented giving the vortex-core posItions and normal- 
force coefficient curves for several wings with thin,rhombic cross-sections 
of various thickness ratios. 

Comparison with a limited number of experimental results indicates 
that although the theory is subject to the basic inaccuracies inherent in 
the Brown and Michael treatment, some of the chanjies due to thickness Poe- 
dxted are fairly good. Thus, the spanwise shjft of the vortex due to 
thickness at a given incidence and the change of nOrEd.-force coefficient due 
to thickness are predicted fairly well, whereas the vertical core movements 
calculated are very poor. pressure distributions have been calculatedi 
but these are not presented here as they exhibit 8-r UIIrealiStiC featU=S 

to those calmilated by Browh and Michael2 for zero thiCkmess. 
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1. Iiltroductlon 

The calculation of the separated flow past thin, uncambered, 
slender, delta wings at zero yaw has been considered by several authors 
using mathematical models of the flow which vary in complexity (Refs. 1 to 
4). All these authors assume conical flowJ that is, constant flow para- 
meters along straight lines through the wing apex, since, for a slender un- 
cambered,delta wing, this assumption is compatible with the wing geometry, 
except very close to the trailing edge at subsonic speeds. Non-conical 
effects and camber on thin wings have been considered in Refs. 5 and 6. 

Smith7 has considered a conical delta w3ng with rhombic cross 
sections. He uses the sophisticated flow model of Ref. 4 and treats the 
cross-sectional effects by use of an exact transformation making no assump- 
tion of small thickness/span ratio. 

The present note develops a method of findlngthe effects of 
conical thickness distributions on wings wzth small thickness/span ratios and 
sharp leading edges but otherwise of any shape. The method could be extended 
to include the effects of small camber but this has not been done here. The 
flow model used is that of Brown and Michael2, although the technique could 
be used with the more sophisticated models. The Brown and Michael method 
replaces each rolled up vortex core by a single, concentrated point vortex, 
and each feeding sheet by a cut in the two-d.imensional,cross-flow field, whhlch 
connects the isolated vortex and the leading edge, thereby rendering the 
potential single valued. The conditions which sre then applied to determine 
the isolated vortex strength and position are that the flow separates from 
the leading edge snd that the sum of the forces on the feeding sheet and the 
concentrated vortex shouldbe zero. Despite the shortcomings of the Brown 
and Michael results it is hoped that the present work will be adequate for 
predicting some of the perturbations of the wing properties due t0 small 
thickness, so that these could then be used together with more accurate 
results for the-zero thickness-wing case, such as those of Ref. 4. 

Notation/ 
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Notation 

A0 

AS 

ALP 

A, 

bob) 

888 equation (41). 

see equation (41). 

see equation (41). 

see equation (41). 

function of cross-sectional. area distribution and 
Mach number appearing in the slender-body potential. 

normal-force coefficient. 

any function of - . 
x 

see equations (18) to (20). 

tangent of wing apex semi-angle. 

so-e strength on cut in ri plane. See equation (26). 

J. 

wing cross-seotional area at x = I. 

derivative of wing cross-eectional *rea at x = X. 

value of y at position of wing edge. Wing semi-span at x. 

value of yr at position of wing edge. 

wing thickness function. See equation (2). 

centre-line half-thickness at station x. 

free-stream speed. 

complex potential such that #h = Re w(u). 

W at eero incidence 



-4- 

Y' 

Y: 

z. 
Z* 

Y 

c 

rl 

Y 

Q 

+h 

Bee equation (17) 

pal-t of w(u) due to inoidence. 

Cartesian “body” co-ordinates. 

real part of Q . 
0 

real part of CT L . 

integration variable corresponding to y. 

integration varlablo corresponding to y%. 

imaginary prt of go . 

imaginarypartof Qt. 

strength of vortex on right-hand aide. 

thicknesa parameter = t/8. 

integration variable oorreaponding to y/a. 

normal to ring cross-seotion in a plane I: = constant. 

density of free stream. 

= y + is. 

value of u at vortex pn right-hand aide. 

complex variable defined by transformation (18). 

tramformed valw of Co in UI plm0. 

perturbation potential. 

part of alendm-body potential. see equation (6). 

= Re n(u*). 

nw/ 
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value of w(u) in u* plane. 

value of w,(a) in ui plane. 

valw of n(u) in ui plane. 

2. FornniLation of the Problem 

Consider a low-aspect-ratio uncambered delta tig, aa shown in 
Fig. I, having a conical thickness distribution symmetrical about its mean 
plane. 

Let ox, oy and OS be a right-handed system of body axes 
with origin at the wing apex, suoh that the x-y plane coincides with the 
wing mean plane. Ox lies along the wing centre-line pointing towards the 
trailing edge and Oy points to the starboard side. The oncoming air- 
stream, with speed U and density p, is at incidence a to the mean 
plane and is parallel to the z-x plane. 

If the wing has a semi-apex angle tar-'K and its centre-line 
half-thiclolesa and semi-span at distance x from the apex are t and s 
respectively, then we may define a thickness parameter E by the equation 

t = ES = Kcx. l ‘* (I) 

For a slender wing, Kx< 1 and for a wing which la also thin c <<I 
as well. The incidence a is O(K) (or less). 

The conical form of the wing upper and loner surfaces may now 
be defined by the equation 

where T is a general thickness fucction which must satisfy the 
relationships 

T(+l) = 0 and IT'(tl)l f- 

for sharp e*es. We will assume port and starboard 
symmetry, 80 that 

T(i) p T(- f 
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We ncm define a perturbation potential # such that the complete 
potential is equal to 

(u 00s a) x + $. *-- (4) 

Thus, at great distsnces from the wing 

or, for small (r) 

a9 
- + Ua+ O(a3). 
ae 

-** (5) 

d satisfies the usual linearised equation for compressible flow and for the S. 
case of a slender wing we may make the well known slender-body appmxiaations 
so that Q is found to be a solution of Laplace's equation in the two 
dimensions y end z, with the co-ordinate I only entering as a parameter 
through the boundary conditions. Fmm the ganer~,slander-body solution8 
we may write 

wham b o is a function of cross-sectional area and Mach number only, given 

in Ref. 8 and where the behaviour of ths harmonic function 9, for large 

r=zy is given by 

us' (4 
Lim +h -Use - log r = 0. --- (7) 

r+- 2x 

S'(x) is the wing cross-sectional area derivative so that, in this case, 

= 2 " tie rs j T(q) dn 
ax 1 

-i 
i 

= l+zlPr T(q) dn. 
-L a.- (8) 

Sinoe/ 
___________________------------------- 
*Note that # as defined by (4) is not the sane perturbation potential as that 

used in Ref. 8. The latter Is equal to # - (U sin a)s in the present 
notation. 
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Since #,, like $J, is a harmcnic function of y and s we 
can write 

+h = Re w(u) ) *-* (9) 

where 
u = y+ie. *** (IO) 

condit.Pcna 
The complex function W can depend on x through the boundary 
ana in view of the conical nature cf the flow it must be of the 

fom 
u 

W rxf- . 
( ) x 

--a (ii) 

It follows that 

aw W u aw 
-= -_ - - 
ax x L au 

K .aw 
= - w-u- * 

s aa > 
l *’ (is!) 

If v is the normal to a cross-section af the wing by a plane 
1: = constant, the wing surface tangency condition is that, at a point an 
the surface, 

ae a$ a~ 
-= Ucosa+- -, a-' (13) 
av t ) ax a~ 

dV 
where - is thetangentofthe anglebetween the local tangent plane and 

ax 
the positive x axis. It can be shown that, on both the upper and lower 
wing surfaces, 

dV E (iQ-~/XT') 
-I 

JiEFs - 
l ** (14)  

ax 

Lf a is small and the erturbation velocities are very much 
less than U then, us* (6) and 14), equation (13) becomes 

agh UE (RI? - y/x T') 
-= 
av $1 + E' T’ = 

= UE (Rp - y/x T’) + O(KeS 1, --a (15) 

where the latter, apprcldmate, form applies when the wing is thin, 
I.e. E<<io 

me/ 
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The flow pattern is to include two contra-rotating point vortices, 
connected by cuts (which are not necessarily straight, as has been pointed 
out in Ref. 5) to the wing leading edges; one of strength y anticlockwlse 
at IS = a0 joined to the right-hand leading edge 0 = +s and one of 

strength -y at a=* o Joined by a cut to 0 = -5, if we assume port 

and starboard symmetry. 

These vortices are subject to the Brown and Michael condition 
for eero net force on each vortex together with its cut2, which has the 
form, in our present notation: 

dWi 25 
- 

t ) 
=FJ 

au ( 
L-1 , 

S ) 
-*a (16) 

o-+0- 
0 

where WI is that part of W excluding the potential of the vortex at 
uo, i.e. 

iY 
Wi = w+ - log (cr - uo). a-* (17) 

2x 

In addition the flow must separate from the section at the edges 
u= +s, which means that (dW/aul must be finite at these points. 

We observe that, since there is no two-dimensional vortex sheet 
in the u plane according to the Brown and Michael model, there is no 
singularity in the flow close to the leading edge to make the separation 
streamline there in line with the wing lower surface, as it should be. 
Instead, the separation streamline must form equal angles with the upper 
and lower surfaces at the edge. It therefore appears that for a wing with 
thiclmess, the Brown and Michael flow model is only really applicable when 
the wing is thin, as in the present treatment. 

The oonditiona (7), (15) and (16) with the separation condition 
are sufficient to determine $,, or its equivalent, W. The flow in the 

u place is illustrated in Fig. 2. 

3. Approximate Conformal Transformation cf the Wing Cross-Sectional Profile 

It is now required to transform the wing cross-sectional profile, 
given by equation (2), into a cut along the real axis, whilst keeping the 
distant parts of the plane unchanged. 

If such a transformation is written as 

Cl = u + h(u) l - •  (18)  

then h must have the properties 

Id 
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Im h(y 2 itT) = ^+tT, -s< y< s 

In h(y) = 0 9 lYl> s \ 

Lilll 
1w-r - 

h(u) = 0 . 

v-0 (19)' 

Evidently the properties required far 6% are the same as for 
the complex potential of an acyclic flow past the cross-section profile in 
the cr plane, which, at great distances, becomes a uniform stream, parallel 
to OY, with unit velocity. 

For a general shape of thin section this potential ms,y be found 
approxunately by distributing sources of strength proportionalto the local 
rate of change cf section thickness along the "chord line", that is the 
real axis between y=-s and y=+s, 111 the manner of thin aerofoil 
theory. The result is 

so that 

UI = u+ - 

-S 

h(u) E i /'TV (f) 105(0.-y') dy' 

-s 

6.9 s T(Y’/s) 
= - 

o- - y’ *’ , 7l 
-s 

where (3) has been used. 

It may be verified that h as given by (20) satisfies the first 
condition in (19) to the approximation shown and that the other two conditions 
are satisfied exactly. Henceforth, the symbol h will mean the approximate 
form given in (20). 

The first two derivatives of h are needed later and these sre 
given by 

a 

I 

s T' (Y'/s) 
h'(u) = - w 

x u - y' 
-s 

and 
6 

h"(u) I - - 
f 

6 T’(Y’/s) 
ay' 8 

x -s (u-Y')* 

a*- (21) 

9 where the generalised principal value is implied in the second equation. 
We see that, normally, h is O@E), h' is O(s) and h" is O(s/K). 

Now/ 
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Now althowh the expression for h is valtd everywhere to 
first order if the section geometry is as specified earlier, the expression 
for h’ is logarithmically sin@ar at the section edges or at the spanwise 
position of any sharp corner of the cross section, so that it is invalid 

within n distance O(e -I$ of such a corner, whilst the expression for 
h” is invalid within a distance O(E) of edges or comers. Further 
differentiations increase the severity of the sin@tlarity. 

To show the form of the singularities of h’ at the ekes 
u = is, for example, we write the first equation of (21) in the form 

h’(U) = . ; /“tT’( ;) - F T’(1) + y T’(4)] 3 

-9 

c 
+ - T’(l) - T’(4) 

x J( 

O-+9 u+s u-s u-s 
- log - - - 101: - 
2S 2s 2s 2s > 

E 
c 

u+s u-s + - T’(4) log - - T’(l) log - 
1 

. -‘- (22) 
x 28 2s 

Tho first two terms on the riChI+hand side remain finite as U-r +s, so 
that the last term gives the singularities of h’ at U = +s. 

Calculations of vortex-core position described later seem, however, 
to be affected by these singularities only extremely close to the edges. 
For practical purposes the Cap between the valid portion of the curve and the 
edge itself, (which is known to be the ultimate position of the core at eero 
incidence) is readily bridged by interpolation and so, in these calculations, 
the singularities have been ignored. 

However, If surface preaaures are to be calculated from the present 
solution, as has been done in Ref. 10, the singular ties 

4 
do cause difficulty 

and techniques such as those described by Van Dyke must be used to find 
expressions valid, to first order in E, right up to the ed&es or other 
comers. 

4. Solution for the Slender-Body Potentisl 

The transformation (IS) ncm renders the slender-body problem as 
posed in the U plane at the and of Section 2, into a simpler one in the 
Us plane, which is illustrated in Fig. 3. 

We we nor required to solve for the flow past a flat plate in tbs 
uI plane which is at ri&t-angles to an initially uniform stream and has 
an appropriate pair of contra-rotating vortices, which are of the same 
strength as in the u plane because ths transformation (18) is conformal 
at the points u = uo, u = -Fro (corresponding, respectively. to Ui = U 

01 
and UI I -5 0% ). 

There/ 
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There are to be equal and opposite values of outward normal 
velocit 
and (IO 3, 

on the top and bottom of the plate with values which, from (15) 
are equal to 

at a point on the plate in the C* 
the wing in the u plane. 

plane corresponding to position y on 

If the potential in the ui plane is given by 

then, as u and 61 become identical at great distances (equation (lg)), 
the condition (7) becomes in the ui plane 

ui being equal to yl+ ici. 

The separation condition in the u plane must, in the absence of 
a vortex sheet, correspond to a simple separation from the plate ekes in 
the ui plane so the value of I an/a ui I must be finite at CT~ = +sr, 
the wing-edge positions in the ui plane. 

Finally, the Brown and Michael force condition (equation (i6)), 
may be easily evaluated in terms of Cl. 

Evidently, the problem as now posed in the bi plane is eX8dfJ.y 
the same as Brown and Michael's with the addition of the discontinuity of 
normal velocity across the wing "cut", which can be obtained by a source 
distribution on the cut of strength 

dyi) = 2 (Tb El> 
= 2Us KT - 2 T' + O(KE '), 

x > 

where y, is the position on the cut corresponding to the spa?~wise positiCsl 
y on the wing cross section. 

We therefore write 
n(uJ = nobi) + (ubi) 'a* 07) 
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where R o is the potential of the sources and 
form as Brown and Michael's solution (eqmtion 

w is exactly of the same 
(7) of their paper) but 

contains cross-sectional effects because of equation (la), which relates ,I* 
to the "physical" u plane. 

web) = nobJ 

ia seen to be the part of W(U) which la present at cero incidence and 

w(u) = O(UlI) -*a (29) 

represents the effect of incidence. 

We now have 

and 

- iuo ai (' . a** (31) 

It is re.aaUy verified that in view of (30) and (31) 
oondition (25). 

(27) satisfies the 
both w and WO are of the form [II) and satisfy (12). 

5. Application of the Cond.ition for Separation and Brown and Michael's 
Force Condition 

Since the potential W,(U) represents a velocity field with 

symmetry about the y axis it cannot affect the condition for separation, 
which is really one imposing local symmetry about the y axis at the tips 
u = is. The fact that the expression we derive below for dW@, 

using our approximations to the source strength etc., exhibits a singularity 
at the tips is irrelevant to the above argument, sinoe thia ia not tNe Of 
the correct winner" solution valid near the tips. 

Thus, in the ai plane, only ~(0~) is involved In thia 
condition, which must therefore be of exactly the same forti there aa Brown 
and Michael~s equation (a), so that it becomes, in Our case 

Cross-sectional effects are again present by virtue of equation (18). 
(32) shows that y is O(aK), Le. O(K') at moat. 



- 13 - 

To apply the force condition (16) we require the quantity 
(awh)u+u . 

0 

using (17) ma (27) 

aw, dW iY 
-z2-+ 
au au 2% (a - uo) 

t 

an 
-2 

au iY 

) 

aus 
P +-+ - 

au1 au1 24~~ -uol) au 

1Y 1 

t-- 

I a-i 
+- - . 

> 
-** (33) 

2% u-u0 ui-u o* au 

FZ-O~ (30) =d (26) 

I ’ HUE [RT(y’/s) - K y’/s T'(y'/a)] dy’ 
XI- 

2% I 0 - y' 
-8 

+ o(KE*) 

KUE 8 

I c 

T(Y'/~) 
5- + 1 T'(y'/a) 

x u - y’ 8 

-8 

Q T’ (Y’/s) 
- - 

3 
ay’ + o(Kc*) 

8 u - y’ 

Ku 
= - h(u) - ah'(u) 

3 
+ o@e*) , 

8 
l ‘* (36) 

where ute has been made of (3)r (20) and (21). 
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From (31) and (32) 

uip- s$‘- /GJiQ-si%oiQ- sp ) 

Cl 0-1 

JC J(u,9-sP)(~o~Q-siQ) - ) 
--- (35) 

qiQ- SiQ)(U Q- Si') O+ 

which mult~~!e~d 05) m4Y be i 
nserted in (33) and the limit of the bracket 

dui/&r found with little difficulty. The last term 
shown in (33), however, requires some care to obtain the limit. Thus. 
uning L'Hospltal's rule 

1 1 a% - = Lim 
0-i -u o* aa u+ CT0 au, 

ui- uo, + buo> - 
au 

= - 3 h"(uo) + O(e'/R) . 

If (16) is first multiplied throughout by 

= I - h' (uo) + O(c* ) 

and the above substitutions are made, we find the result 

*-- (36) 
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Ku 
I - 26' - s - h(s ) + h'(u )(a + u 

0 0 0 0 
- 26J ] + O(KsS) . **a (37) 

s 

The first four terms in the bracket on the left-hand side may 
now be regarded as a function of the three variables 

and 

S$ = s + h(a) 

U 
01 

= u. + h(uo) 

a 
01 

=B + 
0 

h(500) , I 

' where, in the last equation, we have used the fact, which can be deduced 
from (20), that 

"(5,) 6 h(iio). --a (39) 

E~panaion of tbia f'tmotion as far as the lineartenm yields, with the same 
error 88 in (37): 

" 
I 

A0 + Ath(uo) + Aph(?o) + A, h(s) - 
h”(uO) 

2% 2 3 

Ku 
I - 2: 

0 
- s - h(uo) + h'(uo,)(a + U. - 2co ) 

s 3 
+ o( Kc*), *-- (40) 

where 

a’ 
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A, = a0 
- 

u 
0 u 0 3= 

+ 

u,’ 4 +I (u,’ 4 ) (3oa -2) J(aop-i?)(~;-.~) cop-g *o(uog -2 1 
so 2 

Ai = 
(J - ’ 

(r,’ 

(u,‘-k )(3,’ -2 ) )( (u,‘.d)’ - aTo* (u,’ -3 ) 

I 1 

-( ) 

P 

sn o -2 Lp- +fyp 

Equation (40) yields two equations for the vortex co-ortinaCes, 
YO 

and z. (th e real and imaginary parts of uo, respectively) when real 
and imginaxy parts are taken. 
of Brown and Michael2 

These are solved numerically by the method 
which consists of adjusting y. for a fixed z. 

until two values of the ratio y/2xKus derived from the two equations, 
are as close to each other as required. The conresponding value of a/K 
is then calculated fm~ tm erpan~ion of (32) in the f02-m 

a Y 
c 

2s - I K 2xKUs 

2sp +Im 2suo 
In h(uo) + Re h(s) 

3 
+ O(E*), 

h(s) beirg entirely real. 

When the function h is zero, equations (40) and (42) reduce, 
respectively, to equations (II) and (8) of Ref. 2. 

6. Normal-Force Coefficient 

The normal-force coefficient may be evaluated from the pressure 
distribution (see Ref. IO), or by a lication of the momentum theorem as in 
Ward's Cenoral slender body method P , the latter leading to a contour 
integral which yields the result 



The pressure distribution method as given in Ref. IO, yields substantially 
the same results as equation (43j in the case of the rhombic cross section, 
(see below), even though the singularities in pressure at the edges have 
there been removed in the manner of Ref. 11, as previously mentioned. 

7. Comparison of the Theory with Experiment for Wings of Rhombic 
Cross-Section 

If the delta wing being considered has cross-sections which are 
sidlar rhombuses, then the equation for T is 

so that, from equation (20), wehave 

2sr u+ s o-+s u-s U-S 
h(u) = - -log -+ -log - 

x 2s 2s 2s 2s 

u 
- -log2 

) 
. *** (45) 

s 2s 

Hence 

E u+ s u-s 
h'(u) I - log -+ log - - 2 log" l a* b.6) 

% 2s 2s 2s 

c I 1 2 
h"(u)=- -+--- 

% u+ s u-a U 

Equation (43) becomes 

These e ations have been used to evaluate the vortex-core 
position and $k as desoribed above, Over a range of a/B,for three 

values of E, corresponding to three experim~tal models. The values of 
c were @031, 0.176 and 0.268 (the corresponding wings being respectively 

referred 
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referred to as models 031, 176 and 268 on the accompanying graphs). 
Results for E = 0 were also found, so that they could be checked against 
those of Brown and Michael2 and this check proved entirely satisfactory. 
(N.B. In Fig. 4 theoretical results are also shown for E = O-088, 
corresponding to a proposed fourth model which was not tested owing to lack 
of time). 

The models were each 23 inches long with a leading edge sweepback 
of 80~ (corresponding to K = 0.176) and they were tested over a suitable 
range of values of a/R at a speed of about 60 ft set-'in the 2.75 ft 
x 3'75 ft low-speed wind tunnel at the University of Salford, Department of 
Mechanical Engineering. 

The vortex-core positions were defined as positions of minimum 
total head and were found using a remotely-controlled,five-tube probe. 
Surface pressures were also measured on one of the four faces of the rhombic- 
cross-SectIoned wing, use being made of the wing symmetry to obtain upper 
and lower surface pressures from the sare tappings. Near the sharp leading 
edges, pressures were measured by cutting a shallow groove in the surface 
which was connected at its inboard end to a tube which passed out of the model 
in the normal way. This groove was covered with thin adhesive tape which 
was pierced, using a jig, at the desired pressure measuring station. Surface 
flow patterns established that the tape did not seriously affect the flow, 
that the boundary layer was laminar at the secondary separation and also that 
the flow was effectively conical over at least 7% of the model length from 
the apex. All flow surveys and pressure measurements were made at the 6% 
station. Full details of the models and the experiments are given in Ref. 10. 

In Fig. l+ theoretical and experimentally-found,vortex-core positions 
are plotted along with Smith's theoretical results for a flat plate (Ref. 4). 
Because the number of experimental points was so low (3 per incidence) results 
obtained from other sources have been superimposed. 

Fink and Taylor (Ref. 12) used a model of aspect ratio 0.705 
having a flat upper surface and a lower surface with a constant chamfer 

s 
arallel to the leading edge. In the plane where the cores were examined 
41.78 root chord) the cross-section was a truncated triangle, but from the 

apex to 36$ chord the section was an isosoeles triangle with an edge angle 
of 4-750. It is reasonable to assume that the vortices formed at the tra- 
versing section will not be very different from those which would be found 
if the wing was conical up to the traversing section. Further, Maskell 
(Ref. 15) has suggested and Kirkpatrick (Ref. 13) has demonstrated that a 
change of a few degrees in the anhedrsl of the leading-edge bisector would not 
greatly affect the position of the vortioes relative to axes in the direction 
of the leading-edge bisector andnormal to this. For the purposes of this 
paper these rotated axes have been taken as the y,s axes. The model of 
Ref. 12 can therefore be identified with E = e&i. The core centre was 
again found as the point of total-head minimum, using a Kiel tube. Core 
positions corresponding to specific values of a/K were interpolated from 
the published results. 

Kirkpatrick and Kirkpatrick and Field (Refs. 13 and 14) also used 
a Keel tube in their investigations of rhombio-cross-seotioned wings, which 
inbaea models with c equal to O-132 and 0.268. The core position 
was estimated from ths total head values of three selected points in the 
neighbourhood of the vortex Core, assuming the total-head contours to be 
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circular. There seems to be a consistent and significant difference in 
the results for E = 0.268 as found in Ref. 14 snd ths present tests. 
These differences may possibly be due to .s slight yaw angle being present 
in the rigging of either the model of Ref. 14 or in that of the present 
model, or in both, but with different magnitudes. 

It oan be seen that the vertical distance of the vortex core 
above the wing surface found experimentally on the thinnest model tested 
agrees well with both Smith (Ref. 4) and the present theoreticsl predic- 
tions for E = 0 (which corresponds to the results of Brown and Michael 
(Ref. 2)). However, the spwise position of ti core is much more inboard 
than Ref. 2 suggests end slightly more inboard thsn Ref. I+. The present 
theory predicts fairly well the spanwise vortex shift due to thickness,but 
totally fails to account for the vertical oore movements. At low a/k 
values (about 0.5) this vertical shift is almost equal to the spanwise 
movement and at higher a/K values it can be twice as much. However, 
the normal-force coefficients shown on Fig. 5 show the same variations due 
to thickness as the present theory suggests. 
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