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SUMMARY

e

A method is given for the calculation of aircraft behaviour when
farlure of the autopilot in pitch produces sudden elevator movements.
Expressions for the changes in aircraf't normal acceleration, tail unit
accelerations and acrodynamic tail leoads are derived. These expressions
together with their maxima and the times taken to reach thesc maxima are

tabulated. A calculation on a specific aircraft shows the use of the
table,
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i Introduction

The safely aspccts of aircraft snth autanatic pilots and powered
controls hove been considered at a meeting held at the R.AVE.©. One
of the findings of this mecting was that calculations of the probable
adreraft behaviour after sutopilot failure would he of great use in the
design stages for ensuring safety in new alrcraft types, and that to
this end publication of a note defining a standard approach to the
calculations would be of considerable value. The aim of this report
18 to provade a method by vhich the calculations can be made when con-
sidering autopilot farlure an pitch.

Pran the stressman's point of view that most important things
about the airrcraft behaviocur after farlure of the autopilet in pitch
are the normal accelerations ot the c¢.g., The tail unit accelerations
(different from those at the c.g. duc to angplar acceleration) and the
aerodynnmic taill lcads. Thus this report concentrates on the derivation
of expressions for thecse accelerations and loads in terms of the time
from the start of the unecntrolled motion., As the chief interest is in
the maximum values, these hare been calculated together with the times
required to reach than from the moment of autopilot failure.

2 Bagic Agsuapsaons

Te simplaziy the analytical cpprusch to the problem the following
assumptions are made.

(i) Trhe forward spced .s constunt during the disturbed motion
of the aircraft induced by the failure of the autopilot, up
to the time of occurrerce of maxima of the quantities
congidered.

(i) The comporent of the aircraft weight nommal to the flight
path remains constant during that time.

(iii) The 1ift and the pitching mament on the tailplane produced
by changes in elevator deflection are negligible,

' 1

These assunptions are identical with those made by Czaykowski
and thus the equations of motion of the aircraft, equations (5) and (6)
of Appendix I, are also identical.

The following assumption concerning the elevator movement is
intended to cover the general roqu.iremen‘cs5 relating to malfunction
of the autopilot. It is assumed that, after the failure of the autce-
pilot in pitch, there is an initial instantaneous movement of the
elevator which is limited eithcer by the control hitting the stop or
by the aerodynamic hinge mament equalling the stalling torque of the
motor, In addition, if the control recaches the atop, either instan-
taneously or after a time interval (due to aircraft response), then
it is assuned te stay there.

The assumption of an initial instantanecus elevator movement gives
conservative values for the sstimation of tail loads for design since
the control movement will not be instantaneous in practice.. On the
other hand the effect of the rate of clevator application on the maximum
normal acceleration realised is small, though the time to reach the peak
may be altered appreclably.

© With the above assumption the-following—three types of elevator
movement _are .possible:—
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Type A : The elevator is deflected instantaneously right to the
stop and remains there throughout the forced manceuvre,

Type B : The elevator is deflected instantaneously without
reaching the stop. Owing to the ensuing response of
the aircraft a further clevator movement takes placc
during which the elevator never reaches the stop.

Type C : The elcvator is deflected instantaneocusly without
reaching the stop. Because of the alrecraft response
it is moved farther, reaches the stop, and fram then
on stays there throughout the manceuvre.

For any one alrcraft and autcpilot combination only one of the
three types of elevator motion will occur in any given flight conditiocn.

3 Methed

The analytical treatment of the problem, presented in Appendix I,
consists in finding the response of the aircraft expressed in general
terms for each of the three types of elevatcr movement, the initial
attitude of the aircraft corresponding with steady level flight conditions.
Expressicns are derived for the changes in the aircraft nomal accelera-
tions, tail unit accelerations and asrodynamic tail loads. These
expressions are analysed and moxamum values found for all the types of
elevator moticn referred to above together with the times taken to
reach these maxima.,

General fomulae for the coefficlients of alrcraft normal accelera=-
tion n , tail unit acceleration ny , and the aerodynamic load P
together with their maximum velues and times of occurrence of these
maxima are collected in Table I. These expressions give incremental
values which must be added to the values realised in the initial steady
flight condition.

L Specimen Calculation

Consider a particular aircraft flying in level flight at a given
speed and altitude., Then, with the assumptions of thisg report, failure
of the autopilot control will result in one, and only one, of the types
of motion suggested in Section 3. Once the type of motion has been
determined, the design accelerations and tail loads follow readily fram
Tables T and IX. The initial instantancous elevator deflection (assummg
no stops) due to application of full torque from the control motor

bo

( G—I—I-> must be calculated. Where this is greater than the deflection
pemitted by the elevator stops (i.e. bﬁ > np) the stops are reached
2

instantaneously with control failure and the motion conforms to Type A;

where it 1s less, the mobtlon will be either of Type B or €. The

n1axm1m1 elevator angle which would be reached because of the aircraft
onse again assuming no stops) can now te calculated from equations
or (61.5 of Appendix I. Where this is greater than the deflection

to the stops the mction conforms to Type C and where less to Type B.

b

1 '
Inspection of equations (63) and (64) shows that with '{)‘E (= 'b)

negative the response of the aircraf't will always diminish the elevator
angle and thus, in this case, the maximm elevator angle will be the one
reached instantaneously with feilure and, if the stops are not reached
then, the motion will be of Type B,

-ty



Take ag an cxample an airgraft with the following characteristics:—

W = 63,000 1b (%—) less tail = 0,344 per radian
5 = 1408 £t° e = 0.35

dw
¢ = 13.42 £t ay = 3.8L4 per radian
S' = Lol £t2 2o = 1,81 per radian
& = 42.25f% by = 0.86 per radian
T = 0.8966 by = «0,109 per radian
kg = 13.L £t ) = =0,789
a = 4.53 per radian Ny =+ 10°

—— = ~1,89L per radion

With these basic dato v X and R have the following wvalues,

a2

v o= Bogh % o= 1,90 and R = 4.802

Knoving the speed and height o [light 1t is possible to calculate
the other necessary cocfficients,., Thus with

v = 260 m.p.h. BE.A. 8. at sea level po= 13,83
v = 381 ft/sec (true) £ = 1.53 seconds
o = 0.002378 slug/ft” B = 3,126
1v? = 173 /062 C = 0.375
Mach No, = low & = 35.44
w o= 41,36 Oy = + 0.00%
J = 5.533
C:H . lo] .
Now E;- = + 0,0372 radians = + 2,13 i.e. less than Np and this

eliminates Type A motion.

X , ] , vy must now be evaluated a.ﬁd the following results are
obtained

X o= 2,608 5 T =59.56. ; v = 7.46

With these wlues the roots of equation (9) (the stability
qudratic) are complex and this climinates the type of motion B(i)_i.e.
the fomulae containing A's in Table T can be ignored, R and J may
now be computed (had the roots of cquation (9) been real Ay and Ap
would have been caleulated).  Thus,
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T = 620 ; B = 6166 ; TP+ =766

Normally the maximum elevator angle which would be reached as a
result of the aircraft response would have to be computed fram equation
(64). However, as noted above, with b negative the maximum elevator
angle is reached at the moment of autopilot failure. Thus the stops
are never reached and the only formulae to be considered are those of
Type B(ii) Table I.

Note that '™ max' computed fram equation (64) is 0.65 M showing
that the minimun elevator angle reached is, in this case, about two
thirds of the initial angle.

Should the angle found fram equation (64) be greater than ng
then only the formulae of Type C in Table I need be considered.

Finally canpute the following

D = 17.52 n'lma.x = 1 .32
H = 2.45 Npoay = 1.39
A = 69.3x10° 1 oo = 1,310 1b

5 Further Work

Further work is required to investigate the effects of:-

(a) Pinite rales of elevator movement after autopilot failure
'as compatible with the characteristics of the autopilot-servo
unit~elevator combination.

(b) Pilot's corrective action.

NOTATION
L = rpvis

oCy,
a = 5 whole airoraft

w1
n
ml_?

2

a, = slope.of lift-incidence ocurve of tallplene
B, = alope of lift-elevator deflection curve
de a
B = (1 - -d-E + 2“> 1
b4
T = T’Z
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do [

pitching moment coefficient of aircraft

elevator hinge mement coefficient in steady flight
(equation (1))

St Seo da / ™
less tail

elevator hinge mament cocfficient corresponding to the
congtont hinge moment applied by the autopilot servo motor

elevator hinge moament cocfficient
wing mean chord

2g

zp VS teqmtiml(ﬁJ)

=H[m

arbitrary constant, eaquation (10)
arbitrary constant, equation (10)
see Table IT
see Table II

\/w +-lav-R2

2

— - =2
y/L + ¥ av-R

see Table IT

radius of gyration of aircraft about lateral axis
arbitrary constant, equation (13)

distance fraom c.g. of airoraft to mean quarter chord point of
tailplane

- seg Takle. IT -

1-

f o'l

COeffiolent of alrcraft normal acoeleration at o.g.

coeff1éient of normal acceleration at the tailplane %—chord
point
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P = aerodynamic tail lcad

Q, Q" = gee Table IT

q = angular velocity of aircraft in pitch

a = %q = non-dimensional anglar velocity in pitch

R = x{(v+x+Za)

R - 15+ T ta)

S = wing area

S = tailplane and eleator area

t = %.7 = time in seconds

% = %‘ = aercdynamic time unit, seconds

v = aircraft forward speed

7 = tail volume coefficient = §-ij-

w = alrcraft velght

w = +velocity component in a wertical plane- perpendicular to
initial flight path (positive down)

w = %5 (= incremnental incidence, rx)

Ty, = see Table IT

(%%T) = see Table II

o

a = wing incidence

a'y = see equations (1) and (2)

2ty = see equations (1) and (2)

ol = effective angle -of~incidence at the tail plane

' = see Table IX

¥t = see Table IT

) . = Z?I = elevator effect coefficient
2g p SK°g

[}
H

angle of dormwash at the tail
&y &1 = see Table II

n = elevator deflection fram initial -steady flight conditions

-8~
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I

i

[

I

fl

’E; = elevator deflection corresponding to application of

full torgue fran the autopilot servo motor
elevator angle fran trimmed condition to elevator stop

aece Table IT

roots of stability quadratic

W

pese
;816
2

. Q P
Sk.Bz,1

55
M

Y -

alr density

] . 7
aerodynamic time = =~

L)

t

gee Table IT

de
o
. We Gy
2" da
2gpSky
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APPEIDIX I

Mathematical analysis of ajlrcraft response
to control faillure in pitch

A1 Elevator deflections under constant hinge mcment

One of the assumptions made in deriving the equations of motion
is that the arrcraft forward speed remains constant during the short
time interval in which we are interested. It is further assumed that
failure of the automatic pilot results in an immediate application of
a constant torque equal to the stalling torque of the control motor.
Thus a constant hinge mament is applied to the confrol and, with the
assumption of constant aircoraft speed and small change in air density,
the hinge mament coefficient will remain constant.

At any time before failure the aircraft is flying trimmed and the
elevator hinge mament coefficient will be zero.

Thus
CHO = b1 a'o + ‘bz o = 0 (1)
At any other time, t after failure, the hinge moment coefficient

will be comnected fo the tail incidence and elevafor angle by the
equation,

Cr, T P @'y * Py (2)

Subtracting (1) from (2) gives

Oy, = by (a'y =~ a') + Dby {ng -n,)
Hy 1 t o t o

Thus if we wrlte

al = a't - a'o = change of incidence at the tail
M =ng ~1m, = change of elevator angle from trimmed position
Gy = GHt = hinge moment ccefficient ocorresponding to ’E:he
constant hinge moment applied by the autopilol
Then
Cyg = 'b,1 a! + bzn (5)

The change of incidence at the tail is given by,

|_E —EE +£- +—£’-—"§E{o§.—e~
© =¥ da v 87 2%

The first and second terms in, this expression are readily appreciated
as being due to the change in incadencc of the whole aircraft less the
cffect of downwash and the rotation of the aircraf't respectively. The
third temm ariscs due to the time lag £/V  seconds beh-rcen the creation
of the dovmwash by the wings and its action on the £ail?,

-11=



The elevator angle, mn , 1s governed then by the following equation,

Cy by wi, _ ds e &  aw de
M = = = e — - - B [
bo b2 Y do V- v2 dt da

At the instant of control failure w = q = 0 and we shall see

later from the equations of motion that this reasults in %%- =0,

!
Thus the initial change in elevator angle will be equal %o E and we
may write this equal to 7 .

It is convenient %o use non-dimensional notation as established
in Ref.3 with modlflcatmns introduced in Ref.lk together with the
additional use of G dinstead of tq

Thus
— - ( de & 1 ade aw
= - h W i d o e, e, e
N " L da) o4 da d'r] (4)
where
_ b
T ='{§1'
2

A.2 The equations of motion

The equatiouns of motion in non-dimensional form appear as,

air a A
——d’l'.' + -2- W= dq = 0 (5)
d.‘:"f ~ dél A
x-a-q-:-+ww+ar+vq..-6.n (6)

The reader to whom these equations are not familiar may consult such
works as Refs.2 and 4.

A.3 The equations of mobion rewritten. to include the effect of
elevator movement under constant hinge mcment

By putting the value of m established under (4) into equation
(6) we arrive at the following for the second equation of motion,

5 = ac) aw - de ag ( 6’*‘6>, e
( v . b da> 7o+ |:w 5.b( da)}wq-d'c'b v 8= én
or -'

— d:w - A d(‘i - -
s oww o+ 24 vV, = =~ &,
X dr dt d K

(7)

(Note: +this is of the same ferm as (6))
-0



[ 1]

where

el
i
€
1
o
ol
TN
i
218
S

- 8b
vo= oy = e
il
AL The solution of the ecuations
The egquations to be sclved are,
dﬁ' a A A _ : =
.8 3.2, 8 L vy o -sF
X .S v, w e 2 os v o= -07m (7)
ar dt
— Cr
and m 1s a constant = ==

p
4 may be elimimted from equation (7) by substituting fram (5)and

d
E% may be elimanated by differentiating (5) and substituting the value

so obtained in (7). Thus we axrive ab tho differential equation for W.

2. a
d w — — a avr — O = oA -—
g,:é + (X-P U+"2') a-;c- + (\.d-i-"é' v)w‘ = -5.'0 (8)

The solution may take either of two fomms depending on whether the
roots of the following equation arc real or complex,

e Xee P o+ G2 =0 )

With the normal range of values of ¥, v and w the roots of the
gtability equation with fixcd elevator movement are usually camplex._
However, with the modification of X, v and « fto X, v and w
due to the peculiar formm of clevator movement the roots may become
real and we give both solubiong.

A.4.1 Real rcobs

Complete solution is

) - pn _
w = T eMI- + BEe? - 5n, (10)
A Mho

..1_7)..



where

2
__1-“-&_\/——&_—_&},—
Moo= omrXeve3) 5 (X+V+3) (u+2v) (11)
'y 1 (7 T A = = ay? . aw
2=-§(X+v+_)+ L (X +V+ &) - (w+2y) (12)
2 2 2
i.e.
|41 > |22
and F and E are arbitrary constants depending on the initial
conditions,
A.Lk.2 Complex roots
Complete sclution is
- - - &
W:Lep:“:.cos(J'r -T)-_?nz (13)
J + R
where
§=%(-i+?+%) (14)
and
F o= TJ+:}L‘-‘I€2 (15)

and L and ¥ are again arbitrary constents depending on the initial
conditions.

A.5 The initial conditions

The aircreft is considered initially to be in straight and level
flight and this means that both +w and g are zero, From the first
equation of motion (5) it is then apparent that A 55 also zero and

dz
we shall take a&s our initial condition,

7 = == = 0 hen T = 0

If the alrcraft response is such thet the aerodynamic hinge moment
of the control fzlls to a value vhich allows the control to reach the
stop, a new phase of motion will take place. This phase will be governed
by equations (5) and (6) the solutions of whuich are exactly similar to
equations (10) and (13) wath %, v and w subsbituted for X , ¥
and © ; and M 1s replaced by My , the clevator angle at the stop,
The volues of the constonts in the solutions are again derived from the
initial conditions for this phose. The condition here is that W and
g must be the same as at the end of the first phase and as the first
squation of moi:ion (5) does not contain the coefficients X, v , @

aw .
or 1 then P is also continuous. Thus in the pgeneral ocasse we shall
take as our initial condition,

~1l=






A.5,2 Complete solutions - 2nd phase of motion

For airoraft with a nommal range of values for X, ®w and v it
is only in rare cases that there will be real roots of equation (9) in
the second phase and thic case will not be considered.

Complex roots

. 6 -
w=_.____F_[1-AcRT.cos(J'c—Y)] (24)
J% + R®
A 61’]
%:- F l-Ae-RT.cos(JT—’Y’-'E) (25)
(52 + R2)®
-@-212":5.1«] .Ae’RT.cos(JT-Y-ZE) (26)
dr B
where
1
A 2 A “ 2 2
_ _o o\ R, 1  [dw } 2
A = [(1+K> + [(1+K)J+JK (d*c)o] (7)
&
£
X = (28)
J% + B®
&)
_ ..=1 IR 1 dr /o
Y = tan + —J_-I-{-- Tfo) (29)
1-!-?
w] J
= tan . - (50
3 = )
R = %(x-pv-q-%) (31)
1
Jd = (w+§2-v-32)2 (32)

*A.6 Aarcralt normal accelerations at the c.g.

Tail unit aceceleraticns

Aerodynamic tail loads

Expressions for these three dquantitlies have been derived in Ref.1
and they are merely queted hoere.

* See Addenda pp. 32 to 35
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[ 1]

A.6.1 Airoraft nomal acceleration at the o.g,

n = 1 + DWw (33)
where

and n ia the coefficient of normal acceleration at the c.g.

A.6.2 Tail unit accelerations

2 o
_ - 1 2 g aw
ng, = 1 4+ D [W m (a . d12+ d:c) (35)

A.6.3 Acrodynamic tail load

The incremental value of the aerodynamic tail load due to the
disturbance is given as

3 dﬁr
P = A(Bw+ C=— 4 a,
dr 2 )

where
A = Hpvist (36)
fle a
B = 1 - == -
( Pl 2“) ay (37)
de \ 1
C = 1 —— |
( + da) m (38)
Thus in the 2nd phase of motion if the control has reached the
stop,
P = A(BW+ C'a¢+&2nf‘) (39)

and in the 1st phase of motion before the control reaches the stop the
value for P is obtained by using the value of n given in equation
(L), using equation (5) to eliminate 4§ .

i.e
::_ - .E(‘% 1—'@"6'-!-'8;' +l§i 1+-a-'-§'
o= L do ™ 2u Wodx da
- i N &
= 7 - ;;{BW-{-GE';} (1}0)



Thus

. & b -
PHA{ [Bw+ch] (1-g>+a2n} (41)

where

o]
i
I

A.7 Three types af motion considered

]

Three types of motion are considered under the following heads,

Type A

(. ) '
The elevator stops are reached instantaneously with failure of
the automatic contrdl.

Type B

The aerodynsmic hinge mament 1s such as to prevent the control
fran ever reaching the stop.

[ype C

The aerodynamic hinge mament 1s such as to prevent the control
from reaching the stop instantaneously with failure but, due to airecraft
response, the control eventually rcaches the stop.

Types B and C can be subdivided into two further types which,
although not differcnt physically, produce differcnt mathematical
solutions depending whether the rqots of the equation (9) are real
(subdivision (1)) or camplex (subdivision (ii)).

A.7.1 Type A

Expressions f'or the normmal acceleration, tail unit accelerations
and asrodynamic tail loads_are obtained by substituting the appropriate

values of  , %—% and g-g in the cquations (33). (35) and (39). 1In
dat

this case the appropriate values are those as given for the 2nd phase
of motion with W, and(g-—g) tquated to zero.

] v O

Thus : .
& 2 2% ' '
- Jd - .

noa 1D, et LA ERD R a ) | (2)

7%+ 7% i . T

¥
1

. e, 2.4 . 2 2y \?2
ny = 1D, B g e ) [<1+%_2(R -J}) .

J2 + R? 7 Ha

-

2z . . 1o
%-%)] CRT.SOS(JT-Y—‘I’)J (43)

18~



where
P =

ta.n-1 Ja T' LFIR
Ha + aR - 2(R% - J9)

;
2 n2\% )
Pohng | a, = B--Q—i-R—)—\/(B—CR)-P(CJ)z
F 2 2 2 J
+R
where
g = tan"1 Gd

B ~CR

(L)

7B cos(TreveZ) ] ]

(45)

(46)

Maximum values together with the tame taken to reach them are given as

follows:-

6 _Ea"t
_,_I]_Il‘_(1+eJ )

(n)max = 1-D.J2+Rz (47)
JtT = ®
& ! 2 _ 12y \2
(ny) = 1-D. E 1+ 14 BL2R -J7) +
max J2+R2 H ua
2aF <L (mus i
(J...@) } R (48)
Mo pe

Jr =7 + &

5
P - A T [a‘ [ . —
max F L2 g2, g2

'!:B + [(B~GR)2 + (GJ)21

L3

(49)

Note that there may be another minimm or maximum %tail load for

Jr+ % =0 ; but this can only be so if ¢

A.7.2 Type B(3) ‘

can be negative,

The following are obtained by substituting equations (16), (17)

and (18) in (33), (35) ana (41).



2
2\o Ao Aot ]
-%.1(1—”&—“)6 ]] (51)

o gty (-5) e sl b o]

(52)

AT AnT
Maximum values are obtained by putting e [ e? =0 or by giving 7
the value appropriate to the pilous reaction time. (Note that, although
mathematically the time to reach the maximium is infinite, in practical

cases the motion is usually so damped that the maximum is reached within
one or %wo seconds),

Type B(ii)

The following are obtuined by substituting equations (19), (20) and
(21) 1n (33), (35) and (41).

]
- 2 mHE % -
n = 1-D0, —20._ _8n_ 1 (_"'R) .eRT.cos(Jfr-Y’) (53)
"2 =2
+ R J
, 2
A = e TR
. =1-D._5“2 4 . 0%+ BE)? [<1+E_2(R-J >+
¢ J2+R J H Ha
— = 2% -
. (z@:) } T cos (Fr -yt - 5) (54)
H Ha
where
' = tan™] Ja - LJR (55)
pa+a§—-2(R 3’2)

,

- 2 =2\

p oo amla o8 f1.B\|p. (T +E)
= it T o= g =

J™ + R a J

\/(B - C§)2 + (03)2 . e"'ET . cos (Jr -~ v + 2t) ] } (56)



where

gt = tan BCJG'}’{' (57)

Maximum values together with the time taken to reach them are given as

follows, 5
55 ( "5—'“>
(n)max = 1 -0, 3_2———+—§:2" 1+ @ (58)
3’17 = N
- = 2 =2\ 2
& R_2(R" -7
+/max J2+§2 ) ua
R
= w2 F - (o)
(i-y_&)J e 7 (59)
K ua
Tt = m o+ 3
R -
- 5 b =2 (Y212 F
P :An'{a ____,.G__:__> B+ [(B-CR)+(cT)“] e
max 2 TR a
(60)
Jt = % -

All these values are identical with those obtained in Case 4, with
values of J , R etc. substituted for J, R etc. except for the inclusion

of the factor( 1= -E-) in the aerodynamic tail Joad expression,
a

A.7.35 Type C

Before solutions [or this ease can be obtained the value of =«
taken to reach the stop must be calculated and this is then used to

find the values of ﬁo and (g—%) so that the second phase of motion
Q

can be calculated. The timc taken to reach the stops 1s calculated
from equation (4), or more convenicntly, as expressed in equation (40),

by pubting m =7m_ and substituting for # and %—i elther from
equations (16} and (47) or (19) and (20).

Thus if the roots of (9) are real then we have to solve,

"oy, B BT Mr B Oy Rt |
n ag | MAp Ay Oy hp) a0y =)
for « .,



AT
This can usually be solved by neglecting the temm an e 1 (assuming

TR LY ), solving and then repeating the caloulation treating e
as a corre(t;:.on term. The value of T 30 found is then used to calculate

17

W, and %% fran equations (16) and {(17).
o

Wnen (9) has complex roots then the equation for the derivation
of < is,

1 -

p 8o B [(3-CR) 2+(c}')2]£ -R< ~
= = 1+ |- o 4 e . cos (Tr-vt+Zt) (62)
n 8 | T4+ R T(F2 + §2)§

These two equations for T are best solved graphically and a method is
suggested in Appendix II. Again thas wvaelue of 1T 15 replaced in

equations (19) and (20) to find values of #, and %}%) .
0
It is worth quoting, at this stage, maxamum values of m vhich

would be reached were there no stops., These valucs can then be used
to asgertain vhether the stops will be reached or not.

Thus
7 = 7 ('1 + % _E for real roots of equation (9)
max 81 M Mo
(63)
or =
R
- -2 = 2.% == (%
n =;{’l+§£ 5 + [{B-CR) + (cJ) ]a.e J =)
fax % \7* + 2 72 4+ T
wth complex roots of equation (9) (64)
Having obtained values for Wo and %-‘-f the motion after the stops
T

c
have been reached is governed by equations (24) %o (36) irrespective
of vhether the roots of cquation (9) were real or complex before the
stops were rcached. Thus we arrive at one set of solutions,
dn s
n o= 4 -D. F L‘i—AeRT.cos(JT-Y)} (65)

J2 &+ R2

O My 2 _ .2y72
n, = 1-13.-——3-—?'1-;;([“%_——-——)-2(3 JJ +

72+ 8 L Ha
1
2
+ l}{- - %—T—ﬂ? BT, cos (JT - ¥ ~ &) } (66)
where
§ = tan Ja - LR

ha + aR - 2(R2-J2)

PP



P =Ang [az - J26R2 [B ~ & ({B-cr}? + {03}9)7 6B cos(oT - ¥ +Z,):”
o+

(67)

~1 CJ
B -CR

The maximum values together with the tame taken %o reach them are given
as follows. Note that the total time to reach the maximum will be the
time quoted here, vhich is the time btaken to reach the maximum once the
contral has macmd the stop, with the addition of the time taken to
reach the stop as found fram cquation (61) or (62).

611
(n) = 'I-D.—zi}“—-é- {1+-—-—-—-—J—-——q-1’xe"RT} (68)
(7%RD)?

Chy 2_12y ¥~
(n,) =1-D.—F [H_.._J_. ([ At B
max J%R2 2,R2)2 u
1
I &R ¥\ Rt
R ] (69)

M,.

By = g {az - 26 5 [?"’ “‘2——?)2‘ A ({B-oR}%+ [0T}%)%e R"]] (70)

JHR N

JT = a+ Z = tan" | (-

Nt

A.8 Summary of resulis

A summary of the results is given in Table I and additional
formuilae-neovessary for a solution are given in Table II,
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APFENDIX TI

The solution of the transcendental equations of Appendix I

In 4ppendix I solutions of the following cquations are required,

Mg -4 By [ B . B+ CM 87\1'1' B+ G?\.z 87\.2'17] (61)
m 8y [Arg MOy A p(h=2)
and

Mg NP .QE B [(B-GR) +(C®2J2 B—R-T .OOS(FT-Y‘-FZ_;') j! (62)
J(J’ +R )2

In both these equations everything is kmown except T .

Solution of equation (61)

Two methods of solution are considered here., The firat is of use
when |Ap| is rather less than |%q] and the seoond method -should be
used vhen |MNp| approaches the valuc of |A,| .

Method 1

Equation (61) can bc rearransed to read

B ] A=) Ll BN e?ul-r:}q i e-xZT
5b Y o B+ Chy Ay B+Chs

A ,
Equations (11) and (12) specify M) > Jap| or i_?: to be less than 1

B+ CM . 1 Myt
and as mg is appraximately 1 then the ocoefficient of e

M B+ OA
less than one ard ...2. . 1 7\'1’;
?B+G7&‘,2

For a first appmx:matlon to =t (say '51) we may neglect this and f£ind,

. L4 20‘-"1)
Ty o= —7‘2'10&3{[ --—--1 5‘0 ?‘17\2‘| B+G7u2

This.-approximation—can then be used to find _a more acourate value
of T (say '::2) thus,

’[Z2 = 72 . loge — = - NN + ".?'C- . s B
T & Mhed Beon, M By

T

is

?\.Efr

is #mall compared with e .




By repeated approximation, i.e. at onc stage

e - 10&{ (@:_1 4 B 7\2(7‘2"7‘1)+7_“__2_ BrCM 67‘1"n-1}‘1
n = TR = 55 Mip | B Oh, M T BN,

we may obtain any desired acocuracy for <t . When L1 is a lot less
than Ihll the process will be rapidly convergent but vhen ), apprcaches
h it will be preforable to use the following method.

Method 2

To understand the basis of this method let us assume the tHwo roots
M, and N, of the stability quadratic (9) to be cqual., This is equi-
valent to assuming

— —_ 2
v = 1-(X + ¥+ %J

— Q
W o =
2 L

The canplete solublon of equavion (8) now beccmes,

Fo= o é% (1= (1 =2A7) ehx] of. equation (16)
X
and
%E = ~8n % ehx

The equation for < , the time Lo reach the stop in equation (LO)with
n= M
by

This equation may be arranged thus,

2

n ash

T[-M(1+9~.7\>:| =1-(-£_1> 1
B 7 5% B

Consider first the constant on the right hand gide of the-equation;
this will lie scmevhere betireen O and 1 because,

~25m



if

2
! ash

1 - (:F-,- - 1\ —-E—_-—-- were greater than 1
M ) 5b B

then

T]F - a--1 }\-2
—_— - 1) — would have to be negative.
N 5b B

Wow aq , 22 y B, and & must be positive; we are only considering
positive values of b for otherwise the stops will never be reached

F
unless they are reached instantaneously with failure; — must be

2 n
greater than 1. Therefore 1 - = = 1) == must be less than 1.
M &b 3B
Furthermore, if
Tom [ o= > < 0
n 6D B

Then

= 7

8bB _; -

a.-}?\.z mn
or

whioh is the condition for the stops never to be reached {see Equation

(63)).

Now consider the L.H,S3, of the equation, \1 + % ':\.) will
probably lie somevhere 'beE\*reen O.and 1, We shall oonsj(ler the

structure of & [1 - AT 1+%A)=O.5

(as an example) and for values of =At up to 4. Thus

AT e’M‘ ’:‘l =T (1+ ¢ 7&) e."\"': E-M’G-i— g 7\.)]
B B
1

1+ %7‘\.)1 for a mean value of

-0,2 0.82 1.1 0.90
-0,5 0. 61 t.25 0.76
~1.0 0.37 1.50 0.55
-2.0 0.13 2.0 0.26
~4. 0 0,02 3.0 0.06

—26m



The function has been plotted in Fig.1 and thg value of T for
c o A NT G 1 . /My YR
which ¢ T = AT 1+:B-}L l = -f—--‘i> can be readily

n 5% B

ascertained. - .

Thus 1t 15 suggested that vher &4 and Ay, are relatively olose
the solution of equaticn (€1) 18 best obta:LCed by Saldng a mean value :

s

A, plotting a rough curve of ¢ T =l 14 %7\ similar to Pag. |

(note this curve only required 5 poInts) and determining the value of =
: A aqlqho
vhere this funciioa equals 1 -( —_ - 1)

T
: i

5D 3
I# M and A acc vary close this value will te sufficient. If

AqT
not, a mean value frar plots of both e 1 [1 - AT 1+ %7\.1)-’&1&

AT -
e 2 1-'1 - K?T (1 + %}.2> sheuld pave suffleient accuracy. Otherwise
.

a small plot of the function,
1.0 ( ) Mt ( c ) 7‘21}
1+ — 1 hn 11T+ = A e - N {1T+=A,)e

in the region of < (now kmowm approximately) wall give the exact

3§

-

i

_ ‘ , "y 24 MAp
answer, if we find © vhere the function equals 1 = (—_—,— -1 - .
7l b B -
Solution of equation {62) :
This equation may be expressed in the fomm,

- 0 /=00 2. o2

oy — R - = (J%R%) - 1 a, (T%+R°)

e B loos Tt 4+ B__ . sin JT :_-1-<-:_F-—1)—1——:——-—

J m 5b3B

and in this form it may be solved in a graphical menner presented and
explained in Ref.1. It camnot be darecotly solved from the curves given
there as this equation will lead to expanding spiral aurves.

-27-
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TABLE T

Aireraft Normal Accelerations and Tail Loads

real roots equation (9)

Type A Type B ((1:1.) complex roots equation ( 9)) Lype ©
(l) . D ?\.2 7\.1’1.' _ 7\.1 e?\. T:]
n 1 - D.¢[1-0e ™", cos (Ju-)] 7‘47\ RS M-Ap 1 = 16 [1-Ae " ETe0s(37-v)]
(ii) 1 - D.8 [1 - § e BT cos(Fv - v1)] _
R e o ey RN (=R R L EEE e
S T Kl kT o el Y A L e v
cos(S-1-¢) ] (i1) 1 - D.C {1 - Q H e-Hr, cOa(_T_T-*Y'—?"’ )]
R = 5 B\ M _
. Afagn - B.GR-Qe™. | (3) A‘n{az- W(‘l- i)f* Y (7\2[3+7x cle™ -M[Bmzc]e Tﬂ} Afan—B6 [1-aie™ ",
cos(J’T-ﬁHé)]; a— . = (It @]}
(1i)A{a2 'n-GN B[‘I -QIueR.co&,(JT- yt +Zf,)]§ cosLJT=Y+
(i) 1~ D === _
~R/+ R A
—1-DC—(1+6/J) PO 7\1 1_m‘]+£eﬂRT-l
- T = = L€ R
(15) 1 - DT (1 + o /77]
JT = ® Iz ; ™ JT - a = 1:,a,n""l "'R/J
. &7
~R /5 (T4 ) (1) 1-D55
o 1—DG(‘I+He/ ) M T T
tmax & T = o E (M¢') Q
(ii)1—D.§[1+ﬁe/E ]
JT = N + ¢ Tt = = + ¢)' — JT—a~¢=t3n"1—R/J
(1)A71[a2- ° (1-:9— B]
MAp e N R
Pma_x A(aZnF_BG [1+Me"‘R/J x-2) ]) ® . 4 5 A {aanuBG E+ a Moe™ "J}

(ii) A G, n~-NBE [1+ & e"m(ﬂ’z')])

JET = R = &

3"17 =

A

JT~a+ & = tan~l -R/J

* See note of paragraph A.7.2 of Appendix I.







¢l

Z;'

=

or

It

il

{3

TABLE IT

Subsidiary Formulae

tan~1) B, . for case AN =4 = 0 1.e, *x‘.-:*k:am"‘1 B
J Wo\ de 0 J
JK[(1 « — o
5,
Ny
J’2+ R2
ot [ ek
ua + aR ~ 2(R ~ J%)

.t
J

tan-—’l ,{ Ja - LJR }

Ha+a§—2(ﬁ‘2-3‘2)

1
— T2 [T =
- _.....§._T]_.. [1 — ._(_J_._:.__;_E_.)j_ . e-RT, cos (J’E - Y') }

5; { 4 7&{; ?..2'1: }
e ] e (M, e -Moe <)
Apdg U7 M =k T2
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1437

.‘.i_‘?i
dT

w30

oxr
_ 6-,;} ie?\._"!:—e?\.z'[.'}
Mo
vhere T as found from
Np 1+5TS[ B [(B-GR)2 + (CT)%]
:-‘._.. -—‘-- ey - et .1_.
1 SR (7% + BO)7
or
— B+ CA AT
1+§3{me Wi 1 e -
MYy MOy )
0%
R —
Q = Ew(}-)} H Q
a'nF ——
- . o
¢ J2 4+ R2 ’
N = 1-"‘3‘—
a
2 .2\ %
;- [(Ha 6= )L (2
m La 1
— ( R 2(?{2—32 )2 (‘3‘ l{aﬁ
5 = 1+—-~-———)- P .
M 1a Bhoopa
o 2%
¥ = (1-9-.R> +<-C-.J>
B B
%
oy v—l2 y L €
M = [(1—-%.1_{) +("C‘:.J>
B B

~R%

. € .cos(ET-—‘Y"+2j‘)

B + CA

It

- S

+
TN

-
=[5
N’ N’
R L Ny
o ral-+

e

"2(}‘1 - 12)

Y

}



Same typical wvalues of somc

are given below:

A/C Wo. Q
1 2.355
2 1,508
) 1.325
N 1.628
5 1.289
6 1,118
7 1,222
8 1,09
9 1.29
10 1.535
11 1.318
12 1,530
13 1.520

Ft,2078.0P111.K3,

3.76
0.66
1.18
0. 61
0.95

.49

~31=

Printed wn Great briiain,

0. 50
0.71
0.80
0. 6
0. 80
0,71
0.58
0.92
0.78
0.71
0.77
0.85

0.52

Z.‘O

33.7
27.2
55.2
364
54.0
39.1
22.3
27.5
Lt.2
23,1
48.6
57.1
29.5

of these parameters on 13 aircraft

16.5
12.1
39.2
34.2
33.6
29.5
9.50
8.65
19.9
12.6
16.0
16,0
18.1
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ATDENDA

In paragraph .6 of fAppendix I, the reader as referred to a paper
by Czaykowski (Ref.1) for the deravation of aircraft normal accelerations
at the c.g., tail unit acceleratzons and aerodynamic tail loads. The
paper by Czaykowski is in the course of preparation and the following
brief derivations are given here for ease of reference until Ref.? is
generally availlable. The notation used below i1s incorporated in the
main text of this report. Equation numbers refer to the equations in
thes Addenda only, except where noted otherwise.

1 Lircraft normal accelerations at the c.g.
(sec para, A.6.7., ALppendix I)

The 1ift force on the whole aircraft = %pV%Sa x wing incidence.
The wing incidence can be regarded as the incidence in steady level flight

plus the incremental incidence, a= %E w (see notation), due to aircraft
response, Now the 1ift force on the whele aircraft in the steady level

flight condition equals the weight W. Thus, the 1ift force on the whole
aircraft

= W+ 1oVeSa,w (1)
and, as Force = Mass X lLcceleration = g « (ng) (2)
then n = 1+ Dw (equation (33) of Appendix I)
where D = Lpvis % (equation (34) of Appendax I)

Note: Thas tekes into account the standard practice of counting the
coefficient of normal acccleration (i.e. acceleration divided by g)

as 1 when the aircraft is in steady level flight. It would perhaps be
more accurate to state, above, that the net vertical force on the aircraft
equals the 1ift minus the weight (which is the same as saying that the
net force 1s produced by tne incremental incidence, W) and equating

this to the mass X acceleration. Thas leads to a value of n equal to
Dw and 1 would have to be added to this to comply with standard
practice.

2 Tail unit accelerations
{see para, A.6.2 of Appendix I)

The tail unit acceleration is equal to the acceleration at the c.g.
plus an addition due to the angular acceleration of the aircraft, in
pitch, about the c.,g. The addition is equal to the angular acceleration
of the aircraft multiplied by the distance of the tail plane from the c.g.
(i.e. the distance of the tail plane % chord point from the c.g.).

Thus the coefficient of normal acceleration at the tail plane, n,
(i.e. acceleration divided by g) is given by,

n_tn"t-l"D‘\Rr—-&.gﬂ (5)



where the first two terms are the aircraft normal acceleration at the
c.g. (equation 33) and the third term 1s the addition due to angular
acceleration in pitch. 4 negative sign appears with the latter term as
the angular velocity in piteh, q, 18 reckoned positive when the nose
of the aircraft comes up, i.e. as the tail goes down.

Now from the Notation,

q = % and t = t=x
£
1 L)
thus dg = 3 c 8§ and &t = ¥ an
y d9 - 1,4
and . » dt %2 d’f: (""’)
", from (3) - reph-%. L4
. = rom 3 nt = 1 + V—-g- %2 ] aT (5)

But from one of the basic squations of motion in non-dimensional terms

-

y = %&’ 1 -2. + V1 (see cquation (5) of Appendix I)
T
ag % a aw
and differentiating =2 == (&)
az d'(.'2 2 de

Thus

- £ a (2 &zer d{:f):'
n,=1+D{%¥ -—5++={=2—=+= from (5) and (6
4 [: Dg%z 2 \a aT (5) (6)

By referring to the Nctation alone il is easy to show that by
definition

da _ 1
ngtZe
Hence finally
=1 + D[% -1 (2. .@i’ + Q"E\:— (equation (35) of Appendix I)
o U Na g.2 at/ PP

—33_



3 Lerodynomic taill load
{see para. /i.6.3 lppendix I)

By defainmation, the aincremental value of the aerodynamic tail load
P is given by,

P = %pVES' (a1a' + 32ﬂ) (7)
= 4 (a1a‘ + a,m) (8)

where @' and 1 are incremental values, of the tailplane incidence
and elevator angle respectively, from the steady flagkt condition and

A= %pVZS'
On the first page of fppendix I, «' is given as

P X _ de L. £, dw , de
““v(1 dcx>+V I+ " qt | da

together with a brief deraivation of this equation.

By referring to the Notation we can transform this equation into
non-dimensional notation, thus,

" de I " & Vaw das
e i e e B
( da) Vt a V2 t dt da (9)
or Q’.‘:’?v( —ie->+l'(i+-la@-g‘§. (10)
ao i H  dar da

Again from one of the basic equations of motion in non-dimensional
notation

=3

=
=

(see equation (5) of Appendix I)

03
il
e
+

ro
-

=

and substituting this in (10),

asza,(_d_S>+l<d_fnéa A\ O
da/ w \dt 2 p dt  da

and therefore we may wrate,

- d:
asa = Bw + C 3% (11)



where

and

o
I
TN
—_—
+
m,m
2fm
~—
= Lf

Returning to our initial equation,

P = 4 (aTcx' + agm) (8)

and filling in our derived equation for a,a' from (11) then the
ineremental value of the aesrodynamit tail load 13 given by,

A Y
P = 4 <Bﬁ o Sy azn) (12)
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