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SUMMARY

An integral method for calculating the turbulent wall boundary
layers in axial flow turbomachines is described. The method is applied to
flow through annular cascades and single and multistage machines. Agreement
batween prediction and experiment is good provided 1ift coefficients and
flow deflections of the blade rows are small,

Nomenclature/

‘M

*Replaces A.R.C.31 955



Nomenclature
c veloclty in boundary layer
C velocity at edge of boundary layer
o, wall shear stress coefficient, rw/%pcz
£ blade force
b static pressure
a flow angle relative to axial direction
& absolute thickness of boundary layer
&* displacement thickness
i) momentum thickness
€ difference between a at the wall and o at the edge of the
v boundary layer
= 3.6
n Coles' wake factor
p density
T shear stress
T shear stress at wall
o wall shear stress parameter, J:;75
X,¥,2 co-ordinates, x axlal, y tangential, =z perpendicular to wall
8,n,% co-ordinates, s streamline, n normal to streamline, s perpendicular

to wall



1. Introduction

Several attempts have been made to calculate the development of the
annulus wall boundary layer in axial flow turbomachines. Three approaches
may be followed:-

(i) An inviscid approach, followlng an entry shear flow through the
machine, calculating the angle variations by secondary flow
analysis and using these angles in a three-dimensional flow
calculation, (e.g., Horlock (1963)).

(i1) A boundary layer approach, in which integral momentum equations
are written for the boundary layer, the blade force being
eliminated by subtraction of the free stream momentum egquation
from the boundary layer momentum equation before integration,
(e.g., Railly and Howard (1962) and Stratford (1967)).

(411) Use of empirical data for the growth of the boundary layer across
g blade row, (e.g., Henley (1968) and Smith (1970§¥.

Gregory-Smith (1970) has shown that the first approach gives
accurate estimates of the axial velocity profiles for flow through an
isolated rotor, if the exit boundary layer distribution is known (from which
the secondary flow angle distribution and loss distribution may be
determined), However, the problem of making a first estimate of this
exit profile remains.

The approach followed here is essentially similar to that followed
by Railly and Howard. The analysis, leading to two momentum integral
equations (written in s, n co-ordinates, along and normal to the streamline
outside the boundary layer) was outlined by Horlock (1970), and is
reproduced briefly in the Appendix. Railly and Howard used axial (x) and
tangential (y) co-ordinates, as did Hansen and Herzig (1956); Stratford
simply writes the x momentum equation assuming collateral flow., In all
these cases it is assumed that the blade force may be eliminated in the
formation of the momentum integral equations.

It should be explained that the validity of these equations, and

indeed of the form of the "difference" momentum equation (A5) (see Appendix)
before integration,

... (45)

-1

= (C.v) ¢ -(c.V)e

FJJIFD
3]

1
P

where C and ¢ are mean velocities across the blade pitch, is limited by the
assumption that various terms are neglected in the momentum equations
averaged across the pitch (A1, A2). Essentially, this amounts to assuming

(i) That variations in flow across the blade pitch are small, which
may be shown to imply that the local blade lift coefficient is
small (CL/l& «<1),

(ii) That variations in flow through the boundary layer are also small.
This implies that the change of the flow angle from free stream
to wall is small.,

(1ii) That tip clearance effects may be ignored.

Thus/
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Thus not only is the boundary layer assumption made (the pressure
distribution is determined by the main stream and transmitted through the
boundary layer) but also the idea of a small flow perturbation from the
mainstream flow is implied, which is essentially the basic assumptlion of
secondary flow analysis.

These are quite severe restrictions on the program that has been
developed. But several important points result from the calculations that
have been made, end these ave discussed in detail below.

2. Analysis

The method of analysis 1s essentially a variation of a
three~dimensional boundary layer analysis developed by Hoadley (1970) for
swirling flow in a conicel diffuser. (This in turn was an extension of a
two~dimensional boundary layer analysis described by Lewkowicz et al.

(1970).)

Hoadley wrote the momentum integral equations along the s (streamline)
and n (normal) directions, for axisymmetric flow. By (justifiably)
assuming axisymmetric flow he could express each of these two equations in
terms of one independent variable x, with the flow angle outside the
boundary layer (a) known as a function of x. Using also the sntrainment
equation derived by Cumpsty and Head (1967) and Coles' (1956) expression
for the wall shear stress, he obtained four differentisl equations. By
assuming the streamwise flow could be represented by Coles' velocity profile,
and that the cross flow could be repressnted by the Mager (1952) profile, all
four differential equations could be expressed in terms of four dependent
varlables,

8 (boundary layer thickness)
11 (Coles' wake factor)

¢ (skin friction coefficient)

£ (the difference between flow angle at the wall
and flow angle in the mainstream)

Simultanecus solution of the equations by a Runge-Kutta method gave
fair predictions of the swirling flow observed by Hoadley in the conical
diffuser.

A similar approach has been followed in tackling the problem of
the flow through a blade row. Equation (A5) is valid for the averaged
boundary layer flow in the blade passage within the assumptions listed above.
Integration of this equation yields the momentum integral equations (A6, A7)
of the fAppendix, but it 1s important to note that since the mean tangential
velocity (Cy) changes in the flow through a blade row, an extra term (due to

dﬁy

the blade forces and represented by the "smeared" vorticity & = — )

dx
appears in the equation, compared with Hoadley's original form. A similar
term arises in the entrainment equation, but the wall shear stress law is
assumed to be unchanged from Hoadley's formation.

The/
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The differentlial equations for solution are thus a simple
modification of Hoadley's original equations, The input has been simplified
considerably, so that the only data required are starting values for O, I,

o, and €, together with free stream data for Cx(x) (mean velocity) and

a(x) (mean flow angle). Values of the dependent parameters ars calculated
at downstream stations, and from these the streamwise and cross flow profiles
are determined, together with the axial displacement and momentum thicknessses,

, 5 c & ¢ c
6 = [ (1 - _—x> az, 8 _ = [ X (1 - _—x> dz
o C o G c
X X X

One.important point is that by specifying Ex and a(x) (mean

axial velocity and mean absolute flow angle) there is no requirement to say
whether the blade row through which the fluid flows is stationary or rotating.
Bquation (A4) is written in absolute co-ordinated, as are the momentum
integral equations, and all are valid within the limits of the stated
assumptions for the averaged flow through rotors of stators. Stagnation
pressure changes do take place in rotors where the dot product of blade

force and velocity (f.C) is non-zero, but this does not change equation (A5).
Thus the boundary layer flow through a turbine stator row with given Cx(x)

and a(x) is the same as that through a compressor rotor row with the same
Cx(x) and a(x).

3. Calculations

Attempts have been made to calculate three separate boundary layer
flows:-

(a) the flow through an isolated rotating cascade (described by
Gregory-Smith (1970)). The annulus wall boundery laysr on
the casing is studied.

b) The casing boundary layer flow through a complete compressor
g
stage of three rows (experiments described by Horlock (1963)).

(¢) the flow through a multi-stage Rolls-Royce axial compressor,

3(a) ¥low through an isolated rotating cascade

Fig.1 shows the axial velocity and angle variations through the
boundary layer at exit from Gregory-Smith's isolated rotor., The entry
boundary layer was assumed to be a flat plate boundary layer (N = 0.55)
and from the measured displacement thickness 6%, the skin friction cp and

the "thickness" & were derived from the Coles profiles using the equations

Ce

6 = &6 [— (1 + m}fo.m
2
2 1 0.41 Re* 20
and — = —— log (————-) + 5.0 +
c 0,41 € 1 + N 0.41

f

where Ra* is the Reynolds number based on displacement thickness.

Gregory-Smith/
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Gregory-Smith had calculated the angle and axial velocity variations
at the casing from the Wu/Marsh program (Marsh (41968)) assuming that the
annulus was running full, and his values of Cx’ a(x) were used as input

to the progranm.

Agreement between theory and expariment on axial velocity prefiles
is good, and the cross-flow is predicted quite well, although the assumption
that the value of a(x) at the casing is the angle outside the boundary
layer mars the cross flow prediction. The prediction of dlsplacement and
momentum thickness growth is shown in Fig.2 and a small improvement over
Stratford's method can be seen,

It should be emphasised that this flow is one of small oOverall
deflection, and that the limiting assumptions listed in the introduction are
not excesded in this calculation.

3(b) Flow through an axial compressor_ stage

The boundary layer flow through a single stage - guide wvane,
rotor, stator - was measured by Horleck (1963). Results for a calculation
of this flow are given in Figs.3 and 4 (axial velocity profiles and angle
variations). Although I becomes negative it does not drop below -1 in the
caloulations and the Coles profile still has wvalidity. Many "aesrodynamic"
boundary layer experiments achieve negative values of 11 in accelerating
flow, such as those of Herring and Norbury as shown by Coles and Hirst (1968).

The axial velocity profiles are quite well predicted, but.the
cross flow predictions are not as good. Clearly the Mager cross flow
profile is not adequate to describe cross flows in turbomachine stages with
large deflection. (Note that for the purpose of these calculations, free
stream values of a(x) and C (x) were taken from the experimental data,

the edge of the boundary layer belng assumed to be at the point of maximum
stagnation pressurs.)

It is of interest to note that guide vans and rotor produce
effectively a double "acceleration", dropping Tl progressively. The stator
diffuses the flow, increasing N back to about zero, (i.e., the boundary
layer is virtually logarithmic). In view of the large changes in I
produced by the rapid changes in free stream conditions it 1s remarkable that
the axial velocity profiles are so well predicted. The large changes in
€ and o produce the peak and subsequent decrease in the calculated axisl

displacement thickness shown in Fig.b.

3(¢c) Flow through a multi-stage compressor

Rolls-Royce provided & streamline curvature calculation of the
flow through a four-stage Avon compressor. The values of a(x) and C (x)

at the casing were used to calculate the values of Sx*, m, c, and €

through the four stages. Bx* and 0 are shown in Fig.6, for the first
three rows,

Again the patternm of "double acceleration" in guide vane and first

rotor was apparent, but the calculation then loses validity because T
drops below -1, Values of 5 * for a Stratford calculation are also shown,

b/



L. Discussion

Within the limitations initially stated - small variations of
flow across the pitch (small 1ift coefficient), small variations through the
boundary layer (small overall deflection), and negligible effects of tip
clearance - the present meihod for calculating boundary layers through blade
rows glves reasonable results. TFor exsmple, the flow through Gregory~Smith's
rotor is well predicted. However in conditions of large overall deflection
and 11ft coefficient, (as exist in turbine blade rows or large deflection
guide vane ,rows), the validity of the method is open to doubt.

The most striking feature of the compressor calculations described
in Sections 3(b) and 3(c) is that the boundary layers never appear to be
subjected to conditions which produce large values of the Coles wake
parameter II, This is in conflict with the conditions observed by Hanley {1968)
in cascades (rapidly increasing Gx‘, giving a wall stall at large M),

However, the oross flow model used in the present calculation method does not
allow for the under turning near the outer edge of the boundary layer which
was present in Hanley's experiments.

There is room for several improvements in the analysls described
hera: -

(i) A vetter model for the cross flow should be used. It is known
thet the cross flow profile depends on the blade aspect ratio
and pitch-chord ratio (see Hawthorne (1955)). Use of a
semi-analytical form for the cross flow profile in line with
secondary flow predictions was suggested by Mellor and Wood (1970).

(11) The laimitations of small 1lift coefficient and small deflection
should be removed. Marsh (1970) suggests that equation {A5)
is valid on a mean stream surface but that the averaged momentum
integral equations (46, A7) should contain an extra body force
term which was overlooked lnto the present analysis. The
significance of this term is currently being assessed.

(ii1) The effects of tip clearance should be allowed for.

(iv) Alternative entrainment assumptions should be tested, especially
under conditions of rapid acceleration.

5. Coneclusions

A boundary layer calculation method, for determining the end wall
flow through blade rows of an axial turbomachine, has been compared with a
range of experiments, For small deflection flows through blades of low
lift goefficient, the method works satisfactorily. But for flows through
blades of large deflection, the cross flow is poorly predicted and this
loads to ihcorrect prediction of displacement thickness. It is expected
that the calculation method would be improved if a mors realistic cross flow
model is used.
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APPENDIX

Horlock (1970) has derived momentum integral equations for the
averaged boundary layer flow.

If the local veloclities within the layer in an x, y, co-ordinate
system are c. cy, then the squations of motion averaged across the pltch 3

of the blade are given by

ar 1 dp (p. - p) dc do
_* - - _ - P 5 tan @ = Ex X 4+ 0 X ees (A1)
dz p dx pS ax 2 oz
aT - p.) tan 3o o
Ty + (pp ps ab = 6 'l + 3 —I sen (A?—)
x 2
3z pS ax dz

where Tyr T, @re the shear stress, p the pressure, subscripts p and s

indicate pressure and suction surfaces and a superscript  indicates an
average across the pitch. (The blades are assumed to be thin and defined
by the angle ab).

Neglect of second order terms in the above equations in comparison
with those retained involves assuming that ratios of terms such as

d T
ot (c' cl)
dx
y = & x5
_ de
cx -4
dx

are small, where c;, c& are the maximum variations of the axial and

tangential velocities from the mean values (i.e., o = Ex + oo,
e = o + c').
y b y

c'

x -2 2
- be sh to be of order (F /2p o~ sec a, b) where F
- may be shown ) ( y/ P o, o ) v
x b
is the tangential force f (Pp - Ps) dx and b 1s the blade axlal chord.
0]
This implies that c¢!/o = CL/# and c}/Ey ig of similar order of
magnitude. It may be shown that % 1s or order CD/A. This 1s satisfied
by lightly loaded compressor blades but not by ﬁighly loaded turbine blades,

With/
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With %X and similar terms small equations (A1) and (A2) may be

written
1 d- V-
SR N R RO vee (83)
p dz p
where vector quantities are now mean across the pitch, and
- p - P
Ff o= 2 8 a0 ay eee (AL)
pS
In the main stream
- Vs = =
f - - = (C‘v)c ss s (M)
P
and subtraction of (AL) from (A3) yields
1 a- o _
b —l + (C.V)c = (O.V)G s (AS)
p dz

A more general discussion of this problem for a mean stream surface,
without the assumption of x small, is given by Marsh (1970).

From integration of (AS5) between z = 0 and gz = &, the
momentum equations may be derived in the form

do ae 1 ,4C

LU 2, - ——-) (20,, + 51‘) - K, (0, - 6,,)
ds dn C \ds /n
* Tw
H pC

46 do 2 4C 1 d4c
21, 2 , ( ——-) Byy + - ( ——-) (622 + 0, + 81*)
ds dn C \ds /n C\dn /s

Z T
+ - (911 + 81‘ - 622) = 2 2 gin €, ees (A7)
H pG

- 0

where momentum and displacement thickness are

&/
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and C 1is the resultant velocity at the edge of the boundary layer, K1 is

the convergence/divergence of the streamlines at the edge of the layer, and
Z 1is the vorticity at the edge in the 2z direction,

For an axisymmetric flow, these equations may be written in terms
of the single independent variable =x, the flow angle a(x), and the axial
veloecity Ex(x) outside the boundary layer.

The entrainment equation may be written

d ad 1 d4acC
—-(5-61‘)-——2*=F(H8-6*)-(6-61*)(—-—-—1(1)

ds dn C ds
5. *
- 2Z‘ ooo(AB)
c
& - 61*
. > *
where F 1s Head's (1958) entrainment function and H8 - & =
914
The wall shear stress esquation in differential form is
1 a6 2dn 1 0. 41 d 1 4¢
e )
—-——+—-——+<—+ 2)—-——— ... (A9
5 ds ds w w ds ¢ 4ds
c
where o = -—f
2

Writing the streamwise velocity profile in Coles' form

C - ¢ 1 cf ™G z
—_% —_ IE (1 + cos ——) - loge —] ee. (A10)
c 0.41 2 - 8 5.

end the cross flow velocity profile in Mager's form
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c z |2
_1'1 = (1 - e ) tan €
c 5 W

3

equations (A6 - (A9) may be reduced to the form

as an deg dew
A, — + B, — 4+ 6, — &+ D, — = E
idx :1.‘1x idx id.x i
where 1 = 1, 2, 3, 4 and A, B, C;,»D; and B, are functions of

8,10, cqy €, o(x) and Ex(x). (A12) may be solved by Runge-Kuttas techniques.
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