Low Speed Wind Tunnel Investigation of Tab Hinge Moment Characteristics

By
W. J. G. Trebble and J. F. Holford

ROYAL AIRCRAFT ESTABLISHMENT

Low speed wand tunnel investigation of

 tab hinge moment characteristiosby
W.J.G. Trebble
and
J.F. Holford

SUMGURY

Hinge moments have been measured on tabs of 4.7% local chord on a tailplane with 14° trailing edge angle. The range of investigation covered the effects of 32% nose balance and of the gap between tab and elevator.

For small deflections of the control surfaces o_{1} and o_{2} are negligible whilst 0_{3} is -0.36 and -0.28 for the unbalanood and balanced tabs respectively.

With large angles of the elevator, and with moderate angles when the elevator gap is open, o_{2} tends to the calculated value for this wing without boundary layer terms. Consequently the curve of tab hinge moment as the tab and elevator both move is not linear.

Values of c_{1} and c_{3} calculatod by thick aerofoil theory, with Bryant's empiricol boundary- layer torms, aro in good agreement with measured values for small daflections.
Page
1 Introduction 3
2 Description of Model and Tests 3
3 Results and Discussion 4
3.1 Small Angles 4
3.2 Non-linear Parts of Fingo Mornent Curves 5
4 Conclusions 6
List of Symbols
Roferences
IIST OF TABIESTable
Model Details I
Tab hinge moments, gap $=0.0010$ II
Tab hinge moments, gap $=0,0025 \mathrm{c}$ III
Effect on hinge moments of setting (β^{\prime}) of other parts IV of tab, gap $=0.001 c, \alpha=0$
LIST OF IILUSTRATIONS
Fig.
G.A. of model tailplane 1
Model installation in the 24 ft tunnel 2
Tab hinge moments ∇ elevator angle, unbalanced tab, gap- $=0.001 \mathrm{c}$ 3
Tab hinge moments v tab anglo, gap $=0.001 c, \alpha=0^{\circ}$ 4
Tab hinge moments v tab angle, gap $=0.0025 c, \alpha=0^{0}$ 5
Tab hinge moments v tab angle, gap $=0.001 \mathrm{c}, \alpha=10^{\circ}$ 6
Tab hingo moments v tab angle, gap $=0.0025 \mathrm{c}, \alpha=10^{\circ}$ 7
Effect on tab hinge moments of setting (β^{\prime}) of other part of tab, gap $=0.0010, \alpha=0^{\circ}$ 8
Effect of sealing elevator gap, balanced tab, gap $=0.00 \mathrm{lc}$$\alpha=0^{\circ}$
(a) Tab hange moments v elevator angle, with elevator sealed for deflections up to 20° 9a
(b) Tab hinge moments v elevator angle with elevator gap open $9 b$

Introduction

The use of sorvo tabs on large transport aircraft has made it necessary to obtain data on the hinge moment characteristics of small chord tabs of full span. For this purpose a third scale model of the half tailplanc of the Bristol 175 aircraft was mounted in the 24 It wind tunnel, and tab hingo momonts wero measured. Previous tests of olevator hinge moments had been made. 1 Tho moan tab chord, aft of hinge lino, is $4 \frac{1}{2} \%$ of the tailplane mean chord, but the tab is of constant chord whilst the tailplane tapers. Tho main tosts were made on one quarter of the tab, and on this the tab chord, aft of hinge line, was $4 \frac{3}{4} \%$ of the local tailplano chord. The tests included an investigation of clliptic nose balance and of gap size.

2 Dosoription of Model and Tosts

The tests were made during April and May 1951. The model is shown in Fig. 1, and its dimonsions are givon in Table I. The mean chord of the modol tailplano was $3.58 \mathrm{ft}^{\prime}$; and sinoe the opon jet 24 ft wind tunnel was usod, no corroctions to hingo moments havo boen applied. It will be seon in Fig. 2 that the model was a half tailplane with endplate rather than a half tailplane completely refleoted. The geometric incidences tested were 0° and 10°, but the model lift slope would only correspond to 9° of the completely reflected wing. Since the effects of incidence on hinge moments is small, no correotion has been applied.

The tests were made at $160 \mathrm{ft} / \mathrm{sec}$ giving a Reynolds number $=$ $3.6(10)^{6}$, based on mean tailplane chord. Transition wires were fitted at 15% chord on both surfaces of the tailplane.

Tho elevator hinge line was at 65% of the tailplane chord with 30% nose balance. Up to doflootions of 20° the elovator nose gap was sealed by sorbo rubber attached to the nose. For defleotions greater than 20° the balance nose projected boyond the profile.

This elevator had a full span tab which was divided into four equal parts spanwise, each having two hinges. The hinge moments on seotion 2 of the tab were measured (see Fig.1).

Two types of tab wore tested, one having a 32% elliptic nose balance, the other being an unbalanced tab made by cutting away the balance to leavo a semi-circular nose. The tab hinges were made as frictionless as possible in ordor to measure the true hinge moment coefficient. In full scale aircraft there would probably be a larger frictional forco. Each tab was tested with gaps of 0.001 and 0.0025 of the local tailplane chord c^{\prime}.

The angular position of those parts of the tab which were not conneoted to the balance could be pre-set. In most of the tests they were fixed at 0^{0} to the elevator, but some tests were made with a tab setting of 25° to enable the results to be correoted to a full-span tab.

The maximum error involved in setting the tab angle β was $\pm \frac{1}{4} \%$, whioh corresponded to an error of ± 0.002 in the hinge moment ooefficient (C_{H}). The maximum error involved in reading the balance corresponded to an error in G_{F} of 0.0005 , giving a total of ± 0.0025. This error would be incroased at large elevator angles due to unsteadinoss.

For small chord tabs the values of c_{1}, c_{2} and o_{3} (the partial derivatives of C_{H} with respect to α, η and tab angle β) are constant for small ranges of α, η and β. These constant values of the derivatives are much smaller than the values calculated without consideration of the boundary layer, and are in fact the values for the tab embedded in a thick boundary layer. For large angles of the surfaces, and when hinge gaps are open (and act as slots), the curves will revert to the values thoy would have with thinner boundary layer, causing unsystematic looking curves (Figs.3-7).

3.1 Small Angles

Considering first the values at small angles, the values found for the single section of tab are:-

Tail incidence $\left(\alpha^{0}\right)$	Tab balance	Tab gap	c_{1}	c_{2}	c_{3}
0	unbalanced	$0.001 c$	-0.01	-0.02	-0.35
	balanced	$0.0025 c$	-0.01	-0.05	-0.38
		$0.001 c$	-0.01	0	-0.27
		unbalanced	$0.001 c$	-	-0.05
10	$0.0025 c$	-	-0.38		
	balanced	$0.001 c$	-	-0.07	-0.42
		$0.0025 c$	-	-0.06	-0.30
				-0.01	-0.31

These would be little altered if the full span tab had been used. This was checked by some tests shown in Fig. 8 in which the remainder of tho tab was set at 25°, so that the "full span" curve would run from the point representing 0° on all tabs to that representing 25° on all tabs. This would increase the negativo value of o_{3} by 0.01 . o_{2} would be unaltered, since the variation of O_{H} with η is not ohanged.

The effect of 30% nose balance is to reduce o3 by 20%.
These values of c_{1}, c_{2} and c_{3} for unbalanced tabs have been compared with the following calculations:-
(a) Bent plate the ory ${ }^{2}$.
(b) Thick wing theory? This is only available for a single flap, gaving o_{1} and o_{3} but not o2.
(c) Bryants empirical corrections for boundary layer. ${ }^{3}$

The comparison found is:-

	$a_{0} / 2 \pi$	c_{1}	c_{2}	c_{3}
Bent plate theory	1.00	-0.14	-0.19	-0.85
Thick aorofoil theory	1.106	-0.09	-	-0.56
Thick aerofoll theory with Bryant	0.865	-0.04	-	-0.36
empirical corrections				
Iieasured values	-	-0.01	-0.02	-0.36

This demonstrates the large boundary layer uffect. To estimate how much the change from modol to full scalo Reynolds Number will effect this, the Bryant method has been applaed to calculato c_{1} and o_{3} at $R=20 \times 10^{6}$, giving:-

	$R=3.6 \times 10^{6}$	$R=20 \times 10^{6}$	Wi thout Boundary Iayer
o_{1}	-0.04	-0.05	-0.09
o_{3}	-0.36	-0.39	-0.56

so that the model rosults wil be substantrally applicable to flight conditions.

3.2 Non-Iınear Parts of Ilinge Hioment Curve

In Fjg. 3 , hinge momerts are plojted against elevator angle: the elevator gap was sealod until tho nose began coming out soon aftor 20°. Tho hingo is behund the maximum thickness of the elovator, accentuating the bulgc outside the wing contour as the elevator rotates. Fig. 3 shows that c_{2} is only small for quite small volues of η and β and shows largo changos taking place even whth saall tab angles between -15° and -25° elevator anglo. In Fig. 9 some results from section 3 of the tab are given, theso wore made with elevator gap open, and there was a out out in the elevator nose. The offect of the gap is to give a highor value of c_{2} for $n>80$, this value being of the order estimatod for "without boundary layer".

In Figs.4-7 hinge momonts aro plotted against tab anglo, and the value of c_{3} is nearly constant and is small up to 200 or 25° of β as long as the olevator anglo is small. In a vory crude way this is explazned by tho thack boundary layor, ovor the last 5% of the wing, ombeding the lab and boing carried round vith it as it movos.

The effoctivoness of tho baloncod tab is illustrated in Ref.l (Fig. 28). It is seen that 20° of balancod tab will glve -25° of elevator wilst 10° of tab gave 15° of elevator. Such points are joaned in Fig. 4 (b) by the brokon curvo. This curve shows the tab hinge moment requarod to produce the roquisito elcvator dofloction.

4 Conclusions

(I) The values of c_{1} and c_{3} for small angles are correctly estimatod by tho mothod of reforonce 3 , in which howover the boundary layor torms arc ompirical.
(2) The boundary layer torms aro large, but a calculation shows rolatively small changc up to full scalo Reynold's number.
(3) The effoct oi 30% balance from an clliptic noso is to roduco 03 by 20%.
(4) The hinge moment curres are non-linear with elovator anglc; and 03 for a servo tab with the correct olovator setting may becomo loss stablc with incroasing angle, bcooming unstablo within the practical rangc.
(5) Sinco tho small-angle valuos dopond on being in a thick boundary layor, the only hopo of obtaining more linear curvos would bo in providing slots at tho hinges or romoving tho boundary layor in some other mannox. The hange moments would thon bo much heavier.

LIST OP SMMBOLS

c mean tailplanc chord
c^{\prime} local tailplane chord
a tailplane uncidenco
$\eta \quad$ olevator angle
$\beta \quad$ tab anglo of part of tab on which moasurcmonts wore made.
$\beta: \quad$ tab angle of other parts of tab
GI tab hinge moment
c_{1} slope of $\mathrm{C}_{\mathrm{H}} \vee a$ curve $\left(\frac{\partial \mathrm{CH}_{\mathrm{H}}}{\partial \alpha}\right)$
c_{2} slope of $G_{H} v \eta$ curve $\left(\frac{\partial C_{H}}{\partial \eta}\right)$
c_{3} slope of $C_{H} \forall \beta$ curve $\left(\frac{\partial C_{H}}{\partial \beta}\right)$

LIST OF REFERENCES

No. Author
1 Mathews, Hall and Hunt

2 Permng

3 Bryant, Halliday and Batson

Mitile, etc.
Type 175. Tests on an elevator operated by a servo tab. Bristol Azroraft Company. W.T. 200

The theoretical relationships for an aerofozl with a multiple hinged flap system. K ó M No.1171. April 1928.

Two dimensional control characteristios. R $\underset{\sim}{2}$ M 2730.

March 1950

TABLE I

Model Dotan 1 s

Tailplane

```
Area per sido
Somi-span
Mean chord
Root chord
Aspect ratio
Seotion (symmetrical)
Tailplane thiokness
Sreepback of leading ouge
Streepforward of irailing odge
Taper ratio
Trailing odgo angle
```

$32.70 \mathrm{sq}. \mathbf{f t}$
0.17 ft
3.57 ft
4.78 ft
5.143
R. H.F. 28 (modified)
0.1250
10°
5^{0}
2.00
14°

Elevator

Area aft of hinge	$9.07 \mathrm{sq.ft}$.
Span por side	$7.43 \mathrm{ft}$.
Sweopback of leading edgo	20
Position of hinge line	65% tailplane ohord
Nose balance	30%

Tab

Area aft of hinge	$0.284 \mathrm{sq.ft}$.
Span por quartur tab	1.848 ft.
Chord aft of hinge (constant)	0.154 ft
Noso balanoc	
Tailplano ohord at centre of tab	32%
Tailplane ohord at centre of soction 2 of tab	3.49 ft
Tailplano chord at contro of section 3 of tab	3.25 ft

TABLIE II

TAB-HING MONENTS. $\quad G A P=0.001 \mathrm{C}$
Measured on section 2, other sections at 0°.
UNBALANGED TAB

	$\square^{\circ} \beta^{0}$	-5	0	5	10	15	20	25
$\alpha=0^{\circ}$	+ 5.0	0.027	-0.00L	-0.038	-0.070	-0.108	-0.14.5	
	- 0.1	0.026	-0.005	-0.034	-0.066	-0.098	-0.137	-0.173
	- 5.1	0.032	-0.003	-0.031	-0.056	-0.090	-0.125	-0.159
	-20.0	0.036	0.001	-0.027	-0.046	-0.072	-0.101	-0.129
	-15.0	0.045	0.014	-0.013	-0.033	-0.041	-0.054	-0.074
	-20.0		0.067	0.044	0.012	-0.012	-0.021	.
	-25.0 -30.1		0.110	0.080		-0.027		-0.053
$\alpha=10^{\circ}$	+ 5.0	0.019	-0.014	-0.047	-0.081	-0.117	-0.156	
	- 0.1	0.025	-0.007	-0.041	-0.074	-0.108	-0.148	-0.185
	- 5.1	0.027	-0.003	-0.034	-0.057	-0.098	-0.137	-0.174
	-10.0		-0.002	-0.029	-0.057	-0.086	-0.126	
	-15.0	0.035	0.008	-0.020	-0.044	-0.069	-0.100	-0.129
	-20.0		0.015	-0.012	-0.031	-0.049	-0.072	-0.094
	-25.0 -30.1		0.054	0.036	0.013	-0.011	-0.029	

BALANCED TAB

	${ }^{0} \beta^{\circ}$	-5	0	5	10	15	20	25
$\alpha=0^{\circ}$	+ 5.0		-0.003	-0.030	-0.055	-0.082	-0.111	
	- 0.1	0.022	-0.002	-0.026	-0.049	-0.071	-0.094	-0.126
	- 5.1	0.027	-0.003	-0.024	-0.043	-0.060	-0.075	
	-10.0	0.026	-0.001	-0.023	-0.038	-0.048	-0.052	-0.074
	-15.0	0.033	0.010	-0.015	-0.028	-0.031	-0.026	
	-20.0		0.049	0.028	-0.008	-0.005	-0.007	-0.001
	-25.0		0.090	0.056		-0.009		-0.020
$\alpha=10^{\circ}$	+ 5.0	$\begin{aligned} & 0.021 \\ & 0.022 \\ & 0.024 \end{aligned}$	-0.013	-0.038				
	- 0.1		-0.003	-0.031	-0.056	-0.087	-0.117	-0.146
	- 5.1		-0.002	-0.025	-0.053	-0.075	-0.099	-0.130
	-10.0		0.001	-0.022	-0.044	-0.061	-0.084	
	-15.0		0.002	-0.018	-0.035	-0.049	-0.058	-0.080
	-20.0		0.009	-0.014	-0.027	-0.034	-0.032	-0.032
	-25.0		0.051	0.031	. 0.013	0,000	-0.004	
	-30.1							

TAB HINGE NOPIENTS. $\quad G A P=0.0025 \mathrm{C}$
Measurea on section 2, other sections at 0°
UNBALANCED TAB

$\eta^{0} \beta^{0}$	-5	0	5	10	15	20	25	
$\alpha=0^{0}$	+5.0		-0.006	-0.049	-0.078	-0.11_{4}	-0.155	
	-0.1	0.029	-0.005	-0.039	-0.072	-0.104	-0.142	-0.187
	0.033	-0.001	-0.031	-0.059	-0.087	-0.124	-0.165	
	0.038	0.004	-0.028	-0.046	-0.067	-0.102	-0.140	
	0.053	0.015	-0.014	-0.034	-0.041	-0.058		
	+5.0			.				

BALMOED TAB

	β^{0}	-5	0	5	10	15	20	25
$\alpha=0^{\circ}$	$+5.0$		-0.006	-0.036	-0.068	-0.099	-0.126	
	- 0.1	0.022	-0.002	-0.031	-0.058	-0.087	-0.111	-0.145
	- 5.1	0.023	-0.004	-0.027	-0.051	-0.072	-0.091	-0.127
	-10.0	0.028	-0.003	-0.024	-0.039	-0.052	-0.068	-0.095
	-15.0	0.042	0.007	-0.018	-0.028	-0.027	-0.030	
$\alpha=10^{\circ}$	$+5.0$							
	- 0.1		-0.007	-0.039	-0.072	-0.102	-0.129	
	- 5.1		-0.002	-0.030	-0.061	-0.091	-0.118	
	-10.0		-0.001	-0.025	-0.054	-0.076	-0.100	
	-15.0		0	-0.022	-0.041	-0.058	-0.075	

TABIE IV

EFFEGT ON TAB HINGE MOMENTS OF SETHTNG, β^{\prime}, OF OMHER TABS. $\quad G A P=0.0010, \alpha=0^{\circ}$

UNBALANCED TAB

	β^{0}	-5	0	5	10	15	20	25
$\eta=-0.1^{0}$	$\beta^{\prime}=0^{0}$	0.026	-0.005	-0.034	-0.066	-0.098	-0.137	-0.173
	$\beta^{\prime}=25^{\circ}$	0.024	-0.011	-0.042	-0.070	-0.102	-0.142	-0.174
$\eta=-15.0^{\circ}$	$\beta^{\prime}=0^{0}$	0.045	0.014	-0.013	-0.033	-0.041	-0.054	-0.074
	$\beta^{\prime}=25^{\circ}$	0.043	0.011	-0.019	-0.036	-0.044	-0.058	-0.074

-FAZANUEL TAB

	β^{0}	-5	0	5	10	15	20	25
$\eta=-0.1^{0}$	$\beta^{\prime}=0^{\circ}$		-0.001	-0.026	-0.048	-0.071	-0.094	-0.126
	$\beta^{\prime}=25^{0}$		-0.009	-0.031	-0.055	-0.078	-0.103	-0.134
$\eta=-15.0^{\circ}$	$\beta^{\prime}=0^{0}$	0.033	0.010	-0.015	-0.028	-0.031	-0.026	
$\beta^{\prime}=25^{0}$	0.028	0.000	-0.020	-0.035	-0.037	-0.029		

FIG.I.

FIG.2. MODEL INSTALLATION IN 24FT. TUNNEL.

FIG. 3. TAB-HINGE MOMENTS v ELEVATOR ANGLE, UNBALANCED TAB,

GAP $=0.001 c$

FIG. 4

FIG.4. TAB HINGE MOMENTS v TAB ANGLE, $G A P=0.001 c, \alpha=0^{\circ}$

FIG. 5

FIG.5. TAB HINGE MOMENTS V TÁB ANGLE, GAP $=0.0025 c, \alpha=0^{\circ}$

FIG. 6

FIG. 6 TAB HINGE MOMENTS v TAB ANGLE, GAP $=0 \cdot$ OOIc,$\alpha=10^{\circ}$

FIG.7.

FIG.7. TAB HINGE MOMENTS \vee TAB ANGLE, $G A P=0.0025 c, \alpha=10^{\circ}$

FIG. 8.

FIG.8. EFFECT ON TAB HINGE MOMENTS OF SETtING, β^{\prime}, OF OTHER TABS GAP $=0.001 \mathrm{c}, \alpha=0^{\circ}$.

a) TAB HINGE MOMENTS v ELEVATOR ANGLE WITH ELEVATOR SEALED FOR DEFLECTION UP TO 20°. TAB CHORD $=0.047 \mathrm{c}$.

b) TAB HINGE MOMENTS v ELEVATOR ANGLE WITH ELEVATOR GAP OPEN.
TAB CHORD $=00425{ }^{\circ}$
FIG. 9 EFFECT OF SEALING ELEVATOR GAP. BALANCED TAB, GAP $=0.00 \mathrm{lc}, \alpha=0^{\circ}$.

Crown Copyright Reserved

published by her maresty's stationery office
To be purchased from
York House, Kingsway, London, w c 2. 423 Oxford Street, London, w 1
P. 0 Box 569, London, s.e I

13a Castle Street, edinburgh, 2 | 1 St Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 Chechester Street, belfast
or from any Bookseller
1953
Price 3s. 6d. net
printed in great britain

