

The Pressure on the Surface of a
Flat Elliptic Cone set Symmetrically
in a Supersonic Stream

By

D. G. Hurley, B.A., B.SC,
of the 'Department of Supply, Australia

The Pressures on the Surface of a Flat Flliptic Cone Set Symmetrically in a Supersonic Stream. - By -
D. G. Hurley, B.A., B.Sc.
of the Department of Supply, Australia*.

7th November, 1951

Summary

The first order solution of the problem of the supersonic flow past a flat elliptic cone set symmetrically to the wind indicates that the pressure over the surface is constant if the body lies within the Mach cone of the apex. This result is incorrect near the leading edges of the cone and an improved solution is derived here by the introduction of line sources near the leading edges. Numerical results are given for three bodies.

Contents

$\begin{array}{lc} & \text { Page } \\ \text { List of Symbols } & 2\end{array}$
S1 Introduction 3
S2 Statement of problom 3
\$3 Method of solution 4
B4 The application of the method to cxamples 7
§5 Results and discussion 7
\$6 Conclusions 8
§7 Acknowledgement 8
S8 References ' 8
Table I 9
$\begin{array}{ll}\text { Appendix I } & 10\end{array}$

List/

[^0]
Lest of Symbols

a	- speed of sound
b	- semi-span of body
0	- chord of body
c_{1}, c_{2}	- constants
a_{p}	- pressure coeffíicient
h, K	- constants
$\tau_{x}, \tau_{y}, \tau_{z}$	- direction cosines of the outrard normal to the surface. of the body
m	- the tangent of the angle between the $+^{v e} x$-axis and the line source
n	- a constant: $n=\sqrt{\Gamma^{2}-1}$
M	- Mach number
t	- semi-thickness of body
u, v, w	- velocity perturbations in the directions of the x, y and z axes
u_{1}, v_{1}, w_{1}	- velocity components derived fron ϕ_{1}
u_{2}, v_{2}, w_{2}	- velooity components derived fron ϕ_{2}
r, μ, v	- comordinate syster - see reference 2
V	- free stream velocity
x, y, z	- systen of cartesian comordinates - see Fig. 1
α	- apex semi-angle of body in horizontal plane of symetry
γ	- ratio of specific heats
ϕ	- velocity perturbation potential
$\$ 1$	- see equation (6)
ϕ_{2}	- see equation (14)
μ_{1}	- a value of μ slightly larger than K. The surface $\mu=\mu_{1}$ defines the body on which the pressures are found.

1. Introduction

The supersonic flow past a flat conical body of elliptio crossmsection set symmetrically to the wind is considered in the case when the body lies entirely within the Mach cone at its vertex. This problem was considered in reference 1 and the result that the pressure is the sane at all points on the surface of the body was obtained. This result cannot hold near the leading eage where, as is well know, large changes in pressure occur. The effect of these pressures on the drag of the body was allowed for by calculating the leading edge force but this prooedure does not give the distribution of pressure near the leading edge of the body. The rodification of the solution to yield this pressure distribution is the objeot of the present investigation. The shape of the body and the notation used are shom in Fig.1.

2. Statenent of Froblem

Consider the flor post the body as show in Fig. 1 . When a, the apex semi-angle in the horizontal plane of symmetry, is small the velocity perturbations near the leading edge of the body are sriall. Honoo it is reasonable to expect that the linearized equations of motion will give reasonably accurate values for the pressures at all points on the surface of the body provided a is not too large.

The linearized equation for the induced velocity potential ϕ
is

$$
\left(M^{2}-1\right) \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \quad \ldots(1)
$$

Where $M=V / a$ is the Moch rumber, V the free stream velocity and a the speed of sound ϕ is the induced velocity potentisl so that the three velocity components are given by

$$
-v+\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y} \text { and } \frac{\partial \phi}{\partial z} \text { respectively. }
$$

The boundary conditions to be satisfied by ϕ are:-
(i) At the Mach cone

$$
x^{2} \because\left(M^{2}-1\right)\left(y^{2}+z^{2}\right)=0, \frac{\partial \phi}{\partial x}=\frac{\partial \phi}{\partial y}=\frac{\partial \phi}{\partial z}=0 \quad \ldots \text { (2) }
$$

(ii) At the surface of the body the resultant norinal velocaty is zaro so that

$$
\begin{equation*}
\imath_{x} \mathrm{y}=\imath_{x} \frac{\partial \phi}{\partial x}+\imath_{y} \frac{\partial \phi}{\partial y}+\imath_{z} \frac{\partial \phi}{\partial z} \tag{3}
\end{equation*}
$$

Where $\eta_{x}, \imath_{y}, \imath_{z}$ are the dircction cosines of the outrard normal at the surface of the body.

Having found ϕ and the velocity perturbations u, v and w, then according to strict linear theory the pressure coefficient, ${ }^{\circ}{ }_{p}$, is given by

$$
\begin{equation*}
o_{p}=+\frac{2 u}{v} \tag{4}
\end{equation*}
$$

However, it is found that near the leading edge c_{p} as given by (4) differs appreciably from the value given by the exact ${ }^{p}$ relation

$$
o_{p}=\frac{2}{\gamma M^{2}}\left\{\left[1+\frac{\gamma-1}{2} M^{2}\left(1-\frac{(v-u)^{2}+v^{2}+v^{2}}{v^{2}}\right)\right] \frac{\gamma}{\gamma-1}-1\right\} \ldots(5)
$$

Although it is somewhat inconsistent mathenatically, relation (5) will be used to determine c_{p}.

3. Method of Solation

(i) 1st Approximation

In reference 1 it is shown that the problen under consideration is solved by the function

$$
\begin{equation*}
\phi=c_{1} \phi_{1}=c_{1} \approx \mu \nu I(\mu) \tag{6}
\end{equation*}
$$

(see refs. 1 and 2 and the next paragraph for the definitions of the symbols) if the exact boundary condition at the surface of the body, (3), is replaced by the approxinate one

$$
\begin{equation*}
i_{x} V=\left(\frac{\partial \phi}{\partial_{z}}\right)_{z=0} \tag{7}
\end{equation*}
$$

Equation (7) is obtanned from (3) by neglecting η_{x} and η_{y} in comparison with η_{z} (mich is taken to be unity) and applying the condition at the plane $z=0$ instead of at the surface of the body. These approxinations are valid over the whole of the body except near the leading edge where they do not hold. It is therefore reasonable to take $c_{1} \phi_{1}$ as the 1 st approximation to ϕ and higher approximations will be obtained by adding functions that are significant only near the leading edge of the body.

The velocity components u_{1}, v_{1} and w_{1} corresponding to ϕ_{1} are given by the following formine:-

$$
\begin{align*}
& u_{1}=-\frac{h k I(\mu)}{n} \frac{v^{2}-\left(\mu^{2}-h^{2}\right)^{\frac{1}{2}}\left(\mu^{2}-k^{2}\right)^{\frac{1}{2}}}{\mu^{2} k \mu} v^{2} \\
& v_{1}=-\frac{v\left(v^{2}-h^{2}\right)^{\frac{1}{2}}\left(\mu^{2}-k^{2}\right)^{\frac{1}{2}}}{h n\left(\mu^{2}-v^{2}\right)} \tag{8}\\
& w_{1}=-\frac{v\left(\mu^{2}-h^{2}\right)^{\frac{1}{2}}\left(k^{2}-v^{2}\right)^{\frac{1}{2}}}{k n\left(\mu^{2}-v^{2}\right)}
\end{align*}
$$

(ii) The re $\mu_{1} \nu$ Co-ordinate System

The symbols r, μ, v mich occur in (6) denote a system of hyperboloidomconal comordinates (reference 2) which is related to the cartesian comordinates x, y, z of Figel by the relations
$x=-\frac{n x \mu v}{h k}, y=\frac{r \sqrt{\mu^{2}-h^{2}} \sqrt{v^{2}-h^{2}}}{h n}, z=\frac{r \sqrt{\mu^{2}-k^{2}} \sqrt{k^{2}-v^{2}}}{k n}$... (9)
where

$$
\begin{equation*}
n^{2}=m^{2}-1=k^{2}-n^{2} \tag{10}
\end{equation*}
$$

The $\mu=$ constant surfaces, obtained by elininating r and v from the relations (9), are given by

$$
\begin{equation*}
\frac{x^{2}}{n^{2} \mu^{2}}-\frac{y^{2}}{\mu^{2}-h^{2}}-\frac{z^{2}}{\mu^{2}-k^{2}}=0 \tag{11}
\end{equation*}
$$

Equation (11) represents a fanily of elliptic cones. As $\mu \rightarrow \infty$ the cones approach the Macil cone $x^{2}-n^{2}\left(y^{2}+z^{2}\right)=0$, and as $\mu \rightarrow k$ they approach the two sided angular region in the (x, y) plane given by

$$
\frac{x^{2}}{x^{2}}-y^{2}>0, z=0
$$

The gurface $\mu=\mu_{1}\left(\mu_{1}=k+\delta k\right.$ where δk is small) is therefore a lat elinptio cone Iying close to the plate $\mu=\mathbb{K}$ and is taken to define the body on which the pressure distribution is to be determined.

The relations between μ_{1}, h, k and the quantities M, $\mathrm{t} / \mathrm{c}, \mathrm{b} / \mathrm{o}$ of Figel are
and

$$
\mu_{1}^{2}=\frac{k^{2}}{\left.\left.1-n^{2}\left(\begin{array}{c}
t \tag{12}\\
m \\
c
\end{array}\right)^{2}=\frac{h^{2}}{1-n^{2}\left(\begin{array}{l}
b \\
c \\
c
\end{array}\right)^{2}} \right\rvert\,\right\} \mid}
$$

(i1i) Higher Approxinations
Higher approxinations to ϕ, are obtained by taking

$$
\phi=c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\cdots \cdots
$$

and determining the constants c_{n} so that the boundary condition (3) is exactiy satisfied at a finite nuriber of points. Here ϕ_{2}, ϕ_{3}, eto. are the volooity potentials of supersonic line souroes in the (x, y) plane
situated near the leading edge of the body (see Fig.2). 'The sources start at the origin and are semi-infinite in length. It is shown in Appendix I that the flow due to the sources is conical as required if the strength of each source varies linearly with distance from the origin. and also that it satisfies the boundary condition (2) at the Mach cone.

By a method of trial and error it was found that very good results (see $\$ 5$) could be obtained by simply taking a pair of line sources each passing through one set of the foci of the elliptic sections of the body (see Fig.2) and determining the constants c_{1} and c_{2} so that the boundary condition (3) was exactly satisfied at the centre section and leading edge of the body. Further, it was found that adding extra sources and so satisfying (3) more exactiy produced very little change in the resultant pressure distribution. Therefore, ϕ is taken in the form

$$
\begin{equation*}
\phi=c_{1} \phi_{1}+c_{2} \phi_{2} \tag{13}
\end{equation*}
$$

with (see Appendix I)

$$
\dot{\varphi}_{2}=\sqrt{x^{2}-n^{2}\left(y^{2}+z^{2}\right)}-\frac{x-m n^{2} y}{\sqrt{1-m n^{2}}-m} \quad \text { arcosh }\left\{\begin{array}{c}
x-n n^{2} y \\
n\left[(m x-y)^{2}+z^{2}\left(1-m^{2} n^{2}\right)\right]^{2}
\end{array}\right\} . . .(14)
$$

Where artan m is the inclination of the line source to the $+{ }^{+\pi} x$-axis. The formula (13) applies to the half of the body for which y>0 and in this region the effect of the source situated in the other half of the body is negligible.

In Appendix I it is shom that the velocity components
u_{2}, ∇_{2}, w_{2} derived from ϕ_{2} are

$$
\begin{aligned}
& u_{2}=\frac{-1}{\sqrt{1-m^{2} n^{2}}} \operatorname{arcosh} \theta+m(n x-y) f(x, y, z) \\
& v_{2}=\frac{m n^{2}}{\sqrt{1-m^{2} n^{2}}} \operatorname{arcosh} \theta-(x x-y) f(x, y, z) \\
& w_{2}=z\left(1-m^{2} n^{2}\right) \quad f(x, y, z)
\end{aligned}
$$

where

$$
\theta=\frac{x-m n^{2} y}{n\left\{(m x-y)^{2}+z^{2}\left(1-m^{2} n^{2}\right)\right)^{\frac{1}{2}}}
$$

and

$$
f(x, y, z)=\frac{\sqrt{x^{2}-n^{2}\left(y^{2}+z^{2}\right)}}{\left[(m x-y)^{2}+z^{2}\left(1-m n^{2}\right)\right]}
$$

4. The Lpplication of the lothod to Exanples

The method has been applied to 5 bodies each of apex sem-angle 30° and of thicknesses $5 \%, 10 \%$ and 15% in a stream of mach number $\sqrt{2}$. The applioation to the 15% thick body will be described to illustrate the mothod.

We have $A^{2}=2$ and, from Fig. $1, b / 0=\tan 30^{\circ}$ and $t / c=0.75$. These values substituted into equation (12) yield $h=1.4263, k=1.7419$ and $\mu_{1}=1.7469$.

The values of $\left(u_{1}, v_{1}, w_{1}\right)$ and $(y / x, z / x)$ are now calculated from formulae (8) and (9) for a range of values of v, i.e., variaus points round, the section of the body. Since the body has twe planes of symmetry only points in one quadrant of its surface need bo considered. The direction cosines $\left(\tau_{x}, \eta_{y}, \tau_{z}\right)$ of the normal to the surface at these points are obtained from
where

The constant c_{1} is now determined by satisfying the boundary condition (3) at the point $\underset{\underset{x}{y}}{\underset{x}{y}}=0 \stackrel{z}{\underset{x}{x}}=0.075$. It is permissible to do this before u_{2}, v_{2} and w_{2} are found as these are negligible at this point.

The positions of the foci of the elliptic sections are now calculated and this gives a value of m for substatution into (15) from which u_{2}, v_{2} and v_{2} are found. The value of c_{2} is determined by satisfying the boundary condition (3) at the leading edge of the body, the velocity components u, v and v now follow and c_{p} is calculated fron forma (5).

5. Results and Discussion

(i) The Boundary Condition at the Surface of the Body

Figs. 3, 4 and 5 show, plotted against the vertical ordinate z / x, the L.H.S. of equation (3) and also the R.H.S. for the 1 st and 2nd approxinatu solutions. It is seun tiat in each cosu the 1 st approximation
satisfies the boundary condition (3) well except for z / x small (i.e., near the leading edge) whereas the 2nd approxination satisfies it well over the whole surface of the body.
(ii) The Aressure Distributions

Fig. 6 shows the variation of the pressure coefficient, on, around the surface for each of the three bodies. The pressure coefficient at any point is represented by a line normal to the surface of length proportional to op.

It is of interest to compare the values of c_{p} at the leading edge with the value that is obtaincd by resolving V along and perpendicular to the leading edge and assuming the perpendicular component to vanish at the leading edge. Using equation (5) this latter value is $c_{p}=0.283$ which is smaller than the values show in the figures.

The values of c_{p} for the three bodies are given in Table I.
(iii) The Drag

The drag coefficient based on frontal area of the 1 Whick body was obtained by integration of the pressure as $C_{D}=0.0991$. This value compares well with the ralue 0.0992 garen by strict linear theory, (i.e., by calculating the drag taking the surface pressure to be constant and adding to the result a leading edge force correction).

G. Conclusions

A method has been described for calculating the pressures on the surface of a flat conical body of elliptic crossmsection set symmetrically in a supersonic stream, for the case bhen the body lies entirely whin the Mach cone at its vertex. It is likely that the effect of incidence could be dealt with by a similar method.

7. Acknowledgement

The author wishes to thank Nir. H. B. Squire for the helpful suggestions he made throughout the work.

		References
No.	Author(s)	Title, etc*
1	H. B. Squire	An Example in Wing Theory at Supersonic Speeds. R. \& M. 2549. February, 1947.
2	A. Robinson	Aerofoil Theory of a Flat Delta Wing at Supersonic Speeds. R. \& I'.254.6. September, 1946.

TABLE I

Values of c

$M=\sqrt{2}$ apex semi-angle $=30^{\circ}$

$\frac{2 t}{c}=$		$2 t$. 10	$\frac{2 t}{c}$	$\text { - } 15$
m / x	${ }^{\circ} \mathrm{p}$	z / x	${ }^{\circ} \mathrm{p}$	2/x	${ }^{\circ} \mathrm{p}$
0.02500	0.0322	0.05	0.0622	0.0750	0.0904
0.02048	0.0326	0.0462	0.0628	0.0632	0.0935
0.01473	0.0344	0.0408	0.0642	0.0460	0.1057
0.01137	0.0370	0.0353	0.0665	0.0362	0.1222
0.00702	0.0480	0.0293	0.0709	0.0239	0.1717
0.00584	0.0558	0.0226	0.0809	0.0171	0.2291
0.004 .38	0.0747	0.0138	0.1204	0.0126	0.2804
0.00344	0.0991	0.0126	0.1312	0.0096	0.3094
0.00273	0.1315	0.0114	0.1458	0.0072	0.3220
0.00213	0.1746	0.0100	0.1667	0.0050	0.3286
0.00176	0.2104	0.0084	0.1980	0.0035	0.3353
0.00128	0.2592	0.0064	0.2471	0.00065	0.3466
0.000443	0.2970	0.0034	0.3074	0	0.3468
0	0.3100	0.0025	0.3131		
		0.00055 0	$\begin{aligned} & 0.3300 \\ & 0.3320 \end{aligned}$		

APPENDIX I

Formulae for Supersonic Line Souroes

Consider the semi-infinfte supersonio Ilne source situated as shown in Fig.7, the strength of the source at a point ($t, m t, 0$) on it being t.

The velocity potential dф at any point (x, y, z) due to a length $\sqrt{1+m^{2}} d t$ of the source at $(t, n t, 0)$ is then

$$
d \phi=\frac{\sqrt{1+n^{2}} t d t}{\left[(x-t)^{2}-n^{2}\left\{(y-m t)^{2}+z^{2}\right\}\right]^{\frac{T}{2}}}
$$

for points inside the iiach cone of the point ($t, \mathrm{at}, 0$), and $\mathrm{d} \phi=0$ for points outside this Mach cone.

It follows that the velocity potential due to the whole line source is

$$
\begin{equation*}
\phi(x, y, z)=\int_{0}^{t_{1}} \frac{\sqrt{1+m^{2}} t d t}{\left[(x-t)^{2}-n^{2}\left\{(y-m t)^{2}+z^{2}\right\}\right]^{\frac{7}{2}}} \tag{1}
\end{equation*}
$$

for points inside the Mach cone of the origin. Here t_{1}, the upper linit of integration, is given by

$$
\left(x-t_{1}\right)^{2}=n^{2}\left\{z^{2}+\left(y-m t_{1}\right)^{2}\right\}
$$

Evaluation of the integral in (1) gives the result
$\phi=D\left\{\sqrt{x^{2}-n^{2}\left(y^{2}+z^{2}\right)}-\frac{x-m n^{2} y}{\sqrt{1-m^{2} n^{2}}} \operatorname{arcosh}\left\{\frac{x-m n^{2} y}{n\left\{(m x-y)^{2}+z^{2}\left(1-n^{2} n^{2}\right)\right\}}\right\}\right\} \ldots(2)$
Where D is a constant the value of which does not concern us.

$$
\begin{aligned}
& \text { The velocity components derived by differentiating (2) ar } \\
& \frac{\partial \phi}{\partial z}=D z\left(1-m^{2} n^{2}\right) f(x, y, z) \\
& \frac{\partial \phi}{\partial y}=D\left\{\begin{array}{c}
m n^{2} \\
\sqrt{1-m^{2} n^{2}}
\end{array} \operatorname{arcosh} \theta-(m x-y) \quad f(x, y, z)\right\}
\end{aligned}
$$

vhere

1

$$
\theta=\frac{x-m n^{2} y}{n\left[(m x-y)^{2}+z^{2}\left(1-n^{2} n^{2}\right)\right]^{\frac{1}{2}}}
$$

and
$f(x, y, z)=\frac{\sqrt{n^{2}-n^{2}\left(y^{2}+z^{2}\right)}}{\left[(n x-y)^{2}+z^{2}\left(1-n^{2} n^{2}\right)\right]}$.

Each of the velocity components in (3) is of zero arder in
(x, y, z) and so the values are independent of $r=\sqrt{x^{2}+y^{2}+z^{2}}$, i.e., the flow is conioal as required.

Also, as the Mach oono of the arigin is approached
$f(x, y, z) \rightarrow 0$ and $\theta \rightarrow 1_{2}$ so that all the velocity components vanish there as required.

Fig. I.

FIGS. 2a \& 2 b.

FIG $2 a$.

Plan view of body showing_positions of supersonic line sources.

Fig. 26.

Section of body in y, z planes.

Fig. 3.

The Normal Velocity, U_{N}, across the Surface of
the Body.

Body thickness 0.05
Semi-apex angle 30°
Free stream Mach № $\sqrt{2}$

Fig. 4.

The Normal Velocity, \underline{v}_{N}, across the Surface of the Body.
Body thickness 0.10
Semi-apex angle 30°
Free stream Mach № $\sqrt{2}$

Fig. 5.

The Normal Velocity, \underline{U}_{N}, across the Surface of the Body
Body thickness 0.15
Semi-apex angle 30°
Free stream Mach № $\sqrt{2}$
$\frac{2 t}{c}=$ body thickness - ratio in streamwise direction (see figure 1).

The Pressures on bodies of semi-apex angle 30° and different thicknesses in a stream of Mach number $\sqrt{2}$.

Fig. 7.

Notation for line source formulae.
$(14,383)$
A.R.C. Technical Report

CROWN COPYRIGHT RESERVED

PRINTED AND PUBLISHED BY HER MAJESTY'S STATIONERY OFFICE

To be purchased from
York House, Kıngsway, LONDON, w.c. 2423 Oxford Street, london, w
P.O Box 569, LONDON, S E. 1

13a Castle Street, edinburgh, 21 St. Andrew's Crescent, Cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1953
Price $3 s$ 6d net
printed in oreat britain

[^0]: *On temporary service in the Lerodynamies Division, N.P.I. Published by permission of the Director, N.P.I.

