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SUMMARY 

An integral method for calculating the turbulent wall boundary 
layers in axial flow turbomachines is described. The method is applied to 
flow through annular cascades and sjngle and multistage machines. Agreement 

between prediction and experiment is good provided lift coefficients ad 
flow deflections of the blade rows sre small. 
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Nomenclature 

velocity in boundary layer 

velocity at edge of boundary layer L 

wall shear stress coefficient, TJ&C2 

blade force 

static pressure 

flow angle relative to axial direction 

absolute thickness of boundary layer 

displacement thickness 

momentum thickness 

difference between a et the wall and a at the edge of the 
boundary layer 

3.1416 

Coles' wake faator 

density 

shear stress 

shear stress at wall 

wall shear stress parameter, JcfJi 

co-ordinates, x axial, y tangential, e perpendicular to wall 

co-ordinates, 9 streamline, n normal to streamline, s perpendicular 
to wall 

I./ 
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1. Introduction 

Several attempts have been made to calculate the development of the 
annulus wall boundary layer in axial flow turbomachines. Three approaches 
may be followed:- 

(i) An inviscid approach, following an entry shear flow through the 
machine, oalculatlng the angle variations by secondary flow 
analysis and using these angles in a three-dimensional flow 
calculation, (e.g., Horlock (I 963)). 

(ii) A boundary layer approach, in which integral momentum equations 
are written for the boundary layer, the blade force being 
eliminated by subtraotion of the free stream momentum equation 
from the boundary layer momentum equation before integration, 
(e.g., Railly and Howard (I 962) and Stratford (1967)). 

(iii) Use of empirical data for the growth of the bounda 
s blade row, (e.g., Hanley (1968) and Smith (1970) 7 

layer aoross 
. 

Gregory-Smith (1970) has shown that the first approach gives 
accurate estimates of the atidal velocity proflles for flow through an 
isolated rotor, if the exit boundary layer distribution is known (from which 
the secondary flow anglxstribution and loss distribution may be 
determined). However, the problem of making a first estimate of this 
exit profile remains. 

The approach followed here is essentially similar to that followed 
by Railly and Howard. The analysis, leading to two momentum integral 
equations (written In s, n co-ordinates, along and normal to the streamline 
outside the boundary layer) was outlined by Horlook (1970), and is 
reproduced briefly in the Appendix. Railly and Howard used axial (x) and 
tangential (y) co-ordinates, as &.a Hansen and Herzig (1956); Stratford 
simply writes the x momentum equation assuming collateral flow. In all 
these cases it is assume6 that the blade 9oroe may be eliminated in the 
formation of the momentum integral equations. 

It should be explained that the validity of these equations, and 
indeed of the form of the "difference" momentum equation (A5) (see Appendix) 
before integration, 

1 a; 
-- = (C.v) c -(Z.v)i 
P d= P d= 

where C and c are mean velocities across the blade where C and c are mean velocities across the blade 
assumption that various terms are neglected in the assumption that various terms are neglected in the 
averaged aoross the pitch (Al, A2). averaged aoross the pitch (Al, A2). Essentially, Essentially, 

pitch, is limited by the 
momentum equations 
this amounts to assuming 

(i) That variations in flow across the blade pitch are small, which 
may be shown to imply that the local blade lift coefficient is 
small (C,/4<<1). 

(ii) That variations in flow through the boundary layer are also small. 
This implies that the change of the flow angle from free stream 
to wall is small. 

(iii) That tip clearance effects may be ignored. 

Thus/ 
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Thus not only is the bounder-y layer assumption made (the pressure 
distribution is determined by the ma=" stream and transmitted through the 
boundary layer) but also the idea of a small flow perturbation from the 
mainstream flow is implied, which is essentw.lly the basic assumption of 
secondary flow analysis. 

These are quite severe restrlctrons on the program that has been 
developed. But several important points result from the calculations that 
have been made, end thesa are discussed in detail below. 

2. Analysis 

The method of analysis is essentially a variation of a 
three-dimensional boundary layer analysis developed by Hoadley (1970) for 
swirling flow in a conice;. diffuser. (This in turn was a" extension of a 
two-dimensional boundary layer analysis described by Lewkowicz et al. 
(1970).) 

Hoadley wrote the momentum integral equations along t'he s (streamline) 
and n (normal) dlrectlons, for axisymmetric flow. By (justifiably) 
assuming axlsymmetrlc flow he could express each of these two equations in 
terms of one inde endent variable x, with the flow angle outside the 
boundary layer (a P known as a functlo" of x. Using also the entrainment 
equation derived by Cumpsty and Head (1967) and Coles' (1956) expression 
for the wall shear stress, he obtained four differential equations. By 
assumz."g the streamwise flow could be represented by Coles' velocity profile, 
and that the cross flow could be represented by the Mager (1952) profile, all 
four differential equations could be expressed in terms of four dependent 
variables, 

6 (boundary layer thickness) 

n (Coles' wake factor) 

Cf (skin friction coefficient> 

E 
w (the difference between flow angle at the wall 

and flow angle in the mainstream) 

Simultaneous solution of the equations by a Runge-Kutta method gave 
fair predictions of the swirling flow observed by Hoadley in the conical 
diffuser. 

A similar approach has been followed in tackUng the problem of 
the flow through a blade row. Equation (A5) is valid for the averaged 
boundary layer flow in the blade passage within the assumptions listed above. 
Integration of this equation yields the momentum integral equations (A6, A7) 
of the Appendix, but it IS important to note that since the mean tangentlal 
velocity (Cy) changes in the flow through a blade row, a" extra term (due to 

ai? 
the blade forces and represented by the "smeared" vorticity c = 2) 

dx 
appears in the equation, compared with Hoadley's original form. A similar 
term arlses ic the entrainment equation, but the wall shear stress law is 
assumed to be unchanged from Hoadley's formation. 

The/ 
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The differential equations for solution are thus a simple 
mpdification of Hoadley's original equations. The input has been simplified 
considerably, so that the only data required are starting values for 6, ll, 
0 and 6 
2 

w, together with free stream data for Cx(x) (mean velooity) and 

a(x) (mean flow angle). Values of the dependent parameters are oalculated 
at downstream stations, and from these the streamwise and cross flow profiles 
are determined, together with the axial displacement and momentum thicknesses, 

One.important point is that by specifying Ex and G(X) (mean 

axial velocity and mean absolute flow angle) there is no requirement to say 
whether the blade row through which the fluid flows is stationary or rotating. 
Equation (A4) is written in absolute oo-ordinated, as are the momentum 
integral equations, and all are valid within the limits of the skated 
assumptions for the averaged flow through rotors of stators. Stagnation 
pressure changes do take place 
force and velocity (P.c) 

in rotors where the dot product of blade 
is non-sero, but this does not change equation (A5). 

Thus the boundary layer flow through a turbine stator row with given E (x) 
x- 

a_nd i(x) is the same as that through a compressor rotor row with the same 
Cx(x) ana a(x). 

3. Calculations 

Attempts have been made to calculate three separate boundary layer 
flows:- 

(a) the flow through an isolated rotating cascade (described by 
Gregory-Smith (1970)). The annulus wall boundary layer on 
the casing is studied. 

(b) The casing bounde,ry layer flow through a complete compressor 
stage of three rows (experiments described by Horlock (1963)). 

(c) the flow through a multi-stage Rolls-Royce axial compressor. 

3(a) Flow through an isolated rotating cascade 

Fig.1 shows the axial velocity and angle variations through the 
boundary layer at exit from Gregory-Smith's isolated rotor. The entry 
boundary layer was assumed to be a flat plate boundary layer (ll = 0.55) 
and from the measured displacement thickness So, the skin friction cf and 

the "thickness" 6 were derived from the Coles profiles using the equations 

s* = 6 
J 

2 (1 + n)/o.41 
2 

2 
and 

J- 
- = 

Of 
& loge ( ye": y) + 5.0 + & 

where %* is the Reynolds number based on displacement thickness. 

Gregory-Smith/ 
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Gregory-Smith had calculated the angle and axial velocity variations 
at the casing from the Wu/Marsh program (Marsh_ (1268)) assuming that the 
annulus was running full; and his values of Cx, cc(x) were used as input 

to the program. 

Agreement between theory and experiment on axial velocity profiles 
is good, and the cro_ss-flow is predicted quite well, although the assumption 
that the value of a(x) at the casing is the angle outside the boundary 
layer mars the cross flow prediction. The prediction of displacement and 
momentum thickness growth is shown in Fig.2 and a small improvement ever 
Stratford's method can be seen. 

It should be emphasised that this flow is one of small bverall 
deflection, and that the limiting assumptions listed in the introduction are 
not excse&2a in this calculation. 

j(b) Flow through an axial compressor stage 

The boundary layer flow through a single stags - guide vane, 
rotor, stator - was measured by Horlock (1963). Results for a calculation 
of this flow are given in Figs.3 and 4 (axial velocity profiles and angle 
variations). Although Il becomes negative it does not drop below -1 in the 
calculations and the Coles profile still has validity. Many "aerodynamic" 
boundary layer experiments achieve negative values of ll in accelerating 
flow, such as those of Herring and Norbury as shown by Coles and Hirst (1968). 

The axial velocity profiles are quite well predicted, but.the 
cress flow predictions are not as good. Clearly the Mager cress flow 
profile is not adequate to describe cress flows in turbomachine stages with _ 
large deflection. (Note that for the purpose of these calculations, free 
stream values of i(x) and Gx(x) were taken from the experimental data, 
the edge of the boundary layer being assumed to be at the point of maximum 
stagnation pressure.) 

, 

It is of interest to note that gude vans and rotor produce 
effectively a double "acceleration", dropping II progressively. The sta%or 
diffuses the flow, increasing ll back to about zero, (i.e., the boundary 
layer is virtually logarithmic). In view of the large changes in H 
produced by the rapid changes in free stream conditions it is remarkable that 
the axial-velocity profiles are so well predIcted. The large changes in 
E w and a produce the peak and subsequent decrease in the calculated axial 
displacement thickness shown in Fig.5. 

3(c) Flow through a multi-stage compressor 

Rolls-Royce provided .a streamline curvature calculation of the 
flow through a four-stage Avon compressor. The values of i(x) &nd Cx(x) 

at the casing were used to calculate the values of 6,*, Il. cf and SW 
through the four stages. 
three rows. 

6x* and H are shown in Fig.6, for the first 

Again the pattern of "double acceleration" in guide vane and first 
rotor was apparent, but the calculation then loses validity because H 
drops below -1. Values of 6x* for a Stratford calculation are also shown. 

4./ 
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4. Discussion 

Within the limitations initially stated - small variations of 
flow across the pitch (small lift coefficient), small variations through the 
boundary layer (small overall deflection), and negligible effects of tip 
clearance - the present method for calculating boundary layers through blade 
rows gives reasonable results. For example, the flow through Gregory-Smith's 
rotor is well predicted. However in conditions of large overall deflection 
and lift coefficient, (as exist in turbine blade rows or large deflection 
guide vane,rows), the validity of the method is open to doubt. 

The most striking feature of the compressor calculations described 
in Sections 3(b) and 3(c) is that the boundary layers never appear to be 
subjected to conditions which produce large values of the Coles wake 
parameter Il. This is in conflict with the conditions observed by Hanley (1968) 
in cascades (rapidly increasing Sx*, g iving a wall stall at large n). 
However, the cross flow model used in the present calculation method does not 
allow for the under turning near the outer edge of the boundary layer which 
was present in Hanley's experiments. 

There is room for several improvements in the analysis described 
here:- 

' (i) A better model for the cross flow should be used. It is known 
that the ceoss flow proflle depends on the blade aspeot ratio 
and pitch-chord ratio (see Hawthorne (1955)). Use of a 
semi-analytical form for the cross flow profile in line with 
seoondar.. flow predictions was suggested by Mellor and Wood (1970). 

(ii) The lxnitatlons of small lift coefficient and small deflection 
should be removed. Marsh (1970) suggests that equation (A5) 
is valid on a mean stream surface but that the averaged momentum 
integral equations (A6, A7) should contain an extra body force 
term which was overlooked into the present analysis. The 
significance of this term is currently being assessed. 

(iii) The effects of tip clearance should be allowed for. 

(iv) Alternative entrainment assumptions should be tested, especially 
under conditions of rapid acceleration. 

5. Conclusions 

A boundary layer calculation method! for determining the end wall 
flow through blade rows of an axial turbomachlne, has been compared with a 
range of experiments. For small deflection flows through blades of low 
lift coefficient, the method works satisfactorily. But for flows through 
blades of large deflection, the cross flow is poorly predicted and this 
leads to iiicorrect prediction of displacement thickness. It is expected 
that the calculation method would be improved if .a more realistic cross flow 
model is used. 
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APPXNDIX 

Horlock (1970) has derived momentum integral equations for the 
averaged boundary layer flow. 

If the local velocities within the layer in an x, y, co-ordinate 
system are c*' c 

Y 
, then the equations of motion averaged across the pitch S 

of the blade sre given by 

aFx 1 a; 
(PP 

- P,) aGx a; 
----- tan ab = Cx - + 0 -5 a.. (Al) 
az P b PS ax ' a2 

a; 
Y -+ 

(Pp - P,) tan ob 
= G 3.; 2 

a2 PS x ax ’ az 
. . . W) 

where TX* Tz are the shear stress, p the pressure, subscripts p and s 
indicate pressure and suction surfaces and a superscript - indicates an 
average across the pitch. 
by the angle o,h). 

(The blades are assumed to be thin and defined 

Neglect of second order terms in the above equations in comparison 
with those retained involves assuming that ratios of terms such as 

are small, where c;, "$ are the maximum variations of the axial and 
, 

tangential velocities from the mean values (i.e., ox = Dx + cx, 

"Y = Y 
0 + 0'). 

Y 

0’ 

x may be shown to be of order - (F 
0 

y/ 
2 p cx2 seo2abb) where Fy 

x 
is the tangential force 

I 
b (P, - p,) dx and b is the blade axial chord. 
0 

This implies that cpx' C#+ and cf/s is of similar order of 

magnitude. It may be shown that X is or order CJ4. This is satisfied 

by lightly loaded compressor blades but not by highly loaded turbine blades. 

With/ 
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With x and similar terms small equations (Al) and (A2) may be 
written 

1 a- v- 
--I + T - -Et = (E.v)G . . . (A3) 

P as P 

,where vector quantities ars now mean across the pitch, and 

P = pP - ps set 

PS 
'b 

In the main stream 

? - 5 = (E.V)E 
P 

. . . (AA) 

. . . 04) 

and subtraction of (A4) from (A3) yields 

1 a- 
-2 + (E.v)E = (,.v), . . . (A5) 
P de 

A mere general discussion of this problem for a mean stream surface, 
without the Bssumption of x small, is given by Marsh (1970). 

From integration of (A5) between s = 0 and fl = 6, the 
momentum equations may be derived in the form 

3+ 1 dC dei2+-- 
as an ( > c as (281 i + 6$ - K, (e,, - ,e2*) 

n 

c 
- - 

c (*e,2 
+ 62+) = 5 2 ocls SW 

PC 
. . . (A6) 

2+ de22 
2 dC I dC 

-+- - 
dS an C ( 1 da n 

e21 + c d, s 
( ) 

(e,, + e,, + hi*) 

- 2K,e2, + E CO,, + ii,+ - e,,) = 5 2 sin s 

PC 
W 

where momentum and displacement thickness are 
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and C is the resultant velocity at the edge of the boundary layer, K, is 
the convergence/divergence of the streamlines at the edge of the layer, and 
t; is the vortioity at the edge in the z direction. 

For an axisymmetrio flow, these equations may be written in terms 

of the single independent variable x, the flow angle a(x), and the axial 

velocity cx(x) outside the boundary layer. 

The entrainment equation may be written 

” (6 
a6 I dC 

dS 
- 6,*) - -2' = F (Hs - 6*) - (6 - ST) 

an 
- - _ K, 
c as 

62't; -- . . . b3) 
c 

where F is Head's (1958) entrainment function and H6 - 6* = 
6 - $0 

ell 

The wall shear stress equation in differential form is 

I d6 2dl 1 dC 
--+ -+ -- 

6 as ds c as 
. . . (A9) 

where 

Writing the streamwise velocity profile in Coles' form 

c - 0 5x2 z 
s =- 1 + 003 - - log, - 

C 6 6_ -I 
. . . (AIO) 

and the cross flow velocity profile in Mager's form 

C/ 
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equation8 (A6 - (A9) may be reduced to the farm 

d6 an dcf dC 
Ai d, + Bi d, + Ci ; + 

Di 2 = EL 

where i = 1, 2, 3, 4 and Ai, Bi, Ci,,Di and El ace functions of 

6,n, Cf’ ew9 Ii(x) and E,(x). (AIL?) may be solved by Runge-Kutta techniques. 

PAC 
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