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SUMMARY 

A computer program has been written in FORTRAN to calculate the pressure 
distribution on an annular aerofoil at zero angle of incidence at subsonic 
speed. The theory and the program are described and some comparisons between 

the predicted pressure distribution and experimental results are presented. 
Close agreement between theory and experiment is obtained. 
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1 INTRODUCTION 

There has been a renewed interest in methods of calculating the pressure 

distrlbutlon on an annular aerofoil or engine cowl in recent years. This is a 
result of the need to design improved fan cowls for engines of high by-pass 

ratio. 

The theory advanced here is a logical extension of the earlier work on 

annular aerofolls. Kiwhemann and Weberl developed a theory for calculating 

the velocity distribution on thin annular aerofoils which was extended by 
Bagley et aZ* to include thickness and incidence effects, but again using 

distributions of singularities placed on a cylinder. With the increasing 
'availability of large, high speed digital computers, It has been possible to 

develop a method using singularities distributed over the body surface, which 
should in practice, give more accurate results. 

The method of surface singularities was placed on a firm foundation by 
A.M.O. Smith3 but this method as published, is not capable of calculating the 
pressure dlstrlbutlon over the whole surface of an annular aerofoil; the 

afterbody of the aerofoil has to be replaced by a semi-infinite cylinder. This 
is a serious deficiency because the effect of the afterbody becomes increas- 
ingly important as the length to diameter ratio of the aerofoil is reduced, 

and the circulation developed around the aerofoil plays a large part in 
determining the overall forces and pressure distribution on the body. 

The fan cowl of an engine of high by-pass ratio has to cope with a 
wide range of operating conditions varying from the take off condition, when 
the mass flow is high, to the engine failure condition, when the fan is wind- 
milling and the mass flow is low. It is essential, therefore, to be able to 
calculate the pressure distribution on the aerofoil at any specified mass flow 
ratio. 

The method of surface singularities and the extensions that have been 
made for the annular aerofoil problem are described in section 2. The computer 
program is explained in section 3 and some examples of its use are presented 
in section 4. The present theory is compared with other calculation methods 
in sectmn 5. 

2 THE THEORY OF SURFACE SINGULARITIES APPLIED TO ANNULAR AEROFOILS 

2.1 The method of A.M.O. Smith for bodies of revolution 

The principles on which the method of surface singularities is based3 are 
now well-established and only a brief description of the theory is given below. 



The surface on which the pressure distribution is to be calculated 1s 
specified by a number of ordinates, and surface elements are formed by joining 

these ordinates with straight lines. Thus for z&symmetric bodies with N 
ordinates specified, the surface is approximated by N - 1 conical frustra, 
Fig.1. A control point at which the boundary conditions are applied is 
selected on each element; this point is usually taken as the mid-point of the 
element for convenience. 

A surface source density of unit strength is placed on each element and 
the velocity component normal to the surface induced at every control point 
by all the other elements is calculated by numerical integration. This leads 

to a matrix [V,. 1 whose elements are the normal velocity components induced 
1.i 

at the ith control point by the source density on the jth element. The 
diagonal entries of the matrix represent the normal velocity induced at the 
ith control point by the source density on its own surface element. To obtain 
the actual normal velocities the elements of the matrix must be multiplied 
by the proper values of the source density q., 

J 
which are as yet unknown. 

N-l 
Thus the quantity 

c 
V n. .'j is the total normal velocity at the ith control 

j=l I' 

point due to the complete set of N - 1 surface elements. 

The boundary condition applied at each control point is that the total 

normal velocity is zero, i.e. the flow is tangential to the surface of the 
aerofoil. A set of snaultaneous linear equations can be written down which is 
equivalent to the application of the boundary condition at each control point. 
The equations are of the form 

N-l 

c 
V n.. 'j 

= v. 6111 8 + F i i i = 1,2...N-1 (1) 
11 

where tli is the surface slope of the aerofoil at the ith control point and 

Fi is any other prescribed normal velocity boundary condition, e.g. suction 
or blowing. The term V. &I ei in the equations is the contribution from 

the free stream velocity flowing through the surface which must be cancelled. 
This term must be evaluated in the correct sense. 
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The set of linear equatmns can be solved for the unknown scwrce 

strengths 
qj 

and the tangential velocity component and the pressure coef- 

ficient at the control point calculated. 

The theory developed by A.M.O. Smith for bodies of revolution at zero 

angle of incidence goes no further, so it cannot be used for the annular 

aerofoil problem as no Kutta condition has been applied, and the circulation 

around the aerofoil is undefined. Furthermore there is no convenient way of 

changing the mass flow through the aerofoil. 

2.2 Controlling the mass flow ratio 

The mass flow through the aerofoil can be changed by the addition of a 

uniform vortex distribution whose strength can be varied to give the required 

intake flow. This vortex distribution, which is referred to as the ‘fan’ vortex, 

extends from the leading edge of the aerofoil to infinity downstream. This 

distribution could be placed anywhere on the surface or inside the aerofoil, 

and could vary in strength along the chord. The particular choice made here, 

of a uniform vortex distribution placed on the camber surface of the aerofoil 

and on a cylinder downstream of the trailing edge, has proved satisfactory 

in all cases so far examined. 

The ‘fan’ vortex itself induces a normal velocity component at the 

control points on the surface of the aerofoil which must be cancelled. The 

set of equations (1) are modified to 

N-l 
-+ 

= VO sin Bi- V* y ni F i = l,Z...N-1 (2) 

where V* y 
ni F is the normal velocity induced at the ith control point by the 

'fan' vortex of strength yF. 

The strength of the ‘fan’ vortex required to give a specified mass 

flow ratio is not known initially. In the computer program, two values of 

the ‘fan’ vortex are specified and the corresponding mass flow ratios calcu- 

lated. From these, the 'fan' strength required to give the required mass 

flow ratio is deduced. It is shown in section 3 that this does not lead to a 

lot of extra computing. 

2.3 The Kutta condition 

The circulation around the aerofoil is undefined until a Kutta condi- - 

tion is applied at the trailing edge. The condition normally applied in surface 
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singularity methods for twodimensional aerofoils is that there should be no 

difference in the tangential velocity between the first and last control points, 
i.e. at the points nearest the trailing edge of the aerofoil on the lower and 
upper surface. This condition has to be modified in the annular aerofoil 
problem to allow for the velocity jump across the trailing edge due to the 
trailing vortex cylinder. 

Another uniform vortex distribution has to be added to apply the Kutta 
condition. This distribution is also placed on the camber surface and only 
extends over the chord length of the aerofoil. 

The 'Kutta' vortex as this distribution will be called, also induces 
a normal velocity at the control points, thus the set of equations (2) becomes 

N-l 

c 
v q+vy n.. 3 ni k = VO sTnei-V*u ni F i = 1,2...N-1 (3) 

j=l 
1J 

where Vn.yk is the normal velocity induced by the 'Kutta' vortex of strength 

The tangential velocities at the control points nearest to the trailing 
edge have to be carefully written down because of the sense in which the 
velocity components are evaluated. The calculation is always made in the 
direction of increasing i, Fig.1, thus along the inner surface, the calcu- 
lation is proceeding against the free stream velocity, and this component 
evaluated in the correct sense is negative. On the outer surface, the calcu- 
lation is made in the opposite direction, and the component of the free 
stream velocity is positive. 

To evaluate the velocity jump at the trailing edge we require the velo- 
cities to be measured in the sense of x increasing. Thus on the outer 
surface, the tangential velocity at the last control point is 

N-l 

v. c& BNml + 
c 

V 
tN-l,j qj 

+v 
%I-1 'k + v* 

tN-l YF 
]=l 

and on the Inner surface at the first control point the tangential velocity 

is 

. 
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N-l” 

c 
v 

j=l 

N-l 

where 
c Vt 

l,j ‘j 
is the total tangential velocity induced by the source 

j=l 

distribution on the complete set of surface elements, and Vt yk, Vt yF are 
1 1 

the tangential velocity components induced by the ‘Kutta’ and ‘fan’ vortex 

distributions respectively. 

The difference in these tangential velocity components must be equal 

to the strength of the ‘fan’ vortex, thus the equation used to satisfy the 

Kutta condition is 

N-l 

- c 
(Vt 

l,j 
+ vt 

N-1,~ 
)qj - (vt 

1 
+ vt 

N-l 
),‘, = v,& e1 + “‘OS ‘N-1) 

j=l 

+ cv: +v* Iv 
1 tN-l F+‘F * (4) 

The equations (3) and equation (4) form a set of N simultaneous linear 

. equations from which the N-l source strengths q. 
3 

and the strength of the 

‘Kutta’ vortex yk can be determined. 

2.4 Centrebodies and spinners 

The effect of a centrebody or spinner can be included in the calculation 

with only a small alteration. If NC is the number of ordinates specified 

on the centrebody there will be an additional NC- 1 surface elements and 

control points making a total of N + NC - 2. The summations in all the 

equations must therefore be made over all N + NC - 2 elements and the range 

of i in equations (3) is similarly increased. The equation used to satisfy 

the Kutta condition is unchanged except for the range of the summation. 

2.5 Compressibility considerations 

The theory described in sections 2.1 to 2.4 is based on incompressible 

flow but the effect of changing the free stream Mach number can be investigated 

using the Prandtl-Glanert transformation. The radial ordinates of the body are 

scaled by a factor of 8(- ) and the incompressible flow calculated on 
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the analogous body. The velocity increments thus calculated are resealed by a 
factor of l/B, on the radial velocity, and l/8* on the axial velocity. 

The tangential velocity at the ith control point then becomes 

V V 
V 

ti 
= v. CL ei +xcos Bi +Lsin 8. 

E2 % I 

and the pressure coefficient is calculated using the formula 

cP 
2 

I 

3.5 
=2 l- 

YM 
y&v+) -1 

i 1 1 
3 THE COMPUTER PROGRAM 

The computer program has been written in FORTRAN for an ICL 1907 computer. 
A listing of the program is given in Appendix A and a flow chart in Fig.2. 

The program consists of a MASTER segment: A34R; five subroutines: XFAN, 

CAM, FORM, ELE, INVERT; two library subroutines: F4ELC1, F4ELC2; and four 
function segments: SIMPSN, DIR, TERP, VR. The MASTER segment is described in 
section 3.1 and the subroutines and functions in section 3.2. The core store 
requirements and running time of the program are discussed in section 3.3. 

The numbers in brackets in the following text refer to the line numbers 
in the listing of the program. 

3.1 The MASTER segment 

The MASTER segment controls the running of the program and all the input 

and output operations. The physical quantities represented by the main 
arrays and variables used in the segment are listed in Appendix B. 

The initial statements (0110-0170) are the normal FORTRAN statements 
for declaring the size of arrays and the type of variable used. The program 
has been written to accept up to 89 control points which is equivalent to 90 

body ordinates for an isolated aerofoil, or 91 ordinates for an aerofoil and 
centrebody. The pressure distribution at up to five mass flow ratios can 
be produced with a single run of the program. These limits can be changed 
by altering the dimensions of the arrays throughout the program. 

After setting some initial constants used in the segment (0180-0200) the 
input data is read (0210-0420). For the following text, it is assumed that 
the input data is punched on 80 column cards and that the reader is familiar 
with the FORMAT statement. The input data is sunrmarised in Appendix C. 
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The first data card contains a case number, CASEN, of eight characters, 
and a case description, stored in the array TEXT, of up to 72 characters. The 
characters are read using an 'A' field descriptor and may therefore consist of 

any characters in the FORTRAN set, in particular, the case number need not 

necessarily be an integer. These quantities take no useful part in the 
calculation and are only used to identify the output. 

The number of ordinates on the aerofoil surface, N, is read followed 
by N pairs of ordinates X,R. The ordinates must be specified from the 
trailing edge on the inner surface to the trailing edge on the outer surface 
of the aerofoil. No special distribution of points is necessary though it is 
advisable to space the ordinates closely in regions of high curvature and to 
avoid rapid changes in the spacing between the points. The first and last 
input points must be at the trailing edge of the aerofoil and one point must 
be at the leading edge, X = 0. The error in the calculated circulation yk 
decreases as the point at which the Kutta condition is applied is moved nearer 
to the trailing edge4 so it is recommended that the second, and last but one 
input points, are fairly near to the trailing edge. 

The number of ordinates on the centrebody, NC, is read, and if NC 
is non-zero, the centrebody ordinates. These points should be in order of 
increasing axial ordinate. The last pair of ordinates is followed by the 
quantity RD, which is the radius of the centrebody at the leading edge of 
the aerofoil. The program can therefore deal with spinners which protrude 

from the aerofoil. If the centrebody does not extend to the leading edge, 
RD should be zero. 

The number of mass flow ratios, NFl, at which the pressure distribution 

is to be calculated is read followed by acard containing up to eight quantities. 
The first three numbers are respectively, the trailing edge radius of the aero- 
foil, RO, the chord length of the aerofoil, CHORD, and the free stream Mach 
number. The remaining quantities are the values of the mass flow ratio, AOAI. 

All the data referring to the geometry of the aerofoil and the centrebody must 
be measured in the same coordinate system with the leading edge of the aerofoil 
at x = 0. 

The input peripheral is released (0430) and two arbitrary values of the 
strength of the 'fan' vortex are specified (0500-0520). The mass flow ;atio 
produced by these values of the 'fan' strength is calculated and linear inter- 
polation is used to derive the 'fan' strength which will give the specified 

mass flow ratio. A matrix formulation is used so the matrix of velocities 
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corresponding to the left hand side of equations (3) and (4) has only to be 

evaluated once as these velocities depend on the geometry of the configuration 

and not on the ‘fan’ strength. The main matrix is inverted and a solution of 

the equations can be obtained for any number of ‘fan’ strengths by a simple 

matrix multiplication. Most values of the ‘fan’ strength required to give 

mass flow ratios of practical interest have been found to lie between the two 

values chosen, which are 0 and -0.3. 

The input data is transformed according to the Prandtl-Glanert compres- 

sibility laws (0530-0610) and the ordinates of the control points XP, RF’ 

calculated (0620-0670). 

The ordinates of the camber surface are not required to a high degree 

of accuracy and linear interpolation is used. A dummy call to the interpola- 

tion function TEE? is made (0690) to transform the axial ordinate X(1) to 

the array TH(I). The elements of this array are simply the axial ordinates 

of the aerofoil but multiplied by -1 if the point is on the inner surface; it 

is then possible to distinguish between the inner and outer surfaces of the n 
aerofoil. The camber ordinates are calculated by the subroutine CAM, at 

every 2% chord over the chord length of the aerofoil, and specified at every 

4% chord on the cylinder downstream of the trailing edge. The camber surface 

is covered with a uniform vortex distribution density so the choice of the 

axial location of the camber ordinates is fairly arbitrary; in this respect 

the present method is more flexible than is the case if discrete vortex rings 

are used. 

The velocity components induced at the control points by the two vortex 

distributions are calculated by the subroutine XFAN (0720-0830). The subroutine 

calculates the radial and axial velocity components because these are required 

again later in the program, but then they are scaled by the appropriate com- 

pressibility factors. The normal and tangential velocity components are put 

in the arrays VNG, VTG for the ‘Kutta’ vortex distribution and in the arrays 

VNF, VTF for the ‘fan’ vortex distribution. 

The two right hand sides of the equations corresponding to the chosen 

‘fan’ strengths are evaluated (0840-0950). The main matrix corresponding to 

the left hand side of the equations is set up by the subroutine FORM and 

inverted (0960-0980). The strengths of the singularities are found by multi- 

plying the inverted matrix by the right hand sides (0990-1060). The source 
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strengths are held in the array SOL and the strengths of the 'Kutta' vortex 
in the array G. 

The mass flow ratlo is determined (1070-1280) by integrating the axial 
velocities calculated across the face of the aerofoil. These axial velocities 
do not need any scaling for compressibility as the calculation is made in the 
transformed space and the effective Mach number is zero. 

The strengths of the 'fan' vortex distribution required to give the 
specified mass flow ratios are obtained (1310-1320) and the calculation jumps 
back (0850) to form a new set of right hand sides. The second set of source 
and vortex strengths are found using the inverted matrix and as a check on the 
interpolation the true value of the mass flow ratio 1s calculated. In all the 
calculations made so far, the value of the mass flow ratio calculated using the 
interpolated value of the 'fan' strength has agreed with the specified-value 
to an adequate accuracy. 

The tangential velocity component at the control points are calculated 
(1360-1570) by addlng the contributions from the source distribution, calculated 
by the subroutine ELE, and the vortex distributions to the free stream velocity. 
The appropriate compressibility scaling factors are used throughout. 

The computed pressure distributions are then printed out preceded by a 
tabulation of the input data (1580-1950). 

3.2 Subroutines and functions 

Five subroutines have been wrltten; two are used to calculate the veloci- 
ties induced by the source and vortex distributions: ELE, XFAN. The subroutine 
CAM calculates the ordinates of the camber surface and the subroutine FORM 
and INVERT set up and invert the main matrix. 

The subroutine XFAN (1980-2430) calculates the axial and radial velocity 
components induced at the control points by the 'fan' and 'Kutta' vortex distri- 
butions. A vortex distribution of unit strength is placed on the camber surface 
and on the cylinder downstream of the trailing edge. There is no closed form 
for the velocity induced by an element of the camber surface as in the two- 
dimensional case so an integration has to be made. Each element of the camber 
surface is divided into a number of vortex rings, the number chosen depending 
on the relative position of the control point and the element, and an integration 
using Simpson's rule made. This numerical integration process is also performed 
on the cylinder from the trailing edge to some convenient point downstream, in 
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this case taken as 3.04 chords. The velocity components induced by the remain- 

ing semi-infinite vortex cylinder downstream of 3.04 chord are evaluated at the 
axial position corresponding to the control point but at a radial ordinate 
equal to the radius of the cylinder (2370-2410). This allows a closed form for 
the integral to be used and introduces only a small error. The summation for 
the 'Kutta' vortex is taken over the first 50 elements of the camber surface 
corresponding to an integration over the chord length. 

The ordinates of the camber surface are calculated by the subroutine CAM 
(2440-2610). The radial ordinates are calculated using linear interpolation 
over the chord length (2570-2590) and are set equal to the radius of the trail- 
ing edge for axial locations downstream of the aerofoil (2520-2530). 

The subroutine FORM (2620-2880) sets up the main matrix of velocities 
corresponding to the left hand side of equations (3) and (4) of section 2.3. 
The normal velocity components induced by the source distribution on the 

surface of the aerofoil are calculated by the subroutine ELE (2890-3460) which 
is a modified form of the subroutine INX 1 of Ref.5. The velocity components 

are evaluated in a similar way to those in DAN, but the subroutine ELE also 
has to deal with the singular integral when the control point lies on the 

surface element over which the integral is being made (3290-3420). The sub- 
routine is also used in the MASTER segment to calculate the tangential velocity 
components. The surface slope TAU in this case is replaced by TAU - n/2. 

The parameter Bl is used to scale the axial and radial velocity compo- 

nents by the correct compressibility factors. When the normal velocities are 

calculated, Bl is set equal to unity so that no scaling is applied, but in the 

calcuiation of the tangential velocities, Bl is set equal to 6, and B2 to 
2 6 . 

The main matrix is inverted by the subroutine INVERT (3470-3630). The 
matrix is well-behaved and no sophisticated inversion technique is required. 
The subroutine listed is the simplest that could be found6. 

Two library subroutines F4ELC1, F4ELC2 are used in the program, to 
calculate the first and second complete elliptic integrals which are required 

in the calculation of the velocity components. The first parameter in the 
subroutine is the argument, k2, and the second parameter is the value of 

the integral on return. A simple polynomial approximation to each function is 

used14. 
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The four function segments are self-explanatory and need little comment. 
The function SIMPSN performs numerical integration using Simpson's rule. The 
correct sense and value of the surface slope 1s evaluated by the function DIR 
which is a modified form of the function PSI of Ref.6. The function TERP per- 
forms linear interpolation. The dummy call to this function (0690) is used to 
set up the array TH(1). The intake velocity ratio corresponding to the mass 
flow ratio VI is calculated by the function VR. The velocity ratio is found 
from an iterative solution to the equation' 

VI = VR(0.2M2(1 - VR2) + 1.0)2*5 . 

Newton's method for finding the zero of a function is used to give rapid 

convergence. 

3.3 Computing details 

It is difficult to give the precise time taken by the program s~-,ce it 
varies considerably with the number of input points. On an ICL 1907 computer 
with a 1.2 US core cycle time, a calculation with the maximum number of input 
points needs about 10 minutes of central processor time. The program as listed 
compiled by XFAT Mk.2E requires 30 k words of core store. 

4 COMPARISON BETWEEN THEORY AND EWERIMRNT 

The computer program was developed as a complement to some experiments 
that were made on three annular aerofoils7. These aerofoils had a chord to 
diameter ratio of unity and were tested over a wide range of Mach number and 
mass flow ratio in the RAE 8ft x 6ft transonic tunnel. The cowls were mounted 
on a semi-infinite centrebody which was represented in the calculations. 

The calculated pressure distribution on cowl 1 at a high mass flow 
ratio is compared with the measured distribution in Fig.3. The overall agree- 
ment between theory and experiment is quite good except on the inner surface 

downstream of the peak where there was a local flow separation. 

The importance of correctly representing the afterbody is demonstrated 
in Fig.4. The pressure distribution calculated on the forebody of cowl 1 is 

compared with that calculated on a forebody of the same shape followed by a 
long cylindrical afterbody. The difference in the pressure distribution is 
mainly due to the circulation developed around the complete cowl. 

Some comparisons between the calculated pressure distribution, made 

with about 70 control points, and the measured distributions for cowls 2 and 3 
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are shown in Figs.5 to 8. Again, good agreement is obtained except at the lead- 
ing edge of the cowl where the theory overestimates the suction level. 

The theory has been compared with the experimental results up to a Mach 
number of 0.70 which is the Mach number at which shock waves started to appear 

on the cowls. Figs.9 and 10 show the pressure distribution on cowl 3 at a 
Mach number of 0.70 and at two mass flow ratios. The agreement is reasonable on 
the inner surface and behind the shock wave on the outer surface of the cowl. 

Although the 'fan' vortex 1s placed on a cylinder downstream of the 

trailing edge, the stream tubes are curved as shown in Fig.11. The stream tubes 
ware traced by calculating the value of the stream function at several radial 
positions and at thirty axial stations using the singularity strengths obtained 

from the program. Specified values of the stream function were found by inter- 
polation. Fig.11 clearly shows the stream tubes expanding ahead of the cowl 
and contracting downstream of the trailing edge. 

The predicted pressure distribution on an annular aerofoil with a chord 
to diameter ratio of 0.75 is shown in Fig.12. This is the aerofoil Bl designed 
by the Admiralty Research Laboratory' and tested in a low speed wind-tunnel 
at NPL. The ordinates are not particularly well defined in the reference 

and the calculation was made with only 50 control points, but the agreement 
is still good. 

5 COMPARISON WITH OTHER THEORIES 

Several other methods for calculating the pressure distribution on an 
annular aerofoil have appeared in recent years and these are compared with 
experiment and the present method in this section. 

The computer program written by Mason' at Rolls Royce was one of the 
first to be developed. The method is similar to that described in section 2.1 
except that the surface singularities may be sources or vortices and a variety 
of boundary conditions can be imposed. Most of the calculations for annular 
aerofoils have been made using a surface vortex distribution with the boundary 

condition that the stream function should have a specified value at all the 
control points. The stream function is related to the inlet velocity ratio by 
the formula 

v. 'TE 
e=- 1 +Jo 
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eo the method can calculate the pressure distribution on the aerofoil for any 

inlet conditions fairly easily. HOWeVer, when the mass flow ratio is reduced 
below the free flow value there should be a trailing vortex system similar to 
that described in section 2.2 but this is not represented in the Rolls Royce 

program. The greatest deficiency in the method is that no Kutta condition is 

applied and generally, there is a singularity in the velocity distribution at 

the trailing edge. 

Some calculations have been made by Rolls Royce on the three annuIar 
aerofoils tested at RAE7. Fig.13 shows the predicted pressure distribution 
on cowl 2 at low Mach number. The corresponding pressure distribution calcu- 
lated with the present program is shown in Fig.5. The infinite velocity at 
the trailing edge of the Rolls Royce calculation is not apparent in this case, 
and generally, the agreement is good. A more typical result is shown in 
Fig.14, for cowl 3, corresponding to Fig.7 for the present method. The calcu- 
lated pressure distribution breaks down at about 80% chord although the agree- 

ment on the forebody and on the inner surface of the aerofoil is quite good. 

A considerable amount of theoretical work on annular aerofoils using 
linearised and non-linearised theory has been done by Geissler 10 . His non- 
linearised theory uses a surface vortex distribution with the same boundary 
condition used in the present method, i.e. the normal velocity component is 
zero at the control points. Another vortex distribution, also placed on the 
surface of the aerofoil is used to satisfy the Kutta condition. The Kutta 
condition is applied at the trailing edge and is that the flow should be 
tangential along a line bisecting the trailing edge angle. The& is no con- 
venient way of changing the mass flow ratio and to compare theory and experi- 
ment at the same inlet conditions requires a change in the strength of the 
'Kutta' vortex distribution. A reduction of about 25% is required to match 
the results for cowl 2 and about 20% for cowl 3. Once the strength of the 
vortex distribution has been changed, the Kutta condition is no longer satis- 

fied and the theory predicts an infinite velocity at the trailing edge. How- 
ever, the agreement between theory and experiment is extremely good over all 
but the last few per cent of the aerofoil chord. 

Another approach to the problem has been adopted by Ryan 11 . This method 
is based on the work of Martensen 12 and Wilkinson 13 for twodimensional aero- 
foils and cascades and uses discrete vortex rings instead of a distribution 
on surface elements. The boundary condition is that the tangential velocity is 
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zero inside the aerofoil. The major disadvantage of the method is that the 

solution is calculated at specified locations so it is difficult to calculate 
the pressure distribution in regions of particular interest unless the number 
of input points is increased significantly. However, this does not necessarily 

give greater accuracy because errors arise from the use of isolated vortex 
4 rings . 

Ryan uses the same Kutta condition as Wilkinson 13 that the load is zero 
at the point nearest the trailing edge. This is achieved by setting the 
vortex strength at the first and last points equal and opposite. This choice 
of Kutta condition is not the best for cowls or intakes as considerable 
numerical problems arise if the method is extended to calculate the pressure 
distribution at different mass flow ratios to simulate the effect of a propel- 

ler or screen. 

The pressure distribution on the ARL duct Bl calculated by an early 

version of Ryan's program is shown in Fig.15, and the results from the present 

theory in Fig.12. The mass flow is incorrect by about 12%, but better agree- 

ment is obtained for the B3 duct, Fig.16, particularly on the outer surface. 

The program developed at ARA by Langley (unpublished) uses a vortex 
distribution on the surface of the aerofoil and another vortex distribution 

on a cylinder downstream of the trailing edge. The boundary condition is 

that the stream function should have a specified value on the surface as in 
the Rolls Royce method and the Kutta condition is the same as in the present 

method. Fig.17 compares the pressure distribution predicted by Langley's 

theory and the present method on an annular aerofoil with a chord to diameter 
ratio of unity and a 10% RAE 101 thickness distribution. The agreement between 
the two methods is quite good. 

6 CONCLUSIONS 

A theory has been developed and a computer program written to calculate 

the pressure distribution on an isolated annular aerofoil OT an annular 
aerofoil and centrebody. The method gives results that are in close agree- 
ment with experiment over a range of geometries, Mach number, and mass flow 

ratio. 

The present theory has also been compared with several other methods 

dealing with the same problem. The calculation methods developed by Langley 
and Geissler use a similar model of the flow and give similar results to the 

present method though Geissler's method is less flexible since it cannot 
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be used to calculate the pressure distribution at any mass flow ratio. The 

other methods are deficient or restricted in some respects though good agree- 

ment between theory and experiment is obtained in some cases. 
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c 

C 

100 
C 

101 
C 

102 
C 

C 

c 

103 
C 

104 

t 

4w.A 
listing of the program 

MASTER A34R 
ANNULAR AERoFOlL PROGRAU 
DIMBNSION T~X~~9~,~~91~~~~9~~~xp~89~rFo,Rc~102~,x1~102~, 

IR?~ll~rVF~ll,l~rVNF~89~,VTP~89~,VNG~S9~,VTG~89~~RHS~9O,5~,G(5), 
2SOL~9Or5~.U~89t5~rPI~89)cVAU~ll~,X~U~S~,A~Al~S~~VRF~89~,VXp~89), 
3VRG(BP),VXG(89) 

LOGICAL DER 
REAL WACHtMACH2 
COMMON B16(90,90) 
NBul02 
P124~2.O+ATAN~l.O) 
DERm.FALSE. 
READ INPUT DATA 
R~AD~lrlGO~CASCN,~TEXT~~~,l=l,9~ 
FORMAT(lOA8) 
CASGNECASE NUM~ERI lEXT=CASE DESCR~PT!ON tag72 CHARACTERS RESP.) 
RSAD~l,lOl)N 
FBRf4AT(IS) 
N=NUMBER OF iNPUT POINTS 
READ(lrlO2)(X(X~~R(I)tI=l,N) 
FORMAT(8FlD.6) 
X(I),n(!) ARE BODV ORDINATES 
RlfAD(1.101 )NC 
NC=NUMSeR OF CENTRE*BODY POINTS, NINC LESS THAN 91 
NPNCaN*NC 
IF(NC.Nf.O)READ(~,lD2~(X(I~~i?(~~,X=N*l,NPNC~~RD 
READ ORDINATES OF CENTRE-BODV, RD-Ci!NTRE~BODV RADIUS AT XnO 
R@Al~lr103)~Fl 
FORMAT 
NFImNUMBER OF MASS FLOW RATfOS (MAXIMUM OP B) 
RGAD~l,lO~~RG,CWDRD,MA~~,~ADAl~I~~?~l,NFl~ 
FORI411(8Fl0.5) 
RO~TPAILING-EDGE RADlUSt CHORD=CWDRB LENGTN 
M-MACH NUMBER, AOA;(I)WASS FLOU RATIOS 
CALL RLEASE(1) 
IF(NC.LQ.O)nD=O.O 
Nl mN-1 
Ntml 
NF=2 
NPNCL=NPNC-2 
If(NC.EQ.O)NPNCZ=N-1 

0090 
0100 
0110 
0120 

is:: 
0150 
0160 
0170 
0180 
0190 
0200 
0210 
0220 
0230 
0240 
0250 
0260 
0270 
0280 
0290 
0300 
0310 
0320 
0330 
0340 
0350 
0360 
0370 
0380 
0390 
0400 
0410 
0420 
0430 
0440 
0450 
0460 
04?b 
0480 
0490 



c 

C 

204 
c 

205 
C 

c 

208 
C 
1000 

401 

App.A(cont’d) 

SET UP TWO INITIAL FAN STRENGTHS 
F(1)iO.O 
F(2)=-0.3 
TRANSFORM INPUT DATA 
#CCHZ=MACW*HACH 
GETA2=1.0-MACH2 
GEfAoSPRT(SETA2) 
RC~RO*BETAIC~ORD 
RbnRb*BETA/CHORD 
DE 204 I=l,NpNc 
X~~).=X(!)/CHORD 
RcI)~R(I)*EETA/C~IOPD 
CPLCULATE CONTROL POINTS 
De 205 1=11NpNC2 
l=l 
IF(!.GE.N)L=L+I 
xP~I~=o.5*~x~L~+x~L*l~~ 
RP(I)cO.S~(R(L)+R(L+~)) 
CALCULATE CAMBER ORDINATES 
AETERP(N,X~RIO,S~DER) 
DCRm.TRUE. 
CALL CAM(ND,XI,RCIXIRIN#DER#RO) 
CPLCULATE VELOCIT!ES lNDUCED By FAN AND KUTTA VORTEX DISTRIBUTIONS 
DO 208 !=lrNpNC2 
L=I 
IF(I.GE.N)L=L+l 
TAUmAlANZ(R(L*~)'R(L)rX(L+l 1 
CALL XFAN(XP(!).RP(I)~X~~RC , 
SNT=SIN(TAU) 
CST=COS(TAU) 
VYF(I)nVRF(I)*CST-VXF(I)*SN 
VNG(l)rVRb(I)rCST-VXG(I)CSN 

-X(l)) 
RO,VRF~X),VXF(IlrVRG(!),VXC(l)rYD) 

T 
T 

VTP(I)~VXF(I)*CST*~RF(I)*SNT 
VTG(I)~VXG(I)*CST*VRG(I)ISNT 
SFT UP RHS OF EQUATIONS 
DO 401 ImlrNpNC2 
L=! 
IF(!.OE.N)L.L+'l 
SNT~SIN(DIR(R(L*l)-R(L)rr(L*l)-X0)) 
DE 401 J~I~NF 
R~S(I,J)ES~T-F(J)~VNF(I) 

,. ‘*I 

OS00 
0510 
0520 
0530 
0540 
0550 
0560 
0570 
0580 
0590 
0600 
0610 
0620 
06SO 
0640 
0650 
0660 
0670 
0680 
0690 
0700 
0710 
0720 
07so 
0740 
OY50 

%i 
0780 
0790 
0800 
0810 
0820 
0830 
0840 
0850 
0860 
0670 
0880 
0890 
0900 



290 
C 

C 

400 

209 
c 
1002 

a9 

90 

216 

214 
21s 

213 
217 

c 

900 

App.A(cont’d) 
TAUI~BIR~R~2~-R~l~,X~Z~-X~l~~-P124 
lAU2.DIR~R(N)~R(Nl),X(N)-Y~Nl~~-PlSa 
A=ABS(SIN(TAUZ))~ASS(SJN(TAUl)) 
DO 290 J*lrNF 
RHS(NPNC2*1,J~=F(J)*(VIFo+VfC(N~~)+A+F~J~ 
FORM MAJN MATRIX AND XNVERSE IF NTml 
JP(NT.EQ.l)CALL FORM(X,R,NPNttVNC~VTG,Pl~XP~RP,NPWCZ,N) 
JF(Nl.EQ.l)CALL JNVERT(NPNCZ+l) 
CALCULATE SOURCE AtJD KUTTA VORTEX (TRENGTYS 
DO 400 J=lrNPNCZ*l 
DO 400 J=ltNF 
SOL(J,J)=D.O 
DO 400 Knl,NPNCZ+l 
S@L~I~J~~~IG~~BK~~R~S~K~J~+SOC(I~J~ 
DO 209 J=l#NF 
GfJ)sSOL(NPNtZ+l,J) 
CALCULATE MASS FLOb RATIO 
DO a9 Jnlrll 
DO a9 J-1,NF 
VP(lrJ)nO.O 
An(RC(l)+RC(l)-RD*RD)/lO,O 
RF(l).O.ool+RD 
DO 90 1=2,11 
RF(I~ESORT(A*FLOAT~J-~~+RD*RD~ 
RF(ll~=RF(ll)-0.001 
DO 215 lclrll 
CALL ELE(o.O,Rf(J~,-PJ24,X,RI#PNC~D,P!,l.DtNPNC2,N~ 
DO 216 JnfsNF 
DO 216 K='I#NPNCZ 
VF(I,J)=PJ(K)*SOL(K,J)+VF(lrJ) 
CALL XFAN(o.o,RF(l),X1,RC,RO,VRl,VXl,VR2~VX2,ND~ 
DD 214 J=~~NF 
VF(lrJ)=VP(J,J)+VX~*F(J)+VXZtO(J)~l~O 
C~JNTINUE 
DO 217 J=lrNF 
DO 213 J=lrli 
VAUtI)~VF(I,JB 
XHU~J)=SJMPSN(VAU,ltll~A)/~lO.O*A) 
JC(NT.EO.2)GO TO 901 
CALCULATE FAN STRENGTHS FOR SPECSFlED (nASS FCOU RATIOS 
DO 900 J=lrNFI 
F~J~~-o.3~~AoAI~J~.XMU~l~~/~XMU~2~~XMU~l~~ 

0910 
0920 
0930 
0940 
0950 
0960 

K 
0990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1010 
ioao 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1iao 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 

:::i 
1320 



PC01 

510 

211 

210 
C 

210 

513 

106 

App.A(cont’d) 

NT=2 
NFRNFI 
GO TO 1000 
CALCULATE TANGENTIAL VELocTTIES 
DO 510 IdrNPNc2 
L=! 
IP(I.CE.N)L=L+l 
TAUnATAN2(R(LIl)~R(L),X(L*l)-X(L)) 
SNTNS!N(TAU) 
CST'COS(TAU) 
VTF~I~NVXF(I)*cST/BETA2+VRF(!~*SNT/RETA 
VTG(1)=VX6(I)+CSTIl3ETA2+VRG~I~*SNT/RETA 
DO 210 IrlrNPNc2 
L=I 
IF(X.GE.N)LaL+l 
TAU=DIR~R~L+l~-R~L~,X~L+1)-Xo~-PI1C 
CALL ELE(XP(I),RP(!),TAUIX,R,NPNC~T,P!,~ETA~N~NC~~N) 
De 211 .l=l,~F 
U(!,J)=O.D 
DO 211 K=l,NPNCZ 
U~I,J~~U~I~J~+SOL~K,J)2PI~K~ 
SNT=SIN(TAU) 
DE 210 JNl#NF 
U(I,J)=U(I~J)*G(J)*VTG~I)+F(J)+VtFII)~SNT 
CONTINUE 
CALCULATE AND PRINT OUTPUT 
DO 218 I=lrNPNc 
R(I)=R(I)/BETA 
DO 513 Iol,NPNcZ 
RP(I)9RP(!)/BhPA 
CALL DATE(A) 
CALL TIME(B) 
WR1TE(2.106)A,B,cASENl(fEXT~!~~I=l.9~~N~MACH 
FORMAT(lH1~26X~28HROVAL AIRCRAFT ESTA8LISHMCNT//l6X~46HAGRODvNAMIC 

1s DEPARTMENT -- PROPULSION DIVISION////~OY,~ONCALCULAT!ON OC THE P 
7RESSURE DISTRIBUTION//2OX,39HON AN ANNULAR AEROFOIL BY THE METHOD 
3oFI/3OX.2lhSuRFACE SINGULARITIES////25XrSYDATE ,A8,4X,SHTIHE rA8/1 
4/23X,34HCASE CONTROL DATA FOR PROGRAM A34R /IZPX,lZHCASE NUHSER ,A 
58/24X,llNCASE DESCRIPTION ,9A8/18X,23HNUMRER OF INPUT POINTS #IS/2 
69X,lZHMACH NUMBER ,F8,5//23X,lSHMARR PLOW RATIO,~XI~ZWFAN STRENGTH 
71) 

1330 
1340 
1390 
1360 
1370 
1380 
1390 

2:: 
1420 
1430 
1440 
1450 
lb60 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 



App.A(cont’d) 

WRITE(2,107)(XHU(J),F(J),J~l,NF) 
107 FORMAT(lH r23~~FlO,5,lOX~Fl0.5) 

WRITl3(2.108) 
108 FORMAT~lHO~3~X~loWlNPUT DATA/127x,rnx129X.lNRI) 

WRltE~2,109~~X~1~,R~I)rlol,NPNC~ 
109 FORMATtlH r2OX,~l0,5r2OXtFlO.5) 

DO 219 JM1rNF 
XH=VR(XMU(J)rMACH2) 
WRITL~2,ll6~CASEN,~TEXTt~~,l~l~9~~MACH,F~J~,XMU~J~,X~ 

116 FORHAT(IH~~~~XI~~HCALCULATED PRESSURE DISTRIBUTION//29X,l2NcASE NU 
IMRGR ,A8//24X,17HCCSE DTiSCRlPTfON .9A8//29x,l2NMACN NUMBER ,FS.S// 
228X.lSHFAN STRENGTH tF8,5//25Xtl6HMASS FLOW RATIO ,F8,5//2OX,2lHTN 
3LET VELOCITY RATIO ,F8,5///2Sx~2HXP.l3X~2HRP~~X~1HU,8X,2HCP/~ 

De 222 Inl*NPNcZ 
IF(MAcH.EG,o.~)GO ~0 304 
CP=2.0+~~1.0-0.2*MACH2~~U~!~J~+UoII.0~~~~3.~~1.0~/~1,4~MACH2~ 

!rJ)*U(I,J) 
GO TO 305 

304 CP'I .o-U( 
305 CONTINUE 
222 WRITE(2rl 
117 FORMATflH 
219 CONTINUE 

STOP 
END 

17)XP(I),RPfI 
~20Xn4FlO.5) 

).U(IrJ),CP 

:::: 
1760 
1770 
1780 
1790 
1800 
1810 
102e 
IS30 
1840 
1850 
1860 
1870 
1880 
l890 
1900 
1910 
1920 
1930 
l940 
1950 
1960 
1970 



App.A(cont’dJ 

SUBROIJIZNE XFAN(XP,RPIXI,RC,RO~AV~~AVX~GAVR~~~VX~ND~ 

E 
~AL~UCATE~ TIC AXIAL AND RADIAL VEICICITY COMPCINENTS oue To 
FAN AND KUTTA VORTEX DISTRIBUTIONS OF UNIT STRENGTH 
DIMl?NSION RC(ND),X~(ND),VX(SO)~VR(~~J~~AAVX(~D~)~AAVR~~O~~ 
REAL K,KZ,KK2 
ND~~NB-I 
AVX~AVR,GAVRIGAVX~O,D 
PIZ=B.O*ATAN(l.O) 
DIY 4 J=l,NDl 
AA=SQRT(fXl(J~l)-X1(J))~~2+(RC(J+~~-RC~J~~~~2~ 
RS=SPRT~~XP-Xl~J~~**Z+~RP~RC~J~~~~7¶*SGRT~~XP-X~~J*l~~~~2*~RP~RC~J 

1+1))++2) 
CCmO.2+16.O+AA/PS 
NPB=CC 
NRDm2+NRD*l 
IF(NRD.LT.J)NRDm3 
D~=~X~~J+~~-X~~J~~IF~OAT~NRD-~~ 
DR~(RC(J*I)-RC(J))/FCOAT(NRD-~) 
SrSQRT(DR*DR+DX*DX) 
DD 1 XRD=l#NRD 
RR=RC(J)+DR*FlOAT~!RD-1) 
Xx=Xl~J)+DX+FLOAT(IRD-I) 
A=(XP-xX~*(XP-xX) 
GD(RPIRR)+(RP-RR) 
E=G*~.OIRP+RR~A 
K=Q.O*RR*RP/B 
BESGRTCB) 
CALL F4ELC1(K,C) 
CALL FQELC2(K,E) 
vX~XRD~n~C'~~.~+2,~*RW*(RP-RR~/~A*G~~~~~/~p~2*E~ 
vR~IRD)a(C-(1,0+2.0~RR*RP/(A+G))~~~~(XX-xP)/(P!2*RP*B) 
AAVX(J)=SIMPSN(VX,I,NRDIS) 
AAVR(J)=SIMPSN(VR,l,NRDIS) 
DC! 6 Jsl,NDI 
AvX~AVX+AAVX(J) 
AVRDAVR+AAVR(J) 
DO 7 JEl,sG 
GAVXEGAVX*AAVX(J) 
GAVR=GAVR+AAVR(J) 

1988 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2700 
2110 
2120 
2130 
2140 
2150 
2760 
2170 

5::: 
2200 
2210 
2220 
2230 
2240 
22so 
2260 
2270 
2280 
2290 
2300 
2310 
2320 
2330 
2340 
2350 
2360 



App.A(cont’d) 

K~.~.O*R~*RO/~~XP-S.O~~~~~*~.O~RO~RO~ 
CALL F4ELCltK28KK2) 
CALL F4eLC2(KZ~EK2) 
AUX~AVX-~PI~/~.O-SQRT~~,O-K~~*KK~~~~I~ 
AUR~AVR+(l,O/PIZ)c(SQRT(K2)~~KK2~~2.~~(KK2-~K2~/K2~~~ 
RETURN 
Ehb 

SUBROUTINE CA~(ND,X~,RC,XIR,N,D~,R~~ 2440 
C CALCULATES one ORDINATES 0~ THE CAMBER SURFACE 2450 

DlHENSlON XI(ND),RCfND)rX(N),R(N) 2460 
LOGICAL Dl 2470 
De 1 l~l,Sl 2480 

1 Xl(I)nO.O2*FLOAT(I-1) 2490 
DO 2 1=52rND 2500 

2 xI(I)=O.04*FLoAT(I-Sl>+l,O 2510 
DC 5 1~51,Nb 2520 

5 RC(l)*RO 2530 
DO 6 IalaN 2540 
IF~X~I~.EQ.O.O~RC~O~R~I~ 2550 

6 CONTINUE 2960 
DO 7 1=2,SO 2570 
T=Ylt!) 2580 

7 RC~~~~O.~+~TERP~N~X~R~T~D~~+TERP~N,X,R,~T,~~~~ 2590 
RETURN 2600 
E&B 2610 

2370 
2380 
2390 
2400 
2410 

iE:i 



App.A(cont’d) 

SUBROUTlNE pOR~~X,R~N~vNGtvTGrpI,XP~RP,Nl,NZ~ 
C SETS UP MAIN MATRIXI I,E, LHS OF EOUATlONLl 

DISTENSION X~N~,R~N~~P:~N~~,~NG(NI).VT~(NI)IXP~N~~~RP~N~~ 
COMMON ~IG(90,90) 
N3=NZnl 
Bal .o 
P!24=2.b*ATAN(l.o) 
DO 1 I=l,Nl 
L=1 
IP(~.GE.N2)L*l*l 
TAU~DIR(R~L+~)-R(L),X(L+I)IX(L)) 
CALL eCE(XP(I)rRP(!),IAU,X,R,N;X,P~.G,Nl~NZ~ 
Dh 1 Jaf.Yl 
siac!;Jj;,IcJ, 
DD 2 I*l,Nl 
B!G(I.N~+I)=vNG(I) 
TAlJ=B1R(R(2)-R(l),X 
CALL ELE(XP(l)rRP(l 
DO 3 Jnl,Nl 
G!G(Nl*l,J)=-PI(J) 
TAU=DIR(R(N2)*R(NS) 
Fft.\ ELE(XP(N3),RP( 

2)-X(l))-PI24 
,TAU#X,R,N,l ,P!.B,Nl ,U2) 

DO 4 Jml,Nl 
BXG~Nltl,J~~BIGfNl~lIJ)LPI~J~ 
BIG~NltlrNltl~=~V~G~l~-VlG(NS) 
RETURN 
END 

262e 
2630 
2640 
2650 
2660 
2670 
2680 
2690 
2700 
27jO 
2720 
2730 
2740 
2750 
2760 
2776 
2780 
2790 
2800 

::g 
2830 
2840 
2850 
2860 
2870 
2ase 



.I 
App.&“+‘d) 

SUBROUTINE ELE(XP,RP,TAUtXrR,N,I,PT,Bl,NlrW1) 
CALCULATES THE VELOCITY COMPONENTS BUE TO TH@ 
SURFACE SOURCE DISTRI8UTION 
DlMENSION XtN)rR(N),WW(42),PItNf) 
REAL CK.L6S 
PI2=8.OeAlAN(l .tl) 
SbT~SINtTAU) 
CSTmCOStTAU) 
82’81 *El 
DO 4 L=I.NI 
JoL - 
If(J.GE.N4)J=J+l 
AAmSQRTttXtJ+O-XtJ))ss2+ocR(J))+*2) 
RS~S~RT((X~~X(J))~~~+(RP~R(J))~*~)~S~RT~(X~-X~J*~))**~+(RF-R(J*~)) 

1+*2j 
CC=0.2+lb.OcAA/RS 
NRD=CC 
NRD~ZaNRDtl 
If tNRD.LT.3)NRD:S 
I~(X.EO.L)NRD~NRD+~ 
DY~tXtJ+l)-X(J))/fLOAltNRD-1) 
DR=tRtJ+l)-R(J))/fLOATtNRD-1) 
S~SQRltDR*DR+bX*DX) 
DO 1 IRDBlrNRD 
RR=RtJ)+DR*FLOAf(lRD-I) 
XX~XtJ)+DX’fLOAT(!RD-1) 
XPx2=txP-xX)*tXp-Xx) 
A=RP*RP+RR*RR+XPX2 
Bs2,OrRPcRR 
AMB=A-IJ 
APBmA+B 
VKI=Z.O+BIAPB 
APBmSPRTtAPB) 
CALL FLELCl (VKI ,KK) 
CALL F4ELC2tVKl ,EK) 

1 WW~IR~)~CST~(RR~(KK-EK)/RP~~,O*RR~~RP~RR)~BK/AMB)/~P~~~APB~B~)~SNT 
1+2,DIRR*(YP-XX)rEK/tPIZ*AMB+IPB*B2) 

If(I.EO.L)~O TO 2 
P!tL)=SIMPSN(WU,l ,NRD,S) 
GO TO 3 
NZBNRB/Z 
N3=N2+1 
PItL)pSIMPSNtWU,lrN2,S)*S!MPSN(!dW~N3~NRD~S) 

2996 
2920 
2936 
2940 
29SO 
2960 
2970 
2980 
2990 
3000 
3010 
3020 
3030 
3040 
3050 
3060 

E 
3090 
3qoo 
3110 
3120 
3130 
3140 
3156 
3160 
3170 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3310 



App.A(cont’d) 

SSS/RP 
SIGMA=DIR(R(J+I)-R(J)~X(J+~)-X(J)) 
SWSUS!N(SIGHAI 
CsS~toS(S1G~ii 
SNS.?sSNS*SNS 
SUS6nSWS2'SNSZ 
LGS=ALOG(S/l6,0) 
sz=s*s 
PK~-SNSsCSS*S+~1.0+~13,0/6.0+LGS~SNS2~+S2/96.0~/P12 
PR~-S~~SNSZ+LGS-~S,O*(1.O+LGS-SNSZ~-2.O*SNS~~~S2/l92,O~/P~2 
PI(L)=PI(L)+O.S+(COS(S~GMA-TAU)~PXISYI/B2+PR~CST/Sl) 

3 CONTINUE 
4 CONTINUE 

RETURN 
END 

SUBROUTINE INVERT(N) 3470 
C INVERTS NXN MATRIX IN THE COMMON BLOCK 3680 

COMMON At90,90) s490 
Db 1 InlaY 3506 
TEMP=A(l,I) 3510 
At1,I)nl.O 3520 
DO 2 Jn1.N 3530 

2 AtIrJ)nA(ItJ)/TEMP 3540 
DO 1 KnlrN 3550 
IF(K*1)3,ltS S560 

3 T~tdp=A(~,l) S570 
A(K11)80.6 3580 
DC 4 J=lrN 3590 

L A(K,J)EA(K,J)=TE#P~A(I,J) 3600 
1 CONTINUE J6lO 

RETURN 3620 
END 3630 

3320 
S330 
JJLO 
3350 
3366 
3510 
3380 
3390 
3400 
3610 
3420 
3430 
Sk46 
3450 
3460 



App.A(cont’d) 

FUNCTION SIMPSN(FR,IA,NnH) 
C NUHER~CAL INTEGRATION USING sIHPSONS RULE 

DIMENSlON F!?(N) 
L=(N-SA)12 
Nl mN-1 
IF(N-IA-2*L)21,22,21 

22 s=o.o 
DB 23 I=IAINI,~ 

2s S.S*H*~FR~I~+4.O~FR~~*l~*FR~I+Z))15.6 
GO TO 2A 

21 S.W~~5.O+FR~1A~*8.O’FR~lA*l~-FR~lA~Z~~/l2.O 
DO 25 InIA+ltN1,2 

25 SuS+H~~FR~I~+A.O~FR~~*~~+FR~~*2~~/3.0 
24 SIMPSN=S 

RETURN 
END 

S6LO 
S6SO 
3660 
3670 
3686 
3690 
3700 
3710 
S720 
3730 
S7bb 
3750 
3760 

%! 
3790 



App.A(cont’d] 

FUNCTION DIR(DY,DX> 
CALCULATES CORRECT SLOPE OF BODY SURFACE 
PI=b.O*ATAN(l .O) 
IF~DV.LE.O.O)60 TO 3 
IF(DX.LE.O.O)60 70 1 
DlR=A7AN~OYfDX) 
RETURN 
IF(DX.LT.O.O)60 TO 2 
DIR=P1/2.0 
RETURN 
01R~Pl~ATAN(ABS~DY/DX)) 
RETURN 
XF(Dv.L?.O.O)60 TO ? 
IF(DX.LE.O,0)60 TO 4 
01a=o.o 
RETURN 
lF(DX.LT.0,0)60 to 6 
UR!TEt2,5) 
FbRMAT(lWl,lOX,27M;UNCTXON DIR JNDETBRMINATB./) 

c 

Dl IR80.0 
RI :TURN 
DI !R=PY 
RI iTURN 
11 ~<bX.LL.0.0)60 TO 6 
01 !R=n.ATAN~ABS~DY/bW~~ 
RI !TURN 
II ~(DX.LT.O.O)BO TO 9 
DI IR-•P1/2.0 
RE !TURN 
DI IR=-PI+ATAN(ABS(BV/DX)) 
Ri ITURN 
EL lb 

::z 
5820 
3650 
36&O 
3650 
3660 
3870 
3660 
3890 
JP00 

;i:: 
J9SO 

:x 
3960 
5970 

:z 
LOO0 * 
4010 
4020 
4030 
4040 

1% 
6070 
1080 
lso90 
&IO0 
6110 



C 

1 

2 

4 

3 

C 

2 

3 

: 

App.A.(concl’d) 

Fl~NCllON TERP(NIX,R~AID) 
LINEAR INTERPOLATION FUNCTION 
DIMENSION X(N),R(N),TH(BO) 
LOGICAL D 
IF(D TD 2 
Nl aN-1 
DO 1 I=l.Nl 
TY(!)8X(l) 
IF~x~I~.GT.~~X*~~~TH~I~~-TH~~~ 
CBNTINUE 
TP(N)oX(N) 
Db 3 !=I .Nl 
IF(A.GT.tH(I).AND.A.LE.TH(!+l~~GO TO 4 
GO TO 3 
TERP~R~I~*~R~I*~~-R~I~~C(A~TH~I~~/~TH~I+~~~TH~I~~ 
RETURN 
CONTINIJF 
RETURN 
END 

FUNCTION VR(VIrAM) 
CALCULATES VELOCITY RATIO FROM CORRFSPONDING MASS FLOU RATIO 
A~O.2+AM 
NC-1 
VO~VI 
V~VO*~A~~~.O~VD~VO~+l,D~~~2.5-VI 
Y~=~~.~~A*V~+VO+A*~,O)~~A~~~.O-VO~~~~*~.O~*~~.~ 
DVm-V/V1 
VkoVO+BY 
IE~ABS(DV),LT.~.~OO~OO~~GO TO 1 
VeeVN 
NCmNC+l 
IF~NC.GT.?OO)GO TO 3 
GO TO 2 
URITE(2.4) 
FORMAT(lHOv25HVR FUNCTION NOT CONVRRG~D) 
VR=VN 
RETURN 
END 

::3: 
4140 
4150 
4160 
4170 
4180 
4190 
4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 
42ae 
4290 
4300 

t5:: 
4330 
4340 
4350 
4360 
4370 
4380 
4390 
4400 
4410 
4420 
4430 
4440 
4450 
4460 
447e 
4486 
4490 
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Appendix B 

LIST OF THE MAIN VARIABLES USED IN THE MASTER SEGMENT 

There follows a list of the main variables and arrays used in the MASTER 
segment of the p-ogram with the physical quantity represented by each. 

Variable or array 

AOAI 
CP 
F 
G 
N 

NC 
NPNC 
NPNC2 

PI 

SOL 
TAU 

U 
V-F 

VNF, VTF 

VNG, VTG 

VRF, VXF 

VRG, VXG 

X, R 
Xl, RC 

a, m 

Physical quantity 

Specified mass flow ratio. 
Pressure coefficient. 
Strength of the 'fan' vortex. 
Strength of the 'Kutta' vortex. 
Number of aerofoil ordinates specified. 
Number of centrebody ordinates specified. 
Total number of ordinates specified. 
Number of control points. 
Velocities induced at a control point by 
the complete set of surface elements. 
Surface source strengths. 
Surface slope. 
Tangential velocity. 
Axial velocities evaluated across the face 
of the aerofoil. 
Normal and tangential velocities induced 
by the 'fan' vortex. 
Normal and tangential velocities induced 
by the 'Kutta' vortex. 
Radial and axial velocities induced by 
the 'fan' vortex. 

Radial and axial velocities induced by 
the 'Kutta' vortex. 
Aerofoil and centrebody ordinates. 
Ordinates of the camber surface. 
Ordinates of the control points. 
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Appendix C 

INPUT DATA 

The input data and format is summarised below. 

Program variable 
or array 

CASEN. TEXT 

N 

x, R 
NC 

If NC #0 

X, R (continued). RD 

NFl 
RB, CHORD, MACH, AOAI 

Data 
format 

lOA 

15 
8F10.6 

15 

8F10.6 

11 
8F10.5 

Physical quantity 

CASEN=Case number (8 characters) 
TEXT=Case description (72 characters) 
Number of aerofoil ordinates. 
Aerofoil ordinates (N pairs). 
Number of centrebody ordinates. 

Centrebody ordinates (NC pairs). 
RD=Radius of the centrebody at the 
leading edge of the aerofoil. 

Number of mass flow ratios. 
RB=Trailing edge radius of the 
aerofoil. 
CHORD=Chord length of the aerofoil. 
MACH=Mach number. 
AOAI=Mass flow ratios (NFl values). 
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c 

cP 

F. 1 

fiF 

M 

N 

NC 

‘j 

R 

vi Iv0 

vO 

V n. ,V 
1 ti 

v;. ,v; 
I i 

SYMBOLS 

cowl or aerofoil chord length 

pressure coefficient 

a prescribed normal velocity boundary condition at the ith control 

point 

cowl forebody length 

Mach number 

number of ordinates specified on the aerofoil surface 

number of ordinates specified on the centrebody surface 

source strength on the jth element 

radial ordinate 

inlet velocity ratio 

free stream velocity 

normal and tangential velocity components induced by the ‘Kutta’ 

vortex at the ith control point 

normal and tangential velocity components induced by the ‘fan’ vortex 

at the ith control point 

V n.. gVt . the normal and tangential velocity components induced at the ith 
1, I. 

V t. 1 

vxsvr 

X 

f3 

YF 

Yk 

‘i 

JITE 

u 

L3 control point by the source density on the jth surface element 

total tangential velocity at the ith control point 

axial and radial velocity components 

axial ordinate 

JT-7 

strength of the ‘fan’ vortex distribution 

strength of the ‘Kutta’ vortex distribution 

surface slope at the ith control point 

value of the stream function at the trailing edge 

mass flow ratio 
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NO. Author(s) - 

1 D. Kdchemann 
.J. Weber 

2 J. A. Bagley 
N. B. Kirby 

P. J. Marcer 

3 A. M. 0. Smith 
J. L. Hess 

4 D. N. Foster 

5 D. A. Humphreys 

6 B. A. M. Moon 

7 c. Young 

8 D. L. Ryall 
I. F. Collins 

9 J. G. Mason 

10 W. Geissler 
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Chapter 5, pp 108-116, McGraw-Hill, London (1952) 

A method of calculating the velocity distribution 

on annular aerofoils in incompressible flow. 

ARC R & M 3146 (1958) 

Calculation of potential flow about arbitrary 
bodies. 
Progress in Aeronautical Science, Vo1.8, 
Pergamon Press, London (1966) 

Note on methods of calculating the pressure 

distribution over the surface of twodimensional 
cambered wings. 

RAB Technical Report 67095 (1967) 

Programs to calculate potential flows using 
surface singularities. 
BAC unpublished work 

Computer programming for science and engineering. 

P 167, Butterworths, London (1966) 

An investigation of annular aerofoils for turbo- 
fan engine cowls. 
ARC R & M 3688 (1969) 

Design and test of a series of annular aerofoils. 
ARC R & M 3492 (1965) 

Flow synthesis by singularities. 
Rolls Royce Powerplant Research Memorandum IAM 98801 
(1968) 
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symmetrische Ringprofile. 
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Versuchsanstalt No.47 (1970) 
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A COMPUTER PROGRAM TO CALCULATE THE 
PRESSURE DISTRIBUTION ON AN ANNULAR 
AEROFOIL 

A computer program has been written I” FORTRAN to calculate the pressure dmnbutmn 
on an annular aerofoll at zem angle of lnudence at subsomc speed The theory and the 
pmgram are described and s”me ~“mpmsms between the predmed presswe d,stnb”t,an 
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