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SUMMARY 

PART A 

The distant pressure fueld within the shadow cast by-a point source XJ the 

presence of a semi-inflnlte rlgid plane is compared with that for a rounded 

body. Withln the 'deep shadow region', not too close to the shadow boundary, It 

is found that the field is much less for the rounded obstacle in the short wave 

llmlt,, having exponentially small behaviour compared with the algebraic decay 

appropriate to the half-plane case. At points very close to the geometrical 

shadow boundary, on the other hand, the pressure field exhibits almost identical 

behaviour for each geometry, this being the familiar Fresnel pattern, but with 

a change of phase for the rounded body. 

PART B 

Consideration is given to the possibility of choosing the shape of a 

rounded obstacle, wlthln certain overall restrictlons, III order to minimise the 

dlffracted field withln the deep shadow region. 

*Vacation Consultant (Summer 1970) 
tReplaces RAE Technical Report 70183 - ARC 32505 
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PART A 

GENERAL RESULTS ON DIFFRACTION BY SMOOTH BODIES 

1 INTRODUCTION 

The elementary ray theory of optics and acoustxs predicts zero field in 

the 'geometrxal shadow region' that 1s cast by a scattering obstacle. The 

deternnnatlon of short wave estimates for the small field that does propagate 

in such regions has attracted a great deal of attention L" the literature, and 

It is found that the field 1s essentially different according as the scatterer 

has sharp or smooth edges. 

Exact formal solutions have been obtalned for relatively simple geometries 

such as semi-lnflnlte plane, sphere, circular and parabolic cylinders, with a 

variety of boundary conditions prescribed, and these canonical solutions play 

a key role in developing and checking short wave theories for bodies of more 

general shape. 

For smooth convex bodies, a" extension of the ideas of ray theory has led 

Kellt*r1'2 to develop the concept of 'creeping waves' that propagate, from a 

SOUrLe at P to an observer at a point P 0 1 in the shadow, along the shortesr 

path PO 9, 9, P1, "here PO 9, =*d 9, Pl are tangents to the body and 

Qo Ql 1s an arc thereon. According to this theory, energy decays by the 

Inverse square law (or inverse linear law in two dimensions) along the straight 

sections PO Q. and Q, Pl; it 1s argued that energy must decay more rapldly 

with arc length along the curved section Q, Ql of the ray path, since energy 

1s being constantly shed along tangents with a consequent exponential attenuation 

with arc length. Several plausible assumptions are made concerning, the nature 

of the field along such a 'diffracted ray', and a comparison with exact 

solutions for the sphere (or circular cylinder I" two dimensions) provides 

final details to yield a" asymptotx estimate for the exponentially small field 

in the shadow, for the limit of waves of length very small compared with 

the typical radius of curvature of the body. The theory is not valid "ear the 

shadow boundary where a different sort of approximation is required. 

One might anticzpate that a sharp edge will provide a more efficient 

mechanism for scattering into a shadow, since a ray at incidence upon such a" 

edge is expected to scatter in a more isotropic manner. This property 1s well 

established by the classical results of Sommerfeld, and MacDonald 3 for the 

semi-infinite plane, whence it is readily seen that the field 1s algebraically, 

rather than exponentially, small at high wave numbers. 
. 
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The object of the present Report is to compare the shadows cast by sharp 
and smooth ended bodies, with an observer at great distance from the scattering 
surface and with a source point relatively close to the body. For simplicity 

of exposition, attention is confined to twodimensional geometries, the 
acoustically hard boundary condition is taken, and the source and observation 

points lie in the same plane normal to the generators of the body. Generalisa- 
tions from this twodimensional configuration and from this boundary condition 

are avalable, in principle, and several extensions are stated in the course of 
the analysis. 

Within the 'deep shadow region', this excluding the umnedlate vxinity of 
the shadow boundary, a direct comparison is made between the results for a 
half-plane, and results for a rounded body calculated on the basis of Keller's 
theory' of creeping waves. It has already been mentioned that this theory is 

InvalId in the 'shadow transition region' that separates shadow from illuminated 
regions. This transition region is treated at length in the literature, notably 

by Fock4 whose results are Interpreted in the present context in order to com- 
pare the transition zcanes for sharp and smooth bodies. The principal results 
obtained are that the field within an inner core of the transition region is 
nearly the same for both sharp and smooth edges, whereas the field within the 
deep shadow is considerably less for the smooth obstacle. 

Time periodic oscillatrons are considered, whence the pressure fluctuation 

p&t) in the sound field has the form 

P&t) = @p(z) exp(-iwt)) , (l-1) 

where w denotes the angular frequency; it is obvious that the time factor 
-iwt e will appear throughout and may therefore be dropped in the calculations 

that follow. The acoustic wave equation with harmonx time dependence takes the 
fo!Cm 

(V2 + k2) p(z) =Q ) (l-2) 

where k = w/c = 271/X is the radian wave number and X the wavelength. 
Equation (l-2) has to be satisfied throughout the fluid, except for a source 
point 5 = s, together with the boundary condition 

ap/an = 0 on the scattering surface S , U-3) 

3 
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where n denotes the outward normal. Finally, HI order to ensure outgoing 

waves at infinity, we requrre 

a, F e ikr /r or p b F e ikr 
P /rl" as r + m (l-4) 

in three ox- two dimensions respectively, where r denotes the distance from 

some convenient origin. 

2 THE RECIPROCAL THEOREM 

If a point source is situated at a point P1(xl) with an observer 

measuring the pressure at a point P,C$' then It is required to find the 

pressure induced by the source III the far field limit as r o = 1~1 + -; and 

for the moment the points s and 5, are taken to lie 1" the same plane 

perpendicular to the generators of the twodimensuxval body. The far field 

limit r. + m can be taken at a" early stage in the calculations by appealing 

to the reciprocal theorem which states that the field at G due to a source 

at 51 
is precu.ely the same as that at xl due to a source at s. Now 1" 

the limit 1~1 + m it is clear that the incident field in this reciprocal 

problem becomes that of an Incident plane wave of suitable amplitude and phase. 

Apart from the obvious desirability of taking the far field approxunatlon at 

the outset of the calculations, there is the further advantage on account of 

the relative sunplicity of plane wave against incident source field. 

To formalise these ideas, suppose the Incident field is that of a source 

given by 

pi = e ikR/R , R = lzl-%l ; (2-l) 

then as r o = 1~1 + m, with ~1 fixed, we have 

ika.x -- 1 ik(xlcosBo+ylsinBo) 

pi s Ae = Ae (Z-2) 

ikr 
where A = e 'jr0 and u = - x&r, is the unit vector in the direction from 

% 
towards the origin. Thus it remains to solve the reciprocal problem of a 

plane wave, give" by (Z-Z), at Incidence upon the obstacle, in terms of which 

the far field at x due to a source at x1 is given immediately. 

I" a similar way, the problem of flnding the far field at s due to a 

11ne source at x1 can be reduced to that of a" incident plane wave. Thus if 
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rrk 

0 
112 

p,= 1 e (2-3) 

where H (1) 0 denotes a Hake1 function, then in the limit 1st -f - we may 

use the asymptotic estimate 

Hyz) % 2 
112 

0 liz 
eiz-in/4 for large 7. 

to find that 

ika.x -- 
21 Be 1 

'i 

ikr 
where B=e and a = - XJ' as before. 0 

Evidently the plane wave (Z-5) differs from (Z-2) only by Its constant of 

proportionality; in particular, the ratio p/pi of total pressure to incident 

pressure will be the same in each case. The consequence to be drawn from this 

property 1s that for calculatng the ratio p/pi in the far field, we may con- 

sider the incident field to be either a point source or line source or plane 

wave, as convenrent. 

3 THE RIGID HALF-PLANE 

The problem of scattering by a rigid half-plane is a classical one whose 

solution is well known (MacDonald 3 ), and can be written in several forms. 

Taking the incident field to be a plane wave given by 

Pi($) = A exp (iku . ~1) = A exp (ikrl cos (81 - Bo)) , (3-l) 

where CL is the direction of incidence displayed in Fig.1, it is found that the 

total pressure distribution 1s given exactly by 

P(Z) = Arr -l/2 
ikrl-iv/4 

e {F((2krl)1'2 sin 1 (01 - Bo)) + 

+ F((=y) 
112 

sin 1 (el + eo))l . (3-2) 

In fo?nula (3-Z), F denotes the Fresnel integral 

.2 - .2 
F(x) = e-1X 

I 
e It dt , (3-3) 

5 

x 
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some propertIes of which are described in the appendix. The corresponding 

result for the soft half-plane, on which p = 0, differs from (3-Z) only III 

the sign of the second Fresnel function. 

According to the arguments of the preceding section, the ratlo p/pi 

gives Immediately the ratlo of total pressure against incident pressure at 

great distance x due to a point (or line) source at xl. 

We are concerned here prunarily with the 'geometrical shadow region', 

e <e<lT, III most of which domain the ratio 
0 P/Pi is shown to be small for 

the short wave llmlt krl 9 1. In order to estimate p in this region, when 

krl B 1, note that sin 1 (01 + 0,) IS a positive number bounded away from 

zercl, whence the argument (Zkr)"' sun 1 (0, + Bo) IS uniformly large, and F 

may be replaced by Its asymptotic form (A-4) to get 

F((Zkr)"* SLY 1 (e, + eo)) s - WC2k=) 
112 

sin 1 (0, + eo))-l . 

A similar sunpllflcation can be effected for the other Fresnel function 

of formula (3-2), provided that (8, - eo) is not too small, i.e. for points 

51 not too close to the shadow boundary. Specifically, if (kr$'* (e,- eo) 

1s large, then the Fresnel Integral may be simplified to get 

-EL?, 
exp (ikrl (1 - cos (e, - eo)) + ir/4} 

PI 277 112(2krl)'12 
ICOSW 1 (e, - eo) + 

+ ~092~ 1 (e, + eo)l, (3-4) 

for (kr$'* (e, - bo) 9 1, and this gives the ratio of far field against 

incident field due to a source at Xl' 

If e1 1~s between -e. and +Bo, but not too close to either, then 

the first Fresnel integral may be replaced by its approximation (A-5) for large 

and negative argument, whence 

lkrlCOS(el-eo) 
P = Ae + O(krl) 

-112 
, krlsl , (3-5) 

and the field is almost the same as if there were no obstacle present. 

Similarly, it is easy to verify that the solution in the remaining region 

-71 < e1 < e 
0 corresponds to the Incident wave plus a reflected wave, when 

krl> 1. 
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In the shadow transition region, where 81 and 8o are nearly equal, 

the first term of (3-Z) varies rapidly to change the field from (3-4) to (3-5) 

within a small angle e1 - B. = O(kr1) 
-112 

, while the second term provides a 

relatively unimportant, slowly varying, background level. Thus 

E = n-1. 
2ikrl(81-80)2-in/4 

+ O(krl) 
-l/2 

. (3-6) 
'i 

It 1s readily seen that the same pattern obtains if the boundary condition 

changes to the soft one, P = 0, for it has already been remarked that the 

solution is then obtained by changing the sign of the second Fresnel Integral of 

O-2), whence (3-6) is altered only by changing the sign of the background sound 

field of order (krl)-l". 

This behaviour near the shadow boundary will be shown to appear in sub- 

sequent problems, even when the shape is smooth: the transltion from shadow to 

illuminated zones is governed by a Fresnel Integral of argument 

Ml/3 “*(el - eo), (where tl denotes the length of ray path from zl to 

the point of tangency on the body), superimposed upon a slowly varying back- 

ground field. The real difference between the shadow formations due to sharp 

and smooth bodies arises in the deep shadow, not too close to the shadow boundary. 

4 GEOMETRICAL DIFFRACTION IN THE DEEP SHADOW OF A CONVEX BODY L 

In order to contrast the shadow formatrons appropriate to sharp and smooth 

ended bodies, the present section concerns an asymptotic estimate for the field 

at P in the deep shadow of a source at P 
0 1' 

The ratio p/pi of far field 

aganst incident field has been shown in section 2 to be the same for either 

a point source or line source, and we here consider the latter force 

distribution, as a matter of convenience. For the sake of simplicity the curved 

end of the body is taken to have constant radius of curvature a, though there 

is no difficulty III extending the method to deal with bodies of continuously 

varying curvature. An asymptotic solution is sought in the short wave limit 

h <a, whence ka % 1. 

The required estimate 1s obtalned by using the ideas due to Keller' of 

diffracted rays that feed energy into the shadow region shown in Fig.2. This 

analysis leads to an asymptotic estimate for the field at points in the deep 

shadow, not too close to the body or to the shadow boundary. 

Following the procedure of section 2, the source and observation points 

are interchanged, by means of the reciprocal theorem, and the source point s 

is finally taken to be at large distance from the end, so that the incident 
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field reduces to that of a plane wave. It is convenient to deal with a line 

source of incident field 

nk l/Z 
0 

. . 
pi= BT e1’11/4 “(1) o (W , R = ty%I , 

whence for large r. we have from (2-5) 

ikt 0 1kcr.x 
ee 

-- 
P; Q B 

1 

t 112 
0 

(4-l) 

(4-2) 

2 112 where t, = (ri - a ) is the distance from P o to the point of tangency Q,. 

Keller's theory of diffracted rays runs briefly as follows. Extending 

the elementary idea of propagation along rays in the illuminated region, It 1s 

postulated that energy is fed to a point Pl in the shadow along a diffracted 

s whose path length from PO to P 1 is a minimum; that is, the ray has two 

strarght sections PO Q, and Q, Pl that are tangents to the body, together 

with a curved section Q, Q,. 

The decay of energy along the straight sections PO Q, and Q, Pl 1s 

controlled by energy considerations, demanding constant flux of energy along a 

narrow tube of rays; further, the phase is simply k times path length, this 

leading to the familiar expression 

P Oi e 
ikt,:lz , 

(4-3) 

where t denotes distance along such a tangent, and expression (4-3) is 

replaced by a ikt/t f or threedimensional sources. Taking both straight 

sections into account we have 

ik(to+tl) 

P 'Ir Ye (4-4) 

(to tll 
112 

where t and 0 tl denote the lengths of PO Q, and Q, Pl; Y = W(s';Q,,Q,) 

denotes the amplitude at s' of a ray that originates at Q, and leaves the 

cylinder at Q,, depends on the incident field, and has to account for the 

decay along the curved path Q, Q,. Formula (4-4) is obviously invalid when 

t 0 ( or tl) becomes zero, since this corresponds to a point where rays meet, 

and a separate treatment is required. 

. 
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Some simple assumptions concerning the general form of the function 'i', 
and an appeal to known results for a circular cylinder, now lead to its 
asymptotic evaluation for large ka. The rapidly varying phas6 term of Y 1s 

taken to be simply the wave number times path length, whence iks Y=$e , 
where s is the arc length of Q, Ql. In order to ascertain the decay of Y 
with dutance, it is noted that diffracted rays are shed in all tangential 
directlons, and Q, Pl is but one of these rays (Fig.3). 

It is certainly reasonable to conjecture that the energy shed at each 
intermediate station, arc length s' from 9,s will be proportional to the 
energy at s', whence 

3 (s';Q,,Q1) = - ah') Ns'iQ,.Q1) , 

1.e. Jl(s;Q,,Q,) = Jl(O;Qo,Ql) exp [- [ a(~') ds] . (4-5) 

The decay rate is governed by the function a(~') of (4-5), and has to 
be found. Reciprocity between source and observation points implies that 
$(O;Qo,Ql) is symmetrical with respect to Q and Ql. Furthermore the 0 
local nature of the diffraction process, in the short wave limit, implies that 

waves are locally plane, whence a(s) is independent of the incident field 
and $(O;Qo,Ql) depends on the incident field only through the constant B 
of the incident wave (4-Z); the local nature of the diffraction process also 
implies that the positions Q, and Ql have independent effects upon the value 
of JI. All these requirements, for the short wave limit, imply the form 

Jl(s;Q,.Q,) = B b(Q,) b(Ql) exp [- [ ~(6') dsj , (b-6) 

in which the two unknown functions b (Qo) and a(s) depend only on the local 
geometry of the body. 

Collecting together the formulae ((4-4), (4-5), (4-6)), we have 

ik(to+tl+s) 

P .-u Be 
(to tlP 

b(QJ b(Q1) exp - [ !' a(~') ds] . (4-7) 
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The final stage of the calculation, the determination of b and a, is 

achieved by appealing to the exact solution for a given body, namely the 

circular cylinder. Since these diffraction coefficients depend only on the 

local geometry (i.e. curvature), such a calculation serves to deteranne b 

and a for more general shapes. Keller* shows that there is an Infinite set 

of possible modes for b and a, given by 

and 

-in/6 a = e n 

(b-8) 

(4-9) 

in which -a n denote the (real negative) zeros of the Airy function Ai 

described in the appendix, and p(s) denotes the radius of curvature at s. 

In the present case p(s) = a = constant, and retaining only the leading term 

n=O in the expansLon for large ka, we are led to the estimate that 

lk(to+tl+s) .in/l* 
P % Be 1 

(t, t1p2 2n1'2 a0 Ai 
2 exp - a e -irr'6 

0 
(ika)1'3(8,- 

. . . . (4-10) 

Greater accuracy can be obtained by adding higher terms in the expansion, 

bsing (4-8) and (4-9). 

For bodies of continuously varying radius of curvature p(s), one merely 

changes the factor (2a2/k)1'6 of (4-10) to (2p(Ql) p(Q,)/k)1'6 and the 

exponential term exp (- a0 e -in'6 (lka)1'3 (81 - tIo)) = 
s 

exp (- a e cl -in'6 (k/2a2)1'3 s) to exp - a0 ebini6 
I 

(k/2p2)1'3 ds . 
> 0 

In particular, for the far field approximation r. + m, we have 

r St 0 0' whence the ratio of total to incident pressure distribution is given, 

with reference to (4-2) and (4-10) as 

I 
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l/3 
E 

I I 

(4-11) 
'i 

b 1.08 1,"6 1,2 exp (- 0.700 (ka)1'3 ('31 - eo)) I 
k ? 

ka>l, (ka) 1'3 (e, - eo) B 1 . 

This result should be compared with the corresponding one (3-4) for the 

shadow cast by a plate having a sharp edge. It is seen that (4-11) is 

exponentially small for the short wave limit, while (3-4) is but algebraically 

SliVdl. III particular, for points close to the shadow, e1 - B. * 1, but not 

too close, (ka)"3 (e - eo) B 1, a comparison of the shadow fields shows that 

p(smooth body) 
p(sharp body) 'L 1.53 (ka)1'3 (e, - eo) exp (- 0.700 (ka)'13 (el - fJo)) 

(ka)1'3 
. . . . (4-12) 

which is of course small for (0, - eo) @ 1; thus the field 1s much 

smaller for the smooth ended body, even relatively close to the shadow 

boundary. 

A separate analysis is required in the remaining transition region where 

(kd1'3 (e, - eo) 5 1, in the vicinity of the geometrical shadow boundary, 
and this region is the subject of the next section. 

5 THE TRANSITION REGION: e1 - e. 5 (ka)-'13 

The theory of diffracted rays is invalid for points that are very close 
to the scattering obstacle, or too close to the shadow boundary. The special 

nature of the vicinity of the shadow boundary is apparent from Fig.2, from 
which it is seen that small values of e1 - e. imply the close proximity of 

the points Q, and Q,, while the assumption regarding the independent nature 

of the diffraction processes at these points requires that they be not too 
close. We are therefore forced to seek an alternative representation for the 
solution in this shadow transition region, defined by e1 - B. 5 (ka) -113 

, 
across which the character of the solution changes from that appropriate to the 
deep shadow to that for the illuminated region. 

There are several lutes of attack to deal with this transition zone, 

notably those due to Fock4 and to Ludwig5. Fock writes the governing equations 
in a suitable system of 'ray coordinates' and simplifies the complicated 
equations that ensue for the short wave limit ka > 1; this 1s essentially a 
boundary layer approach in which a differential operator that corresponds to 
relatively slow longitudinal changes in amplitude is neglected in comparuon 

3 



183 13 

. 

with terms that represent the rapid transition across the shadow boundary. 
The approach adopted by Ludwig5 is that of finding exact solutions, for 

sphere or circular cylinder, and expressing the short wave limit of these 

solutions in a form such that a generalisation for bodues of more general shape 

is suggested. Although this latter approach seems more powerful, In that it 
gives results even near the point of glancing incidence, where shadow boundary 
and surface intersect, Fock's analysis is simpler in concept and IS favoured 
here. 

Details are omitted, for the sake of brevity, but the main result of 
relevance in the present context is that the behaviour of the field across the 
transition region is determined in terms of a Fresnel integral (3-3) together 
with a 'Fock-function' g that is expressed in terns of Airy functions. In the 
notation of Fig.2, with incident field given again by 

nk 112 
Pi = T 0 e in/4 H(l) (kR) 

0 
, R = I"l-sl , (5-l) 

it is found that 

?r M -' (2nk) 1/Zei71j4 e ik(to+tl+s) 
P , (S-2) 

in which the parameter M = (Aka)l13 is l&ge, and @ can be expressed as an 
integrql involving Airy functions. 

At large values of M, and for points not too close to the obstacle, 
ensured by taking Mto and Mtl also large, Fock4 shows that the function @ 
can be written in terms of a Fresnel integral that accounts for the essential 
structure of the pressure field across the shadow, together with an additional, 
relatively slowly varying, term that contributes a background sound field. 
Specifically, we have 

Q(x;Y19Yo) = $b;Yl’Yo) + ~C~;Yl’Yo) 9 (5-3) 

where $ and $I are estimated as follows. For large yl and y,, with 
r, = x - y 112 112 

0 - Yl finite or small, it is shown that 

Q(GY1,Yo) s (Y,Yl) 
-I/4 .-in/2 *F(~5) 

2n c>o , (5-4) 

. 
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wherein 

183 

p2 (Y. YlY2 112 = and 5 = X-Y 112 - 112 112 Yl 
= M 

as * (5-5) 0 
yo + y1 

It is seen that 5 = (ika)1'3 s/a, whence 5 > 0 corresponds to the shadow 

region, C, = 0 1s the shadow boundary and 5 5 1 correswnds to the ._ 
transItron region of present interest. 

and 
l/2 

= (fka) 113 
Since yy' = 

y1 tl/=, the requuement that y 0 
corresponds to the condition that source and observer 

Mto/a = ($ka) 113 
to/a 

and yl be large 

be not too close to the 

body. 

As for the remauang function J, of (5-3), this is expressed for large 

values of y and 
0 y1 in the form 

*cx;Yl,y,) 1, - (Y, YlF4 $y g(c) (5-6) 

where the 'Fock-function' g(c) IS defined as 

(5-7) 

a few properties of g being described in the appendix. 

Adding together the estimates (5-4) and (5-6), we have, with reference 

to (5-2) and (5-3), the result that 

P a L 
Ir M' 2n 0 112 e-iv/4 e 

ik(tl+to+s) 

(t, ty2 
{uFh<) - 1 g(s)1 

in the transition region, with 

and 5 
M =-s . 

0 '1 a 

(5-W 

Formula (5-8) gives the approximate pressure field at Pl due to a 

source at P o, and the far field limit lx01 -f m is obtained by taking 

t + -9 whence 0 
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!J2+u;=a1 , St 
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(5-10) 

. 

and 

0 L 
l/2 e-in/4 e ik(tl+to+s) 

a 
P ?r 2 2n 

(to tlP 
t~~F(u~5) - g(s)) , (5-11) 

for (ka)"3tl a 1. (ka)'13s 5 1. 

It "111 be seen that the term in F corresponds to a Fresnel pattern 
very smular to that for a sharp edge, while the term in g provides a slowly 
varymg background level. More precisely, within an 'inner transition region' 
given by s = a(Bl - eo) 5 (ka) -I/2 the Fresnel term dominates the solution; 
towards the outer extremes of the transition region, where s z (ka)-"3, it 
1s found that the two terms cancel to this order of approximatmn, this 
reflecting the fact that the solution for a rounded plate becomes exponentially 
small in the deep shadow. Within the 'outer transition region', 

(ka) -1'3 2 s z (ka)-I'*, the nature of the solution changes from the exponential 
behavmur appropriate to a convex obstacle to the Fresnel pattern like that of 

a sharp body. 

(9 Inner transltmn regmn: (ka)l" (el-eo) = O(1) 

If s is sufficiently small so that (ka) II 2 s/a = O(l), then it is 

clear from (5-9) that 

M 
5 = -s = 

a 
(IW1'3 s = Ockaj-1/6 

a 

and is uniformly small. Thus g(c) may be replaced by its approximate value 
g(0) and 1s negligible compared with the Fresnel term of (5-11). whence 

and 

P s ll 
-I/ 2 e-in14 e 

ik(to+tl+s) 

t 112 F((ikt$" (0 - eo)) , 
0 

E%.n -l/ 2 .-in/4 e 
pi 

iks F((lktl)"' (e - eo)) . 

A comparuon of (5-12) with the corresponding result (3-6) for the half- 
plane shows that the two expressions are almost identical, differing only by a 

phase factor. 
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(ii) Outer edge of transition region: (ka)l" (6, - eo) B 1 

As the observation point travels further toward the deep shadow, we 

know from section 4 that the solution becomes exponentially small, and we 
expect that the algebraic behaviour of F will therefore be cancelled by the 

background noise term g of formula (5-11). It is now verified that the leading 

terms do indeed cancel, making use of the fact that if (ka)1'3 (0, - So) 1s 
large then the variables !+5 and 5 are both large, whence the functions 
F(pl<) and g(S) of (5-11) may be replaced by their asymptotic forms given 
in the appendix. Thus we have 

183 

and the two terms cancel to this order, as indeed they must. 

(lil) Outer transition region: (ka) -1'3 2 (e, - eo) z (ka)-1'2 

In thu region the variable 5 changes from 5 = O(l), near the outer 

extreme 8l - e. J (ka)-1'3, to < = O(ka)-'16 when e - e. = (ka) -112 . 
Thus the function g of (5-11) is a relatively slowly varymg function that 
differs little from g(O), and has only a background role in the pressure 
distribution; the role of g(c) is that of smoothing the pressure p from 
its exponentially small value in the deep shadow to the Fresnel pattern in 
the inner zone. 

(iv) Shift of the shadow boundare 

A secondary effect due to the background field term g 1s that of producing 
a slight shift in the geometrical shadow boundary, this effect being discussed 
by, among others, Keller6 and Nussenzveig'. Apart from being of some interest 
in Its own right, a calculation of thu shift can be used in order to compare 
with earlier results, and provides a check of the validity of Fock's 
approxunation used here for the transition region. 

The geometrical optics limit (ka = m) predicts that p/pi = 1 
on the geometrical shadow boundary e1 = Bo; if ka is finite, but large, 
then it is reasonable to define the shadow boundary by means of the definition 

IP/PJ = 1 (5-13) 

and it remains to calculate the (small) value of 0 - e 
lo defined by (5-13). 

At points very close to the shadow boundary, where s = a(Sl - So) is small, 
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the function F(ul<) and g(S) of (5-11) may be replaced by their values for 

small argument, given in the appendix; thus 
. 

and 

i.e. 

!J~F(!+s) - q c ein/4 J;; _ 
2 IrlC + . . . 

> 

g(c) Q g(0) E z113 c, whence 

P 
'i 

'L + 

I 

1 -1 e-ivl4 
J;; 

(Iktl? 
[ 

(e, - eJ + a c II (ka)2'3 tl ' 

The definition (S-13) for the shadow boundary requires that 

g .-in/4 

[ 
(0, - fJJ + a2;3 1 =o, (ka) tl 

(el - eo) = - a (di c + (i 1.1806a 

(ka)2'3 tl 
C) = 

(ka)2'3 tl 
(5-13) 

This corresponds to a parallel displacement of the shadow boundary by a 

. 

distance 

d = 1.1806 a (ka)-2'3 (5-14) 

towards the shadow side. A similar calculation for the half-plane reveals 

a displacement proportional to wavelength Zn/k, as indeed must be the case 

since this 1s the only length scale of the problem. It is found from (3-Z) 

that the displacement 1s again towards the shadow side, and of magnitude 

dl 
= l/(k sin eo) , (5-15) 

this being valid provided B. is not too small, namely for (ky) o I'* e B 1. 

6 GENERALISATIONS 

The work of sections 4 and 5, concerning the diffractlon of sound by a 

convex obstacle, has dealt with the case of a perfectly rigid body whose 

curvature is constant along its curved part. 

It is perhaps worthwhile to point out that the ideas involved can readily 

be extended to deal with the more general impedance condition 
‘ 
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ap/an = iqp , q = constant (6-l) 

183 

and to allow for continuously changing curvature. 

In the deep shadow for example, the basic structure of the solution 
(4-7) still holds. Variable curvature is accounted for by taking for the para- 

meters b and a their local values b(Q(p)) and a(~)(s)), where p 
denotes the local radius of curvature at S. The solution for an imperfectly 

rigid boundary, with condition (6-l), simply requires this boundary condition 
to be employed in the exact solution for circular cylinder that is used to 
extract values for the local diffraction coefficients b and a. A general 
treatment of such problems can be found in the work of Keller and Levy', which 
deals with both two- and threedimenslonal bodies. 

Turning now to the shadow transition region, the solution (5-2) in terms 

of ray coordinates to' ? and s holds even for bodies of variable curvature. 

As for a more general boundary condition, such as (6-l), Fock shows that the 
character of the solution remains unchanged: it is found that the value of 

the Impedance q affects only the Fock function, g, of formulae (5-8) and (5-ll), 
and leaves the Fresnel Integral term unchanged. That is to say, the Fresnel 

diffractlon pattern remains unchanged, while the value of the impedance 
affects only the slowly varying background sound field. 

Finally, it 1s remarked that although the results so far have been 

restricted to the case in which source and observation points lie in the same 
plane normal to the generators of the scatterer, this restriction can be 
removed by a simple analysis, as is now shown. 

If the incident field is that of source given by 

Pi = e iU/R ) R=I~-~ll , 

the far field limit is obtained by taking 1st + m, now in any direction. 
Thus 

R b ro+a. - 251 3 (6-2) 

where '=-&jr 0 is the unit vector from 
53 towards an origin near x 

-1' If a has direction cosines - 
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(6-3i 

then the work considered hitherto is recovered by setting X0 = 0. 141th 

general values of ho, on the other hand, the incident field takes the plane 

wave Eorm 

'i 
%L exp Ilk (x 1 cos e cos h r 0 

o + yl sin B. cos ho + z1 sin ho)1 , (6-4) 
0 

1.e. 

ikcosho(xlcosBo+ylsine~) 

'i 
% Al e (6-5) 

lkr 
where A 1 = (e '/ro) e 

lkzlslnX 
', and k cos A0 is the wave number 

component in the plane perpendicular to the generators of the scatterer. 

It is seen that the multiplicative factor Al wiI1 appear throughout the 

problem, having only the effect of replacing the wave equation (1-Z) by 

co2 + k2 cos* ho) p =o . (b-6) 

Now the governlAg equations (6-6), with (6-5) as incident field, together with 

the rigid boundary condition ap/an, are seen to be exactly the same as in 

the case of normal incidence previously consldered, with the wave number k 

reduced to k cos ho. It follows that all our results, for the ratio p/pi 

of total against incident pressure, can be modified to include oblique 

incidence by changing k to k cos A 
0 throughout. 

7 CONCLUSIONS 

A comparison has been made between the distant pressure fields in 

shadows cast by sharp and smooth ended obstacles, and the main results are 

summarised here for reference. 

A source is situated at Pl(zl), and an observer PO(~) at great 

distance from the body measures the induced pressure field. Within the deep 

shadow region, where (81 - eo) (ka)lL3 s 1, the field cast by a smooth 

sided body is much less than that due to a half-plane. 

Thus 

IP/Pilhalf-plane 'L 1,-I'* (2ktl)-1'2 {cosec 1 (e, - eo) + cosec 1 (e, + eo)l 

. . . . (7-l) 
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and 

IP'Pilsmooth or 1.08 (ka)1'3 (ktl)-l12 exp (- 0.700 (ka)1'3(81 - So)) . (7-2) 

It 1s seen that the former solution exhibits algebraically small decay, while 
the latter has exponential decay, in the short wave limit ka a 1. 

Withln the shadow transition region, (ka)1'3 (0, - eo) $ 1, the two 
solutions have similar behaviour; given by (3-6) and (5-11). The solution (5-11) 
for the rounded body consists of two terms that correspond to a Fresnel 
diffraction like that for the half-plane, together with a relatively slowly 
varying background field g. 

In the Inner transition region, (ka)lL2 @, - e*) 5 1, the background 

term 1s negligible, whence it is found that the solutions for half-plane and 
rounded body are asymptotically identical, apart from a phase change. 
Specifically, we have 

[p/pi1 % v-1'2 IF((lktl)1'2 (01 - eo))l (7-3) 

for either sharp or rounded ends. 

Within the remaining outer transition zone, &a) -'12 ,$ e1 - e. 5 (ka)-lL3, 

the background function g of (5-11) has the role of smoothing the pressure 
distribution from its exponentially small deep shadow behaviour to that of the 
Fresnel pattern near the shadow. 

These results are appropriate to the short wave asymptotic limit ka -f -, 
and it is important to estimate how large ka must be for their validity to be 
ensured. It is seen from (7-2) that the decay in the deep shadow requires that 
(ka)‘13 be &, and consequently that ka must be very large. If formula 
(7-2) is to be valid for angles 01 - Bo > 10' (i.e. l/6 radian), then the 
requirement of small exponential term implies that 

0.12 (ka)1'3 > 1 , 

i.e. ka > 600 ; (7-4) 

evidently the nondimensional wave number ka should be of order 1000 or more, 
to ensure the validity of (7-2) as a sensible approximation. 
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. 

. 

Finally, for the case of sound waves, the intensity within the shadow 

for both sharp and rounded bodies is calculated, using (7-l). (7-Z) and (7-3) 

and plotted in Fig.5. The radius a is taken as 1.3 metres, 

rl = tl = 10 metres, with frequencies 1 kHz, 10 kHz, 100 kHz, corresponding 

to values of ka of 25, 250, 2500 respectively. The function 

I = 'O log10 JP/Pi1 gives the sound intensrty in decibels (dB), and this 1s 

plotted against 81 - Bo, the angular position of the observer with respect 

to the shadow boundary. 

In Part B, the case of variable radius of curvature p(B) is examined, 

with a view to choosing a shape such that the exponential decay in the shadow 

1s as great as possible. 
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Appendix 

SPECIAL FUNCTIONS 

A.1 Fresnel function 

The Fresnel Integral F(x) 1s defined as 

.2 m .2 
F(x) = e-lx elt dt . 

I 
(A-1) 

x 

Setting x = 0, we have 
co 

I 

2 
F(0) = eit dt , 

0 

and this can be evaluated by deforming the path of integration from the origin 

to m e1nf4, whence 
m 

F(0) = e1'14 
I 

2 
e- de = in l/2 .in/4 

0 

To find the value of F(x) for small x, we may use this result by 

writing 

2 x 2 
e lx F(x) = F(O) - 

I 
eit dt , 

0 

and the latter integral may be expanded and integrated term-by-term, to get 

F(x) = zjr l/2 ein/4 
-x+... . (A-3) 

. ^ 
To estimate F for large positive x, substitute s = (t/x)' - 1, then I 

rotate the path of integration through rrj2 to get 
m 

I 

2 
F(x) = F e-xt (1 + it) -lL2 dt , x>o I 

0 

2 For large values of x , the main contribution arises from the vicinity of 

t = 0, whence the asymptotic expansion is obtained, according to Watson's lemma, 

by formally expanding (1 + it) 
-l/2 

and integrating term-by-term. Thus 

F(x) 1 Q z;;+... as x-++- . (A-4) 
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For large and negative values of x, an estimate is obtained by use of 

the fact that the integral on the right side of (A-2) is an odd function of x, 

whence 

.2 2 
elx F(x) - F(0) = - e= F(-x) + F(0) 

which may be expanded as x -+ --, using (A4), to get 

2 
F(x) % .l" eiTf4 .-+ + & + . . . . 

A.2 Airy functnx 

The Airy function Ai satisfies the equation 

Ai" = z Ai , 

(A-5) 

(A-6) 

together with the boundary condition at infinity: 

Ai % in -l/2 z-1/4 
9 IZI+f* larg z] < TI . (A-7) 

A second independent solution Bi of equation (A-6) is specified by the 
requirement: 

, I.zJ + - Jarg 21 <n/3 . 

The zeros of Ai and Ai' are real and negative. In particular, if 
-a o, -al, -a2, . . . denote the zeros of Ail(z), numbered in ascending 
magnitude, then 

a 0 = 1.0188... , al = 3.2482... , 

with 

(A-8) 

Ai (a,) = 0.5357... , Ai(a1) = -0.4190... . (A-9) 

There are several different notations in common use for the Airy functions. 

That used by Keller2, for example, is the function A(z) related to Ai by 
the identity 
/ 
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. 

A(z) = 3-l/3 II Ai(- 3-1'3 a) , 

whence the zeros 
l/2 q n of A(z) are given by q, = 3 an* 

A.3 Fock function 

The Fock function g(c) is defined III terms of the Airy function Ai by 
the integral 

m 

s(s) = - 
I 

,-5te 
in/6 Ai' 

-2ni 
dt + e-1'13 m .iCt 

Ai'(te 3 ) 
I 

Ai' 
-4.dt * 

0 0 Ai'(t e 3 'I) 
. . . . (A-10) 

When 5 is large and positive, the main contribution to the integrals 
arises from the vicinity of t = 0, and since Ai' is analytic near this 
point, we have 

g(5) 
.-in/3 

%-+- i5 

i.e. 

g(5) % i/s as 5 -+ +- .(A-11) 

When 5=0, wehave 
m 

g(O) = - 
I 

Ai' 
- 2-ni 

dt + e-in/3 m 
I 

Al'(t) dt . 

o Ai'(t e 3 ) o Ai'(t e-kVi) 

Apart from a constant factor, this 1s the same constant C as that 
discussed by Keller and Rubinov6, in a slightly different notation. Thus 

g(0) = 21'3 c , (A-12) 

and the constant C is glven6 to several decimal places, whence 

g(O) = 0.4321 24'3 .in/3 (A-13) 
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8,, denotes the angle of incidence, with 048,~ n: 
the shadow region is defined by 8oL 8, c ST. 
The direction of thQ WavZ is =l = (cos 0,, sin 0:) 
and x0 - -0~ lx,,l is a point at great distance 
from the edge 

Fig.1 Geometry for the rigid half plane 



PO Q. and 9, PI are tangents to the Surface, and 
are at angles 9, and 81 to the positive 
x- direction. The deep shadow is the region 
8,-80 >> (ka)-b, and at distance >>a (ka)-‘4 
from the body 

, a> (ka) -4 

~1 / 

Fig.2 Geometry for a rounded body 

PO / 

. 

Fig.3 Diffracted rays are shed in tangential directions: 
the envelope of these rays is the curved section of the body 



PI QI = tl, PO Qo=to, 9, Qo=S. The deep shadow 
is given by 8,-00*> (ka)-5, the shadow transition 
region is given by 0,-00 &(ko)-b and the inner 
transition region is given by 8,-80 & (ka)‘k . The 
geometrical shadow boundary is shifted by the 
displacement d 

Fig.4 Shadow regions for rounded body 



Shadow 
boundary IO 20 30 40 50 60 70 130 degrees 

I 
I I I I I I I 1 

@l-e0 

-20 

-30 

-40 

Half plane solutions 

Short wave asymptotic 
limits for curved body 

Fig.5 Intensity, I = 20 log,, 1 P/Pi 1 against angle into shadow, 8, -e. 
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PART B 

OPTIMISATION OF THE CURVATURE 

1 INTRODUCTION 

The Idea of 'dlffracted rays' that propagate energy Into the shadow 

region cast by a convex body predicts a field that is exponentially small in the 

short wave limit kP + m, where k is the radian wave number and I, is a 

typxal radius of curvature of the obstacle. Specifically, It has been shown in 

Part A, formulae ((4-7) - (4-g)), that the field within the 'deep shadow', not 

too close to the body or to the shadow boundary, has the asymptotic form 

1.08 [P(Q~) dQlf6 
5 

IP'Pil ?i 
l/ 3 

l/6 l/2 =P - 0.70 k 
k I 

P 

5 e. 

where p(e) denotes the local radius of curvature. 

It is seen that the crucial exponential term of this expression has a 

decay rate that is proportIona to the u0zegral 

1(e) = j p"lo de , (l-2) 

when the wave number k is fixed, and the value of I clearly depends upon 

details of the geometry of the scattering surface. 

It 1s the object of this Report to examine how I(8) can be made as 

large as possible by choosing suitable curves, subject to certain restraints 

imposed by the overall dimensions of the surface, in order that the shadow 

field be minionsed. 

2 BASIC MAXIMISATION PROCEDURE 

Suppose Q, and Q, are fixed points with coordinates (0,O) and (a,b) 

in the coordinate system of Fig.1, and a curve S has to be chosen so that 

S passes through Q, and Q, at given angles 0 and 8 1 to the 0 
horizontal. Our problem is to find the curve S such that the integral 

el 

I = 
I 

P 1’3(e) de (2-l) 

e 
0 

is maximised, where p denotes the radius of curvature of S at an 

intermediate point Q(e). 
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It is therefore required that the functional (2-l) be maximised, subject 
to the constraints that Qo and Q, lie on S, whence 

e1 % 

a = 
I 

P cos 13 d8 and b = 
I 

psinede . (Z-2) 

e. e 0 

The required curve p = p(B) is readily found by the standard procedure 

of variational calculus: Introducing a pair of parameters, !J and A, to be 

determined, we write 

183 

F(p,B) = 01’3 - !j u p ~0s e - Jj X p sin e (Z-3) 

and have to maximise the integral 

e1 

I1 = 
I 

F(P,e) de , (Z-4) 

eO 
subject to the constraints (2-2). The governing Euler equation to determlne 

F has the standard form 

(z-5) 

and the right hand side of the equation is obviously zero in the present case, 

since p’ = dp/d0 ‘does not appear in the expression (Z-3) for F. Thus the 

Euler equation (Z-5) is a trivial one, with solution 

P 
-213 

= u co.5 0 + A sin 6 , ‘X-6) 

and this defines the requred curve. The parameters 1-1 and X are determined 

from the constraints (2-Z), whence 

el e1 

I 
cos e de a = and b = 

I 
sin e de 

3/2 . O-7), 

eO 
(p cos 0 + X sin 0) 

e (11 cos 8 + X sin 8)3’ * 
0 

5 

The pair of equations (2-7) is sufficient to calculate p and X, whence 
p(8) is given by (Z-6). In particular the maximum value of the integral (2-l) 

takes the value 
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5 5 

I, = I 
de 

(p ~08 e + h sin e) 
117. = I 

(11 cos 0 + h sin 8) dfJ 

e. e. 
(p cos e + h sin ej3" 

29 

i.e. 

Im = pa+Xb . (Z-8) 

Although formulae (2-7) and (2-6) determine the curve p(B) in principle 
for quite general values of a and b, the evaluation of p and h from 
the simultaneous integrals (2-7) is in general a formidable task. Our attention 
will henceforth be confined, therefore, to a particular luniting case, namely 
that of b <a. The angle 0o will also be taken as zero for convenrence, 
although the analysis can be carried out without this stipulation. 

3 LIMIT b/a <1 AND 61 41 

Here and henceforth the ratio b/a will be taken as small. It is found 
that the solution of (2-7) and (2-6) has a different form according as 81 is 
comparable with, or greater than, the small parameter E = b/a, and our 
attention is directed firstly to the case in which 61 is also small. Thus 
E = b/a <1 and 81 c(1, with no restrictions on their relative magnitudes. 

For SSEtil el, the trigonometrical functions in (2-7) may be uniformly 

approximated to get 
e1 

a z3 
I 

de 
(11 + hej3'* 

(3-l) 
0 

and 

I 5 
b a e de 

(U + he) 
312 

= 1{2(Jl + hey* 
A2 

- &‘I* - he1 (II + Ael)-“*} (3-2) 

0 

This pair of equations may be inverted to find 11 and X, thus 

x = cel - 2c)(2/b)"' (e, - E)-2'3 , IJ = (2/b)2'3 E2 (e, - t)-2'3 (3-3) 

where E = b/a, and p is then given by 

0(e) = (p cos e + x sm e) 
-2/ 3 

= 6.1 + Ae) 
-2/3 

(3-4) 
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According to formula (2-8), the maximum value of the integral (2-l) is 

Inl = 22’3 b1’3 (0, - b/a)1'3 , (3-5) 

to this order of approximation. If we now allow the parameter b to vary, 

subJect to the restriction b i b m, we see that the maximum value of (3-5) 

occurs when b is chosen so that (b/a) = 481, provided 401 <b,/a; other- 
w~.se the greatest value of (3-5) occurs when b assumes its largest value b . m 
Thus 

.1/3 ,213 
1 if 81<2b/a m 

I max@l) = (3-6) 
2 213 b113 ('8, - Ill bm/a)1'3 if 81 > 2bm/a . 

A general picture of the function Imax appears in Fig.2, with a specific 
example LII Flg.3. 

It 1s Important to note that for a given curve of the family (3-4), this 
maximum is attalned only at the angle e=e 1' and it is of interest to 
calculate the value of the integral 

e 
I(e) = 

I 
P“~ (et) de' 

for values of e other than e = e 1' with P given by (3-4), (3-3); it is 

Seen that I is given by Imax when e = 81, with I(e) < Imax for 
all other values of 0 # 81. 

To calculate the value of I(e), formula (3-4) is substituted into the 
integral above and leads to the result that 

I(e) = 22’3 b113 
(e, - Ep3 

(e, - 2~) ICE 2 + e(el - 2E))1'2 - El , (3-7) 

for E = b/a (1 and 81 < 1. In this formula, b = lael or b = b, according 
as e1 < 2bm/a or e1 > 2bm/a. The apparent singularity in formula (3-7) at 
e1 = 2~, when the denominator becomes zero, is rendered negligible by the 
simultaneous vanishing of the numerator. In this case, the expression for I is 
obtained by letting E + lo,, or else directly from (3-3), whence it is found 
that 
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I(e) = w3l)"3 0 , b/a Q 1, 81 *< 1, e < 81 . 

This linear dependence on 'a corresponds to the fact that the curve S, 

1" this limit, has constant radius of curvature (a/B,): evidently this radius 

1s large when e 
1 1s small, and I(e) quickly assumes a large value as e 

l"creaSeS to el' 

Graphs of I(e), given by (3-7), appear 1" Fig.3, with a = 6 metres, 

b = 1 metre and with three different values of 0 m 
= + (e, = ,,:;a) 

namely 

(4 e1 = $ (e, < 2bmja) , (b) e1 and (c) e1 = ; . 

Although equation (3-4), together with (3-3), uniquely speclfles the 

optmum curve, thx functional form 1s not Ideal for sketching Its shape. A 

transformation to a more convenient parametrx representation in terms of 

Cartesun coordinates x(e) and y(B) follows from the identltzes 

e e 

x(0) = 
I 

P(O’) cos 8’ de’ and Y(e) = 
I 

p(ef) ~1” 8’ de’ , 
0 0 

whence for the present case of small angles 8, we have 

e e 
x(e) = 

I 
de’ 

and Y(e) = 8’ de’ 
. (3-8) 

Cl (u + let) 3/2 + he’) 312 

The Integrals of (3-8) can be evaluated explicitly, and .the parameter 0 

may be eliminated to obtal" a" equation giving x in terms of y. thus 

Y = E’ x2/b(el - E) - de1 - 2~)) , O-9) 

where E = b/a is small. Agaln, the value of b is ia01 or bm, according 

as e1 Q 2bmja or e1 a 2bmla. Graphs are show" on Fig.4, with specific 

values asslgned to a, b and el. 

4 LIMIT b/a < 1, b/a & 8, 

Section 3 deals with the case where 81 is comparable with b/a, and 

the present analysis for b/a < 81 provides information for the remaining 

range of values of el' 

It is see" from (3-3) that v becomes small compared with h when 81 

increases to a value comparable with or greater than b/a; it is found-i" the 

present case (01 > b/a) that this property must be maintained in order that 
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the constants a and b given by (2-7) are such that a % b. Thus we have 

LJ <A, and (2-7) smplifies to give 

5 
b e 

I 
sin 0 d0 

(h sin 0) 312 
0 

i.e. 

where 

b = A -3'2 J@,) 

e1 

J(e,) = 
I 

(sin t) 
-l/2 

dt 
0 

(if u e A 01) 

(4-l) 

(4-Z) 

Similarly, 
e1 

cos e de -l/Z -I/ 2 
a = 

I (u cos e + h sin e) 312 = -+ {(!-I + X sin e,) -!J I 

0 

i.e. 

a = 2/o!-! 
112 

1 (if p +Z A e,) .(4-3) 

Solving for the parameters IJ and X between (4-l) and (4-3), we get 

213 
and 4 b4'3 

u =-- 
0 a2 J 

9 

and a check on the requirement !.I <A O1 used above to ensure the validity of 
(4-l) and (4-3) implies 

e1 9 bbz 
a2 J2 (4-5) 

Making use of the inequality sin t < t for positive t, it is seen + 
that 

e1 

JNl) > 
I 

dt p l/2 

t 112 
28 

1' 
0 
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where - - and the inequality (4-5) is certainly met if 

e1 >- azll , i.e. if 81 s b/a, which is the regime under discussion in the 

present section. 

lbrmulae (4-4) give h and p, whence p(B) is known from (2-6) and 

the maximum value of the integral (2-l) is given by 

2/ 3 I,=J b l/3 

to this order of approximation. Since this expression ncreases with b, it 
follows that the maximum occurs when b = bm, and 

I = .I 
z/3 b l/3 

max m (h-6) 

Note that the region of validity discussed in this sectlon and that of 
section 3 overlap when b/a < 81 <l, whence the results should be 
asymptotically equivalent. This is easily verified since in the limit 
S1 9 b/a equation (3-6) takes the form 

I 213 =2 b l/3 II3 

max e1 for e1 B b/a , 

and agrees with (4-6) above, since for small el, I s 2ei’2. 

5 SPECIAL CASE b/a 4 1, 8, = ~12 

As a special case of the results outlined in section 4, we give more 
detalled attention to the problem of optimising the integral I of (2-I) when 

e. = 0 and e 1 = */2. The parameters A and LI are given approximately by 

(4-4), and their ratio 

6= = u/x (5-l) 

is small and of the order (b/a) =. It is convenient to leave general values 
for A and u at this stage, and the analysis will recover the earlier results 
(4-4), together with slightly improved estimates. 

In order to express the equation of the optimum curve in Cartesian form, 

we write 
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t t 
x(t) = I P cos 8 dt and y(t) = 

I 
p sin 0 dt , (5-2) 

0 0 

where P 
-2/ 3 

= (u cos 0 + X sin 0) and the parameters p and h are finally 

chosen so that x(nj2) = a and y(nj2) = b. 

The integral (5-2) for x can be performed explicitly, thus 

t 

x(t) = 
I 

cos e de 2 l/2 

3/2 = l- v 

0 (Ii ~0s e + X sin e) 112 u x (p cos t + X sin t)1’2 ’ 

and since 6 = (u/X)"~ 1s small, we have 

x(t) = 2 6 
l/2 

l- 
u A M2 + sin t) 

(5-3) 

To calculate the corresponding function y(t), we have 

t t 

y(t) = 
I 

sin e d'8 z sin e de 
(5-4) 

o (U cos e + x SIP e) 
l/2 I 

0 cu 
+ X sin e) 

3/2 ' 

since u cos e 1s negligible compared with X sin 8, except near e = 0. The 

form of the function y(t) is found to be different according as the parameter 

t is comparable with, or much greater than, the small number u/A. 

(9 If tg1, but t may be smaller or larger than u/h, then the 

trlgonometrwal functions of (5-4) may be simplified to get 

y(t) = + I2(1 + t/62)1'2 - (t/62)(1 + t/s2)-"2 - 21 . 
A 

If this is combned with (5-3), with sin t replaced by t for small t, the 

parameter may be eliminated to get 

-+= 
wal)2 

(a1 6 1 1 - (x/a,) (5-5) 

with a 1 = 2/x11"2, and (5-5) 1s valid provided the angle t c dy/dx is small, 

i.e. for 1 - x/al B 6. 

(ii) If t S p/X, then we introduce an intermediate small number o 

suchthat t%'u%'p/A, and subdivide the range of integration in (5-4) to get 
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z 

l 

0 t t 

y(t) = 
I 

8dE! + sin '3 d0 c -3/ 2 

o (p + Ae)3'2 I ~ (A sin e)3'2 
h 

I 

d'0 
o (sin 0)"' 

i.e. 
t 

y(t) = A-3'2 J(t) , where J(t) = 
I 

de 
112 . U-6) 

0 ( 
sin e) 

In order to facilitate a numerical computation of the integral (5-6), it 
IS convenient to remove the square root singularity by substituting 2 sin e = s , 

and by changing the parameter from t to l/2 T = (sin t) . Thus 
T 

Y(T) = 2 F(T) , 
A3/2 

where F(T) = 
I 

ds 
o (1 - s4)'12 ' 

0 s T s 1 .(5-7) 

The corresponding equation for X(T) follows from (5-3) whence 

X(T) = 2 
l/2 

(1 - 6/T) . (5-8) 
IJ A 

The function F(r) can be computed numerically. and a graph thereof is 

presented in Flg.5; It 1s readily found from its definition (5-7) that 

F(T) % T for small T . (S-9) 

Thus the curve S is given by (S-5) for 1 - x/y%' 6, and by (S-7), 

(5-8) for 1 - x/a1 e 1; the two representations are readily shown to be 

asymptotically equivalent in then common region 6 < 1 - x/al < 1. 

The constants h and p have to be chosen so that x = a and y = b 
at the end point T = 1. Thus if F(1) is written as Fl, '(5-7) and (5-g) 
imply 

2F1 b = - and a = 2 
312 112 

(1 - !J1/2/A1'2) , 
x P x 

whose solution for small p/h (1.e. small b/a) is given as 

Au * 2FI = - b and u ‘f2 ,= (y’(~-~) . (S-10) 

If only the leading term of (5-10) is retained, with b2/a2Ft neglected, then 
we recover an earlier result (4-4). The higher order term is retained here, 

since otherwise the end point of the curve, obtained by setting ~=l in 

(5-7), (5-g). would be situated at 
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y = b and x= a(1 - b/a) ; 

183 

although this 1s correct to our first order approximation for small b/a, it 
has an unacceptable error in the x-coordinate for finite values of b/a. 

With the values (S-10) for A and p, the associated constants 6 and 

al are given by 

6 = AL.-- es - b2 b 

aF1 a'Ft aF and 
1 al = a++ . (S-11) 

1 

The curve S is then given by 

b/a,) 
2 

-y?= 

a16 1 - (x/a,) ' 
for 1 - (x/a,) > y ,_ LG, 

and by 

X(T) = al U - 6/r) , Y(T) = b FCT)/F(~) , for 1 - (x/a,) < 1, (5-13) 

where F(T) is given by (5-7) and is sketched in Fig.5. 

Note that the value of x at the end point T = 1 is given by 

x(l) = (a+t)(1--$-) = a+O(b/aj2 , 

and is much closer to its correct value than that, x = a + O(b/a), obtained 
by retaining only the leading term of (S-10). 

A sketch of the curve S is shown in Fig.4, for particular values of the 
parameters a and b. 

According to the general theory of section 2, the curve S described 
above is such that the value of the integral 

e 
I(e) = p113 de 

I 
0 

is optimised when 0 takes the value n/2, when I takes the value 

I(n/2) = ua + Xb Z= b . (5-14) 



183 

It is of interest 

0, in order to compare 

re 

to evaluate the integral I at intermediate values of 
with the corresponding function (3-7). We have 

0 
I(8) = 

I 
dt it: dt 

o (11 cos t + X sin t)"' 
l/2 ' (5-15) 

+ A sin t) 

37 

and the character of the integral is different according as 8 is comparable 
with, or much larger than, the small parameter 62 = p/h. 

W If e @l, but may be large or small compared with 62 , then the 
sine function of (S-15) may be replaced by t, to get 

r(e) = i {cp + he)“’ - p1’2] 

i.e. 

- l/3 
I = 2 {(ta + 62)l'* - 61 for e-S1 , (S-16) 

where 6 e b/aF 1' 
(ii) If eB6, then we introduce a small parameter 0 such that 

f3%'0%6; whence 
0 e e 

I ,= 
I 

dt 
112 = x -I/* + 

cl CA sin t) J dt 

0 ( s3.n t) 112 

i.e. 

-I/ 3 
I F((sin '8) l/2 ) .for e 9 6 (5-17) 

The two approximations (5-16), (S-17) are asymptotically equivalent in 
their common region of validity 6 < 8 4 1, and together provide information 
regarding I for all values of 8 from 0 to n/2. A sketch is shown on 
Flg.2, with special values for a, b. 

6 CONCLUSION e 
The integral I(8) = 

I 
p1'3 (et) de' can be maximised for a given value 

0 
e = e1 by choosing a suitable path with end points at (0,O) and (a,b), 
where a is fued and b has to be not greater than a fured value b . m 
Thus for any given direction 'a1 at the end point an optimum curve is defined, 
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whence the largest possible value I max@l) is found. Since a different 

curve S 1s appropriate for each chosen value of 81 it follows that the 

value of r(e), evaluated on a curve chosen to maximise I(el) takes its 

optimum ~ahe when 0 = 01, with I(e) < Imax for all other angles 
e f el. The general shape of I-(S) is shown on Fig.2, and a more specific 

graph 1s drawn on Flg.3, with definite values for a and b In* 

General results are given in the text for any S1, b and a, subject 

to the llmlting assumption b/a < 1. Particular attention is directed to three 

cases: 

Cd curve S chosen to optimise I(fJl), with e1 small 

(b) curve S chosen to optimise I(e,), with S1 = 2bm/a 

Cc) curve S chosen to optimise I(e,), with S1 = n/2. 

The functions I(8) are shown in Fig.3 for each of these cases, with the 

corresponding curves S sketched in Fig.4. It is seen that for e1 G 2bm/a, 
the curve that maximises I(81) is simply a circular arc with end points at 

(O,O) and (a, dae,). 

The 'best' curve is such that I(e) is close to Imax for as large 

a range of values of e as possible, with particular weight given to smaller 
~.aes 0f 8, since it is desired to produce a high value of I(e) as SOO* 2.~ 
possible with increasing 8. Of the two cases (b) and (c) shown in Fig.3, it is 
seen that I 

Cb) 
exceeds I Cc) for values of 0 between about l/5 and 215 

radians, with I Cc) greater than Icb) for other values of '8. 

Finally, it should be remarked that the curves for case (c) on Figs.3 and 
4, give a qualitative, rather than quantitatively accurate, picture of the 
precise shapes. Each of these curves is specified by a pair of formulae (5-16). 
(5-17) and (5-12), (5-13) that match to form smooth curves in the asymptotic 

limit b/a -f 0; they do not, of course, match perfectly when b/a is finite, 
and b/a = l/6 in the illustrative examples. The correct curves can be 
calculated numerically, using (5-13) and (5-3), (5-4),with h and p given by 
(5-10). 
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