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SUMMARY

PART A

The distant pressure field within the shadow cast by -a point source 1n the
presence of a semi-infinite rigid plane is compared with that for a rounded
body. Within the 'deep shadow region', not too close to the shadow boundary, it
is found that the field is much less for the rounded obstacle in the short wave
limit, having exponentially small behaviour compared with the algebraic decay
appropriate to the half-plane case. At points very close to the geometrical
shadow boundary, on the other hand, the pressure field exhibits almost identical
behaviour for each geometry, this being the familiar Fresnel pattern, but with

a change of phase for the rounded body.

PART B

Consideration is given to the possibility of choosing the shape of a
rounded obstacle, within certain overall restrictions, in order to minimise the

diffracted field within the deep shadow region.

*Vacation Consultant (Summer 1970)
tReplaces RAE Technical Report 70183 - ARC 32505



2

CONTENTS

PART A

GENERAL RESULTS ON DIFFRACTION BY SMOOTH BODIES

1 INTRODUCTION
2 THE RECIPROCAI THEQREM
3 THE RIGID HALF-PLANE
4 GECMETRICAL DIFFRACTION IN THE DEEP SHADOW OF A CONVEX BODY
5 THE TRANSITION REGION: 81 - 60 5 (ka)
6 GENERALISATIONS
7 CONCLUSTIONS
Appendix Special functioms
References
Illustrations

PART B

OPTIMISATION OF THE CURVATURE

1 INTRODUCTION
2 BASIC MAXIMISATION PROCEDURE
3 LIMIT b/a €1 AND a1 <]
4 LIMIT bfa <1, b/a < 51
S SPECIAL CASE b/a <1, 6; = u/2
6 CONCLUSION
Illustrations

Detachable abstract cards

Figures 1-5

27
27
29
31
33
37

Figures 1-5

183



183

4

(4]

i

PART A

GENERAL RESULTS ON DIFFRACTION BY SMOOTH BODIES

1 INTRODUCT ION

The elementary ray theory of optics and acoustics predicts zero field in
the 'geometrical shadow region' that 1s cast by a scattering obstacle. The
determination of short wave estimates for the small field that does propagate
in such reglons has attracted a great deal of attention 1n the literature, and
1t is found that the field 1s essentially different according as the scatterer

has sharp or smooth edges.

Exact formal solutions have been obtained for relatively simple geometries
such as semi~infinite plane, sphere, circular and parabolic cylinders, with a
varlety of boundary conditions prescribed, and these canonical solutions play

a key role in developing and checking short wave theories for bodies of more

general shape.

For smooth convex bodies, an extension of the ideas of ray theory has led
Kellerl’2 to develop the concept of 'creeping waves' that propagate, from a
source at P0 to an observer at a point Pl in the shadow, along the shortest
path PO Qo Q1 Pl’ where PO Q0 and Q1 Pl are tangents to the body and
Q0 Q1 1s an arc thereon. According to this theory, energy decays by the
inverse square law (or inverse linear law in two dimensions)} along the straight
sections PO Qo and Q1 Pl; it 1s argued that energy must decay more rapidly
with arc length along the curved section Qo Ql of the ray path, since energy
18 being constantly shed along tangents with a consequent exponential attenuation
with arc length. Several plausible assumptions are made concerning‘the nature
of the field along such a 'diffracted ray', and a comparison with exact
solutions for the sphere (or circular cylinder in two dimensions) provides
final details to yield an asymptotic estimate for the exponentially small field
in the shadow, for the limit of waves of length very small compared with
the typical radius of curvature of the body. The theory is not valid near the

shadow boundary where a different sort of approximation is required.

One might anticipate that a sharp edge will provide a more efficient
mechanism for scattering into a shadow, since a ray at incidence upon such an
edge is expected to scatter in a more isotropic manner. This property 1s well
established by the classical results of Sommerfeld, and MacDonald3 for the
semi-infinite plane, whence it is readily seen that the field 1s algebréically,

rather than exponentially, small at high wave numbers.
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The object of the present Report is to compare the shadows cast by sharp
and smooth ended bodies, with an observer at great distance from the scattering

surface and with a source point relatively close to the body. For simplicity

"

of exposition, attention is confined to twodimensional geometries, the

acoustically hard boundary condition is taken, and the source and observation

%)

points lie in the same plane normal to the generators of the body. Generalisa-
tions from this twodimensional configuration and from this boundary condition
are available, in principle, and several extensions are stated in the course of

the analysis.

Within the 'deep shadow region', this excluding the i1mmediate vicinity of
the shadow boundary, a direct comparison is made between the results for a
half-plane, and results for a rounded body calculated on the basis of Keller's
theory1 of creeping waves. It has already been mentioned that this theory is
invalid in the 'shadow transition region' that separates shadow from i1lluminated
regions. This transition region is treated at lemgth in the literature, notably
by Fock4 whose results are interpreted in the present context in order to com-
pare the transition zones for sharp and smooth bodies. The principal results
obtained are that the field within an inner core of the transition region is
nearly the same for both sharp and smooth edges, whereas the field within the

deep shadow is considerably less for the smooth obstacle.

Time periodic oscillations are considered, whence the pressure fluctuation

P(x,t) 1in the sound field has the form

[

P(x,t) = ®{p(x) exp(-iwt)} , (1-1)

where w denotes the angular frequency; it 1s obvious that the time factor
-iwt . . .
e will appear throughout and may therefore be dropped in the calculations

that follow. The acoustic wave equation with harmonic time dependence takes the

form
2 2 ;
(v + k%) plx) = 0 (1-2)
where k = w/c = 2n/A 1is the radian wave number and X the wavelength.
Equation (1-2) has to be satisfied throughout the fluid, except for a source

point x = X, together with the boundary cendition

3p/én = 0O on the scattering surface § , (1-3)
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where n denotes the outward normal. Finally, 1n order to ensure outgoling
waves at infinity, we require
ikr ikr, 1/2
p v Fe ft or p ~ F e /r ! as 1+ w (1-4)
in three or two dimensions respectively, where r denotes the distance from

some convenient origin.

2 THE RECIPROCAL THEOREM

If a point source is situated at a point Pl(il) with an observer
measuring the pressure at a point P0(§0), then 1t is required to find the
pressure induced by the source in the far field limit as r = IEOI -+ e and

for the moment the points 50 and x., are taken to lie 1n the same plane

1
perpendicular to the generators of the twodimensional body. The far field
limit r + = can be taken at an early stage in the calculations by appealing

to the reciprocal theorem which states that the field at % due to a source

at 3] i1s precisely the same as that at %X due to a source at X . Now 1n
the limit |§0| + ® jt is clear that the incident field in this reciprocal
problem becomes that of an incident plane wave of suitable amplitude and phase.
Apart from the obvious desirability of taking the far field approximation at
the outset of the calculations, there is the further advantage on account of

the relative simplicity of plane wave against incident source field.

To formalise these ideas, suppose the incident field is that of a source

given by
_ ikR _ - . _
pi = e /R » R = 51 30’ » (2 1)
thenr as r = |x | > o with x fixed, we have
o] -0 =1
ika.x ik(x. cost +y_sinf )
p, n Ae Lope 2 oo7lon (2-2)
ikro .
where A = e /r0 and o = - zolro is the unit vector in the direction from

X, towards the origin. Thus it remains to solve the reciprocal problem of a

plane wave, given by (2-2), at incidence upon the obstacle, in terms of which

the far field at X due to a source at X, 1is given immediately.

1
In a similar way, the problem of finding the far field at X due to a

line source at X, can be reduced to that of an incident plane wave, Thus if
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1/2 .
o = (3%) elv/4 Hél)(kR) (2-3)

where Hél) denotes a Hankel function, then in the limit Igof + ® we may

4z

use the asymptotic estimate

/2 .
H(l)(z) A <£L> glzmin/d for large =z (2-4) By
o Tz
to find that
ikg,gi
pi “ Be (2-5)
ikr
o, 1/2
where B = e /r and o = - x /r  as before.
) = o' o

Evidently the plane wave (2-5) differs from (2-2) only by 1its constant of
proportionality; in particular, the ratio p/pi of total pressure to incident
pressure will be the same in each case. The consequence to be drawn from this
property 1is that for calculating the ratio P/Pi in the far field, we may con-—
sider the incident field to be either a point source or line source or plane

wave, as convenlient.

3 THE RIGID HALF-PLANE

The problem of scattering by a rigid half-plane is a classical one whose

solution 1s well known (MacDonaldB), and can be written in several forms.

i

Taking the incident field to be a plane wave given by
pi(gl) = A exp (ika . El) = A exp (1kr1 cos (91 - 60)) . (3-1)

where a 1is the direction of incidence displayed in Fig.l, it is found that the

total pressure distribution 1s given exactly by

_ ikr -in/4
p) = an P 1 (r((2ke)"'? sin } (8 - 8)) +

+ F((Zkrl)”2 sin } (8, +80)) . (3-2)

In formula (3-2), F denotes the Fresnel integral

F(x) = dt (3-3)

N
L]
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some properties of which are described in the appendix. The corresponding
result for the soft half-plane, on which p = 0, differs from (3-2) only in

the sign of the second Fresnel function.

’ According to the arguments of the preceding section, the ratio p/pi
gives immediately the ratioc of total pressure against incident pressure at

great distance X due to a point {or line) source at X

We are concerned here primarily with the 'geometrical shadow region',
60 <8 <7, 1n most of which domain the ratio p/pi is shown to be small for
the short wave limit krl > 1. In order to estimate p in this region, when
krl > 1, note that sin } (81 + 85) 1s a positive number bounded away from
zero, whence the argument (Zkr)”2 sin } (91 + 90) 1s uniformly large, and F

may be replaced by :rts asymptotic form (A-4) to get
1/2 . 1/2 . -
Fe2en)'’? sin g oy w0 )) v - i sin g @ v e )T

A similar simplification can be effected for the other Fresnel function

of formula (3-2), provided that (8, - 60) is not too small, i.e. for points

1

. . 1{2
X, not too close to the shadow boundary. Specifically, if (krl) { (61— 60)
1s large, then the Fresnel 1integral may be simplified to get

exp {ikr, (1 - cos (0., — 0 )) + in/4}
1 1 ¢]
- 172 12 fcosec } (6, -8 +
1 2n (2kr1)

oy

+ cosec } (6, + 80)}, (3-4)

1/2 .
for (krl) (91 - &0) # 1, and this gives the ratio of far field against

incident field due to a scurce at x

1

If 61 lies between —60 and +60, but not too close to either, then
the first Fresnel integral may be replaced by its approximation (A-5) for large

and negative argument, whence

1kr_cos(8.-8 )
-1/2
p = Ae 1 1 ot O(krl) f . kr, # 1 . (3~5)

1
and the field is almost the same as if there were no obstacle present.
Similarly, it is easy to verify that the solution in the remaining region

-1 < el‘< 60 corresponds to the incident wave plus a reflected wave,-ﬁhen

kr1 > 1.



In the shadow transition region, where 81 and 90 are nearly equal,

the first term of (3-2) varies rapidly to change the field from (3-4) to (3-5)
-1/2

within a small angle 91 - 90 = 0(kr1) , while the second term provides a

relatively unimportant, slowly varying, background level. Thus

: 2
2ikr_(6.-6 ) -in/4 kr \1/2 _
2 - i, 110 F(<—1> ¢, - eo)> + 0kr)) 2 (3-6)

Pi 2

It 1s readily seen that the same pattern obtains if the boundary condition
changes to the soft one, p = 0, for it has already been remarked that the
solution is then obtained by changing the sign of the second Fresnel integral of
(3-2), whence (3-6) is altered only by changing the sign of the background sound

field of order (krl)-llz.

This behaviour near the shadow boundary will be shown to appear in sub-
sequent problems, even when the shape is smooth: the transition from shadow to
illuminated zones is governed by a Fresnel integral of argument
(kt1/2)lj2(el-—eo), (where t1 denotes the length of ray path from 3] to
the point of tangency on the body), superimposed upon a slowly varying back-

ground field. The real difference between the shadow formations due to sharp

and smooth bodies arises in the deep shadow, not too close to the shadow boundary.

4 GEOMETRICAL DIFFRACTION IN THE DEEP SHADOW OF A CONVEX BODY

In order to contrast the shadow formations appropriate to sharp and smooth
ended bodies, the present section concerns an asymptotic estimate for the field

at P0 in the deep shadow of a source at P The ratio p/pi of far field

against incident field has been shown in seciion 2 to be the same for either

a point source or line source, and we here consider the latter force
distribution, as a matter of convenience. For the sake of simplicity the curved
end of the body is taken to have constant radius of curvature a, though there
is no difficulty in extending the method to deal with bodies of continuously
varying curvature. An asymptotic solution 1s sought in the short wave limit

A € a, whence ka?> 1.

The required estimate 1s obtained by using the ideas due to Keller1 of
diffracted rays that feed energy into the shadow region shown in Fig.2. This
analysis leads to an asymptotic estimate for the field at points in the deep

shadow, not too close to the body or to the shadow boundary.

Following the procedure of section 2, the source and observation points
are interchanged, by means of the reciprocal theorem, and the source point X,

is finally taken to be at large distance from the end, so that the incident

183
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field reduces to that of a plane wave. It is convenient to deal with a line

source of incident field

1/2 .
p. = B (%}) im/4 Hél)(kR) , R o= |z -x]| (4-1)

whence for large r, we have from (2-5)

ikt
e e (4-2)
pi'\JB—me
t
o
2 2.1/2 ., .
where t, = (r0 - a”) 15 the distance from P0 to the point of tangency Qo.

Keller's theory of diffracted rays runs briefly as follows. Extending
the elementary idea of propagation along rays in the illuminated region, it 1s
postulated that energy is fed to a point P1 in the shadow along a diffracted
ray whose path length from Po to P1 is a minimum; that is, the ray has two
straight sections P0 Qo and Q1 P1 that are tangents to the body, together

with a curved section Qo Ql.

The decay of energy along the straight sections Po Qo and Q1 Pl 1s
controlled by energy considerations, demanding constant flux of energy along a
narrow tube of rays; further, the phase is simply k times path length, this

leading to the familiar expression

1 1/2
elkt/t/ , (4-3)
where t denotes distance along such a tangent, and expression (4-3) is
replaced by elktjt for threedimensional sources. Taking both straight
sections into account we have
elk(to+t1)
pov ¥ (4~4)
1/2
(e, t)
. = ',
where E, and t denote the lengths of Po Q0 and Q1 Pl’ ¥ = ¥(s ’Qo’Ql)

denctes the amplitude at s' of a ray that originates at Q0 and leaves the
cylinder at Ql’ depends on the incident field, and has to account for the
decay along the curved path QO Ql' Formula (4-4) is obviously invalid when
to {or tl) becomes zero, since this corresponds to a point where rays meet,

and a separate treatment is required.
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Some simple assumptions concerning the general form of the function VY,
and an appeal to known results for a circular cylinder, now lead to its
asymptotic evaluation for large ka. The rapidly varying phase term of Y 1s
taken to be simply the wave number times path length, whence V¥ = o eiks,
where s 1is the arc length of Qo Ql' In order to ascertain the decay of V¥
with distance, 1t is noted that diffracted rays are shed in all tangential

directions, and Q1 P1 is but one of these rays (Fig.3).

It is certainly reasonable to conjecture that the energy shed at each
intermediate station, arc length s' from Qo’ will be proportional to the

energy at s', whence

Q}L L = - ' L
qs7 (s ,QO,QI) a(s') ¥(s ,QO,QI) s
s
l.e. w(s;Qo,Ql) = w(O;QO,Ql) exp [} J afs') dSJ . (4-5)
(o}

The decay rate is governed by the function a(s') of (4-5), and has to
be found. Reciprocity between source and observation points implies that
w(O;QO,Ql) is symmetrical with respect to QO and Ql' Furthermore the

local nature of the diffraction process, in the short wave limit, implies that

waves are locally plane, whence a(s) 1is independent of the incident field

and w(O;Qo,Ql) depends on the incident field only through the constant B

of the incident wave (4-2); the local nature of the diffraction process also
implies that the positions Qo and Q1 have independent effects upon the value

of Y. All these requirements, for the short wave limit, imply the form
s
¥(s5Q_,Q;) = B b(Q) b(Q;) exp [} f als’) dS{] > (4-6)
o

in which the two unknown functions b(Qo) and a(s) depend only on the local

geometry of the body.

Collecting together the formulae ((4-4), (4-5), (4-6)), we have

ik(to+t1+s) s
e ! ' -
p v B . )1!2 b(Qo) b(Ql) exp [} J a(s") ds:‘ . (4-7)
o 1 o

183
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The final stage of the calculation, the determination of b and a, is
achieved by appealing to the exact solution for a given body, namely the
circular cylinder. Since these diffraction coefficients depend conly on the
local geometry (i.e. curvature), such a calculation serves to determine b

2 . . .
and a for more general shapes. Keller™ shows that there is an infinite set

of possible modes for b and «, given by

2116
02 o 1 (20) L17/12 1 (4-8)
n 1/2 k . 2
21 a Ai(a)
n n
and
_3 1/3
o = e”f"(—k—)" a (4-9)
n 2 n
2p

in which —a denote the (real negative) zeros of the Airy function Ai
described in the appendix, and p(s) denotes the radius of curvature at s.
In the present case p(s) = a = constant, and retaining only the leading term

n =0 1in the expansion for large ka, we are led to the estimate that

1k(to+t1+s)

inf12 2\1/6 .
e e 2a 1 ~ -in/6 1/3 _
p v B 172 1/2( k) R ( % © (hka)™ " (8 eo))
T a aifa)

. (to tl) 2

cee. (4-10)

Greater accuracy can be obtained by adding higher terms in the expansion,
using (4-8) and (4-9).

For bodies of continuously varying radius of curvature p(s), one merely
1/6 1/6

of (4-10) to (20(Q) p(Q)/K)''® and the
1/3

changes the factor (2a2/k)

exponential term exp (- a_ e“m/6 (ika) (61 - 80)) =

5

exp (- a e-in/& (lc/I!az)”3 s) to exp (- a, e_iwl6 J (1(/202)”3 d?>.

In particular, for the far field approximation r + =, we have
r, vt whence the ratio of total to incident pressure distribution is given,
with reference to (4-2) and (4-10) as

a\1/6
" - 172 (ZZ ) “_%"“_ €XPp (' % /Tg (k) (6,- 6 ))
2(rt,) a A%(a) N

o] 1 o]

B

P;
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l.e.
alls 1/3
2| ~ 1.08 76 172 exp (- 0.700 (ka) (91 - Go)) , (4-11)
pi k tl =
ka1, Ga)''’ (0, -0)>1 .

fa)

This result should be compared with the corresponding one (3-4) for the
shadow cast by a plate having a sharp edge. It is seen that (4-11) is
exponentially small for the short wave limit, while (3-4) is but algebraically
small. In particular, for points close to the shadow, 0. - 60'< 1, but not

1/3 1

toc close, (ka) (g - 80) ®» 1, a comparison of the shadow fields shows that

p(smooth body) n 1.53 (ka)1l3 (6

1/3
p(sharp body) 6 ) exp (- 0.700 (ka) (6, - 6.))

1

cen. (4-12)

3 (81 - Bo) # 1; thus the field 1s much

which is of course small for (ka)ll
smaller for the smooth ended body, even relatively close to the shadow
boundary.

A separate analysis is required in the remaining transition region where
(a)' '
and this region is the subject of the next sectiom.
-1/3

(91 - Bo) 5:1, in the vicinity of the geometrical shadow boundary,

{w

5 THE TRANSITION REGION: 81 - eo 5 (ka)

The theory of diffracted rays is invalid for points that are very close

I

to the scattering obstacle, or too close to the shadow boundary. The special

nature of the vicinity of the shadow boundary is apparent from Fig.2, from

1
the points Qo and Ql’ while the assumption regarding the independent nature

which it 1s seen that small values of 6, - 60 imply the close proximity of

of the diffraction processes at these points requires that they be not too

close. We are therefore forced to seek an alternative representation for the

solution in this shadow transition region, defined by 81 - 60 fi(ka)-1[3,

across which the character of the solution changes from that appropriate to the

deep shadow to that for the illuminated region.

There are several lines of attack to deal with this transition zone,
notably those due to Fock4 and to Ludwigs. Fock writes the governing equations
in a suitable system of 'ray coordinates' and simplifies the complicated
equations that ensue for the short wave limit ka ® 1; this 1s essentially a
boundary layer approach in which a differential operator that corresponds to

relatively slow longitudinal changes in amplitude is neglected in comparison

W
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with terms that represent the rapid transition across the shadow boundary.

The approach adopted by Ludwig5 is that of finding exact solutious, for

sphere or circular cylinder, and expressing the short wave limit of these
solutions in a form such that a generalisation for bodies of more general shape
is suggested. Although this latter approach seems more powerful, in that it
gives results even near the point of glancing incidence, where shadow boundary
and surface intersect, Fock's analysis is simpler in concept and 1s favoured

here.

Details are omitted, for the sake of brevity, but the main result of
relevance in the present context is that the behaviour of the field across the
transition region is determined in terms of a Fresnel integral {(3-3) together
with a 'Fock-function' g that is expressed in terms of Airy fumctions. In the

notation of Fig.2, with incident field given again by

_ frk\/2 din/f4 (1) _ _ -
p; = (—2) e H(kR) R = lil x R (5-1)
it is found that
22 2 2
. ik(t +t +s) M™t M~ t
-1 12 infe N7 M . 1 o _
P n M (2'|Tk.) e e (p(a (t1+t0+5), a2 » a2 ) > (5 2)

. 1/3 . .
in which the parameter M = (ika) ! is large, and ¢ can be expressed as an

integral involving Airy functionms.

At large values of M, and for points not too close to the obstacle,
ensured by taking Mto and Mtl also large, Fock4 shows that the function ¢
can be written in terms of a Fresnmel integral that accounts for the essential
structure of the pressure field across the shadow, together with an additional,
relatively slowly varying, term that contributes a background sound field.

Specifically, we have

fb(x:yl,yo) = ¢(X;y1,yo) +¢(X;y1.yo) s (5-3)

where ¢ and  are estimated as follows. For large 1 and Yg» with

i/2 1/2 . s v r
I =x- yof - yll finite or small, it is shown that

“1/4 e-in/Z
o(x3y5y,) v (v, y) TuF(uc) ; >0 , (5-4)
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wherein
1/2
2 Gy 1 _._ M2 12 _ M (5-5)
H = 172 172 an L = X yo y1 = 3 s .
yo +y1 2

. 1/3
It is seen that ¢ = (ika) f s/a, whence 7 > 0 corresponds to the shadow

ks

region, L =0 1s the shadow boundary and C'$ 1 corresponds to the
- . . 1/2 1/3
transition region of present interest. Since yol = MtO/a = (ika) !

i/2 /3
and ylf = (ika) /

t /a

o
tl/a, the requirement that Y, and Yy be large
corresponds to the condition that source and observer be not too close to the

body.

As for the remainming function ¢ of (5-3), this is expressed for large

values of Yo and Y1 in the form

-1/4 1

IP(X;Yl,YO) Vo= (yo yl) AT g(‘:) (5-6)
where the 'Fock—function' g({) 1s defined as
g(z) = - J exp (- gt elﬂ/s) = (E) dt +
o Ai'(t e 3™
- : [ =
‘e in/3 J elCt Al (ti dt , (5-7)
o Al'(t e TT1)

[#r

a few properties of g being described 1in the appendix.

Adding together the estimates (5-4) and (5-6), we have, with reference
to (5-2) and (5-3), the result that
ik(t1+t0+s)

k\1/2 —in/4
p v 5 (5;) = 3 fuF(uz) - 4 g(@} (5-8)
M (t, t )
1 "o
in the transition region, with
t t
2 _ M _ o1 . M
uoo= aAE;:fr"EI and T = e . (5-9)

Formula {(5-8) gives the approximate pressure field at P1 due to a

source at Po’ and the far field limit |§0| + © ig obtained by taking

to + o©_  ywhence



183 15

2 2 M
T (5-10)
. and
ik(t1+to+s)

172 {wFOu o) - g0}, (5-11)

. a l&-1/2 e-1w/4 o
P 2 \2rm

M (t0 tl)

for (ka)l“t1 >1, (ka)ll3s ill.

It will be seen that the term in F corresponds to a Fresnel pattern
very similar to that for a sharp edge, while the term in g provides a slowly
varying background level. More precisely, within an 'inner transition regiomn'
given by s = a(S1 - eo)jf (ka)_”2 the Fresnel term dominates the solution;
towards the outer extremes of the transition region, where s = (ka)—ll3, it
1s found that the two terms cancel to this order of approximation, this

reflecting the fact that the solution for a rounded plate becomes exponentially

small in the deep shadow. Within the 'outer transition region',

=143 =-1/2 N .
(ka) / 2’5 %‘(ka) f , the nature of the solution changes from the exponential
behaviour appropriate to a convex obstacle to the Fresnel pattern like that of

a sharp body.
2

L

1
(i) Inner transition region: (ka) / (91“90) = 0(1)

1/2 . .
If s is sufficiently small so that (ka) / sfa = 0(1), then it is

. clear from (5-9) that

1/3
r = -% s = Sikél——— s = 0(ka) 1/6

a

and is uniformly small. Thus g(z) may be replaced by its approximate value

g(0) and 1s negligible compared with the Fresnel term of (5-11), whence

ik(to+t1+s)
-1/2 -i
p A 2 in/be F(Oke) 2 0 -6))
tllz 1 o
o
and
-1 -1 i
oy 12T RS B (et (o - 8)) - (5-12)
i
A comparison of (5-12) with the corresponding result (3-6) for the half-
: plane shows that the two expressions are almost identical, differing only by a

phase facter,
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3

. 1
(ii) Outer edge of transition region: (ka) / (91 - 80) >1

As the observation point travels further toward the deep shadow, we

know from section 4 that the solution becomes exponentially small, and we

expect that the algebraic behaviour of F will therefore be cancelled by the

background noise term g of formula (5-11). It is now verified that the leading

. 1/3
terms do indeed cancel, making use of the fact that if (ka) { (81 - Go) 18

-

large then the variables LS and [ are both large, whence the functions
F(ulc) and g(z) of (5-11) may be replaced by their asymptotic forms given
in the appendix. Thus we have

i_ 1
2”1; 2g

EPEACIE R 110 B 1

and the two terms cancel to this order, as indeed they must.

. -1/3 -1/2
(1i1) Quter tramsition region: (ka) / %‘(81 - Bo) %’(ka) /

In this region the variable ¢ changes from £ = 0(l), near the outer

-1/3 =-1/6 -1/2
extreme 91 - 80 = (ka) f , to L = 0(ka) f when 6 - BO = (ka) ! .

Thus the function g of (5-11) is a relatively slowly varying function that
differs little from g(0}), and has only a background role in the pressure

distribution; the role of g(z) is that of smoothing the pressure p from

(1)

its exponentially small value in the deep shadow to the Fresnel pattern in

the inner zone.

(

(iv) Shift of the shadow boundary

A secondary effect due to the background field term g 1s that of producing
a slight shift in the geometrical shadow boundary, this effect being discussed
by, among others, Keller6 and Nussenzveig7. Apart from being of some interest
in 1ts own right, a calculation of this shift can be used in order to compare
with earlier results, and provides a check of the validity of Fock's

approximation used here for the transition region.

The geometrical coptics limit (ka = ) predicts that p/pi =}

on the geometrical shadow boundary 6., = 90; if ka is finite, but large,

1
then it is reasonable to define the shadow boundary by means of the definition

lerp; | = (5-13)

and it remains to calculate the (small) value of 61 - eo defined by (5-13).

At points very close to the shadow boundary, where s = a(e1 - 80) is small,
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the function F(ulz) and g{(z) of (5-11) may be replaced by their values for

small argument, given in the appendix; thus

inf4 Vn _
ulF(ulc) Ny (e 5 BG )

1/3
and g{r) ~ g(0) = 2 ! C, whence

£ l{l___z_e—inﬂi (ékt)l'r2 I:(e e )+ —2C :|}
P; 2 Jr 1 1 0 (ka)zl3 tl

"

The definition (5-13) for the shadow boundary requires that

) oin/4 [(e _B),,__%_E__:l =0 |,
1 o (ka)le .

1
i.e.
1.1806a
(81-90) = -—231—3-——((RC+ 4 c) = — = (5-13)
(ka) t1 (ka) tl
This corresponds to a parallel displacement of the shadow boundary by a
distance

3 (5-14)

d = 1.1806 a (ka) >/
towards the shadow side. A similar calculation for the half-plane reveals
a displacement proportional to wavelength 2m/k, as indeed must be the case
since this 1s the only length scale of the problem. It is found from (3-2)

that the displacement 1s again towards the shadow side, and of magnitude

dl = 1/(k sin 60) , (5-15)

. . . . 2
this being valid provided 60 is not too small, namely for (krl)l! 60 > 1.

6 GENERALISATIONS

The work of sections 4 and 5, concerning the diffraction of sound by a
convex obstacle, has dealt with the case of a perfectly rigid body whose

curvature is constant along its curved part.

It is perhaps worthwhile to point out that the ideas involved can readily

be extended to deal with the more general impedance conditiom
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apfon = iqp , gq = constant (6-1)

and to allow for continuously changing curvature.

L

In the deep shadow for example, the basic structure of the solution

(4-7) sti1ll holds. Variable curvature is accounted for by taking for the para-

(Y]

meters b and o their local values b(Q{p)) and oa(p(s)), where p
denotes the local radius of curvature at s. The solution for an imperfectly
rigid boundary, with condition (6-1), simply requires this boundary condition
to be employed in the exact solution for circular cylinder that is used to
extract values for the local diffraction coefficients b and a. A general
treatment of such problems can be found in the work of Keller and Levyz, which

deals with both two—- and threedimensional bodies.

Turning now to the shadow transition region, the solution (5-2) in terms
of ray coordinates to’ t1 and s holds even for bodies of variable curvature.
As for a more general boundary condition, such as (6-1), Fock shows that the
character of the solution remains unchanged: it is found that the value of
the 1mpedance q affects only the Fock function, g, of formulae (5-8) and (5-11),
and leaves the Fresnel integral term unchanged. That is to say, the Fresnel

diffraction pattern remains unchanged, while the value of the impedance

[{}]

affects only the slowly varying background sound field.

Finally, it 1s remarked that although the results so far have been

(e

restricted to the case in which source and observation points lie in the same
plane normal to the generators of the scatterer, this restriction can be

removed by a simple analysis, as is now shown.

If the incident field is that of source given by
ikR
P, = & /R, R =|E0-2{'1| ]
the far field limit is obtained by taking |§O] + o now in any direction.
Thus

R n r,ta.x (6-2)

1 -]

where a = - X /r0 is the unit vector from x towards an origin near x
% % X

If o has direction cosines

[¢]
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o = (cos ® cos A , s1n B cos A , s1n A_) . (6-3)
- o o o o o
then the work considered hitherto is recovered by setting Ao = 0. With

general values of Ao’ on the other hand, the incident field takes the plane

wave form

1kr0
P; " - exp {1k (xl cos 80 cos Ao +y, sin 6, cos Ao + 2z, sin Ao)} , (6=4)
l.e.
_ elkcoslo(xlcoseo+y151n90) (6-5)
pi 1 ]
1kr 1kzlslnAo
where Al = (e O/ro) e , and k cos AO is the wave number

component in the plane perpendicular to the generators of the scatterer.

It is seen that the multiplicative factor Al will appear throughout the

problem, having only the effect of replacing the wave equation (1-2) by
% + k% cos? A\ )p = 0 . (6-6)

Now the governlﬁg equations {6-6), with (6-5) as incident field, together with
the rigid boundary condition 3p/%n, are seen to be exactly the same as in
the case of normal incidence previously considered, with the wave number k
reduced to k cos AO. It follows that all our results, for the ratio p/pi

of total against incident pressure, can be modified to include oblique

incidence by changing k to k cos Ao throughout.
7 CONCLUSIONS

A comparison has been made between the distant pressure fields 1in
shadows cast by sharp and smooth ended obstacles, and the main results are

summarised here for reference.

A source is situated at P1(§1), and an observer PO(ED) at great
distance from the body measures the induced pressure field. Within the deep
shadow region, where (81 - 80) (ka)“r3 2 1, the field cast by a smooth
sided body is much less than that due to a half-plane.

Thus

“1/2 (21(t1)—”2 {cosec } (8, - 60) + cosec } (91 + 80)}

Ip/pilhalf-plane vogm 1

R €AY
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and

3

le/p. | v 1.08 (ka)'!

-1/2 1/3 _ _
i'smooth (ktl) exp (- 0.700 (ka) (61 90)) . (7-2)

It 15 seen that the former solution exhibits algebraically small decay, while

.

the latter has exponential decay, in the short wave limit ka > 1.

113

Within the shadow tramsition region, (ka) (61 - Bo) iil, the two

solutions have similar behaviour; given by (3-6) and (5-11). The solution (5-11)
for the rounded body consists of two terms that correspond to a Fresnel
diffraction like that for the half-plane, together with a relatively slowly
varying background field g.

.. . 1[{2
In the 1nner transition region, (ka) t (8l - 80) 5:1, the background

term 1s negligible, whence it is found that the solutions for half-plane and
rounded body are asymptotically identical, apart from a phase change.

Specifically, we have

-1/2 IF((iktl)IIZ

|p/pi| VW 6, - 90))[ (7-3)

for either sharp or rounded ends.

[

P . .. -1/2 ~1/3
Within the remaining outer transition zone, {(ka) { 5:81 - Go $Z(ka) [,

the background function g of (5-11) has the role of smoothing the pressure
distribution from its exponentially small deep shadow behaviour to that of the 2

Fresnel pattern near the shadow.

These results are appropriate to the short wave asymptotic limit ka > =,
and it is important to estimate how large ka must be for their validity to be
ensured. It is seen from (7-2) that the decay in the deep shadow requires that
(ka)llz be large, and consequently that ka must be very large. If formula
(7-2) is to be valid for angles 8, - o, >10° (i.e. 1/6 radian), then the

1
requirement of small exponential term implies that

0.12 &a)'!?® > 1

i.e. ka 2 600 : {(7-4)

it

evidently the nondimensional wave number ka should be of order 1000 or more,

to ensure the validity of (7-2) as a sensible approximation.

o
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Finally, for the case of sound waves, the intensity within the shadow
for both sharp and rounded bodies is calculated, using (7-1), (7-2) and (7-3)
and plotted in Fig.5. The radius a 1is taken as 1.3 metres,

r = 10 metres, with frequencies 1 kHz, 10 kHz, 100 kHz, corresponding

=t
ti valies of ka of 25, 250, 2500 respectively. The function
I =20 log10 ]p/pi] gives the sound intensity in decibels (dB), and this 1s
plotted against 91 - 60, the angular position of the observer with respect
to the shadow boundary.
In Part B, the case of variable radius of curvature o¢(8) 1is examined,
with a view to choosing a shape such that the exponential decay in the shadow

15 as great as possible.
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Appendix

SPECIAL FUNCTIONS

Al Fresnel function

The Fresnel integral F(x)} 15 defined as

—1x2 1t2
F(x) = e J dt . (A-1)
x
Setting x = 0, we have
L2
F(O) = J et ae ‘

and this can be evaluated by deforming the path of integration from the origin

to e1n/4, whence
"2
- 1 "
F(O) = eln/4 J e 5 4 = yn /2 elﬂ/4 .
0
To find the value of F(x) for small x, we may use this result by
writing
1x2 * it2
e F(x) = F(0) - f e dt . (A-2)
o

and the latter integral may be expanded and integrated term-by-term, to get

1/2 ]
Fx) = jef? iAo w0 (A-3)
To estimate F for large positive =x, substitute s = (t/x)2 -1, then -

rotate the path of integration through /2 to get

[+ ]

. 2

F(x) = %‘J Xt a+in™a x>0 .
)

For large values of x2, the main contribution arises from the vicinity of

t = 0, whence the asymptotic expansion is obtained, according to Watson's lemma,

. .o =1f2 . .
by formally expanding (1 + it) ! and integrating term~by—-term. Thus

F(x) ~ f§-+ cee as x> += . (A-4)
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For large and negative values of X, an estimate is obtained by use of

the fact that the integral on the right side of (A-2) is an odd function of x,

whence

iad

.2 2
e Fx) - F(O) = - ™ F(-x) + F(0)

(8

which may be expanded as x - -»=, using (A4), to get

. .2
F(x) n mil? QIT/4 gmixT 1, (A-5)

A.2 Airy function

The Airy function A1(z) satisfies the equation
AL'"(z) = =z Ai(z) s (A-6)
together with the boundary condition at infinity:
AL iw_llz z-”4 exp (- —§~ 23”) ’ Iz[ + o |arg z| <71 . (A-7)

A second independent solution Bi of equation (A-6) is specified by the =

requirement:

Bi n g% M4 exp (; %-23[2) , |z > = |arg z| <u/3 .

The zeros of Ai and Ai' are real and negative. In particular, if
Ta s T8ys T8, e denote the zeros of Ai'(z), numbered in ascending

magnitude, then

3.2482... . (A—-8)

1.0188... , a

»
n

with I

-0.4190... . (A-9)

Al(ao) 0.5357..., Al(al)

There are several different notations in common use for the Airy functions.

2 . .
That used by Keller™, for example, is the function A(z) related to Ai by

in

the identity
~

(w
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-1/3 . -1/3

A(z) = 3 mALi(- 3 z) ’

1/2

whence the zeros q, of A(z) are given by q, = 3 a .

A.3 Fock funcrion

The Fock function g(z) 1is defined in terms of the Airy function Ai by

the integral

oo [o]
iTI'/6 'y . .
- A t - '
ey = - I Lite i'( 2 gt + e 1T/3 [ Gt AL'CE) .
-2qi ~4ai
) Al' (t e 377 o Ai'(t e 2 )

(A-10)
When ¢ 1is large and positive, the main contribution to the integrals

arises from the vicinity of t = 0, and since Ai' is analytic near this
y y

point, we have

-in/3
1 e
gy ~ - - - —
c elﬂ/ﬁ iz
i.e.
g(z) ~ 1i/g as { - += . (A-11)
When 7 = 0, we have
o oo
. iy .
g(0) = - Ai'(t) dt + e in/3 Al (t) de

-2 - by
o Ai'(t e 3 ) o Ai'(t e 3 )

Apart from a constant factor, this 1s the same constant C as that

discussed by Keller and Rubinov6, in a slightly different notation. Thus

g(0) = 2”3 c , (a-12)

and the constant € 1is glven6 to several decimal places, whence

g(0) = 0.4321 23 (1T/3 (A-13)
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6o denotes the angle of incidence, with 0<8,< T:
the shadow region is defined by 89< 8;< T,

The direction of the wawe is o = (cos 8,, Sin )
and Xo = -% |Xo| iS @ point at great distance

from the edge

Fig.| Geometry for the rigid half plane



Po Qo and Q, P, are tangents to the surface, and
are at angles 8¢ and 8, to the positive
x- direction. The deep shadow is the region

8,-8o > (ka) ™", and at distance s>a (ka) " >> (ka)‘é
from the body /

Fig.2 Geometry for a rounded body

Po

Fig.3 Diffracted rays are shed in tangential directions:
the envelope of these rays is the curved section of the body



‘"

%)

Pr@i=tiy, PoQo=to, Q1 Qo=5. The deep shadow

IS given by 8,-80>> (ka)~'%, the shadow transition
region is given by 8,-8o% (ka)-* and the inner
transition region is given by 8,-80 % (ka)~! . The
geometrical shadow boundary is shifted by the
displacement d

Fig.4 Shadow regions for rounded body



Shadow
boundary 10 20 30 40 50 60 70 80 degrees
T T T T T T T 1
8~ 8o

-10 N —-.—— Half plane sotutions
"\ Short wave asymptotic
L . limits for curved body
N
\

Fig.5 Intensity, I =20 l0q,, | P/Pj| against angle into shadow, 6, — 6,
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PART B

OPTIMISATION OF THE CURVATURE

1 INTRODUCTION

The 1dea of 'diffracted rays' that propagate energy into the shadow
region cast by a convex body predicts a field that is exponentially small in the
short wave limit kp -+ =, where k 1is the radian wave number and p 1is a
typical radius of curvature of the obstacle. Specifically, 1t has been shown in
Part A, formulae ((4-7) - (4~9)), that the field within the 'deep shadow', not

too close to the body or to the shadow boundary, has the asymptotic form
8

1/6
1.08 [0(q ) p(a1" R
|p/pi| o T 173 ‘ exp |~ 0.70 k [ 0 (8) de|, - (1-1)
k' e

1 8
o

1
k>1, k)P0 -8 )>1

where p(8) denotes the local radius of curvature.

It is seen that the crucial exponential term of this expression has a

decay rate that is proportional to the integral
1/3
) = [ o) a8 (1-2)

when the wave number k 1is fixed, and the value of I <clearly depends upon

details of the geometry of the scattering surface.

It 15 the object of this Report to examine how I(8) can be made as
large as possible by choosing suitable curves, subject to certain restraints
imposed by the overall dimensions of the surface, in order that the shadow

field be minimised.

2 BASIC MAXIMISATION PROCEDURE

Suppose Q0 and Q1 are fixed points with coordinates (0,0) and (a,b)
in the coordinate system of Fig.l, and a curve $§ has to be chosen so that
S passesg through Qo and Q1 at given angles 60 and 61 to the
horizontal. Our problem is to find the curve S such that the integral
61
I - f o'/ (6) as @A
B

o
i5 maximised, where p denotes the radius of curvature of § at an

intermediate point Q(8).
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It is therefore required that the functional (2-1) be maximised, subject
to the constraints ;hat Q, and lie on 5, :hence
1 1
a = J p cos 6 do and b = f p sin 6 de . {2-2)

8 8
o 0

The required curve p = p(8) 1is readily found by the standard procedure
of variational calculus: introducing a pair of parameters, ® and X, to be
determined, we write

F(p,8) = pl'f3 - % up cos B --% A p sin © (2-3)

and have to maximise the integral

%

Il = J F(p,0) d6 s (2-4)
g
0
subject to the constraints (2-2)., The governing Euler equation to determine

F has the standard form

oF d | 3F
% E(W) (273)

and the right hand side of the equation is obviously zero in the present case,

0]

L

since p' = dp/d® does not appear in the expression (2-3) for F. Thus the
Euler equation {2-5) is a trivial one, with solution

-2/3
p / = Yy ecos & + ) sin 8 R {2-6)

and this defines the required curve, The parameters u and X are determined

from the constraints (2-2), whence

1 1

5 .
a = J cos B d8 and b = J sin B dB8 Y . (2-7),
5 (p cos & + X sin 9) 5 {¢ cos 8 + A sin 8)
) o

The pair of equations (2-7) is sufficient to calculate u and A, whence
p(8) 1is given by (2-6). 1In particular the maximum value of the integral (2-1)

takes the value

(»
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v

»,

a}

(5}

% 1
de (L cos 6 + % sin B8) db
L, = ] 172 - 372
5 (L cos 6 + A sin 8) 5 (4 cos & + A sin ©)
o o
lﬂe.
= + . -
Im pa+ib (2-8)

Although formulae (2-7) and (2-6) determine the curve p(8) 1in principle
for quite general values of a and b, the evaluation of u and X from
the simultaneous integrals (2-7) is in general a formidable task. Our attention
will henceforth be confined, therefore, to a particular limiting case, namely
that of b <€a. The angle 90 will also be taken as zero for convenience,

although the analysis can be carried out without this stipulation.

3 LIMIT b/a €1 AND 61<1

Here and henceforth the ratic b/a will be taken as small. It is found
that the sclution of (2-7) and (2~6) has a different form accerding as 61 is
comparable with, or greater than, the small parameter € = b/a, and our

attention is directed firastly to the case in which 6, 1is also small. Thus

1
€ =b/a<€l and el'< 1, with no restrictions on their relative magnitudes,
For small 91’ the trigonometrical functions in (2-7) may be uniformly

approximated to get

91
6 2 -1{2 -1/2
a =~ J -———9———5T3- = 3 {n 2 weae™h (3-1)
(b + 28)
and
el
b~ —84d8 2 mearedt? - Mt mae o+ ae ) (3-2)
3f2 2 1 1 1
(p + A8) A
o
This pair of equations may be inverted to find u and A, thus
2/3 -2/3 2/3 -2/3
R O T R O B O ¢/ B CHES W€ )
where € = b/a, and p 1is then given by
=273 -
p(8) = (u cos & + X sin 8) / = (u o+ A0) 213 . (3-4)
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According to formula (2-8), the maximum value of the integral (2-1) is

o= M3 e o, - b/a)’? (3-5)

to this order of approximation. If we now allow the parameter b to vary,
subject to the restriction b <me, we see that the maximum value of (3-5)
occurs when b 1is chosen so that (b/fa) = 581, provided &61 s;bm/a; other-
wise the greatest value of (3-5) occurs when b assumes its largest value bm.

Thus

1/3 2/3 .
a 91 if 81 Qme/a

Lax(®) = (3-6)

max
2/3 1/13 1/3 '
- =

2 bm (Bl bm/a) if 61 ,-me/a .

A general picture of the function Imax(e) appears in Fig.2, with a specific

example in Fig.3.

It 15 important to note that for a given curve of the family (3-4), this
maximum is attained only at the angle § = 61, and it is of interest to

calculate the value of the integral
9

I(8) = J o3y ae'
(o]

for values of 6 other than 8 = 8§ with p given by (3-4), (3-3); it is

1’
. . - . <
seen that T 1is given by Imax(el) when 0 61, with I{(8) \_Imax(e) for

all other values of 6 #=61.

To calculate the value of I(8), formula (3-4) is substituted into the
integral above and leads to the result that
1/3

(6, - €)
1) = 22° 07 "T%I':'EEY" (o, - 20" -}, @)

for € = b/a<€1 and Bl-< 1. In this formula, b = ﬁael or b= bm according
as 61=€ me/a or 61 2=2bm/a. The apparent singularity in formula (3-7) at

91 = 2¢, when the denominator becomes zero, is rendered negligible by the
simultaneous vanishing of the numerator. In this case, the expression for I 1is
cbtained by letting e —» %Bl, or else directly from (3-3), whence it is found

that

183
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1/3
I(8) = (a/sl) ¢ , b/a €1, 8, % 1,a<e>1 .

This linear dependence on 6 corresponds to the fact that the curve §,
in this limit, has constant radius of curvature (a/Bl): evidently this radius
1s large when 81 1s small, and I(6) quickly assumes a large value as ©
increases to 91.

Graphs of 1I(8), given by (3-7), appear in Fig.3, with a = 6 metres,
bm = 1 metre and with three different values of 81, namely

(a) o, =-% (6, <2 /a) , () 0 = %—(a1 =2 /a) and (o) o =

M3

Although equation (3-4), together with (3-3), uniquely specifies the
optimum curve, this functional form 1s not 1deal for sketching 1ts shape. A
transformation to a more convenient parametric representation in terms of
Cartesian coordinates x(8) and y(8) follows from the identities

o 8
x(8) = J p(8') cos B8' de' and y(8) = J e(8') sin 9' do' .

o] e}

whence for the present case of small angles 6, we have

G g

de’
x(g) = J and y(8) = J
(w + aen)’l?

' de'
u + 207y

. (3-8)

2

The integrals of (3-8) can be evaluated explicitly, and the parameter 8

may be eliminated to obtain an equation giving x in terms of y, thus
2 2
y = e x /{a(@1 -e) - x(e1 - 2¢)} . (3-9)

where € = b/a 1is small, Again, the value of b 1is iae1 or b_, according
61 2=2bm/a. Graphs are shown on Fig.4, with specific
values assigned to a, b and 81.

as 61 <2bm/a or

4 LIMIT b/a <1, b/a <0,

Section 3 deals with the case where 61 is comparable with b/a, and
the present analysis for b/fa <€ 61 provides information for the remaining

range of values of Bl.
It is seen from (3-3) that M becomes small compared with ) when 61

increases to a value comparable with or greater than b/a; it is found in the

present case (81 > b/a) that this property must be maintained in order that
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the constants a and b given by (2-7) are such that a ® b. Thus we have

g €2, and (2-7) simplifies to give
6
1 N
o~ sin 8 d6 .
> J ( sin 0)°'2 GE v Sy
o

l.€.
p o~ A2 3(8)) (46-1)
where
81
J(e) = J (sin t)-l‘r2 dt . (4-2)
[s]
Similarly,
91
4 = J cos 08 d — - —-i-{(u+7\sin el)—uz 2y
5 (M cos & + A sin B)
l1.e.
~ 1/2 . 2
a = 2/(w ") Gf p <€ 61) . (4-3)

#

Solving for the parameters u and A between (4-1) and (4-3), we get

2/3 473
- [ 3 . 4 (b _
A = (b) and o= a2 (J) s (4-4)

and a check on the requirement n €3 0 used above to ensure the validity of

(4-1) and (4-3) implies

1

2

4 b
81 > a—z—""" . (4‘5)

o

Making use of the inequality sin t <t for positive t, it is seen '

that

Ie) > J LI
0

]
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2 2
where gb 2'< Zb and the inequality {4~5) 1is certainly met if
a J a @6
1
b2
61 > 5 , 1l.e. if 81 ® b/a, which is the regime under discussion in the
a~ 0
1

present section.

Formulae {(4-4) give X and u, whence p{8) 1s known from (2-6) and

the maximum value of the integral (2-1) is given by

to this order of approximation. Since this expression increases with b, it

follows that the maximum occurs when b = bm, and

I - J2[3 b1[3
max m

. (4-6)

Note that the region of validity discussed in this section and that of
section 3 overlap when b/a <€ BI-Q 1, whence the results should be
asymptotically equivalent. This is easily verified since in the limit

8, > b/a equation (3-6) takes the form

o 2/3 13 .1/3
max 2 b 91 for 81 > bja ,

and agrees with (4-6) above, since for small 91, J(Bl) v 26112.

5 SPECIAL CASE b/a <1, 61 =7/2

As a special case of the results outlined in section 4, we give more
detailed attention to the problem of optimising the integral I of (2-1) when
Bo = 0 and 0, = n/2. The parameters A and P are given approximately by

1
(4-4), and their ratio

§° = u/a | (5-1)

is small and of the order (b/a)z. It is convenlent to leave general values
for X and u at this stage, and the analysis will recover the earlier results
(4-4), together with slightly improved estimates.

In order to express the equation of the optimum curve in Cartesian form,

we write
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t t
x(t) = J p cos 8 dt  and y(t) = J p sin 6 dt , (5-2)
o 0
-2/13 . . ]
where p = (¢ cos 6 + X sin 6) and the parameters pu and XA are finally

chosen so that x(n/2) = a and y(n/2) = b.

The integral (5-2) for x can be performed explicitly, thus
t

) cos 0 d8 2 L - 12
x(t) = . 372 12 . 1/2 ’
o (L cos 6 + X sin 8) U X (W cos t + A sin t)

1/2
and since § = (ufX) / 1s small, we have

2 )
x(t) = ——— ({1 - . (5-3)
uliz A { (62 + sin t)ljz}

To calculate the corresponding function y(t), we have

t t

sin 6 48 ~ sin 6 dé

y(t) = J I
5 (W cos 8 + X sin 8)1[2 5 (u + A sin 9)3/2

H (5_4)

since u cos 8 1s negligible compared with A sin 96, except near 6 = 0. The

form of the function y(t) is found to be different according as the parameter

s}

t 1is comparable with, or much greater than, the small number p/h.

(i) If t <1, but t may be smaller or larger than u/A, then the

re

trigonometrical functions of (5-4) may be simplified to get

y(t) = 32;.12 {2(1 + t/ﬁz)llz - (t/sz)(]_ + t/62)-”2 !
A

If this is combined with (5-3), with sin t replaced by t for small t, the

parameter may be eliminated to get

(xja1)2

= — 5-5)
(a; s%) 1= (x/a) ¢

. /2
with a; = 2/ / s, and (5-5) 1s valid provided the angle t = dy/dx 1is small,
i.e. for 1 - x/a1 > 4.

(ii) If t > u/A, then we introduce an intermediate small number o

such that t 2 o ® u/A, and subdivide the range of integration in (5~4) to get

¢



183

0}

-

.

i)

35

a t t
gty = J 8_do +J’ sin 6 d6_ 7‘_3!2J de
(u + 28y 2 (v sin 6)>7? (sin 0)'/2
l1.2.
t
ve) = 271 1) ,  where J(t) = [ L. (5-6)
) 72
(sin 6)

In order to facilitate a numerical computation of the integral (5-6), it
1s convenient to remove the square root singularity by substituting sin & = 52,
. . 1/2
and by changing the parameter from t to T = (sin t) f . Thus
T

y(t) = T%F(T) R where F(1) = J __.Lsa__”_z s 0<T1<1.(5~7)
A (L -s5)

The corresponding eguation for x(1) follows from (5-3) whence

x(x) = —a— (- 8/t . (5-8)
/2
M A
The function F(t) can be computed numerically, and a graph thereof is

presented in F1g.5; 1t 1s readily found from its definition (5-7) that

F(t) v 1 for small . (5-9)

Thus the curve § 1is given by (5-5) for 1 - x/a1>'6, and by (5-7),
(5-8) for 1 - x/a1'< 1; the two representations are readily shown to be

asymptotically equivalent in their common region & €1 - x/al*g 1.

The constants A and up have to be chosen so that x = a and y =10

at the end point T = 1. Thus if F(l) is written as Fl’ (5-7) and (5-8)

imply
2F
b = 3I§ and a = —TT%—— (r - UIIZ/AIIZ) R
A H A

whose solution for small u/X (1.e. small b/a) is given as

2F 2F \1/3 2
342 1 172 _ 1 b _ b -
A T and q .= (—b ) (—-aF =3 2) . (5-10)
1 a F1

1f only the leading term of (5-10) is retained, with bzlazFi neglected, then
we recover an earlier result (4-4). The higher order term is retained here,
since otherwise the end point of the curve, obtained by setting T =1 in

(5-7), (5-8), would be situated at
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y = b and x = a(l - b/a) H
although this 1s correct to our first order approximation for small b/a, it
has an unacceptable error in the x-coordinate for finite values of b/a.
With the values (5~10) for A and u, the associated constants ¢ and
a, are given by
2
b b . b _ b -
§ = oF o) =F and a, = a + 7 . (5-11)
1 a'F 1 1
1
The curve § is then given by
2
(x/a))
L - — 2, for 1- (x/a)) P (5-12)
a 62 1 - (x/a.) 1
1 1
and by
x(1) =a, @ -8/1), y() =bF(®J/FQA) , for 1 - (x/a)) <1, (5-13)

where F(tr) is given by (5-7) and is sketched in Fig.5.

Note that the value of x at the end peint 1 =1 1is given by

b b 2
x(1) = fa+— - ———) = a + 0(b/a) ’
( Fl)( aFy

and is much closer to its correct value than that, x = a + 0(bfa), obtained

by retaining only the leading term of (5-10).

A sketch of the curve § 1is shown in Fig.4, for particular values of the

parameters a and b,

According to the general theory of section 2, the curve § described

above is such that the value of the integral

1(8) = J ol 4

)
is optimised when 0 takes the value w/2, when I takes the value

2F1

2/3
I(n/2) = ua+ Ab = \ — b . (5-14)

b
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It is of interest to evaluate the integral I at intermediate values of

8, in order to compare with the corresponding function (3-7). We have

_ dt

dt ~
ey = J 1/2 ] 1
A (p cos t + A sin t) 5 {u + X sin t)

~

/2 ’ (5"15)

and the character of the integral is different according as 6 is comparable

with, or much larger than, the small parameter 62 = u/A,

(1) If 6 €1, but may be large or small compared with 62, then the

sine function of (5-15) may be replaced by t, to get

I(B) ~ %{(]J'l'ka)lfz"].lllz}
l.e.
2F \~ 1/3
I ~ 2(-5l) 1+ 852 _ gy for 8 <1 , (5-16)

where 6 & b/aFl.

(ii) If 6 > 8, then we introduce a small parameter o such that

8 2 c > §; whence

o) ¥} 3]
[~ J dt +J' dt ~ 32 J dt
' 1/2 1/2 1
(u + At) / (A gin t) / (sin t) 12
i.e.
2p \ 2
I = 2 < F((sin 98) ) for 82§ (5-17)

The two approximations (5-16), (5-17) are asymptotically equivalent in
their common region of validity & €6 €1, and together provide information
regarding I for all values of & from 0 to w/2. A sketch is shown on

Fi1g.2, with special values for a, b. '

6 CONCLUSION 8

The integral T1I(8) = J plls(e') d8' can be maximised for a given value
(8]
8 = 61 by choosing a suitable path with end peints at (0,0) and (a,b),
where a 1is fixed and b has to be not greater than a fixed yalue bm'

Thus for any given direction 6, at the end point an optimum curve is defined,

1
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whence the largest possible value Imax(el) is found. Since a different

curve S 1s appropriate for each chosen value of 61 it follows that the

]

value of TI(8), evaluated on a curve chosen to maximise 1(81) takes its
optimum value when & = 81, with T(0) éEImax(e) for all other angles
8 #=91. The general shape of T___ (8) is shown on Fig.2, and a more specific

graph 1s drawn on Fig.3, with definite values for a and bm.

General results are given in the text for any 61, b and a, subject

to the limiting assumption bfa € 1. Particular attention is directed to three

cases:

(a) curve S chosen to optimise 1(91), with 81 small

(b) curve S chosen to optimise I(el), with 61 2bm/a

(c) curve § chosen to optimise I(Gl), with 61 nf2.

The functions I(€&) are shown in Fig.3 for each of these cases, with the
corresponding curves S sketched in Fig.4. It is seen that for 91 $§2bm/a,
the curve that maximises 1(81) is simply a circular arc with end points at

(0,0) and (a, iael).

The 'best' curve is such that I(8) 1is close to Imax(e) for as large
a range of values of 6 as possible, with particular weight given to smaller 1
values of 6, since it is desired to produce a high value of I(6) as soon as

possible with increasing 6. Of the two cases (b) and (c) shown in Fig.3, it is

»

seen that I(b) exceeds I(c) for values of 6 between about 1/5 and 2/5

radians, with I(c) greater than I for other values of 6,

(b)

Finally, it should be remarked that the curves for case {c) on Figs.3 and
4, give a qualitative, rather than quantitatively accurate, picture of the
precise shapes. Each of these curves is specified by a pair of formulae (5-16),
(5-17) and (5-12), (5-13) that match to form smooth curves in the asymptotic
limit b/a + 0; they do not, of course, match perfectly when b/a is finite,
and b/a = 1/6 1in the illustrative examples. The correct curves can be
calculated numerically, using (5-13) and (5-3), (5-4),with A and u given by
(5-10).

Al

(i
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Qo ond Q, are fixed points and the curve S has
tangents with angles 8, and 8, to the horizontal

Fig.| Coordinate system

|
6=2bn, /fa bm/a<<8<<| m/2

L]]

Fig.2 Imax(8) against @, showing the three different regions
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