PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

A Computer Program to Calculate the Pressure Distribution on an Annular Aerofoil

 byC. Young

Aerodynamics Dept., R.A.E., Farnborough

LONDON: HER MAJESTY'S STATIONERY OFFICE

A COMPUTER PROGRAM TO CALCULATE THE PRESSURE DISTRIBUTION ON AN anNuLar aEROFOIL

by
C. Young

SUMMARY

A computer program has been written in FORTRAN to calculate the pressure distribution on an annular aerofoil at zero angle of incidence at subsonic speed. The theory and the program are described and some comparisons between the predicted pressure distribution and experimental results are presented. Close agreement between theory and experiment is obtained.
CONTENTS
Page
1INTRODUCTION3
2 THE THEORY OF SURFACE SINGULARITIES APPLIED TO ANNULAR AEROFOILS 3
2.1 The method of A.M.O. Smith for bodies of revolution 3
2.2 Controlling the mass flow ratio 5
2.3 The Kutta condition 5
2.4 Centrebodies and spinners 7
2.5 Compressibility considerations 7
3 THE COMPUTER PROGRAM 8
3.1 The MASTER segment 8
3.2 Subroutines and functions 11
3.3 Computing details 13
4 COMPARISON BETWEEN THEORY AND EXPERIMENT 13
5 COMPARISON WITH OTHER THEORIES 14
6 CONCLUSIONS 16
Acknowledgements 17
Appendix A Listing of the program 19
Appendix B List of the main variables used in the MASTER segment 32
Appendix C Input data 33
Symbols 34
References 35
Illustrations Figures 1-17
Detachable abstract cards

INTRODUCTION

There has been a renewed interest in methods of calculating the pressure distribution on an annular aerofoil or engine cowl in recent years. This is a result of the need to design improved fan cowls for engines of high by-pass ratio.

The theory advanced here is a logical extension of the earlier work on annular aerofolls. Kuchemann and Weber ${ }^{1}$ developed a theory for calculating the velocity distribution on thin annular aerofoils which was extended by Bagley et $a l^{2}$ to include thickness and incidence effects, but again using distributions of singularities placed on a cylinder. With the increasing availability of large, high speed digital computers, it has been possible to develop a method using singularities distrıbuted over the body surface, which should in practice, give more accurate results.

The method of surface singularities was placed on a finn foundation by A.M.O. Smith ${ }^{3}$ but this method as published, is not capable of calculating the pressure distribution over the whole surface of an annular aerofoil; the afterbody of the aerofoil has to be replaced by a semi-infinite cylinder. This is a serious deficiency because the effect of the afterbody becomes increasingly important as the length to diameter ratio of the aerofoil is reduced, and the circulation developed around the aerofoil plays a large part in determining the overall forces and pressure distribution on the body.

The fan cowl of an engine of high by-pass ratio has to cope with a wide range of operating conditions varying from the take off condition, when the mass flow is high, to the engine failure condition, when the fan is windmılling and the mass flow is low. It is essential, therefore, to be able to calculate the pressure distribution on the aerofoil at any specified mass flow ratio.

The method of surface singularities and the extensions that have been made for the annular aerofoil problem are described in section 2. The computer program is explained in section 3 and some examples of its use are presented in section 4. The present theory is compared with other calculation methods in section 5.

2 THE THEORY OF SURFACE SINGULARITIES APPLIED TO ANNULAR AEROFOILS
2.1 The method of A.M.O. Smith for bodies of revolution

The principles on which the method of surface singularities is based ${ }^{3}$ are now well-established and only a brief description of the theory is given below.

The surface on which the pressure distribution is to be calculated is specified by a number of ordinates, and surface elements are formed by joining these ordinates with straight lines. Thus for axisymmetric bodies with N ordinates specified, the surface is approximated by $N-1$ conical frustra, Fig.1. A control point at which the boundary conditions are applied is selected on each element; this point is usually taken as the mid-point of the element for convenience.

A surface source density of unit strength is placed on each element and the velocity component normal to the surface induced at every control point by all the other elements is calculated by numerical integration. This leads to a matrix $\left[V_{n_{i j}}\right]$ whose elements are the normal velocity components induced at the ith control point by the source density on the j th element. The diagonal entries of the matrix represent the normal velocity induced at the ith control point by the source density on its own surface element. To obtain the actual normal velocities the elements of the matrix must be multiplied by the proper values of the source density q_{j}, which are as yet unknown. Thus the quantity $\sum_{j=1}^{N-1} V_{n_{i j}} q_{j}$ is the total normal velocity at the ith control point due to the complete set of $N-1$ surface elements.

The boundary condition applied at each control point is that the total normal velocity is zero, i.e. the flow is tangential to the surface of the aerofoil. A set of s1multaneous linear equations can be written down which is equivalent to the application of the boundary condition at each control point. The equations are of the form
where θ_{i} is the surface slope of the aerofoil at the i th control point and F_{i} is any other prescribed normal velocity boundary condition, e.g. suction or blowing. The term $V_{0} \sin \theta_{i}$ in the equations is the contribution from the free stream velocity flowing through the surface which must be cancelled. This term must be evaluated in the correct sense.

The set of linear equations can be solved for the unknown source strengths q_{j} and the tangential velocity component and the pressure coefficient at the control point calculated.

The theory developed by A.M.O. Smith for bodies of revolution at zero angle of incidence goes no further, so it cannot be used for the annular aerofoil problem as no Kutta condition has been applied, and the circulation around the aerofoil is undefined. Furthermore there is no convenient way of changing the mass flow through the aerofoil.

2.2 Controlling the mass flow ratio

The mass flow through the aerofoil can be changed by the addition of a uniform vortex distribution whose strength can be varied to give the required intake flow. This vortex distribution, which is referred to as the 'fan' vortex, extends from the leading edge of the aerofoil to infinity downstream. This distribution could be placed anywhere on the surface or inside the aerofoil, and could vary in strength along the chord. The particular choice made here, of a uniform vortex distribution placed on the camber surface of the aerofoil and on a cylinder downstream of the trailing edge, has proved satisfactory in all cases so far examined.

The 'fan' vortex itself induces a normal velocity component at the control points on the surface of the aerofoil which must be cancelled. The set of equations (1) are modified to

$$
\begin{equation*}
\sum_{j=1}^{N-1} v_{n_{i j}} q_{j}=v_{0} \sin _{\theta_{i}}-v_{n_{i}}^{*} \gamma_{F} \quad i=1,2 \ldots, N-1 \tag{2}
\end{equation*}
$$

where $V_{n_{i}}^{*} \gamma_{F}$ is the normal velocity induced at the ith control point by the 'fan' vortex of strength γ_{F}.

The strength of the 'fan' vortex required to give a specified mass flow ratio is not known initially. In the computer program, two values of the 'fan' vortex are specified and the corresponding mass flow ratios calculated. From these, the 'fan' strength required to give the required mass flow ratio is deduced. It is shown in section 3 that this does not lead to a lot of extra computing.

2.3 The Kutta condition

The circulation around the aerofoil is undefined until a Kutta condition is applied at the trailing edge. The condition normally applied in surface
singularity methods for twodimensional aerofoils is that there should be no difference in the tangential velocity between the first and last control points, i.e. at the points nearest the trailing edge of the aerofoil on the lower and upper surface. This condition has to be modified in the annular aerofoil problem to allow for the velocity jump across the trailing edge due to the trailing vortex cylinder.

Another uniform vortex distribution has to be added to apply the Kutta condition. This distribution is also placed on the camber surface and only extends over the chord length of the aerofoil.

The 'Kutta' vortex as this distribution will be called, also induces a normal velocity at the control points, thus the set of equations (2) becomes

$$
\begin{equation*}
\sum_{j=1}^{N-1} v_{n_{i j}} q_{j}+v_{n_{i}} \gamma_{k}=v_{0} \sin \theta_{i}-v_{n_{i}}^{*} \gamma_{F} \quad i=1,2 \ldots N-1 \tag{3}
\end{equation*}
$$

where $v_{n_{i}}{ }^{\gamma}$ is the normal velocity induced by the 'Kutta' vortex of strength γ_{k}.

The tangential velocities at the control points nearest to the trailing edge have to be carefully written down because of the sense in which the velocity components are evaluated. The calculation is always made in the direction of increasing i, Fig.l, thus along the inner surface, the calculation is proceeding against the free stream velocity, and this component evaluated in the correct sense is negative. On the outer surface, the calculation is made in the opposite direction, and the component of the free stream velocity is positive.

To evaluate the velocity jump at the tralling edge we require the velocities to be measured in the sense of x increasing. Thus on the outer surface, the tangential velocity at the last control point is

$$
v_{0} \cos \theta_{N-1}+\sum_{j=1}^{N-1} v_{t_{N-1, j}} q_{j}+v_{t_{N-1}} \gamma_{k}+v_{t_{N-1}^{*}} \gamma_{F}
$$

and on the inner surface at the first control point the tangential velocity

$$
-\left(v_{0} \overrightarrow{\cos } \theta_{1}+\sum_{j=1}^{N-1} v_{t_{1, j}} q_{j}+v_{t_{1}} \gamma_{k}+v_{t_{1}}^{*}{ }^{\gamma}{ }_{F}\right)
$$

where $\sum_{j=1}^{N-1} v_{t_{1, j}} q_{j}$ is the total tangential velocity induced by the source distribution on the complete set of surface elements, and $V_{t_{1}} \gamma_{k}, V_{t_{1}} \gamma_{F}$ are the tangential velocity components induced by the 'Kutta' and 'fan' vortex distributions respectively.

The difference in these tangential velocity components must be equal to the strength of the 'fan' vortex, thus the equation used to satisfy the Kutta condition is

$$
\begin{align*}
-\sum_{j=1}^{N-1}\left(v_{t_{1, j}}+v_{t_{N-1, j}}\right) q_{j} & -\left(v_{t_{1}}+v_{t_{N-1}}\right) \gamma_{k}=v_{0}\left(\cos \theta_{1}+\overrightarrow{\cos } \theta_{N-1}\right) \\
& +\left(v_{t_{1}}^{*}+v_{t_{N-1}}^{*}\right) \gamma_{F}+\gamma_{F} \tag{4}
\end{align*}
$$

The equations (3) and equation (4) form a set of N simultaneous linear equations from which the $N-1$ source strengths q_{j} and the strength of the 'Kutta' vortex γ_{k} can be determined.

2.4 Centrebodies and spinners

The effect of a centrebody or spinner can be included in the calculation with only a small alteration. If $N C$ is the number of ordinates specified on the centrebody there will be an additional NC-1 surface elements and control points making a total of $N+N C-2$. The summations in all the equations must therefore be made over all $N+N C-2$ elements and the range of i in equations (3) is similarly increased. The equation used to satisfy the Kutta condition is unchanged except for the range of the summation.

2.5 Compressibility considerations

The theory described in sections 2.1 to 2.4 is based on incompressible flow but the effect of changing the free stream Mach number can be investigated using the Prandtl-Glanert transformation. The radial ordinates of the body are scaled by a factor of $\beta\left(=\sqrt{1-M^{2}}\right)$ and the incompressible flow calculated on
the analogous body. The velocity increments thus calculated are rescaled by a factor of $1 / \beta$, on the radial velocity, and $1 / \beta^{2}$ on the axial velocity. The tangential velocity at the ith control point then becomes

$$
v_{t_{i}}=v_{0} \overrightarrow{\cos } \theta_{i}+\frac{v_{x}}{\beta^{2}} \cos \theta_{i}+\frac{v_{r}}{\beta} \sin \theta_{i}
$$

and the pressure coefficient is calculated using the formula

$$
C_{P}=\frac{2}{\gamma M^{2}}\left\{\left[1-\frac{\gamma-1}{2} M^{2}\left(v_{t_{i}}^{2}-1\right)\right]^{3.5}-1\right\}
$$

3 THE COMPUTER PROGRAM

The computer program has been written in FORTRAN for an ICL 1907 computer. A listing of the program is given in Appendix A and a flow chart in Fig. 2.

The program consists of a MASTER segment: A34R; five subroutines: XFAN, CAM, FORM, ELE, INVERT; two library subroutines: F4ELC1, F4ELC2; and four function segments: SIMPSN, DIR, TERP, VR. The MASTER segment is described in section 3.1 and the subroutines and functions in section 3.2. The core store requirements and running time of the program are discussed in section 3.3.

The numbers in brackets in the following text refer to the line numbers in the listing of the program.

3.1 The MASTER segment

The MASTER segment controls the running of the program and all the input and output operations. The physical quantities represented by the main arrays and variables used in the segment are listed in Appendix B.

The initial statements ($0110-0170$) are the normal FORTRAN statements for declaring the size of arrays and the type of variable used. The program has been written to accept up to 89 control points which is equivalent to 90 body ordinates for an isolated aerofoil, or 91 ordinates for an aerofoil and centrebody. The pressure distribution at up to five mass flow ratios can be produced with a single run of the program. These limits can be changed by altering the dimensions of the arrays throughout the program.

After setting some initial constants used in the segment (0180-0200) the input data is read ($0210-0420$). For the following text, it is assumed that the input data is punched on 80 column cards and that the reader is familiar with the FORMAT statement. The input data is summarised in Appendix C.

The first data card contains a case number, CASEN, of eight characters, and a case description, stored in the array TEXT, of up to 72 characters. The characters are read using an 'A' field descriptor and may therefore consist of any characters in the FORTRAN set, in particular, the case number need not necessarily be an integer. These quantrties take no useful part in the calculation and are only used to identify the output.

The number of ordinates on the aerofoil surface, N, is read followed by N pairs of ordinates X, R. The ordinates must be specified from the trailing edge on the inner surface to the trailing edge on the outer surface of the aerofoil. No special distribution of points is necessary though it is advisable to space the ordinates closely in regions of high curvature and to avoid rapid changes in the spacing between the points. The first and last input points must be at the trailing edge of the aerofoil and one point must be at the leading edge, $X=0$. The error in the calculated circulation γ_{k} decreases as the point at which the Kutta condition is applied is moved nearer to the trailing edge ${ }^{4}$ so it is recommended that the second, and last but one input points, are fairly near to the trailing edge.

The number of ordinates on the centrebody, NC, is read, and if NC is non-zero, the centrebody ordinates. These points should be in order of increasing axial ordinate. The last pair of ordinates is followed by the quantity $R D$, which is the radius of the centrebody at the leading edge of the aerofoil. The program can therefore deal with spinners which protrude from the aerofoil. If the centrebody does not extend to the leading edge, RD should be zero.

The number of mass flow ratios, NF1, at which the pressure distribution is to be calculated is read followed by a card containing up to eight quantities. The first three numbers are respectively, the trailing edge radius of the aerofoil, RO, the chord length of the aerofoil, CHORD, and the free stream Mach number. The remaining quantities are the values of the mass flow ratio, AOAI. All the data referring to the geometry of the aerofoil and the centrebody must be measured in the same coordinate system with the leading edge of the aerofoil at $X=0$.

The input peripheral is released (0430) and two arbitrary values of the strength of the 'fan' vortex are specified ($0500-0520$). The mass flow ratio produced by these values of the 'fan' strength is calculated and linear interpolation is used to derive the 'fan' strength which will give the specified mass flow ratio. A matrix formulation is used so the matrix of velocities
corresponding to the left hand side of equations (3) and (4) has only to be evaluated once as these velocities depend on the geometry of the configuration and not on the 'fan' strength. The main matrix is inverted and a solution of the equations can be obtained for any number of 'fan' strengths by a simple matrix multiplication. Most values of the 'fan' strength required to give mass flow ratios of practical interest have been found to lie between the two values chosen, which are 0 and -0.3 .

The input data is transformed according to the Prandtl-Glanert compressibility laws ($0530-0610$) and the ordinates of the control points XP, RP calculated (0620-0670).

The ordinates of the camber surface are not required to a high degree of accuracy and linear interpolation is used. A dummy call to the interpolation function TERP is made (0690) to transform the axial ordinate $X(I)$ to the array $\mathrm{TH}(\mathrm{I})$. The elements of this array are simply the axial ordinates of the aerofoil but multiplied by -1 if the point is on the inner surface; it is then possible to distinguish between the inner and outer surfaces of the aerofoil. The camber ordinates are calculated by the subroutine CAM, at every 2% chord over the chord length of the aerofoil, and specified at every 4% chord on the cylinder downstream of the trailing edge. The camber surface is covered with a uniform vortex distribution density so the choice of the axial location of the camber ordinates is fairly arbitrary; in this respect the present method is more flexible than is the case if discrete vortex rings are used.

The velocity components induced at the control points by the two vortex distributions are calculated by the subroutine XFAN ($0720-0830$). The subroutine calculates the radial and axial velocity components because these are required again later in the program, but then they are scaled by the appropriate compressibility factors. The normal and tangential velocity components are put in the arrays VNG, VTG for the 'Kutta' vortex distribution and in the arrays VNF, VTF for the 'fan' vortex distribution.

The two right hand sides of the equations corresponding to the chosen 'fan' strengths are evaluated ($0840-0950$). The main matrix corresponding to the left hand side of the equations is set up by the subroutine FORM and inverted (0960-0980). The strengths of the singularities are found by multiplying the inverted matrix by the right hand sides (0990-1060). The source
strengths are held in the array SOL and the strengths of the 'Kutta' vortex in the array G.

The mass flow ratio is determined (1070-1280) by integrating the axial velocities calculated across the face of the aerofoil. These axial velocities do not need any scaling for compressibility as the calculation is made in the transformed space and the effective Mach number is zero.

The strengths of the 'fan' vortex distribution required to give the specified mass flow ratios are obtained (1310-1320) and the calculation jumps back (0850) to form a new set of right hand sides. The second set of source and vortex strengths are found using the inverted matrix and as a check on the interpolation the true value of the mass flow ratio $1 s$ calculated. In all the calculations made so far, the value of the mass flow ratio calculated using the interpolated value of the 'fan' strength has agreed with the specified value to an adequate accuracy.

The tangential velocity component at the control points are calculated (1360-1570) by adding the contributions from the source distribution, calculated by the subroutine ELE, and the vortex distributions to the free stream velocity. The appropriate compressibility scaling factors are used throughout.

The computed pressure distributions are then printed out preceded by a tabulation of the input data (1580-1950).

3.2 Subroutines and functions

Five subroutines have been written; two are used to calculate the velocities induced by the source and vortex distributions: ELE, XFAN. The subroutine CAM calculates the ordinates of the camber surface and the subroutine FORM and INVERT set up and invert the main matrix.

The subroutine XFAN (1980-2430) calculates the axial and radial velocity components induced at the control points by the 'fan' and 'Kutta' vortex distributions. A vortex distribution of unit strength is placed on the camber surface and on the cylinder downstream of the trailing edge. There is no closed form for the velocity induced by an element of the camber surface as in the twodimensional case so an integration has to be made. Each element of the camber surface is divided into a number of vortex rings, the number chosen depending on the relative position of the control point and the element, and an integration using Simpson's rule made. This numerical integration process is also performed on the cylinder from the trailing edge to some convenient point downstream, in
this case taken as 3.04 chords. The velocity components induced by the remaining semi-infinite vortex cylinder downstream of 3.04 chord are evaluated at the axial position corresponding to the control point but at a radial ordinate equal to the radius of the cylinder (2370-2410). This allows a closed form for the integral to be used and introduces only a small error. The summation for the 'Kutta' vortex is taken over the first 50 elements of the camber surface corresponding to an integration over the chord length.

The ordinates of the camber surface are calculated by the subroutine CAM (2440-2610). The radial ordinates are calculated using linear interpolation over the chord length ($2570-2590$) and are set equal to the radius of the trailing edge for axial locations downstream of the aerofoil (2520-2530).

The subroutine FORM (2620-2880) sets up the main matrix of velocities corresponding to the left hand side of equations (3) and (4) of section 2.3. The normal velocity components induced by the source distribution on the surface of the aerofoil are calculated by the subroutine ELE (2890-3460) which is a modified form of the subroutine INX 1 of Ref.5. The velocity components are evaluated in a similar way to those in XFAN, but the subroutine ELE also has to deal with the singular integral when the control point lies on the surface element over which the integral is being made (3290-3420). The subroutine is also used in the MASTER segment to calculate the tangential velocity components. The surface slope TAU in this case is replaced by TAU $-\pi / 2$.

The parameter $B 1$ is used to scale the axial and radial velocity components by the correct compressibility factors. When the normal velocities are calculated, $B 1$ is set equal to unity so that no scaling is applied, but in the calculation of the tangential velocities, $B 1$ is set equal to β, and $B 2$ to β^{2}.

The main matrix is inverted by the subroutine INVERT (3470-3630). The matrix is well-behaved and no sophisticated inversion technique is required. The subroutine listed is the simplest that could be found ${ }^{6}$.

Two library subroutines F4ELC1, F4ELC2 are used in the program, to calculate the first and second complete elliptic integrals which are required in the calculation of the velocity components. The first parameter in the subroutine is the argument, k^{2}, and the second parameter is the value of the integral on return. A simple polynomial approximation to each function is used ${ }^{14}$.

The four function segments are self-explanatory and need little comment. The function SIMPSN performs numerical integration using Simpson's rule. The correct sense and value of the surface slope is evaluated by the function DIR which is a modified form of the function PSI of Ref.6. The function TERP performs linear interpolation. The dummy call to this function (0690) is used to set up the array TH(I). The intake velocity ratio corresponding to the mass flow ratio VI is calculated by the function VR. The velocity ratio is found from an iterative solution to the equation ${ }^{7}$

$$
V I=V R\left(0.2 M^{2}\left(1-V R^{2}\right)+1.0\right)^{2.5} .
$$

Newton's method for finding the zero of a function is used to give rapid convergence.

3.3 Computing details

It is difficult to give the precise time taken by the program since it varies considerably with the number of input points. On an ICL 1907 computer with a $1.2 \mu \mathrm{~s}$ core cycle time, a calculation with the maximum number of input points needs about 10 minutes of central processor time. The program as listed compiled by XFAT Mk.2E requires 30 k words of core store.

4 COMPARISON BETWEEN THEORY AND EXPERIMENT

The computer program was developed as a complement to some experiments that were made on three annular aerofoils ${ }^{7}$. These aerofoils had a chord to diameter ratio of unity and were tested over a wide range of Mach number and mass flow ratio in the RAE $8 \mathrm{ft} \times 6 \mathrm{ft}$ transonic tunnel. The cowls were mounted on a semi-infinite centrebody which was represented in the calculations.

The calculated pressure distribution on cowl 1 at a high mass flow ratio is compared with the measured distribution in Fig.3. The overall agreement between theory and experiment is quite good except on the inner surface downstream of the peak where there was a local flow separation.

The importance of correctly representing the afterbody is demonstrated in Fig. 4. The pressure distribution calculated on the forebody of cowl 1 is compared with that calculated on a forebody of the same shape followed by a long cylindrical afterbody. The difference in the pressure distribution is mainly due to the circulation developed around the complete cowl.

Some comparisons between the calculated pressure distribution, made with about 70 control points, and the measured distributions for cowls 2 and 3
are shown in Figs. 5 to 8. Again, good agreement is obtained except at the leading edge of the cowl where the theory overestimates the suction level.

The theory has been compared with the experimental results up to a Mach number of 0.70 which is the Mach number at which shock waves started to appear on the cowls. Figs. 9 and 10 show the pressure distribution on cowl 3 at a Mach number of 0.70 and at two mass flow ratios. The agreement is reasonable on the inner surface and behind the shock wave on the outer surface of the cowl.

Although the 'fan' vortex is placed on a cylinder downstream of the trailing edge, the stream tubes are curved as shown in Fig.11. The stream tubes were traced by calculating the value of the stream function at several radial positions and at thirty axial stations using the singularity strengths obtained from the program. Specified values of the stream function were found by interpolation. Fig. 11 clearly shows the stream tubes expanding ahead of the cowl and contracting downstream of the trailing edge.

The predicted pressure distribution on an annular aerofoil with a chord to diameter ratio of 0.75 is shown in Fig.12. This is the aerofoil B1 designed by the Admiralty Research Laboratory ${ }^{8}$ and tested in a low speed wind-tunnel at NPL. The ordinates are not particularly well defined in the reference and the calculation was made with only 50 control points, but the agreement is still good.

5 COMPARISON WITH OTHER THEORIES

Several other methods for calculating the pressure distribution on an annular aerofoil have appeared in recent years and these are compared with experiment and the present method in this section.

The computer program written by Mason ${ }^{9}$ at Rolls Royce was one of the first to be developed. The method is similar to that described in section 2.1 except that the surface singularities may be sources or vortices and a variety of boundary conditions can be imposed. Most of the calculations for annular aerofoils have been made using a surface vortex distribution with the boundary condition that the stream function should have a specified value at all the control points. The stream function is related to the inlet velocity ratio by the formula

$$
\frac{v_{i}}{v_{0}}=\frac{\psi_{T E}}{\frac{1}{2} R_{0}^{2} v_{0}}
$$

so the method can calculate the pressure distribution on the aerofoil for any inlet conditions fairly easily. However, when the mass flow ratio is reduced below the free flow value there should be a trailing vortex system similar to that described in section 2.2 but this is not represented in the Rolls Royce program. The greatest deficiency in the method is that no Kutta condition is applied and generally, there is a singularity in the velocity distribution at the trailing edge.

Some calculations have been made by Rolls Royce on the three annular aerofoils tested at RAE^{7}. Fig. 13 shows the predicted pressure distribution on cowl 2 at low Mach number. The corresponding pressure distribution calculated with the present program is shown in Fig.5. The infinite velocity at the trailing edge of the Rolls Royce calculation is not apparent in this case, and generally, the agreement is good. A more typical result is shown in Fig.14, for cowl 3, corresponding to Fig. 7 for the present method. The calculated pressure distribution breaks down at about 80% chord although the agreement on the forebody and on the inner surface of the aerofoil is quite good.

A cons1derable amount of theoretical work on annular aerofoils using linearised and non-linearised theory has been done by Geissler ${ }^{10}$. His nonlinearised theory uses a surface vortex distribution with the same boundary condition used in the present method, i.e. the normal velocity component is zero at the control points. Another vortex distribution, also placed on the surface of the aerofoil is used to satisfy the Kutta condition. The Kutta condition is applied at the trailing edge and is that the flow should be tangential along a line bisecting the trailing edge angle. There is no convenient way of changing the mass flow ratio and to compare theory and experiment at the same inlet conditions requires a change in the strength of the 'Kutta' vortex distribution. A reduction of about 25% is required to match the results for cowl 2 and about 20% for cowl 3. Once the strength of the vortex distribution has been changed, the Kutta condition is no longer satisfied and the theory predicts an infinite velocity at the trailing edge. However, the agreement between theory and experiment is extremely good over all but the last few per cent of the aerofoil chord.

Another approach to the problem has been adopted by Ryan ${ }^{11}$. This method is based on the work of Martensen ${ }^{12}$ and Wilkinson ${ }^{13}$ for twodimensional aerofoils and cascades and uses discrete vortex rings instead of a distribution on surface elements. The boundary condition is that the tangential velocity is
zero inside the aerofoil. The major disadvantage of the method is that the solution is calculated at specified locations so it is difficult to calculate the pressure distribution in regions of particular interest unless the number of input points is increased significantly. However, this does not necessarily give greater accuracy because errors arise from the use of isolated vortex rings ${ }^{4}$.

Ryan uses the same Kutta condition as Wilkinson ${ }^{13}$ that the load is zero at the point nearest the trailing edge. This is achieved by setting the vortex strength at the first and last points equal and opposite. This choice of Kutta condition is not the best for cow1s or intakes as considerable numerical problems arise if the method is extended to calculate the pressure distribution at different mass flow ratios to s1mulate the effect of a propeller or screen.

The pressure distribution on the ARL duct Bl calculated by an early version of Ryan's program is shown in Fig.15, and the results from the present theory in Fig.12. The mass flow is incorrect by about 12%, but better agreement is obtained for the B3 duct, Fig.16, particularly on the outer surface.

The program developed at ARA by Langley (unpublished) uses a vortex distribution on the surface of the aerofoil and another vortex distribution on a cylinder downstream of the trailing edge. The boundary condition is that the stream function should have a specified value on the surface as in the Rolls Royce method and the Kutta condition is the same as in the present method. Fig. 17 compares the pressure distribution predicted by Langley's theory and the present method on an annular aerofoil with a chord to diameter ratio of unity and a 10% RAE 101 thickness distribution. The agreement between the two methods is quite good.

6 CONCLUSIONS

A theory has been developed and a computer program written to calculate the pressure distribution on an isolated annular aerofoil or an annular aerofoil and centrebody. The method gives results that are in close agreement with experiment over a range of geometries, Mach number, and mass flow ratio.

The present theory has also been compared with several other methods dealing with the same problem. The calculation methods developed by Langley and Geissler use a similar model of the flow and give similar results to the present method though Geissler's method is less flexible since it cannot
be used to calculate the pressure distribution at any mass flow ratio. The other methods are deficient or restricted in some respects though good agreement between theory and experiment is obtained in some cases.

Acknowledgements
The author wishes to thank Rolls-Royce (1971) Ltd., Dr. P.G. Ryan and ARA Ltd., for permission to publish the results of their computer programs.

App.A
Listing of the program
0090
ANNULAR AEROFOIL PROGRAM 0100
DIMENSION TEXP(9), X(91), R(99), XP(80), RP(89),F(5),RC(102), X1(102), 0110
 0120
$2 S O L(90,5), U(89,5), \operatorname{LI}(89), V A U(11), X \operatorname{MU}(5), \operatorname{ABAI}(5), V R F(89), V X F(89)$, 0130
3VRO(89),VXG(89) 0140
LOGICAL DER 0150
REAL MACH,MACHZ 0960
COMMON BIG(90,90) 0170
NBaIO2 0180
P124:2.0*ATAN (1.0) 0190
DRRE FALSE 0200
C READ INPUT DAFA 0210
READ(1,900)CASEN, (FEXT (I).IE1,9) 0220
FORMAY(10A8) 0230
C CASENECASE N 0240
READ(9.101)N 0250
FORMAF(I5) 0260
NENUMBER OF INPUT ROINTS 0270
READ(1,102)(X(I),R(I),I=1,N) 0280
102 FORMAT (8F90.6 0290
C \quad (I),R(I) ARE BODY ORDINATES 0300
READ(1.101)NC 0310
C NCINUMBER OF CENTRE-BODY POINTS. N\&NC LESS THAN OI 0320
NPNC=N+NC 0330
IF(NC.NE.0)READ(1,102)(X(I),R(I),IGN+I,NPNC),RD 0340
C READ ORDINATES OF CENTREFBODY, RDECENYREEBOOY RADIUS AT XAO 0350
REAO(4,103)NF 0360
103 FORMAT(11) 0370
C NFIENUMBER OF MASS FLOW RATIOS (MAXIMUM OF 5) 0380
READ(1,106)RO,CHORD,MACH,(AOAI(I),IE1,NFY) 0390
0400104 FORMAT(8F10.5)
C ROETRAILING-EDGE RADIUS, CHOROECYORO LENGFH 0410
C MaMACH NUMBER, AOAI (I) CMASS FLOW RAYIOS 0420
CALL RLEASE(1) 0430
IF (NC.EQ.O)RD=0.0 0440
$\mathrm{N}=\mathrm{N}=1$ 0450
NTMI 0460
$N F=2$ 0470
NPNC2=NPNC-2 0480
IF(NC.EQ.O)NPNC2=N=1 0490
C SEY UP TWO INITIAL FAN STRENGTHS 0500
$F(1)=0.0$ 0510
$F(2)=-0.3$ 0520
C TRANSFORM INPUT DATA 0530
MACH2 =MACN*MACH 0540
BETA2 $=1.0-$ MACH2 0550
BETA=SQRT(BETA2) 0560
RC=RO*BETA/CHORD 0570
RDRRD*BETA/CHORD 0580
DE 204 IEI,NPNC 0590
$X(I)=X(I) / C H O R D$ 0600
204 R(I) $=$ R(I)*BETA/CHORD 0610
C CALCULATE CONYROL POINTS 0620
De 205 IEI,NPNC2 0630 0640
$L=1$
IF(I.GE.N)L=L+10650
$X P(I)=0.5 *(X(L)+X(L+1))$ 0660
$205 R P(I)=0.5 *(R(L)+R(L+1))$ 0670
C CALCULATE CAMBER ORDINATES 0680
AEPERP(N,X,R,O.3.OER) 0690
DERE. TRUE. 0700
CALL CAM(ND, XI,RC,X,R,N,OER,RO) 0710
CALCULATE VELOCITIES INDUCED BY FAN AND KUPTA VORTEX DISTRIBUTIONS 0720
DO $208 \mathrm{I}=9$, NPNC2 0730
LEI 0760
1F(I.GE.N)L=L+1 0750
TAU=ATAN2 (R (L申1) mR(L), X(L+1)-X(L)) 0760
CALL XFAN(XP(I),RP(I),XI,RC,RO,VRF(I),VXF(I),VRG(I),VXG(I),ND) 0770
SNTESIN(TAU) 0780
CST=COS(TAU) 0790
VNF(I) $\operatorname{VVRF}(I) \oplus C S T-V X F(1) * S N T$ 0800
VNG(I) EVRG(I)*CST-VXG(I)*SNT 0810
VYP(I) $=V \times F(I) * C S T+V R F(I) * S N Y$ 0820
208 VTG(I) $=$ VXG(I)*CSTHVRG(I)*SNT 0830
C SEF UP RHS OF EQUATIONS 0840
1000 DE 401 I®1,NPNC2 0850
LE! 0860IF (I.GE.N)LEL+10870
SNFESIN(DIR(R(L+1)-R(L),X(L+1)-X(L))) 0880
DC $401 \mathrm{~J}=1$,NF 0890
401 RWS(I,J)=SNT-F(J)*VNF(I) 0900

```
                                    App.A(cont'd)
    TAU1=DIR(R(2)=R(1), X(2)-X(1))-PI24 0910
    TAU2EDIR(R(N)-R(Nq),X(N)=X(NG))=PI>4 0920
    A=ABS(SIN(TAUZ))-ABS(SJN(TAUQ))}093
    DO290 J#1,NF 0940
290 RHS(NPNC2+1,J)=F(J)*(VYF(1)+VTF(N1))+A+F(J) 0950
C FORM MAIN MATRIX AND INVERSE IF NTEI 0960
    IF(NT.EQ.1)CALL. FORM(X,R,NPNC,VNG,VFG,PI,XP,RP,NPNC2,N)}097
    IF(NT.EQ.1)CALL INVERT(NPNC2+1)}098
C CALCULATE SOURCE AND KUTTA VORPEX PTRENGTHS 0990
    DO 400 I=1,NPNC2+1 1000
    DO 400 J=1,NF 1010
    SOL(I,J)=0.0
    DO 400 K=1,NPNC2+1
SOL(1,1)=BIG(1,K)*RHS(K,d)+SOL(I,d)
DO 209 J=1,NF 1050
209 G(J)=SOL(NPNC2+1,J) 1060
C CALCULATE MASS FLOW RATIO 1070
1002 DO 89 I=1,11 1080
80 JET,NF
89 VF(I.J)=0.0 1900
    A= (RC(1)*RC(1)-RD*RD)/110,0
    RF(1)=0.001+RD
    DO 90 I=2.11
1120
    1130
    RF(I)=SORT(A*FLOAT(I-{)+RD*RD) 1940
    RF(11)=RF(11)-0.009 1950
    DO 245 I=1,14
1160
    CALL ELE(O.O,RF(I),#PI24,X,R,NPNC,O,PI,1,O,NPNC2,N) 1170
    DO 216 J=1,NF
1980
    DO 216 K=1,NPNC2
    VF(I,J)=PI(K)*SOL(K,J)+VF(I,J)
    CALL XFAN(O.O,RF(I),XY,RC,RO,VR1,VX1,VR2,VX2,ND) 1210
    DE 214 JE1,NF 1220
214 VF(1,J)=VF(I,J)+VX1*F(J)+VX2*G(J)*1.0 1230
215 CONTINUE 1240
    DO 217 JE1,NF - 1250
    DO 213 I=1,11 1260
213 VAU(I)EVF(1,J) 1270
217 XMU(J)=SIMPSN(VAU,1,11,A)/(10.0*A) 1280
    IF(NT.EQ.2)GO FO901 1290
C CALCULATE FAN STRENGTHS FOR SPECIFTED MASS FLOW RATIOS 1300
MO 900JE{,NF1
```

NF=2 1330
NFENFI 1340
GO TO 1000 1350
C calculate tangential velocities 1360
1370
$\mathrm{L}=1$ 1380
1F(I.GE.N)L=L+1 1390
TAUEATAN2(R(L+1)mR(L),X(L+1)-X(L)) 1400
SNTESIN(TAU) 1410
cspacos(tau) 1420
VTF(I)eVXF(1)*CST/BETAZ+VRF(1)*SNT/BEPA 1430
VYG(I) $=V \times G(I)$ ©CST/BETAZ+VRG(I)*SNT/BEFA 1440
DO 210 $1=1$,NPNC2 1450
L=I 1460
IF(I.GE.N)L=L+1 1470
TAU=DIR(R(L+1)-R(L),X(L+1)-X(L))-Pi24 1480
CALL ELE (XP(I),RP(I), PAU,X,R,NPNC, P, DI,BEFA,NPNC2,N) 1490
00 211 Jal,NF 1500
$U(1, J)=0.0$ 1510
DO $211 \mathrm{~K}=1$,NPNC2 1520
$U(I, J)=U(I, J)+S O L(K, J) * P I(K)$ 1530
SNTaSTN(TAU) 1540
DO $210 \mathrm{~J}=1, \mathrm{NF}$ 1550
U(I, J) =U(I;J) $+G(J) * V T G(I)+F(J) * V F F(I)=S N T$ 1560
CONTINUE 1570
CALCULAPE AND PRINT OUTPUT 1580
DO 218 IE1, NPNC 1590
$R(I)=R(I) / B E T A$ 1600
DO S13 $i=1$,NPNC2 1610
$R P(I)=R P(1) / B E T A$ 1620
CALL DATE(A) 1630
CALL TIME(B) 1640
WRITE(2,106)A,B,CASEN, (TEXT(I),In9.9),N,MACH 1650
FORMAT (1H1, 26X, 28 NROYAL AIRCRAFT ESFABLISWMENT//16X, 46HAERODYNAMIC 1660
IS DEPARTMENT - \quad PROPULSION DIVISION////2OXIGOHCALCULATION OF PHE P 1670
 1680
 1690
4/23X,34HCASE CONTROL DATA FOR PROGRAM A34R //29X, $12 H C A S E$ NUMBER, A 1700
$58 / 24 \mathrm{X}, 17 \mathrm{HCASE}$ DESCRIPTION . $9 \mathrm{~A} 8 / 18 \mathrm{X} .23 \mathrm{HNUMBER} \mathrm{OF} \mathrm{INPUT} \mathrm{POINTS} \mathrm{}, \mathrm{I3/2}$ 1710
$69 \mathrm{X}, 12 \mathrm{HMACH}$ NUMBER $, F 8.5 / 123 \mathrm{X}, 15 \mathrm{HMAGS}$ PLOW RATIO.6X.12HFAN STRENGTN 172071)1730
App.A(cont'd)
WRITE(2,107) (XMU(J),F(J), J=9,NF) 1740
107 FORMAY(1N, $23 \times, F 10.5,10 \mathrm{X}, \mathrm{F10.5)}$ 1750
WRITE(2.108)1760
108 FORMAT(1HO, $35 \mathrm{X}: 10 \mathrm{HINPUY}$ DAYA//27X,9HX,29X.9HR/) 1770
WRITE(2,109)(X(1),R(1), $1=1, N P N C)$ 1780
109 FORMAT(1H,20X,F10,5,20X,F10.5) 1790
DO 219 Jminf1800
XMEVR(XMU(J),MACH2)1810
WRIFE(2,116)CASEN, (TEXP(I),I=1,9), MACH,F(J),XMU(J),XM 1820
116 FORMATC1H1,24X,32HCALCULATED PRESSURE DISTRIBUTION//29X,12MCASE NU 1830
 1840
228X.13HFAN STRENGTH ,F8.5//25X,16HMASS FLOW RATIO ,F8.5//20X.24MIN 1850
3LET VELOCITY RATIO ,F8,5///25X,2HXD,8X,2HRP,8X,1HU,8X,2HCP/) 1860DO 222 I=1.NPNC?1870
IF (MACH.EQ.O.0)GO TO 304 1880
$C P=2.0 *((1.0-0.2 * M A C H 2 *(U(1, J) * U(1 . J)=1.0)) * * 3.5=1.0) /(1.6 *$ MACH2) 1890
GO TO 305 1900
304 CP=1.0-U(I, J)*U(1, J) 1910
305 CONTINUE 1920
222 WRITE(2,117)XP(I),RP(I),U(I, J),CP 1930
417 FORMAY(1H , 20X,4F10.5) 1940
219 CONTINUE 1950
STOP 1960
END 1970
SUBROUTINE XFAN(XP,RP, XI, RC,RO, AVR,AVX,GAVR,GAVX,ND) 1980
CALCULATES THE AXIAL AND RADIAL VEIOCITY COMPONENFS1990
FAN AND KUTTA VORTEX DISTRIBUTIONS OF UNIT STRENGTH 2000
DIMENSION RC(ND), XI(ND), VX(50), VR(50), AAVX(101), AAVR(101) 2010
REAL K,K2,KK2 2020
NO1=NO-1 2030
AVX, AVR,GAVR, GAVX=0.0 2040
P12=8,0*ATAN(1,0) 2050
$004 \mathrm{~J}=1$, ND1 2060
AMESQRT $((X 1(J+1)=X 1(J)) * * 2+(R C(J+1)-R C(J)) * * 2)$ 2070
$R S \equiv S Q R T((X P-X 9(J)) * * 2+(R P-R C(J)) * * 2)+S Q R T(X P-X 1(J+1)) * * 2 *(R P=R C(J$ 2080
1+1))**2) 2090
CC=0.2*16.0*AA/RS 2100
NeDaCC 2110
NRD=2*NRD*1 2120
IF(NRD.LT.3)NRD=3 2130
DKE(X1(J*1)-X1(J))/FLOAT(NRD-1) 2140
$D R=(R C(J+1)-R C(J)) / F(Q A T(N R O-1)$ 2150
S=SORT (DR*DR+OX*DX) 2160
DG 1 YRDE1,NRD 2170
$R R=R C(J)+D R * F L O A T(1 R D-1)$ 2180
$X X=X 1(J)+D X * F L O A T(I R D-1)$ 2190
$A=(X P-X X) *(X P=X X)$ 2200
$G=(R P=R R) \oplus(R P-R R)$ 2210
$B=G \neq 4.0 * R P * R R+A$ 2220
$K=4.0 * R R * R P / B$ 2230
BESQRT(B) 2240
CALL F4ELCI (K,C) 2250
CMLL F4ELC2(K,E) 2260
$\forall X(I R D)=(C *(1,0+2,0 * R R+(R P-R R) /(A+B)) \oplus E) /(P 12 * B)$ 2270
$V_{R}(I R D)=(C-(1.0+2.0 * R R * R P /(A+C)) * E) *(X X-X P) /(P I 2 * R P * B)$ 2280
AMVX(J) $=$ SIMPSN(VX,1,NRD,S) 2290
AAVR(J) =SIMPSN(VR,I,NRD,S) 2300
DO $6 \mathrm{~J}=9$.ND? 2310
$A V X=A \vee X+A A V X(J)$ 2320
$6 \quad A V R=A V R+A A V R(J)$ 2330
$007 \mathrm{Ja1.50}$
$007 \mathrm{Ja1.50}$ 2340 2340
$G A V X=G A V X+A A V X(J)$ 2350
7 GAVR=GAVR+AAVR(J) 2360

App.A(cont'd)

K2=4.0*RO*RO/($(X P-3.04) * * 2+4.0 * R O * R O)$ 2370
CALL F4ELC1 (K2,KK2) 2380
CALL f4ELC2(K2,EK2) 2390
AVX=AVX-(P12/4,0-SQRT(9,0-K2)*KK2)/B12 2400
AVR=AVR+(1.0/P12)*(SQRT(K2)*(KK2-(2.0*(KK2-EK2)/K2))) 2410
RETURN 2420
End 2430
SUBROUTINE CAM(ND,XI,RC,X,R,N,DI,RA) 2440
C CALCULATES THE ORDINATES OF THE CAMBER SURFACE 2450
DIMENSION XI(ND), RC(ND), X(N),R(N) 2460
LOGICAL O12470
DO $11=1,51$ 2480
$1 \quad \mathrm{X1}(1)=0.02 * F \operatorname{OAT}(1-1)$ 2490
DO 2 I=52,No 2500
2 X1 (I) $=0.04$ *FLOAT(I-51) +1.0 2510
DC $51=54$,ND 2520
$5 \quad R C(1)=R O$ 2530
DO $6 \quad 1=1, N$ 2540
IF(X(1).EQ, O.0)RC(1) $=R(1)$ 2550
6 CONTINUE 2560
DO $71=2.50$ 2570
$T=X 1(1)$ 2580
$R \in(I)=0.5 *(Y E R P(N, X, R, T, D Y)+Y E R P(N, X, R,-T, D Y))$ 2590 RETURN
2600
END 2610
App.A(cont'd)
SUBROUYINE FORM(XIRINIVNG:VTG,PI,XP,RPIN1,N2) 2620
C SETS UP MAIN MATRIX, I, E, GHS OF EQUATIONS 2630
OIMENSION X(N):R(N),PI(N1),VNG(N1),VTG(N1),XP(N1),RP(N1) 2640
COMMON BIG(90.90) 2650
N3=N2-1 2660
B=1.0 2670
P126=2.0*ATAN(1.0) 2680
001 la1.N1 2690
LEI 2700IF(I.GE.NZ) $=(=1+1$2710
TAUEDIR(R $(L+1)=R(L): X(L+1)=x(L))$ 2720
CALL ELE (XP(I):RP(I), TAU,X,R,NII,PY:B,N1:N2! 2730
DO 1 Ja1.N1 2740
BIG(I, J)=PI(J) 2750DO (1:J) DP
DO 2 1:1.N1 2760
$2 \quad$ BIG(I,N1+1) =VNG(I) 2770
TAU=DIR(R(2)-R(1), X(2)-X(1))-P124 2780
CALL ELE(XP(1),RP(1),TAU,X,R,N,1,PI,B,N1,N2)2790
DO 3 J $=1, N 9$2800
BIG(N1+9:J)=-PI(J)2810
TAUFDIR(R(N2)=R(N3),X(N2)-X(N3))-PY24 2820
CALL ELE(XP(N3):RP(N3):TAU,X:R:N,NY:PI:B:M9:N2) 2830
DO $4 \mathrm{JET}, \mathrm{N} 1$$B I G(N 1+1, J)=B I G(N 1+1, J)=P I(J)$2840
2850
BIO(N1+1, N1+1)=-VTG(1)-VTG(N3) 2860
RETURN 2870
ENO 2880

App.A(cont'd)

SUBROUTINE ELE (XP,RP,TAU,X,R,N,I,PY,BI,N1,NA) 2890
C CALCULATES THE VELOCITY COMPONENTS DUE TO FHE 2900
C SURFACE SOURCE DISFRIBUTION 2940
OIMENSION X (N),R(N),WW(42),PI(NT) 2920
REALKK,LGS 2930
PI2=8.0*ATAN(1.0) 2940
SMTESIN(TAU) 2950
$\operatorname{CST}=\operatorname{COS}(T A U) \quad 2960$
$B 2=B 1 * B 1 \quad 2970$
$004 L=1 . N 1 \quad 2980$
$J=L \quad 2990$
IF(J.GE.N4) J=J中1 3000
$A A=S Q R T((X(J+1)-X(J)) * * 2+(R(J+1)-R(J)) * * 2) \quad 3010$
$R S \equiv S Q R F((X P=X(J)) * * 2+(R P \rightarrow R(J)) * * 2)+\operatorname{SQRF}((X P=X(J+q)) * * 2+(R P=R(J * 1)) \quad 3020$
q**2) 3030
$C C=0.2+16.0 * A A / R S \quad 3040$
$N R D=C C \quad 3050$
NRD $=2 * N R D+1 \quad 3060$
IF (NRD.LT.3)NRD=3 3070
IF(I.EQ.L)NRD=NRD*1 3080
$D X=(X(J+1)-X(J)) / P L O A T(N R D \sim 9) \quad 3090$
$D R=(R(J+1)-R(J)) / F L O A T(N R D=1) \quad 3100$
$S=S Q R T(D R \oplus O R+O X * D X) \quad 3110$
DO 1 IRD=1,NRD 3120
$R R E R(J)+D R * F L O A T(I R D-\{) \quad 3130$
$X X \equiv X(J)+D X * F L O A T(I R D-1) \quad 3140$
$X P X 2=(X P=X X) *(X P=X X) \quad 3150$
$A=R P \neq R P+R R * R R+X P X 2 \quad 3160$
$8=2.0 * R P \neq R R \quad 3170$
$A M B=A-B$ (3980
$A P B=A+B$
VK1 $=2.0$ * $B / A P B$
3190
VKI=2.0*B/APB
3200
$A P B=S Q R T(A P B)$
3210
CALL F4ELC1 (VKI,KK) 3220
CALL F4ELC2(VK1,EK) 3230
$W W(1 R D)=C S T *(R R *(K K-E K) / R P+2.0 * R R *(R P=R R) * E K / A M B) /(P 12 * A P B * B 9)=S N Y \quad 3240$
1*2.0*RR* (XP-XX)*EK/(PI2*AMB*APB*B2)
3250
IF(I.EQ.L)GOTO2 3260
$P I(L)=S I M P S N(W W, 1, N R D, S) \quad 3270$
GO 70 3 3280
$2 \mathrm{~N} 2 \mathrm{aNRD/2} \quad 3290$
$N 3=N 2+1 \quad 3300$
$P I(L)=S I M P S N(W W, 1, N 2, S)+S I M P S N(W W, N Y, N R D, S) \quad 3310$
App.A(cont'd)
SES/RP 3320
SIGMA=OIR(R(J+1)-R(J):X(J+1)-X(J)) 3330
SWSシSIN(SIGMA) 3340
CSS\#COS(SIGMA) 3350
SNS2=SNS*SNS 3360
SNS $4=$ SNS 2 *SNS 2 3370
LCS=ALOG(S/16.0) 3380 3380
3390
S2ms*S
$P x=-S N S * C S S * S *(1.0+(13.0 / 6.0+L G S+S N S 2)+S 2 / 96.0) / P 12$ 3400
PRa=S*(SNS2+LGS-(3.0*(1.0*LGS-SNS2)=2.0*SNSK)*S2/192.0)/P12 3410
PI(L) $=P I(L)+0.5 *(C O S(S I G M A-T A U)=P X * S N Y / B 2+P R * C S T / B 1)$ 3420
3 CONTINUE3430
4 CONTINUE 3440
RETURN 3450
END 3460
UBROUTINE INVERT(N) 3470
INVERTS NXN MAFRIX IN THE COMMON BLOCK 3480
CBMMON A(90,90) 3490
DO 1 In4.N3500
TEMP $=A(I, 1)$ 3510
$A(1,1)=1.0$ 3520
DO $2 \mathrm{~J}=1, \mathrm{~N}$ 3530
$A(I, J)=A(I, J) / T E M P$ 3540
DO $1 \mathrm{~K}=1, \mathrm{~N}$ 3550
1F(K-1)3.1.3 3560
3 TEMP=A(K,1) 3570
$A(K, 1)=0.0$ 3580
DC $4 \mathrm{~J}=1, \mathrm{~N}$ 3590
$A(K, J)=A(K, J)=T E M P * A(I, J)$ 3600
CONTINUE 3610REPURN
3620
END 3630

App.A(cont'd)

FUNCTION SIMPSN(FR,IA,N,H) 3640
NUMERICAL INTEGRATION USING SIMPSONS RULE 3650
DIMENSION FR(N)
3660
$L=(N-I A) / 2$
N1 $\mathbf{m} N-1$
IF(N-1A-2*L)21,22,21
3670
SEO. 0
DO $23 I=I A, N 1,2$
3690
3700
$S=S+H *(F R(I)+4.0 * F R(I+1)+F R(I+2)) / 3.0$
3710
GO YO 24
3720
$x^{2}+2$
$S=H *(5.0 * F R(I A)+8.0 * F R(I A+1)-F R(I A+2)) / 12.0 \quad 3740$
DO $25 I=I A+1, N 1,2$
$S=S+H+(F R(1)+4.0 \neq F R(1+1)+F R(1+2)) / 3.0$
3750
25
24
SIMPSNES
3760
REPURN
3770
3780
END
3790

App.A(cont'd)

	FUNCTION DIR (DY, dX) CALCULATES CORRECY SLOPE OF body surface	3800 3810
c	PIE4.0*APAN(9.0)	3820
	IF (OY.LE.0.0)00 T0 3	3830
	IF(DX.LE, O,0)60 YO 9	3860
	diraataneoy/ox)	3850
	RETURN	3860
1	IFP(DX.LY.0.0)00 902	3870
	DIREPI/2.0	3880
	RETURN	3890
2	DIR=PI-ATAN(ABS (DY/DX))	3900
	RETURN	3910
3	IF (DY.LT, O, 0)00 T0 \%	3920
	IFCDX.LE.0.0) 00 TO 4	3930
	DIR=0.0	3940
	RETURN	3950
4	IE(DX.LT, 0,0)00 Y0 6	3960
	Write 2,5)	3970
5		3980
	DIR=0.0	3990
	return	4000
6	DIREP!	4010
	return	4020
7	SP(DX.LE. 0.0$) 00$ TO B	4030
	DIR=0AFAN(ABS (DY/OX))	4040
	return	4050
8	1F(DX.LY.0.0)00 T0 9	4060
	DIRE-PI/2.0	4070
	RETURN	4080
9	DIREDPI+AYAN(ABS (DY/DX))	4090
	RETURN	4100
	ENO	4110

App.A.(concl'd)

FUNCTION TERP (N, X, B, A, D) 4120
C LINEAR INTERPOLATICN FUNCTION 4130
DIMENSION X(N),R(N),TH(80) 4140
LOGICAL D 4150
IF(D)GOTO 2 4160
$\mathrm{N} 1=\mathrm{N}-1$ 4170
DC 1 I=1:N1 4180
$T H(1)=X(1)$ 4190
 4200
CONTINUE 4210
$T H(N)=X(N)$ 4220
2 DO 3 I\#1.N1 4230
IF(A.OT.TH(I).AND.A.LE,TH(I+q))GO TO \& 4240
$60 T 03$ 4250
TERP=R(I)*(R(I*1)=R(I))*(A*TH(I))/(TH(I+1)*TH(I)) 4260
REYURN
3 CONYINUE4270
4280
REYURN 4290
END END 4300
FUNCTION VR(VIIAM) 4310
CALCULATES VELOCITY RATIO FROM CORRESPONDING MASS FLOW RATIO 4320
$A=0.2 * A M$
NE=9

$$
\text { NE }=9
$$43304340

VOEVI 4350$\mathrm{YaVO}(A *(1.0-V 0+V 0)+1.0) * * 2.5-\mathrm{VI}$
4360
$Y 1=(4.0 * A * V 0 * V O+A+1.0) *(A *(1.0-V 0 * V 0)+1.0) * * 1.5$ 4370DYE-Y/Yi
$V N=V O+B Y$4380
43901F(ABS (DY), LT. 0.0000001$) G 0$ TO 1
4400VOZVN$N C=N C+1$4410
IF(NC.GT.100)GOTO 3 4420
GO 7024430
WRITE(2.4) 4440FORMAY(IHO,25HVR FUNCTION NOY CONVERGED)4450
VAEVN 4460
RETURN 4470END4490

Appendix B

LIST OF THE MAIN VARIABLES USED IN THE MASTER SEGMENT

There follows a list of the main variables and arrays used in the MASTER segment of the program with the physical quantity represented by each.

Variable or array

AOAI
CP
F
G

N
NC
NPNC
NPNC2
PI

SOL
TAU
U
VF

VNF, VTF

VNG, VTG

VRF, VXF

VRG, VXG
X, R
XI, RC
XP, RP

Physical quantity

Specified mass flow ratio.
Pressure coefficient.
Strength of the 'fan' vortex.
Strength of the 'Kutta' vortex.
Number of aerofoil ordinates specified.
Number of centrebody ordinates specified.
Total number of ordinates specified.
Number of control points.
Velocities induced at a control point by the complete set of surface elements.
Surface source strengths.
Surface slope.
Tangential velocity.
Axial velocities evaluated across the face of the aerofoil.

Normal and tangential velocities induced by the 'fan' vortex.

Normal and tangential velocities induced by the 'Kutta' vortex.

Radial and axial velocities induced by the 'fan' vortex.

Radial and axial velocities induced by the 'Kutta' vortex.

Aerofoil and centrebody ordinates.
Ordinates of the camber surface.
Ordinates of the control points.

Appendix C
INPUT DATA
The input data and format is summarised below.

Program variable Or array CASEN, TEXT	
N	
format	
X, R	$10 A 8$
NC	I5
	$8 F 10.6$
	15

X, R (continued), $\mathrm{RD} \quad 8 \mathrm{~F} 10.6$ Centrebody ordinates (NC pairs). $\mathrm{RD}=$ Radius of the centrebody at the leading edge of the aerofoil.

NF1
I1
$R \theta$, CHORD, MACH, AOAI
1f $\mathrm{NC} \neq 0$

Number of mass flow ratios.
8F10.5 $\quad \mathrm{R} \theta=$ Trailing edge radius of the aerofoil.
CHORD=Chord length of the aerofoil. MACH=Mach number. AOAI=Mass flow ratios (NF1 values).

SYMBOLS

c cowl or aerofoil chord length
$\mathrm{C}_{\mathrm{P}} \quad$ pressure coefficient
$\mathrm{F}_{\mathrm{i}} \quad$ a prescribed normal velocity boundary condition at the ith control point
$\ell_{F} \quad$ cowl forebody length
M Mach number
$\mathrm{N} \quad$ number of ordinates specified on the aerofoil surface
NC number of ordinates specified on the centrebody surface
$q_{j} \quad$ source strength on the j th element
R radial ordinate
$\mathrm{v}_{\mathrm{i}} / \mathrm{v}_{0} \quad$ inlet velocity ratio
$\mathrm{V}_{\mathrm{O}} \quad$ free stream velocity
$\mathrm{V}_{\mathrm{n}_{\mathbf{i}}}, \mathrm{V}_{\mathrm{t}_{\mathrm{i}}}$ normal and tangential velocity components induced by the 'Kutta' vortex at the ith control point
$V_{n_{i}}^{*}, V_{t_{i}}$ normal and tangential velocity components induced by the 'fan' vortex at the ith control point
$V_{n_{i j}}, V_{t_{i j}}$ the normal and tangential velocity components induced at the i th control point by the source density on the jth surface element

$\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{r}} \quad$ axial and radial velocity components
$\mathrm{X} \quad$ axial ordinate
$\beta \quad \sqrt{1-M^{2}}$
γ_{F} strength of the 'fan' vortex distribution
$\gamma_{k} \quad$ strength of the 'Kutta' vortex distribution
$\theta_{i} \quad$ surface slope at the i th control point
$\psi_{T E} \quad$ value of the stream function at the trailing edge
μ mass flow ratio

REFERENCES

No.
Author (s)

1
D. A. Humphreys

6
B. A. M. Moon

7

8
D. L. Ryall
I. F. Collins

9

10
D. Kuichemann
J. Weber
J. A. Bagley
N. B. Kirby
P. J. Marcer
A. M. O. Smith
J. L. Hess
D.

C. Young
J. G. Mason
W. Geissler

Title, etc.
Aerodynamics of propulsion.
Chapter 5, pp 108-116, McGraw-Hill, London (1952)
A method of calculating the velocity distribution on annular aerofoils in incompressible flow.

ARC R \& M 3146 (1958)
Calculation of potential flow about arbitrary bodies.

Progress in Aeronautical Science, Vol.8, Pergamon Press, London (1966)

Note on methods of calculating the pressure distribution over the surface of twodimensional cambered wings.
RAE Technical Report 67095 (1967)
Programs to calculate potential flows using surface singularities.

BAC unpublıshed work
Computer programming for science and engineering. p 167, Butterworths, London (1966)

An investigation of annular aerofoils for turbofan engine cowls.
ARC R \& M 3688 (1969)
Design and test of a series of annular aerofoils. ARC R \& M 3492 (1965)

Flow synthesis by singularities.
Rolls Royce Powerplant Research Memorandum IAM 98801 (1968)

Berechnung der Potentialströmung um rotations symmetrische Ringprofile.
Mitteilungen aus dem Max-Plank - Institut für
Stromungsforschung und der Aerodynamischen
Versuchsanstalt No. 47 (1970)

REFERENCES (Contd)

No.

Author (s)

P. G. Ryan
E. Martensen
D. H. Wilkinson
C. Hastings

Title, etc.

Surface vorticity distribution techniques applied to ducted propeller flows. University of Newcastle Ph.D thesis (1970)

Die Berechnung der Druckverteilung an dicken Gitterprofilen mit Hilfe von Fredholmschen. Integralgleichungen zweiter Art. Arch. Rat. Mech. Anal. 3, pp 235-270 (1959)

A numerical solution of the analysis and design problems for the flow past one or more aerofoils or cascades. ARC R \& M 3545 (1967)

Approximations for digital computers. p. 172 and p. 175. Princetown University Press (1955)

O specified points on the body surface 1 to $N+N C$

+ Control points (1) to ($N+N C-2$)
$N=$ Number of body points
$N C=$ Number of centre body points

(

Fig. I Specification of the body geometry

Fig. 2 Computer program flow chart

Fig. 2 cont'd Computer program flow chart

Fig. 3 Comparison between theory and experiment RAE cowl 1

$\longrightarrow L_{F} \longrightarrow$

—— Forebody + long eylindrieal afterbody
$M=0.4 \quad \mu=0.93$

Fig. 4 Comparison between the calculated pressure distribution on the forebody of - an intake and a complete cowl

Fig. 5 Comparison between theory and experiment: R.A.E cowl 2

Fig. 6 Comparison between theory and experiment: R.A.E cowl 2

Fig. 7 Comparison between theory and experiment: R.A.E. cowl 3

Fig. 8 Comparison between theory and experiment: R.A.E. cowl 3

Fig. 9 Comparison between theory and experiment: RAE cowl 3

Fig. 10 Comparison between theory and experiment R.A E. cowl 3

$\psi_{\text {stag }}=0.0713$

Fig. Il Calculated streamline pattern: cowl 3: $M=0.3 . \mu=0.57$

$$
\begin{aligned}
& \frac{V_{i}}{V_{0}}=0.83 \quad\left(\frac{V}{V_{0}}\right)_{50 \% c}=0.74 \\
& \frac{\text { Theory }}{\text { Experiment }}
\end{aligned}
$$

Fig. 12 Comparison between theory and experiment: AR.L. duct BI
—_ Rolls Royee theory $M=0, \mu=0.71, \frac{V_{1}}{V_{0}}=0.71$
——— Experiment $M=03, \mu=0.72, \frac{V_{1}}{V_{0}}=070$

Fig. 13 Comparison between Rolls Royce theory and experiment; cowl 2

Fig. 14 Comparison with Rolls Royce theory and experiment cowl 3

Fig. 15 Comparison between Ryan's theory and experiment: ARL duct BI

Fig. 16 Comparison between Ryan's theory and experiment A.R.L duct B3

$$
M=0 \quad \mu=0 \quad 8
$$

- ARA theory
- - Present method

Fig. 17 Comparison between A.R.A. theory and R.A.E. theory: 10% R.A.E. 101 section, chord $/$ diameter ratio $=1.0$

DETACHABLE ABSTRACT CARD

© CROWN COPYRIGHT 1972

HER MAJESTY'S STATIONLRY OFFICE

Government Bookshops

49 High Holborn, London WCIV 6HB
13a Castle Street, Edınburgh LH2 3AR
109 St Mary Street, Cardiff CF1 1JW
Brazennose Street, Manchester M60 8AS
50 Farfax Street, Bristol BS 1 3DE
258 Brodd Street, Birmingham B1 2HE
80 Chichester Street, Belfast BT1 4JY
Government publications are also avallable through booksellers

C.P. No. 1217

