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SOME:MODIFICATIONS'TO THE CALCULATION METHOD FOR WINGS WITH 

PARTsSPAN:EXTENDING-CHORD FLAPS GIVEN IN RAE TECHNICAL REPORT 69034 

by 

J. McKie 

SUMMARY 

A-method is-given for the approximate solution of a version of Pfandtl's 

aerofoil equation for wings with an arbitrary number of dlscontinuitles iii chordr 

or geometric angle of incidence. The method is an attempt to improve on an 

earlier-one.given in RAF, Technical Report 69034. For the example of a swept 

wing of large aspect ratio with part-span, extending-chord flaps, the results 

for lift; drag and vortex-drag factor by the improved method show no signifrcantr. 

differences.from those calculated by the earlier method. Comments are made on: 

other factors affecting the accuracy of the solution. 

* Replaces RAE Technical Report 71201 - ARC 33547 
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1 INTRODUCTION 

The RAE Standard Method', for the calculation of loadings on swept wings, 

dlvldes the vortlcity distribution on the wing into chordwise and spanwise 

dlstrlbutrons. It 1s implied that the downwash induced by the chordwise and 

tralllng vortlclty is constant over the chord of the wLng. This enables the 

spanw~se loading to be determIned from an Integral equation, which is a form of 

Prandtl's classical aerofoll equation, modified to include sweepback and small- 

aspect-rat10 effects. 

The customary way of solving this equation 1s by Multhopp's approxrmate 
2 method of quadrature , which uses a Fourier technique. This demands that chord, 

local lift slope and local angle of incidence are all continuous across the 
n 

span of the wing. Multhopp gave a modified solution‘ for the case of 

dlscontinultles in the distribution of angle of incidence,.and Welsslnger has 

extended this to include a single dlscontlnul,ty ln chord3. Weber4 has adapted 

this method to make it sultable for swept wings of small aspect ratio, by 

allowlng the downwash factor and the sectlonal lift slope to vary acros.s the 

span of the wing. The approxlmatlon for the spanwise loading was chosen in 

such a manner that the calculation of Its values at the Multhopp collocation 

points was not affected by defining it at the additional point. 

For wings with part-span, extending-chord flaps, there will usually be 

more than one discontlnulty in chord and angle of incidence. An approximate 

way of dealing with this situation has been given by the a"thor5. It was 

supposed that the calculation could be carrled out in an analogous manner to 

that for the case of a single addltlonal point. That IS, the defining of the 

loading at the additlonal points did not affect the calculation of the spanwrse 

load distribution at the Multhopp collocation points. 

This Report describes a method whereby this assumption is removed and the 

effect of the necessity of defining the loading at the extra points 1s taken 

properly into account. An approximation for the spanwise loading has been 

chosen which retains the Weber solution 4 
as a special case for a single extra 

point with a possible discontinuity in chord or angle of incidence. With the 

former kind of discontinuity, the magnitude of the jump in the induced angle 

of Incidence depends on the value of the loading at the discontinuity. It is, 

therefore, important to find a good approximation to the loading at all the 

addltional points. In the next sectzon, the solution of the spanwise loading 

equation will be extended to include any number of extra collocation points, 



whose spanwise positlon is arbitrary. In section 3, the results of the analysis 

~111 be applied to the situation where discontinuities in chord and twxst occur 

at these extra points. The new method has been programmed for a computer, and 

III section 4 a comparison is made with the results of the earlier method, for a 

typical wing. 

2 ANALYSIS FOR EXTRA COLLOCATION POINTS 

The nondimensional sp&wise loading y(n) is given by the equation 

v(n) = =yy [a(q) - lmio(ri)l . (1) 

The znduced angle of incidence WCL i. (4 is determined by the trailing vorticity, 

which 1s Itself a function of the spanwise load distribution. Hence y(n) can 

be found as a solution of the integral equatun:- 

+1 
&&) Y(d = a(q) - fy 

i 
dy(i) d< 
dgz . 

-1 

In these equations, n or 5 1.s the spanwise coordinate, il at the wing tips, 

a(n) is the local lift slope, c(n) the local wing chord, and a(rl) the 

local geometric angle of incidence. Multhopp solved equation (2) approxunately*, 

by using an interpolation function 

(3) 

where n=cos8 and y,=y(an), n I9 = nn 
m+l' At the m collocation points 

4 " (the Multhopp pants), which are equispaced with respect to the 19 

coordinate, ;(a") = Y . v 

Equation (3) enables an approxunate value of y to be found at any point1 

on the span of the wing. However, If there are discontinuitles in chord at k 

extra points 19 s' which are dutributed arbitrarily across the span, then it is 

deszrable to find the values of the loading y(q) at these points by a better 

approxunatlon than 1s given by equation (3). A solution to equation (2) will be 

sought, of the form 

i 
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Y (4 = ;(8, + Sl" (mz-il9) f ar co.5 (r - 13) (4) 
r=l 

where the coefficients a are to be found. r The second term on the right-hand 

side vanishes at a Multhopp point, i.e. 

Y (8”) = ;(a”) = Y ” 

so that it could be consldered as a 'correction' to the first approxunatlon 7. 

At the extra points 

Y (as) = T(Gs) + sin (m-as) i 
r=l 

ar cos (rF-as) 

Thus the unknown coefficients ar can be expressed 

(5) 

where Y is a square matrix of order k with the (s,r) element 

sin (m + lfis) cos (r - las) 

and (al, {Y, - ;,I are column vectors of dimension k. Note that If one of 

the extra points coincides with a Multhopp point, 1.e. 9s = 9 
n' 

then 

{y, - ys> has a null element and '4 a row of zeros in the corresponding 

position. In thu case Y' -1 . 1s singular and (a> arbitrary. Consequently, 

either a reduced set of equations should be used (this particular ns is 

d=qw4, or the set 8 LI must be changed by altering the value of m. 

The induced angle of incidence can be written 

If the approximate form of y(8) given by equation (4) is substituted into th1.s 

expression, then 
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where use has been made of the Glauert Integral 

An express~o" for ; has been given I" equation (3). Hence the Induced angle 

of lncldence may be expressed I" terms of i"' the spanw~se loading at the 

Multhopp points, and the coefflclents a r which are yet to be determined.- 

+L 
4 .i, a= { 

2(m + 1) sin Cm+*) cos (r-19) + 

Sl" 9 1 

+L 
4 ,i, ar { 

2(r - 1) cos (m + 18) sin (r - 19) 

Sl" 9 -1. 

At the Multhopp points nv 

Sl" (Ill + 19") = 0 and 03s (m + 18") = C-1)" . 

Thus at these points, the induced angle of incidence reduces to 

a,,,@“) = bvvY, - &,,Yn + + ,‘;;I; i a (r - 1) sin (Z-19") . 
v r=l = 

(6) 

Here, bvv and bv" are the usual Multhopp coefficients 2 
and 1' denotes summation 

Over all n except n = ". If there IS only a single extra collocation point, 

the" the last term in equation (6) is zero, and the Weber4 result is achieved, 

that the calculation of y at the posztion rly is unaffected by Its calcula- 

tion for the additional point 
llS. 

For more than one extra collocation point, 

. 
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equation (6) lndlcates that If the spanw~se load distribution 1s approximated 

by the function (4), then the loading y 
s 

at these extra points has to be 

taken unto account when determining the loading at the Multhopp points. 

At the addltlonal points 
lls* 

the equation for the induced angle of 

lncldence becomes 

+ 
co.s (m+ti$) k 

2 s1n 8 1 a,(r - 1) sin (r - las) . 
s r=l 

The second term on the right-hand side above may be replaced by (see equation 

(4)) 

which, on substltutlon for 7 from equation (31, becomes 

Thus at the extra collocation points 
r)s’ the induced angle of incidence may 

be wrItten 

“io(f’s) = b Y 
cos (m + la& k 

ss s - : bsnYn + 
n=l 

2 sin 4s .Ll a,(r - 1) sl* 6-=-ias) (7) 

where the coefficients b and b 
ss sn 

are those gl”en by Weber4:- 
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b 
m+ 1 

ss = 2sin9 
S 

b 
1 = 

Sll (m + 1) s1n 9 
s p=l 

(m + 1 - u) 5311-1 pan sin ~8~ 

a sn s1n I.3 n = 

b + l)(cos 9 - cos an) 
2 

S 

If there 1s only one extra pmnt, then the last term of (7) LS zero. HUKe 

Neber’s result4 1s retaxned as the special case of k = 1. 

A maJot- task now IS to determine the coefficients a=. Consider the value 

of the approxunatlon 7 at 
‘IS’ 

then from (3) 

5 

Y, = 2 y Yn : m+ 1 
sin ufin sin u* . 

n=l u=l S 

T = 7 
!J=l 

sin 118, sm ua 
S 

NOW 

where ‘dtc’ means the real part of a complex expression and z = .i@, 

(8) 



Therefore 

= sin $ sip(m + l$) _ 1 + cos (m + 1C) . 
2(1 - cos $) 2 

Thus the sun T car. be WrItten Thus the sun T car. be WrItten 

- i {cos (m+ . 8, - as) - ~0s (m + 1 . an + as)1 

therefore 

where D = [l - cos (9 
n - as)1 II - cos (9 * + as) I = Ices 9" - co.5 Os12 

therefore 

T = C-1)" 
sm(m + lfis) sin 19 n 
2(cos I.7 - cos QS) . n 

Hence equation (8) may be written 

where the mxk coefficients c sn are @"en by 

n sm (m+as) sin 19 n c = C-1) 
sn m + 1 cos 9 - cos I9 n s 

(9) 

(10) 
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If as colncldes with one of the Multhopp points fiv, then the coefficients 

c 52" 
which, I" equation (9), multlply the values of y at all the other 

Multhopp points, are zero. To examine the value of c sv' suppose 

8 = 8 + E, where E is small. s " 

= C-1)” (-UV sin c(m + 1) sin 9 
c v 

S" m + 1 fcos 9 - cos 8" cos E + sl" 9 sin E v " 
. 

Then as E tends to zero 

Thus as -9 18". the only term remazn~ng on the right-hand side of equation (9) 
5 

1s Y\,, 1.62. Ys+Yv which 1s as lt should be. 

Having now determIned the values of y at the additional collocation points 

I" terms of Y"' equation (4) enables ys to be written in terms of y" and 

the coefficients a,:- 

Ys = Y 
n=l 

csnyn + sin (m+lOs) f 
r=l 

arms (r--19s) . 

Co"seque"tly, equation (5) for the functions ar can be rewritten as a function 

of the spanwise loading y at both the Multhopp and extra collocation points 

(in matrix notation) :- 

{aI = ly-lrr - IT”1 
s (11) 

where r s 
is a coluw vector of dimension k, with elements y s 

T 
" is a column vector of dimension m, with elements y 

" 

r is a rectangular matrix of order k x m, with elements -c sn* 

Equation (4) can now no longer be used to define y, I" terms of know" 

quantities. However, equation (1) provides a better approximation, as it 

involves the know" quantities of chord, lift slope and geometric angle of 

incidence, and only the induced angle of incidence must be estimated. Hence 
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In this equation, the values of the Induced angle of incidence can be found 

from equation (7). which ln matrix form is:- 

Sunllarly, for the values at the Ylulthopp points 

6$ (7 ‘I rectangular ” ” ” k x m, ” ,I b 
sn 

I with (n,s) element i(-l)“(s - 1) 
s1l-l G?$J 

sin 19 
n 

M 
s 

1s a square matrix of order k x k, 

with (s,r) element &(r - 1) 
sin G-3) cos (Ill + Ms) 

sin 9 
s 

The vector of ar may be removed by substltutlon from Fquatlon (ll), so that 

the equation for the induced angle of incidence may finally be written in terms 

of Y and 
” 

y :- 
s 

Icrio 1 = [R1 - R2 v - M Y-lr]T + M~Y-‘T ” s (12) 
” 

,, 
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3 SOLUTION WITH DISCONTINUITIES 

Suppose that at each of the points qs discontinuitles exist I" either 

the chord c or the angle of incidence CL, or both. Then the induced angle 

of incidence at these points will also be discontinuous and the normal Fourier 

analysis method of solution for y,, y, cannot be carried out - equation (13) 

1s not meaningful. The Multhopp-Welssinger-Weber method considers this 

situation by dividing the loading y into two parts:- 

v(n) = YIbl)+Y*(n) . (14) 

Both yI(n) and u*(n) are continuous; the former depends on the posltlons 

and amounts of the dlscontinuities, the latter depends on a continuous 

dlstributlon of angle of incidence. yI(n) is a specially chosen analytic 

function which produces a discontinuous distribution of angle of zncldence 

u,,I(n). y*(n) is an approximate function of the form described in the 

previous section, which Induces a continuous distribution of angle of lncldence 

Conslder the discontinuity point rls, where there occurs a jump in 

geometric angle of xncidence of amount os, i.e. 

0 s = ah, + 0) - cr(ns - 0) 

and also a jump 1" wing chord. Define 

2b 1 1 T = - * .s a(rls) c(ns - 0) chs + 0) 1 

(15) 

(16) 

The spanwlse loading y(u) must be continuous, hence at n 
S 

Ybls + 0) = vhs-O) = Y, 

= ahs)chs + 0) 
2b [ahs + 0) - wcx iohs + O)l 

= =(rls)c(ns - 0) 
2b Ia(ll s - 0) - Wiohs - 0) 1 . 

Consequently, at the discontinuity point qs there occurs a jump in the value 

of the Induced angle of incidence:- 

OLio(“s + 0) - a,o(Tls - 0) = Ts’s + OS 
w (17) 
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If the function F(fi,*s) is defined as follows (see Multhopp*):- 

F(8,tis) = + (cos 9 - cos 5) In (18) 

then the load distribution yI(n) formed by 

k yS~S + Ss 
Y,W = 1 

s=l w 
F@,as) (19) 

produces a dlscontlnuous distribution of induced angle of lncldence alo1 (8) 
with a jump at each discontinuity of the required amount. 

0 for 0<8<0 
s1 

(TIYS 
1 

+ ol)/w I9 <iI< 
s1 s1 s2 

c( z. (9 = I (20) 
I II + CT Y 

2 s2 
+ *2)/ws 9 <l9<l9 

2 =2 s3 

I etc. 

Corresponding to the load distribution y* is the dlstrlbution of 

Induced angl'e of incidence $0 , so that y* can be wrltten 

v*(n) = y;(q) [a(n) : wcxio (n) - a(q;;(n) VI(n) - oa;obl)l (21) 
I 

where Ye LS defined by eqt.tatIOn (19) and CrioI(n) by (20). From 

equations (12) and (13), a? at the points nv and rl I.0 s 1s given by 

ia* i. } = [6$ - 612 - MVy-'r]T;+ MVy-'T: 
" 

{CX" i. 1 = -[-6x4 - AsY-lrlT* + [6x3 + MsY-llT* 
S " S 

where Tz=s a column vector of the m values of y* at the ny positions, and 
r* 

S 
the vector of values at the k discontinuity points ns. These two 

equations may be substituted Into matru equivalents of equation (Zl), so 

that at the Multhopp points there results:- 
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'6$ - di2 - M"Y'-lr + N"]T* = A - A. - M Y-%*- N T 
u v lOI" " s VIV * (7-Z) 

In thrs equation, 

n Li 1s a column vector of dunenslon m, with elements [a/w] v 

A 
YV 

1s a column vector of drmension m, with elements a. Cl loI v 

N 2b 
” 1s a diagonal matrix of order m x m with elements - III wac ” * 

For the dlscontrnulty points qs, there 1s a choice of evaluating equation (21) 

at either side of the dlscontlnulty: the (ri, - 0) alternative is chosen here. 

Thus on substituting for ia* I:- 
10s 

[613 + M 'P -1 +N]T 
* 

= * -A 
s s s s ?S 

+ [6-X4 + Ftsly-'r]T;- N '-I- 
s Is (23) 

where E s 1s a column vector of dunension k, with elements [ a/~]~- 

A 1s a column vector of dunenslon k, with elements a. 
loIS c 1 loI s- 

N 2b 
s 1s a dragonal matrix of order k x k with elements - [I wac S- 

The (m + k) equations (22) and (23) are coupled "LB r;, and through 

%I =*d yI, which are both functions of y*. r I is expressed in terms of 
s 

'I- by equation (19), whrch becomes in matrix notation 

T 
IV = 2”MlTS + e,1 

T 
IS = 3skl~s + i,l 

so that by equation (14), 

T = IS 1s - 4s”l 1-13, wlr; + l2 1 

T 
IV = j”5l.f - 3sLll-lr; + 3"wl(f- JsL1P3, +91i, . 

(24) 

(25) 

. 
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In these equations 

3" 1s a rectangular matrix of order mxk with (v,t) element F(ov,at) 

3s 
" " square I, II 11 kxk " (s,t) " F(ss>tit) 

I I' I1 unit I, II 11 9, 

e " " diagonal II II 1t I, 
1 

" elements h/WI, 

f 
2 

" " column vector of dimension k with elements [o/wls * 

The loading TI, can now be eliminated from equation (22) thus 

[6$-di2+N -MY -lr IT" 
v 1, " = IA" - ""3"wl(J- 3se,P3s + W,l - 

-I M"8 + "v3vfI(.f - 3,5)-'1T; - A. . (26) 
l0I" 

The vector A,oI" IS dependent on J! 1, f2 and T; through equations (20) 

and (24), and the partzcular geometric relationship between the discontinuity 

points ns and the Xulthopp points 17". 
Thus equation (26) represents m 

sunultaneous equations for the loading r; expressed in terms of '$ and 

geometric terms only. 

At the discontuxuty points 
11s' 

the angle of incidence Induced by the 

loading TI may easily be expressed as a function of rs in matrix notatron:- 

where 9 
2 

is a kxk square matrix formed from the unit matrix by making 

all lower left elements unity. By adding r*, to either side of equation (24) 

T 
s 

therefore 

A. = 9,t,u - 3,qy + 9,[~:,(9- 3sq13s + m, . 
l0IS 

If this is substituted back into equation (23), then 

lR3 + (N 
-1 

s + ~2~l)(f- 3s"1) + As~-l]T; = ~ 

= [bi 
4 

+ As~-'r]T;+ (A - J2e2’ - ‘J241 + N2)(J- 3s’1)-13sL2 . (27) s 
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Equations (26) and (27) form a set of m + k linear, simultaneous, 
* * 

algebraic equations for the unknowns TV and Ts. They may be solved by an 

iterative process. Initially, assume 

for the m values of r*,. 

'-Pz to be zero, and solve equation (26) 

These are then substituted Into equation (27), 

which 1s solve&to obtain a first estimate of Tz. This 1s used to obtain a 

second set of r*, from (26), and the cycle repeated till a consistent set of 

values 7- 
* 

is found. The spanw~se loading 'Y then follows from 

T 
S 

= (J- 3sLl)-1T; + (9 - 3ssL1)-13s”2 

T = r;+ 3”5(J- 3sL1)-lT;+ 3v\i[.5(l- 3s”lr13s + JIL, . (29) v 

4 RESULTS 

In the preceding two sections an approximate solution of the spanwlse 

loading equation (2) has been given, which enables the loading to be evaluated 

at m spanwise collocation points nv and k discontinuity points ns 

(ns f n"). This solution is, theoretically, an improvement on the earlier 
5 method , which assumed that the calculation of the loading at the nly points 

1s not affected by the defuung of the loading at the ns points, and that at 

each of these k points, alo may be expressed III terms of the loading at the 

Il" points and at that discontinuity point only. It was considered that this 

method would be likely to give increasing errors as the dzstance between two 

successive discontinuity points decreased, e.g. diminishing span of a cut-out 

in a trailing-edge, extended-chord flap. 

An example has been worked out to compare the results of the earlier 

method with those by the method of this Report. Values of lift coefficient, 

vortex drag coefficient and vortex drag factor have been calculated for a wing 

of aspect ratio 8.35, taper ratio 0.35, mid-chord angle of sweepback 26.4' and 

angle of lncldence zero. Each half wing had two flaps (see Fig.l), the inner 

running from the centreline to 50% of the semispan and the outer from 97% to a 

range of positions between 60% and 50% of the semispan. All flaps extended the 

local basic chord by 20%, had a chord of 34% of the local extended chord, and 

were deflected 15'. 

The results are shown in Tables 1, 2 and 3. The vortex drag factor K 

1s defined as K = I~AC~,/C;. Mk.3 and Mk.4 refer, respectively, to versions of 

a computer program based on the earlier and improved methods of calculating the 

. 
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spanwise loading. The numbers 31, 33, 45 refer to the value of m used, the 

number of Multhopp spanwise collocation points. It is immediately obvious 

that the Improved solution has not materially altered the results, at least for 

this example. In fact, for the lift coefficient It has not been possible to 

represent the differences on Fig.2. For vortex drag coefficient, Table 2 

indicates some small differences and, where possible, these are shown on Flg.3. 

Extra points are shown on this figure (computed by the earlier method) but are 

not tabulated, in order to define the curves more exactly in the regions where 

the curvatures change rapldly. Small differences are also apparent for vortex 

drag factor (Tab+ 3 and Flg.4). 

It is quite clear from these three figures that the effect of m, the 

number of collocation points, is greater than any improvements gained by the 

"se of the method described in this Report. Each of the three curves shown 

on Fig.3 has one or more inflexions from a generally smooth curve. The centre 

of one of these inflexlons always corresponds to a spanwlse distance between 

the flaps which makes the inner tip of the outboard flap colnclde with a 

Multhopp collocation point. This situation 1s tolerated by the earlier method, 

but with the improved method, leads to slngularltles ln the analysis of 

sectlon 1 (~12. equation (5)). In the region of one of the lnflexlons 1n the 

curves of Fig.3, convergence between equations (26) and (27) becomes very slow, 

and the vector y* cannot be detemnned very accurately. This leads to a 
?. 

slight amount of 'waviness' in y(q) or oscillation about a smooth mean 

distribution, over the outer parts of the wing. Nevertheless, the differences 

between the results of the two methods still reman small, and the difficulty 

cannot explain the reason for the inflexions in the results using the earlier 

method. 

This reason, it is thought, lies in the nature of the numerical method 

used for integrating the spanwise distributions of y and yciio to obtain 

cL and CD". Fig.5 shows values of yaio computed "sing 31, 33 and 45 

collocation points, for a gap between the flaps equal to 10% of the semlspan. 

Over the flaps yaio is positive, but acrass the gap it is negative. To 

Integrate this function a new distribution is found, which 1s equal to yaio 

Plus, at all points q, the sum of the amounts of the discontinuities at 

points ns for which ns > r~. Thus, in the example shown on Fig.5, the points 

between n = 0.5 and 0.6 are converted to positive values, ana some adjustment 

takes place to the values of yaio over the inner flap, as the amounts of the 
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dlscontlnulties at the flap tips are not quite equal and opposite. This 

adJust”e”t enables a continuous curve to be drawn through all points, as shown 

on the flgure. The integral of yule over the whole span thus equals the 

Integral of the new curve “onus the sum of the products of the amounts of the 

dlscontinultles at ns with (1 + ns). 

Across the gap between the flaps the curvature of yaio changes quite 

rapidly, and just three possible curves are drawn on the figure. The cubic 

spline method 6 was used to Integrate ya 10 in the computer program, and a 

characterlstlc of spline flttlng 1s that curvatures tend to be minimised. The 

lnflexlons in the curves of Flgs.3,4 occur where there are changes in the number 

of points Included in the part of the curve across the gap between the flaps. 

At these places two of the calculation points are almost colncldent, thus 

providing a locally strong constraint on the shape of the fltted curve, but 

leaving the program a relatxvely large amount of freedom to fit a curve across 

the whole of the gap. 

Although the lnflexlons in the curves drawn on Flgs.3 and 4 appear to make 

slgniflcant devlatlons from their general regular trends, It should be noted 

that the scales used for CD and ” K are very large, and the deviations are, 

in fact, InsIgnifIcant. Furthermore, It should be remembered that the linear, 

small-deflection theory upon which these results are based, is approximate and 

the values shown on the figures are not physically exact. 

There IS a further effect which must be considered when choosing the number 

of collocation points for the calculation. It has been found that the 

magnitude of the vortex drag factor on swept wlngs’is affected by both the 

parity and actual number of collocation points. Fig.6 shows this effect for 

wrngs wlthout flaps, of aspect ratio 8.0, taper ratlo 0.8 and angles of sweep- 

back of 0, 15 and 30 degrees. As the angle of sweepback Increases, “ore 

collocation points are required in order to maintain the same relative accuracy. 

Fig.7 shows the effect of sweepback on the spanwise load distribution of these 

vings, all three curves were calculated <sing m = 31. A major effect of sweep- 

back IS the loss in lift in the region of the centre of the wing. For the wing 

sweptback 30°, values of y at the collocation points for differing m are 

shown on Flg.8. For m odd, one of the collocation points is on the centre- 

line, so that the minimum value across the centreline is defined exactly. As 

m increases, the distribution of y changes quite markedly near the centre- 

line. This effect 1s also apparent for the distribution of aio, shown on 

Fig.9. For q > 0.4, there is very little difference between any of the 
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curves. Once agal”, the scale of K used on Fig.6 is very large, so that as 

long as at least 30, say, collocatlo” points are used, the exact choice 1s not 

greatly slgnlflcant. 

5 CONCLUSIONS 

A method has been presented for the approximate solution of a version of 

Prandtl’s aerofoll equat~o” for wings with a” arbitrary number of dlscontlnultles 

in chord or geometric angle of incidence. The method is, theoretically, an 
5 

improvement on a” earlier one . A compar~so” has been made between the results 

of the two methods, for the example of a sweptback, tapered wing with two 

extending-chord flaps on each wing-half. For thrs example, there was no 

slgnlflcant improvement in the calculated values of lift and vortex drag 

coefficrents, eve” for very small gaps between the flaps. However, because of 

llmltatlons Imposed by the numerical methods of the computer versions of the 

two methods, care has to be taken I” the choice of the number of !lulthopp 

collocatlo” points. For a sweptback Wang, this number should be odd and as 

large as possible. Furthermore, It IS best to arrange that a collocation point 

does not come near to couxldlng (wlthln 1% of the sem~spa”, say) wzth a flap 

tip. 
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Table 1 

LIFT COEFFICIENT 

i 
- 

I I 31 poitts I 33 points 45 points 

T 8 0.85156 
10 0.83060 ~ - ~ - 

blk.3 xc.4 

0.93896 
0.92663 
0.91482 
0.90338 
0.89243 
0.88207 
0.87249 
0.86204 
0.85158 
0.83060 

Mk.3 

0.93938 
0.92742 

0.91685 
0.90749 
0.89621 
0.88504 
0.87387 
0.86278 
0.85183 
0.83036 

Mk.4 

0.93938 
0.92743 

0.91703 
0.90795 
0.89640 
0.88512 
0.87393 
0.86282 
0.85185 
0.83027 

0.94083 
0.92907 

u.90772 
0.89639 
0.88511 
0.87395 
0.86299 
0.85266 
0.83251 

Table 2 

VORTEX DRAG COEFFICIENT 

T 
- 
4 T -l 

- 
31 points 45 points 

Mk.3 

33 points 

t 

% gap 

0 
1 

2 
3 
4 

5 
6 
7 
8 

10 

Elk.3 Plk.4 Nk. 3 Mk.4 

0.033879 
0.033234 

0.032730 
0.032307 
0.031976 
0.031731 

0.031375 
0.031116 
0.030906 
0.030602 

0.033879 
0.033240 

0.032727 
0.032307 

0.032048 
0.031770 
0.031416 
0.0&31134 

0.030918 
0.0306n6 

-__- 

0.033910 0.033909 
0.033232 0.033219 
0.032626 0.032611 
0.031843 0.031796 
0.031620 0.031651 
0.031383 0.031424 
0.031194 0.031226 
0.031054 0.031075 
0.030957 0.030970 
0.030937 0.031005 

0.034002 

0.033311 

0.032227 

0.031926 
0.031691 

0.031515 
0.031395 

0.031250 

0.030814 
- 
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Mk.3 Mk.4 Mk.3 Mk.4 Mk.3 

0 1.00814 1.00814 
I 2.01545 1.01565 
2 1.02571 1.02593 
3 1.03856 1.03857 
4 1.05350 1.05571 
5 1.07022 1.07128 
6 1.08162 1.08272 
7 1.09861 1.09918 

' 8 1.11818 1.11855 
10 1.16374 1.16388 

Table 3 

VORTEX DRAG FACTOR 

31 points 

1 

33 points 

1.00816 1.00815 

1.01367 1.01323 
1.01827 1.01737 
1.01443 1.01189 
1.03283 1.03341 
1.05112 1.05232 
1.07166 1.07263 
1.09446 1.09512 

1.11931 1.11970 
1.17714 1.17999 

45 points 

1.00778 
1.01248 

1.02614 
1.04241 

1.06128 
1.08250 
1.10596 

1.12765 
1.16645 
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SYMBOLS 

sectional lift slope 

wing span 

local wing chord 

number of dlscontuxnties 1x-1 induced angle of incidence 

number of spamnse Multhopp points 

vector of values of angle of incidence induced by the spanwise 
loading YI 

function used to generate YI 

geometric angle of incidence 

induced angle of incidence on wings of large aspect ratlo 

nondrmenslonal spanwise load distribution 

approxnrlat1on to y 

load dxtrlbutlon that Induces a discontinuous distribution of 
angle of incidence 

Y - .i I 

spanwise coordinates, ij = co.5 9, /Ill 5 1 

jump ln the value of the geometric angle of incidence at ns 

quantity associated with the discontinuity in chord at qs 

downwash factor 

matrix that couples 7, to Y n 

matrix concerned with the error between ys and y 
S 

vector of values of a/w 

vector of values of y 

matrix with elements F(fi,as) 

unit matrix 

matrix used to evaluate A. 
Ys 

matrix formed from ~~1~s 

vector formed from as/w 5 

matrices used in the evaluation of aio 

diagonal matrices with elements equal to 2bJwac 

fll, fi2, fi3, @b matrices of Multhopp coefficients 
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SYMBOLS (Contd) 

s, n subscripts denoting evaluation at the discontinuity points and 
Multhopp points, respectively 

*. 1 suffices denoting a relationship to f* and 
YI 
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