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ROY!,L AIRCRAFT ESTJIBLISH!G!NT 

Tail Plane Loads and Normal Accelerations 
After an hutom3tx Con~cml 3'ailux-e 

J.L. Redds~vay, B.A. 

A method is given for the calculation of nircrsft behaviour w’nen 
failure of the autopIlot in pitch prolluoes sudden elevator movements. 
Expressions for the changes in arcrsft normal acccleratlon, tail unit 
acceleratzkons and acmdynsmic tail loads are derived. These expressions 
together with their maxima and the times taken to reach these maxima are 
tabulated. A calculation on a specific aircrdt shows the use of the 
table. 
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I Introduction 

The safety aspects of aircr,xft inth automatic pilots an 
% 

powered 
controls have been consrdcred at a meeting held at the R.A.E. . One 
of the findings of this meeting vms that calculatxns of the probable 
,oi.rcraft behaviour after autopilot failure would be a? great use in the 
design stages for ensuring safety in new aircraft types, and that to 
this end publication of a note defining a standard approach to the 
calculations would be of considerable value. The am cd' this report 
IS to provide a method by Mm& the calculations can be made when con- 
sidering autopilot failure in pitch. 

Prcm the stressman's point of view that most important things 
about the arcraft behaviour after failure of the autopilot in pitch 
are the normal accelerations at the c.g., the tail unit accelerations 
(different from those at the c-g. due to an@lar acceleration) end the 
aerodynamic tad load3. Thus this report concentrates on the derivation 
of expressions for these axelcrations rind loads in tens of the time 
from the start of the unccntrolltid motion. As the chief interest is in 
the maximum values, these ha-x been calculated together with the times 
required to reach them from the moment of autopilot failure. 

2 Basic Asnulnxio~ 

To simplify 7;hf: analytical cpproach to the problem the following 
assrrmptions are mado. 

(i) The formrd speed .LS constant during the disturbed motion 
of the aircraft induced by the failure of the autopilot, up 
to the time of occurrcrco of maxrma of the quantities 
considered. 

(ii) The component of the aircraft x'eight normal to the flight 
path remains constant durira that time, 

(iii) The lift and the pitching mcment on the tailplane produced 
by changes in elevator deflection are negligible. 

These asswptnons are identical with those made by Caaykowski' 
and thus the equations of motion of the aircraft, equations (5) and (6) 
of Appendix I, are also identical. 

The folloning assmnption concerning the elevator movement is 
intended to cover the general requirements5 relating to malfunction 
of the autoprlot. It is assumed that, after the failure of the auto- 
pilot in pitch, there is an initial instantaneous movement of the 
elevator which is limited either by the control hitting the stop or 
by the aemdyncunic hinge mcment equalling the stalling torque of the 
motor. In addition, if the control reaches the stop, either instan- 
taneously or after a time interval (due to aircraft response), then 
it is assumed to stay there, 

The assumption of an initial instantaneous elevator movement gives 
conservative values for the estimation of tail loads for design sinoe 
the control movement will not be instantaneous in practice., On the 
other hand the effect of the rate of elevator application on the maximum 
normal acceleration &alised is small, though the time to reach the peak 
may bc altered appreciably.., 

With the ,above assum&.onthe-folloxing-three types of elevator 
movcment.are.possiblc~ 
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TypeA : The elevator is deflected instantaneously right to the 
stop and remains there throughout tk forcedmanoeuvre. 

TypeB : The elevator 1s deflected instantaneously vrithout 
reaching the stop. Oxing to the ensuing response of 
the aircraft a further elevator movement,tds place 
during which the elevator never reaches the stag. 

Type C : The elevator is deflected instantaneously tithout 
reaching the stop. Because of the aircraft response 
it is moved farther, reaches the stop, and frcm then 
on stays there throughout the manoeuvre. 

For q one aircraft and autopilot combination only one of the 
three types of elamtor motion will occur in any given flight condition. 

3 Method 

The analytzcsl treatment of the problem, presented in Appendix I, 
consists in finding the response of the &t-craft expressed in general 
terms for each of the three types of elevator movement, the initial 
Wttitude of the aircraft corresponding with steady level flight conditions. 
Expressions are derived for the changes in the sircrsft normal accelcra- 
tions, tail .unit accelerations and aerodynamic tail loads. These 
expressions are analysed and mz~mum values found for all the types of 
elevator motion referred to above together with the times taken to 
reach these msxha. 

General formulae for the coefficients of aircraft norm&L accelera- 
tion n , tail unit acceleration nt , and the aerodynamic load P 
together with thelrmaximm values and times of occurrence of these 
maxima are collected m Table I. These expressions give increnental 
values which must be added to the values realised in the initial steady 
flight condition. 

4 Specimen Calculation 

Consider a particular aircraft flying in level flight at a given 
speed and altitude. Then, with the assumptions of this report, failure 
of the autopilot control ~6.11 result in one, and only one, of the types 
of motion suggested in Section 3. Once the type of motion has been 
determined, the desim accelerations and tail loads follow readily fran 
Tables I and II. The initial instantaneous elevator deflection (ass- 
no stops) due to application of full torque from the control motor 
CH 

( > T 
must be oal~latcd. Where this is greater than the deflection 

permitted by the elevator stops [i.e. CH i;- > VP) the stops ars reached 
2 

instsntsne~sly with control failure and the motion conforms to Type A; 
where it 33 less, the motion will be either of Type B or C. The 
msxim~ elevator angle &i& ~0~113 be reached because of the aircrdt 
re onse (a ain assuming no stops) can nom b3 oalculated from equations 
(69 or (647 of Appendix I. Where this is greater than the deflection 
to +.hs stops the motion conforms to Type C and vhere less to Type B. 

Inspection of equations (63) and (64) shows that with 2 (E i;) 
negative the response of the aircraft rmll always diminish the elevator 
angle and thus, in this case, the max$mnnelevcltorangl.e till be the one 
reachedinstantaneously~thfsil~ and, if the stops are not reached 
then, the motion ~6.11 be of Type B. 
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Take as an oxsmple an aiwraft with the follcvang characteristics:- 

W = 63,000 lb ac, 
( ) aa less ta1 = O.Jl+J+ per radian 

S = 14.08 f+t2 k 
aa = 0.35 

c = 13.42 f-t "I = 3.84 per radian 

S' = L+ol rt2 a 2 = 1.81 per radian 

8 = 42.25 ft bl = 0.86 per radian 

v' = 0.8966 b2 = -0.109 per raaian 

kB = 13.4~t 'F = -0.789 

a = 4.53 per z-dim TP =+ IO0 

a% - = d.874 per ra&an 
aa 

With these basic &ta v , X and R have the following values, 

Y = 5.;k ; 'A = ?.90 end R = 4.802 

Knowing the speed and hcl&t ol' flight It is possible to calculate. 
the other necessary cocfficient~. Thus $tith 

v = 260 m.p.h. E.A.S. at sea level 

v = 381 Pt/sea (true) 

P zz 0.002378 sludft3 

2 $pv = 173 lb/ft2 

Mach No. = low 

w = 41.36 

J = 5.533 

p = 13.83 

*t= 1.53 seconds 

B = 3.126 

c = 0.375 

6 = 35.44 

CH= +_0.004 

NOW CH=+ 0 0372 
b, - * 

raaians = + 2.13' i.e. less than nF and this 

eliminatesJL'~e A motion. 

Ix ,O, V must new 
obtained 

be evaluated and the following results are 

y = 2.608 ; ij = 59.56, ; ; = 7.46 . 

With these wCi.ues the roots of equation (9) (the stability 
quadratio) are ccmplex and this climlnates the type of motion B(i)i.e. 
the formulae containing h's in Table I can be ignored. E and J may 
now be ccmputed (had the roots of equation (9) been real hl Cand x2 
vvuld h3ve been calculated). Thus, 



y = 6.20 ; E = 6.166 ; F2 + zz = 76.46 

Normally the maximum elevator angle which would be reached as a 
result of the aircraft response would &ve to be computed fran equation 
(64). However, as noted above, tith b negative the maximum elevator 
angle is reached at the moment of autopilot fails. Thus the stops 
are never reached and the only formulae to be considered sre those of 
Type B(ii) Table I. 

Note that '17 mx' computed from equation (64) is 0.65 si shopping 
thatthr&Gm urn elevator angle reached is, in this case, about two 
thirds of the initial angle. 

Should the angle found frcan equation (64) be greater than nF 
then only the formulae of Type C in Table I need be considered. 

Finally ccmpute the following 

D = q7.52 YIELX 
= 1.32 

H' = 2.45 G = 1.39 

A = 69.3xq031b %.X = 1,310 lb 

5 Further Work 

Furtherwcrkis reqaired to investigate the effects of':- 

(a) Finite rates of elevator movement after autopilot failure 
'as compatible with the characteristics of the autopilot+seW 
unit-elevator canbination. 

(b) pilot's corrective action. 

NOTATION 

A 2 3 $pv S' 

a% a =z- tiole aircraft 

81 = slope.sf lift-incidenoe curve of tsilplsne 

a2 = slope of lift-elevator deflection curve 

B = 



b, = 

b2 = 

G = 

CM = 

cHo = 

%? 

0 

D 

E 

I? 

G, ?i 

H, E 

J 

K 

kB 

II 

e 

M, E 

N 

nl 

nt 

= 

= 

zz 

= 

= 

= 

= 

= 

i 

23 

r. 

25 

3 

zz 

= 

= 

I 

a CTI 
-e 
aa’ 

aCH R 
at; 

(I+$) $ 
pitdung moment coefficient of sx-craft 

elevator hinge moment cocfYicient in steady flight 
(equation (1)) 

less tail 

elevator Ungc moment cocfflcicnt corresponding to the 
oonstant hinge moment a@icd by the autopilot servo motor 

elevatw hm@? mcment coefficient 

wing mean chord 

2, a S-PVu T '(equation (31,)) 

arbitrary ccnstant, equation (IO) 

arbitrary constant, equation (IO) 

see Table II 

set Table II 

w +&au-R2 

y/x 

see Table II 

radius of gyration of aircraft about lateral axis 

arbitrary constant, equation (13) 

distance franc.& of airwaft to mesn quarter chord paint of 
tailplane 

see Ta$le, II 

I-: 

codficient of-airorsft normal. accderation at 0.g. , .., I 
c'&ffl%c-nt'if' no&al acceleration at the tailplane $ chord 
point 
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P = aerod,ymamictsillcad 

Q, $ Al see Table II 

q = angular velocity of aircraft in pitch 

c = iq = non-dimensumd angdar velooiQ in pitch 

R 2.Y $ ("+ x+$a) 

ii = & (7 + ji + &a) 

S = wing area 

S' = tailplane znd elwator ares 

t = E.7 = tme in seconds 

z 
e = p v = nexxx?ymmic time unit, seconds 

v = aircmaY forvmrd speed 

ti S'.!? = tail voim3 coefficient = x 

w 

w 

= aircraft v+eeight 

= velooity ocmponent in a vertical plane-perpendicular to 
initial flight path (positive down) 

?"I = $ (= incrfmentsl mcidencc, a) 

L 
wO 

= see Table II 

L&i 
0 x0 = see Table II 

a = mng incidence 

a’0 
= see equations (1) and (2) 

='t = see equations (1) and (2) 

a' = effective angle-&%ddence at the tail plane 

Y = see Table II 

Y' = see Table II 

6 WC a cbd =- 
2g P Sk2, 

* - = elevator effect coefficient 
all 

s = angle of domwash at the tail 

c, .Z' = see Table II 

rl = elevator deflectio~fmn initiaL-steady flight conditions 
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n CH 
=Ky = elev3.tor deflectmn correspoting to application of 

full torque frcm the autopIlot servo motor 

nF = elevator a@e Fran trimned condition to elemtor stop 

A = see Table II 

?'A2 = roots of stability quadratic 

w 

P J au density 
t 7 E nemr$mmictime =, 
t 

#, 6' = see Table II 

x as = -.” . da 

w WC aqf x ---.- 
2@kB2 aa 
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APPIDTxxI 

Mathematical. analysis of aircraft response 
to control failure in pitch 

A.1 Elevator deflections under constant hinge mcment 

One of' the assumptions made in derlting the equations of motion 
is that the alscrsft formrd speed ronains constant during the short 
time interval in which we are interested. It is further assumed that 
failure of the autcmatio pilot results in an immediate application of 
a constant torque equal to the stalling torque of the control motor. 
Thus a constant hinge mckent is applied to the control and, with the 
assumption of constant aircroft speed rind small change in air density, 
the hinge moment ooefficient till remain constant. 

At any time before failure the aircraft is flying trimmed and the 
elevator hinge moment coefficient will be zero. 

Thus 

CH0 = b, alo + b2 ‘lo = 0 (1) 

At any other time, t after failure, the hinge moment ooefficient 
will bs connected to the tail incidence and elevator angle by the 
equation, 

Subtracting (1) from (2) gives 

cHt; = b, (dt - ato) + b2 h, -V,) 

Thus if we write 

Q.1 za' -a* 
t 0 = change of incidenoe at the tail 

71 Erlt-rlo = change of elevator angle from trimmed position 

ss 'Ht = hinge moment ocefficient oorresponding to the 
constant hinge moment applied by the autopilot 

Then 

' CH = b, a' + b2n (3) 

The change of incidenoe at the tail is given by, 

a’ =; (,A&) + &q + A$.g.!$ 

The first and second terms in.this expression are readily appreciated 
as being due to the change in incidence of the whole aircraft less the 
cffcct of downwnsh end the rotation of the aircraft respeotiively. The 
third term arises due to the tame lag e/V seconds bstween the creation 
of tho doymwash by the Wings ,and its action on the tail*. 
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The elevator angle, n , 1s governed then by the following equation, 

At the instant of control failure w = q = 0 and we shall see 
later frcm the equations of motion that this results in dW E = 0 . 

0, Thus the initial change in elevator angle will lx equal to T;; and we 
may write this equal to y . 

It is convenient to use non-dimensiond notation as established 
in Ref.3 mith modifications introdyced In Ref.4 together with the 
additional use of $ instead of tq . 

Thus 

A.2 The equations of motion 

The equations of motion in non-dimendonal form appear as, 

(6) 

The reader to ticm these equations are not fsmiliar may consult such 
works as Refs.2 snd 4. 

A.3 The equations of motion revtitten.to include the effect of 
elevator movement under constant hinge moment 

By putting the valise of 17 established under (4) into equation 
(6) we arrive at the following for the second equation of motion, 

( X -p.q)& [,.,.,(,-~)I~+~+(,..~),;-,, 

(7) 

(Note : this is of the same form as (6)) 
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where 

i 

A.4 Ths solution of the equations 

The equations to be solved are, 

(5) 

(7) 

{ may be elir.irated from equltlon (7) by substituting from (5)and 
3 may be eltinlnated by du?'erentiatlng (5) and substituting the value 
sdo" obtained III (7). Thus yle wrive at the differential equation for ?!. 

&+ 
n 

dT2 
&Y+;) g + (LT.? $)J = -6.;; (8) 

The solution may take either of two fozms depending on r&ether the 
roots of the follcn~ing equation arc real or complex, 

(9) 

With the normal range or' values of X , Y and. w the roots of the 
stability equation with fixed elevator movement are usu@y ccsnplex.- 
However, with the modification of X, y and w to X , Y and w 
due to the peculiar form of elevator mwunent the roots may become 
real and we give both solutions. 

A.4.1 Real roots 

Complete solution is 



dnere 

. 

i.e. 

and F and E are arbitrary constants depending on the initial 
conditions. 

A.4.2 Complex roots 

Crmnplete solution is 

Gr = Le 37 . cos(Fc -y) - -26y 
J +z2 

(13) 

where 

and. 

(15) - 

. 
and L and Y are again arbitrary constants depending on the initial 
conditions. 

A.5 The initial conditions 

The aircraft is considered initially to be in straight and level 
flight and this means thzt botii G and { arc se~o, Prom the first 
equation of motion (5) it is then apparent that $$ is also zero and 

we shall tske as our initisl condition, 

If the aircraft response is such that the aercdynsmio hinge moment 
of the control falls to a value which allovrs the control to reach the 
stop, a new phase of motion vi11 take place. This phase will be governed 
by equations (5) and (6) the solutions of vrluch cre exactly sim@.r &O 
equations (10) 2~7 (13) inth X , v and (r) substituted for X , J 
and cd ; mnd 11 1s replaced by rl), , the elevator angle at the stop. 
The values of the constants in the solutions arc again derived from the 
initial oonaitions for this phaoc. The condition here is that % and 
6 must be the same as at the end of the first phase and as the first 
equation of motion (5) does not contain the ccefficients X, V , e * 
or n then F7 is also contmuou3. Thus in the general case we shall 

take as our initicl condition, 
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n.5.2 Complete solutions - 2nd. phase 0f motion 

For airordt vath a normal range of values for X, w and v it 
is only in rare cases that there will be real roots of equation (9) in 
the second phase and this case ml1 not be considered. 

Ccmplex roots 

%=- 
6np 

1 
J2 + R2 

- A c-~' . cos (JT - Y) 
3 

a+ SnF 
XT=- - A eeRT . cos (JT - y - 5) 

(J2 + R') 
+ 

(25) 

F 
. A eeRT . DOS (Jz -y - 2g) (26) 

(27) 

(28) ^ 

.  

(29) 

(30) 

R = $(X+v+$) 

, 

(31) 

J = (w + ; v - R2)' (32) 

'A.6 Au-craft nomdl accelerations at the 0.g. 

Tail unit accelerations 

Aerodynamic tail ioads 

Expressions for these three quantities hake been derived in Ref.1 
end i&y are merely quoted ha-t. 

* See Addenda pp. 32 to 35 
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A.6.1 Aircraft normal acceleration at the 0.~. 

n 5 If D%? 

vihere 

D c 'iP v% & 

and n il l.hc cocffwient of normal acceleration at the c.g. 

(33) 

(34) 

A.6.2 Tail unit accelerations 

nt 
)I 

(35) 

A.6.3 Aerodynamic tail lead 

The incremental value of the aerodynamio tail load due to the 
disturbance is given as 

P I A(B%+ Cgt a2q) 

where 

A = &pV2S' 

-&,a 
da 2l.l > 

a1 

c = 
( > 

I+% $ 

(36) 

(38) 

Thus in the 2nd phase of motion if the control has reached the 
Stop, 

A 
P = A(B+t C .E+a2%) (39) 

and in the 1st phase of motion before the contrd reaches the stop the 
value for P is obtainedbyusing thevalue of q #veninequatzion 
(4), using eqe.tion (5) to elimins.te 4 . 

i.e. 



where 

Thus 

P =A Bir +cg] (I -s)+a2-T ) (41) 

a 
a1 

z- 
a2 

. 

a.7 Three types of motion consIdered 

Three types of motion are considered under the following heads, 

A Type 
/ 

The elevator stops a&'reaohed instantaneously with failure of 
the automatic control. 

Type B 

The aerodynamic hinge manent 1s such as to p&rent the control 
fran ever reaching the stop. 

Type 
The aerodynamic hinge moment 1s such as to prevent the control 

from reaching the stop instsntaneously with failure but, due to aircraft 
response, the control eventually reaches the stop. 

Types B and C can be subdivided into tvro further types v&&h, 
although not different physically, produce diff'eront mathematical 
solutions depending dither the rsots of' the equation (9) are real 
(subdivision (i)) gr ocmplcx (subdivlslon (ii)). 

. 

A.7.1 T,ype A 

Expressions for the-normal acceleration, tad unit accelerations 
and aemdynzmic tail loads2are bbtzuned by substituting tlxz appropriate 

values of rir e in the cquatlons (33). (35) and (39). In 

this case the appropriate values are those as given for the 2nd phase a 

\' . of motion ~6th % 0 and '* 
0 ',. a% o 

W@.ated to,zero. 

Thus 

%i 6 i..F 2” 2i 
nt = 1 -. D . 

J2 + R2 
, (J +Rz -- 

J L( 
'I+?- 2@;; J2) )2 + 

+ (:-:)'3" .-RTa 3&(Jr.y-+)j ' (43) 



m i tae-’ Ja - &JR (44) 
@a+ a~- 2(R2-J2) 

lk&nm values together vnth the tune taken to reach them are given as 
follcws:- 

,K .x 

(II) = 1 - D . J;:FR2 l+c J 
> (47) max 

(nt),, = 1 - D . 6% 
J2 + R2 

(48) 

PmaX = AqF 
6 

a2- 
J2 + R2 C 

B + [(E-CR)2 + (CJ)2]4. e 
II 
(49) 

Note that there may be another minimum or maximum tail bad for 
Jz+t;=O; but this can only b? so if t; can la negative. 

~.7.2 Type B(i) 

*he followin - obtained by substituting equations (IQ, (77) 
and (18) in (33), 7 35) anti (41). 
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ET nt = l-D.- 
w2 

(52) 

Maximum values are obtained by puttug e 
A,' A27 

the value appropriate to the p~loti,s reaction tge. 
= 0 or by giving 'G 
(Note that, although 

mathematically the time to reach the maxxnxm~ is infinite, in practical 
cases The motion is usually so ~Izunpc?~ l&At the maximum is reached within 
one or two seconds). 

Type B(ii) 

(21) 
The following are obkined by substituting equations (IY), (20) and - 

In !33), (35) cu-d (41). 

. 
n'= 1-D. (53) 

m’ -1 = tan ;ia - GE 

pa + SE - 2(F2 - $, 

(55) 

(56) 



where 
L;’ = tan-’ cJ 

B - cii 

Maximum values together with the time taken to reach them are given as 
fOl.lOWS. : K 

(4 1 - D . -. 6;; 
-- .7[ 

max = s;?+tP 
l+e T 

> (58) 

(!I~)~= = 1 - D . 'ii 
?- + Ti2 

(59) 

P max + [(B-Cii)2+(CT)2]' e 

All these-values are identical with those obtained in Case A, with 
v-dues of 5 , R etc. substituted for J, R etc. except for the inclusion 

i5 of the factor 1 - - 
( > 

in the aercdynemic tall load expression. 
a 

A.7.3 Type C 

Before solutions for this ease can be obtained the value of 'c 
taken to reach the stop must be calculated end this is then used to 

& find the values of Go and dz 
( > 

so that the second phase of motion 
0 

can -tx calculated. 
from equation (4)* 

The time taken to reach the stops 1s calculated 
or more conveniently, as expressed in equation c&C), 

by putting n 2 nF a2 and substituting for Gr and F= either from 
equations (16) and (17) or (19) an8 (20). 

Thus if the roots of (9) are real then WC have to solve, 

for z . 



This can usually be solved by neglectmg the term m e v (assuming 
Xl% solving and then repeating the calculation treating e 

The value of 7 30 found is then used to calculate 
equations (16) and (17). 

Nhen (9) has complex roots then the equation for the derivation 
of 'c is, 

% =;= [(B-Cii)2+(C;)21$ e-TiZ. cos (jz++c~) (62) 71 752 + 3s 

These tvro equations for 7 are best solved graphically and a method is 
suggested In Appendix II. Again this value of 7 1s replaced in 

equations (19) and (20) to find values of So and dvj 
( > z 0* 

It is viorth quoting, at this stage, -m values of II vhich 
Rould be reached vere there no stops. These values can then be used 
to ascertain itither the stops ;rill be reactid or not. 

Thus 

~r!mx z. ; for real roots of equation (9) 

(63) 

mth complex roots of equation (9) (64) 

Having obtalned values for r'io *Ed. 
( > 

& 
az 

the motion after the stops 

have been reached is gcsverncd by equations '(24) to (36) irrespective 
of whether the roots of cquatlon (9) were real or complex before the 
stops were i-cached. Thus ire arrive at one set of solutions. 

% n = 1 -D. 
J2 + R2 

- A emRz . co9 (Jz - Y) 
3 

nt = 1-D. J26yR2 [, -*([1+;“-;;J2q2 + 

+ [t - $jy .-RT , cos (JT - y - @) ] (66) 

where 
-1 g = <an Ja - 4JR 

pa + s.R - 2(R2 - J2) 



P=AnF "2 
C 

6 -- B- 
J2+ R2 c 

A ( @CR]2 + ]CJ]2)' .-Rz,oos(J~ - Y +t;) 13 
(67) 

r: = tan-’ B CJCR 

The maximum values together with the tune taken to reach tlwn are given 
as follows. Note that the total time to reach the maximum till bz the 
time quoted here, which is the time taken to reach the maximum once the 
oontrol has reached the stop, vslth the addition of the time taken to 
reach the stop as found from equation (61) or (62). 

(n)max = I-D. '% 
J2 + R2 t 

1 + J 1 A e-R= 
(J~+R*)" 3 

(68) 

-1 JT-a - tan 

(“,),/-D.$(,+ 
3 
‘-+ 

(69) 

P- = Aqp e 6 a2 - - J2+R2 B-+ C J A (70) 

JT- a+ t: = -1 tan 

A.8 Swmmy of results 

A summary of the results is given in Table I and additional 
fodae-necessary for a solution are given in Table II. 
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APPRiDIX II 

The solution of the transcendental equations of Apvmdix I 

In Appendix I solutions of the following equations are requi~.d, 

and 

[(B-Cii)2+(G~2]~ -ET 
1 

I@++ 

..* ..os(7-+r') 1 (674 

In both these equations everything is b.own exoept 'c . 

Solution of equation (61) 

Tvo methods of solution arc considered here. The first is a? use 
when \A21 is rather less than \hj ) and the seocmd mthod-should be 
used when \%I approaches the value of \h,l . 

Method 1 

Equation (61) can bc rearrangeed to read 

Equations (11) and (12) specify \?.,I > I?L~\ o1* tf to be less than 1 
B + Chl 

and as B + CL2 is approximately 1 then the ooeffxclent of %= e is 

h2 less than one an2 - . 
BtChj A,T 3” 
B+Ckae 

is smll ocmpared with e , 
AI 

Tk&.qpWnw then be used to find_amore accurate value 
of z' (say z2) thus, 

-2i+- 



By repeated approximatmn, i.e. at one stage 

we may obtain any desxed accuracy for 'c . When 1x2 
than IX,1 the process ml1 be rapidly convergent but PI en ?,, apprcacks 

h is a lot less 

x;! it all be preferable to USC the follming method. 

Method 2 

TO wdersta%d the basis of this me"&od let us assume the tm roots 
h, aid h2 of the stabdlty quadmtia (9) tn be equal. This is e@- 
talent to assuming 

The canplete' solution of equai;ron (8) novrbeocmes, 

+ = .g 
32 [t - (1 - AT) cq ck. equation (16) 

The equatrron for z , the tme Lo reach the stop in cquation@+O)mth 
7) E q F 

i.e. 

This equation nay be a?-mnged thus, 

Conader first the constant on the right hand side of the-equation; 
this will lie sanewhere betmen 0 and 1 because, 

__ 

L 
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if 

then 

. 

( VF I- --I \ alx2 
i-i / 6bB 

iiere greater than 1 

Now a., , h2 , B 
positive values oi 

and 6 must be positive; we are only considering 
c for otherwise the, stops will never be reaohcd 

unless they are reached instantaneously with failure; VF = must lx? n 

greater than 1. Therefore 1 - must be less than 1. 

Furthermore, if 

qF 
I- --I 

( > 

a, ?L2 

n E-f3 
c 0 

whioh is the oon&tion for the stops never to be reached (see Equation 
(63)). 

Now wnsider the L.H.S. of the equation. 

for a mean value of 

?a 

0 1 

-0.2 0.82 1.1 0.90 

-0.5 0.61 j.25 0.76 

-1.0 0.37 1.50 0.55 

-2.0 0.13 2.0 0.26 

-4.0 0.02 3.0 0.06 
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. 

h , plottmg a rough cmve of 
(note this curve only required 

where this f'unctim equals 1 VF - 
(. > 

- - I 
a,X,h2 

. 
7 si;n 

12 arc v3r.y dose this value vnll be sufflolent. If 
frm yl_ots of both e hlT k - $7 (1 + ~qm3 

,hculd pve sufficient accuracy. 0t;hemsc 
a small plot of the IZnctmn, 

in the region of z (now knmn approximately) m$l give the exact 

answw2, if m find 2 v?ncre tk funct,mn equals I - 
"lhlh2 

6ilB' - 
-_ 

Solution of equaticn (62)‘ i 

This equatmnmay be expressed in the form, 

and in this fom it may be solved in a graphical manner presented and 
explained in Ref.1, It cannot be drreotly solved from the ourws g~van 
there as this equation nil1 lead to expznding spiral curves. 
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Aircraf't Nounal Accelerations and Tail Loads 

Type C 

n 1 - D.G[?-Qe -RT .cos(JvY)] 
(i) 1 - D 

1 - EG[l-Ae-R~cos(J~-y)] 
(ii) 1 - D,r [1 -?j e-=.ccos(% - Y')] 

't 1 - D.G.[l-Q.H.e-RT. (i) 1 -Dj$$ I+ 
c 

co&a-Y-$) J (ii) 1 - D.?? [I - ?jR ~-R~.cos(?~-~-$~)] 

3 ala2np- B.G [,-C&~Z-~? 
cos(J+y+t;)]j 

(d 9-yk2- *- zk ~~~[~hlcle4T-hl[liih2~le~3! ] A{a2qF-E[l-fdde-R7. 

(Ii) A Ia2 y- EN Bfd - zz e-B7.~c)s(~~ - y' + r;')]J cos(Jz-y+g]j 
- 

-1 - D.G (1 + e 
(i) I .- D $ 

n *z-f m 
JB.X 

(ii) I - DE [I + e-'fiRl 
_I 

i-7 = 7t 7-c =‘ * J%- a zz tan-' -R/3 

-R/J@+@ 

'+inax 
I-E(1 + He 1 

(i) 1 - D $& 

* 1 
-RIF 

7 -s co 
B 

(ii) 1 - D.C [I + IT e- fi(Q") ] 
I 

' see note of paragraph A.7.2 of Appendiv I. 





TAZE II 

Subsichary Formulae 

y I tan-' =G 0 = 0 J..e. y=tan-' 
0 

K = 
6 ‘nF 

J* + R* 

4 = tan-’ Ja - &JR 
Pa + d? - 2(R2 - J*) 3 

I- * 
7 

DOS (Jz - Y') 
3 



B + C-A 1 x, z B t Ch 
. e -- - 

e 
%T 

- h, (h, - h2) 3 

H = 

ii zz 

M= 

- l( 1 t Yf 2@'7292 + p-gjijt 



Sam3 tvaical values of scmc of these parameters On 13 aircraft 
are given keiow: 

A/C No. Q 

1 2.355 

2 1.500 

3 1.325 

4 1.628 

5 I.289 

6 1.418 

7 1.222 

8 1.09 

9 1.29 

IO 1.535 

11 1.318 

12 I.530 

13 1.520 

G - 
FF 

2.57 

3.76 

0.66 

I .I$ 

0.61 

0.?5 

I.49 

1 .I1 

1.49 

2.94 

l.l+3 

1.02 

2.56 

H M 

0.942 0.50 33.7 16.5 

3.04 0.71 27.2 12.1 

2.03 0.80 55.2 39.2 

1.26 0.64 36.4 34.2 

1.96 0.80 54.0 33.6 

7.46 0.71 39.1 29.5 

I.34 0.58 22.3 9.50 

I.57 0.92 27.5 8.65 

1.49 0.78 41.2 19.9 

1.11 0.71 23.1 12.6 

1.27 0.77 48.6 16.0 

1.59 0.85 57.1 16.0 

0.98 0.52 29.5 18.1 
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C.P. No.111 

In paragraph L.6 of Appendix I, the reader 1s referred to a paper 
by Czaykowskl (Ref.1) for the derivation of aircraft normal accelerations 
at the c.g., tall unit accelerations and aerodynsmx tail loads. The 
paper by Czaykowski is xn the course of preparation and the followrng 
brief derivations are given here for ease of reference until Ref.? is 
generally available. The notation used below IS incorporated in the 
main text of this report. Equation numbers refer to the equations in 
theseAddenda only, except *here noted otherwise. 

1 Lircraft normal acoeleratlons at the C.E. 
see para. h.6.1. Appendix I) 

The lift force on the whole aircraft = $-p&a x wing incidence. 
The wing incidence can be regarded as the incidence In steady level flzght 
plus the incremental incidence, a= f q & (see notation), due to au-craft 

response. Now the lift force on the whole aircraft in the steady level 
flight condition equals the weight Iv. Thus, the lift force on the whole 
aircraft 

and, as Force = Mass x Acceleration = E - (ng) (2) 

then n = I+& (equation (33) of Appendix I) 

where D = #J2S ; (equation (34) of Appendix I) 

Note: Thx takes into account the standard practice of counting the 
coefficient of normal acceleration (i.e. acceleration divided by g) 
as 1 vhen the aircraft is in steady level flight. It would perhaps be 
more accurate to state, above, that the net vertical force on the au-craft 
equals the lift minus the weight (which is the same as saying that the 
net force 1s produced by tr.e incremental mcidence, 6) and equating 
this to the mass X acceleration. This leads to a value of n equal to 
I36 and 1 would have to be added to this to comply with standard 
practice. 

2 Tail unit accelerations 
(see para. 8.6.2 of Appendix I) 

The tail unit acceleration is equal to the acceleration at the c.g. 
plus an addition due to the angular acceleration of the aircraft, in 
pitch, about the c.g. The addition is equal to the angular acceleration 
of the aircraft multiplied by the distance of the tall plane from the c.g. 
(i.e. the distance of the tail plane $ chord point from the c.g.). 

(i.e. 
Thus the coefficient of normal acceleration at the tail plane, nt 
acceleration divided by g) is given by, 

nt = I+&-4.2 
g 

(3) 
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nhere the first tw tens are tne oircraf't normal acceleration at the 
c.g. (equation 33) and the thud term 1s the addition due to angular 
acceleration m patch. ii negative sign appears w.th the latter term i?s 
the angular velocity in pitch, q, 1s reckoned positive when the nose 
of the aircraft comes up, i.e. as the tail goes dorm. 

Now from the Notation, 

. 
and . . k$ = ‘.!g 

t2 

fKJm (3) * p. 1 . . nt = 5% i + Div - - * 7 . d= 
g t 

(4) 

(5) 

But from one of the basx equatxons of motion in non-dlmenslonal terms 

; = 2,; * 6 (see Wmticn (5) of Appendix I) 

Thus 

“t =l+D %I- 
C 

-& * $2+$-j from (5) arid(6) 

By referrIng to the Notation alone it is easy to shorn that by 
definition 

Hence finally 

2 d2lG -. - + 
a aT2 

(equation (35) of Appendix I) 
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3 krod,vnamic tail load 
(see pa-a. L.6.j Lppendix I) 

By defuution, the incremental value of the aerodynamic tail load 
P is given by, 

P = $J*s (a,a' + a*?$ (7) 

5 A (a,a’ + a*$ (8) 

xhere a' and q are incremental values, of the tailplane incidence 
and elevator angle respectively, from the steady f1zgt.t condition and 

On the first page of Lppendix I, a' is given as 

.1 = w 
V 

together with a brief derlvatzon of this equation. 

By referring to the Notation we can transform this equation into 
non-dlmensxonal notation, thus, 

or al =iT? 1-g +;.;+;.!g.Lg 
( > 

(9) 

(10) 

Again from one of the basic equations of nmtlon in non-dimensional 
nctatlcn 

6 = ii + a . $ 
clz 2 

(see equation (5) of Appendix I) 

and substztuting this in (IO), 

and therefore we may nrzte, 

1 

ala' = Buj + C 2 

- $4 - 

(11) 



B = 

and 

c = 
( > 

,+sE a’ 
aa J 

Retwnlng to OUT uutial equation, 

P = h (",a' + ap) 

and filling in our derived equation for a, a’ from (11) then the 
incremental value of the aerodynamlC tall. load 13 given by, 
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