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Nomenclature 

A 

% 

a 

b 

c 

C N,i 

GN,W 

CN,S 

c* 
N,w 

C+ 
N,s 

'N IN , 

C 
p9 

C 
P 

C 
P,WSCP,S 

L 

4 

% 

M m 

Pb 

*. 

area 

reference area 

constant 

constant 

Chapman-Rubesm Factor (='.>) 

m w 

where CI is fluid viscositg and subscripts 'co' 
'w' refer to free-stream and. wall conditions 

normal-force coefficient 

total normal-force coefficient, including components due to 
both strong- and weak-interaction effects, and also the 
inviscid flow 

inviscid normal-force coefficient 

weak-interaction re@m normal-force coeffloient 

strong-interaction region normal-force coefficient 

weak-interaction plus inviscid nod-force coefficient 

strong-interaction plus inviscid normal-force coefficient 

insulated-wall total normal-force coefficient 

merged-region normal-force coefficient 

pressure coefficient 

local, total pressure coefficients in weak- and 
strong-interaction regions respectively 

chord length 

half base width of delta 

oblique shock inviscid Mach number for plate at incidence 

free-stream Mach number 

inviscd pressure behind oblique shock 

free-stream pressure 
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free-stream Reynolds number 

unit Reynolds number ever delta surface based 
on inviscid cmditions outside the viscous 
leyer 

wall temperature 

free-stream temperature 

reservoir temperature 

interaction parameter = M-GTE 

lengths definedinFig.l 

distance of centre-of-pressure from base 

angle of inci&noe 

oblique shcck angle 

ratio of s~cif'ic heats 

expression used in Section 6, (Part II) 

function of a defined in equation (21), (Part I) 

* "I I" I (41, (p-t Ia 

I ** 
and .5qu.¶t10n (lb), &art iI, 

II (8) and (12), (Part I) 

sweep-back angle for delta xi.% 

viscous-interaction parameter, rvE* 

jil based on Beu, !+, 

Fi. based on Be M 40' " 
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Intrcduc tlon 

AS a result of the great aotivity during the last decade in the 
field of low-density aeroaynsmics, StuniLated largely by the problems of 
spacecraft reentry, there is a wealth of informakon on the vlsOous-i,~3uced 
pressure distributions for simple geometric shapes. These data can usually 
be represented by equations of first-or p.eoond order in terms of a viscous- 
interaction correlation parameter x which will be described later, and the 
values of the constants in these equations and the validity of the sOcon& 
order terms are the subject of much discussion. 

Without entering into such a discussion (which is beyond the terms 
of reference of the present paper) 1Ae SbELL take some examples of lkely 
fust- and second-order equations in order to illustrate the effects of 
viscous interaction on the normal force acting on a flat delta wing. 

These effects can be sigdficant for the moderate Reynolds numbers 
and hypersonic Mach numbers frequently encountered in test facilities, and 
in order that meaningful. sndyses may be made it is necessary that the magni- 
tad.0 and range of appluability of the viscous-interaction corrections to 
the aemdynamic forces be determined. This is the purpose of the present 
paper. 

The paper is &vxded into two sections. In the first a simple 
theory is used to develop first-order expressions only, and UI the second 
a more general* two-dimensional seooad-oder theory IS presented. 

l 
The term 'general' used x.n this context merely implies that the 
equations are in a form into which any first-or second-order 
correlating theory may be substituted. It does not imply any 
completeness; on the contrery this is still en elementary two- 
&unensional strip-theory approach. 
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Pa-t I. Simple !Cm-Dimensional First-Order Theoq 

I. Effects of viscosity 

The pressure distribution on a flat plate at zero incidence in a 
hypersotic flow at moderate or low Reynolds number can be very different 
from the value assumed for the inviscid flow. 
depends on the Mach number andReynolds number. 

The extent of the departure 
The flow near the leading 

edge is very complex, particularly if the density is low enough for free 
molecular flow to be present, but for our present purposes let it suffice 
that at the lea- edge the shock and boundmy layer merge, and that this 
is followed by a 'strong-interaction region' where the boundary layer grows 
roughly as x3" . Here the strea&ine incl3naticns produced in the extern- 
al flow are large and the pressure and viscous terms have about the same 
DmgIntude 1. Further downstream, where the boundary-layer growth is propor- 
tional to xilP there is the 'we&-interaction r6gime' which extends far 
downstream. He& the effects produced by the boundary layer on the external 
flow are mainly perturbations on the existing Worm flow. The regions 
where the various &gimes JOin depend on the flow Mach number, Reynolds number 
and the ixmperatw‘e of the plate surface. 

A viscous-interaction correlation parameter ji can be used to 
describe these various regions of the flow,where " 

Here C is the Chapman-Rubesin factor relating temperature and viscosity. 
For a 'cold-wti' plate where the surface temperature is a small fraction of 
the reservoir temperature, the boundary between the strong- and weak-interaction 
regions occurs typically at a value z z IO, whereas for an 'insulated-plate' 
surface, where the surface temperature approaches that of the reservc$r, the 
appropriate value is ji = 3-5. A further correlation parameter V is more 
relevant in the region where there is merging between the shock and the boundary 
1ayer,and 

Metcalf et al2 , amongst others, have shcwn that merging occurs, over a wide 
range of ldach numbers, for velues of v in the range 0.15 6 v < 0.2. 

The surface pressure distributions on the plate differ for the cold- 
and insulated-wall conditaons, and so whilst determining the effects of 
boundary-layer growth for the present series a? tests where cold-wall condi- 
tions apply, we have also derived the conditions appropriate to the insulated- 
wall case. 

The effects of viscosity briefly introduced above wfl be examined 
in d&a& es they apply to the flat delta wing, in the next sectlon. 

2./ 
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2. The EPfects of Viscosity on the Flow over a Flat Delta IV% 

Cooke3 has suggested that for the mviscid-flow design criteria 
to be met the greatest allowable value of ji at the maximu chord length 
of a caret wing should not exceed 0.22. For values less than this no more 
than 5s of the wing area wouldbe affected significantly by viscous inter- 
action. Instead of following Cooke's approach we will derive analytical 
expressums for the forces acting as a result of viscous interaction for 
both the oold and insulated wall oases, using a motiied form of strip theory. 
In this method we take strips parallel to the leading edge, instead of the 
centre chord, so that the value of ji 
At incidence (a) 

remains constant along any strip. 
we assume that the boundary layer on a strip grows as B 

function of the local invlscid-flow conditions predicted by oblique-shock 
theory or Frandtl-Meyer expansion. 

The pressux dzstributions over the flat plate are given in terms 
of z by expressions of the form 

and 

p(ji) = pb + pb a z . . . first-order weak lnteractlon m-s (3) 

p(F) = pb b f . . . first-order strong interaction **a (4) 

where pb is the appropriate local static press- for lnviscid flow (note 
that at zero ino~dence pb = P"). 

Here 2 is referred to conditions outside the viscous layer. 
The values of the constants B snd b will depend on well temperature. 
A number of values of a and b have been derived and are quoted in the 
literature, and some of these have been collected and discussed in Refs. 4 
end 5. 

The method of solution in the present paper niU be discussed with 
reference to Fig. 1. The area of an elementary strip is x tan # dx and 
the forces aoting on this strip will depend on the particular pressure- 
distribution equation used. We assume that the weak-interactzon r&me 
exists up to a distanoe xi which is calculated using the appmpriate value 
Of f for the JUWtiOn Cl-iterion. Strong-interaction theory is then used 
from XI up to xa, where merging-is assumed to terminate the integration, 
and I* has been computed using v = 0.2. In fact, xs is so near the 
leading edge for our calculations that we have assumed, with little loss m 
acouraoy, that strong-interaction theory can be used right up to the leading 
edge. This allows for some simplification as will be demonstrated. However, 
the full equations are included for use at low Reynolds numbers. what 
happens when there is an appreciable merged region, a situation produced in 
a recent experiment. by Metcalf et al for example, is a little beyond the 
terms of reference of the present paper but some tentative suggestions are 
made briefly in a later section. 

The force coefficient acting normal to the oompresszon surface of 
the delta can therefore be representedby an equation of the form 

where/ 
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where ZN is the total force on this surface formed by the sum of the 

normal-force contributions in the weak-interaction and strong-interactrm 
regions (Cr;,, and Ci,s respectndy). Using the first-order pressure- 
distribution equation we have for the weak-interactmn x-6-e 

Cp,n(ji) = 
(P&)-P") 2 

. - = (%I+% aw .2 = c 
. +a 

pm YM p ( ) P 
" P" y",' PI= 

55 
P " " 

..- (6) 

where C 
PW'A 

is the total local pressure coefficient in the nealc-interaction 

region, and C 
P,i 

is the component due to inviscid presswe. The sum of 
the forces acting on the surface for the weak-interaction region is therefore 

= 'N,i 

Xi 
= 'N,i 

I 
0 0 

--- (6) 

where &i(a) is a constant for fixed a. Note that we assume v'$, = I. 

In the strong-interactmn region 

cp,s = ( vi ;-‘) 5 = ( bi .+;-plJ-p-, 5 

e ” ” ” 

2 ' 
=cpi+QF1+ *** (9) 

I 
PC.3 VM = " 

and the force contributed by this region to the surface is gmen by 
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where 

Equation (5) cm new be modified to 

tN = c; w + c* , N,s = ‘N,i + %,w + ‘N,s --- (13) 

where CN'~ and C; s are the appropriate v~sccus terms from equatmns (8) 

and (II) L.n,a CN ~ La I$ * are new the incremental normal-force coeffici- 
ents mducedby kk- and kmg-interaction effects respectively. The 
effects of viscosity can therefore be conveniently represented as a perturba- 
tmn on the force coefficient for inviscid flew. 

Equation (13) is the general expression for viscous interaction if 
the Umit xp 18 allowed to go to the leading edge, and the cold- cm 
insulated-wall cams can be obtained by inserting the appropriate values for 

. a and b, and for the integration limits. 

3. Insulatea wall 

For the constants 
Ccx and Crabtree 

a and b we have chosen those quoted by 
, and XI has been determined using 7 = J-5. It is 

assumed that xp = 4 (see Fig. 1). The expression for the normal force 
for an insulated-wall plate is therefore 

‘N,IN = 5 + 2 iz*(a) [(i - 1) (dzTzXi + 24)) + 243 *i 3 

4. Cold wall 

31 this case we have agsin chosen values of a and b from 
COI and Crabtree, and since the value of ji for the overlap regmn gives 
a value of xi which is very close to x* , and similarly since x* 
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is approximately equal to 4, we have assumed that xi 
Consequently there is no strong-interactam contribution 
force, and equatmn (13) has the following simple form 

= xp = 4. 
to the nomal 

-s-(15) 

5. Com~aruon of Forces in Invmxd and Viscous Flow 

The insulated- and cold-wall force coefficients normal to the 
lower or pressure surface of * 760 swept delta for the NPL shock-tunnel 
conditions and for the lncaience range O" < a < ZOO have been plotted in 
Fig. 2. The two vmxus-flow cases are compared mth the curve for invis- 
cd flow using two-dimensional strip theory, and in Fig, 3 the percentage 
l.ncre*ses in normal force for the two viscous-flow cases e.* in&cated. 
It is evident that relatmely large departures from the inviscld-flow values 
of normal force will occur as B result of viscous interactam, and that the 
increase for the msulate&walJ. cme is some two or three times the cold-wall 
VfJJES. The consequences of this conclusxm mll be sxgnif'icant for con- 
tmuously-running facitit~es and for actual cruising flight condztions where 
the insulated-wall conditions may sometimes apply. 

6. Movement of the Centre-of-Pressure 

The position of the centre-of-pressure for a flat delta zn lnvucid 
flow is along the centre 1x1~ a distance of Z/3 chord from the apex. However, 
when viscous-interaction effects are sigmficsnt the centre-of-pressure wxll. 
lie closer to the apex because of the higher pressures produced neer the 
leading edge. 

The general expressmn for the centre-of-pressure distance from 
the trai.lmg e&e of the delta, incluclmg the effects of viscous intemctmn, 
IS 

xc.P. ' + 

&I’( a) b _- - 
'N,i * 

51’ (a) _- (aI3 -xi3 1 
3 

.-. (16) 

(where/ 
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(where $'(a) = &i(a) tan d/Z) 

&i(R) b E 3’ (a) _- - f(xp A) - - (Xi3 -xa3) *** (17) 
'N,i ' 3 

Here L is the centre chord length. 

For the insulated-wall case if we astxme that xp=L then 

f(Xl,L) = 0 ; 

for the cold-wall case we assume that xi = xg = c and. so 

f(x.,L) = f&,4) = 0 ; 

therefore equation (17) reduces to the simple expression 

&'(a) f6 -6 
- 49 c )( . I+ -*- (18) 

N,i I5 

The centre-of-pressure positions for the three cases (mviscid flow, 
insulated wCLl and cold wall respectmly), have been plotted as functmns of 
mcidence in Fig. 4. As in the normal-force comparison we find that the 
largest effect occurs mth an insulated wall. In Fig. 4 the continuous 
curves are those obtained using the above theory, whereas the broken curves 

M 
have been computed by using 

( > 
2 .y mstesd of ii in the pressure 
Mb 

funotions. This point is discussed further in Section 8. 

7. Rectan&ar Flat Plate at IncaGmce 

In the rectangular flat-plate case ae take strips a@un parallel to 
the leading edge, as we did for the delta, but now the problem IS of' course 
much simpler. The details of the calculations are very simlar to those 
for the delta and wCi.l therefore not be repeated. For the msubted-wall 
case the normal-force equation has the form 
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For the cold-wall case the equation is 

Here C is the plate length LII the streamwise birection, and W its width 

2bW pa Ebb3 

( > 

1 
g.(a) = - -. -= 

YMP p %AIL 
rib4 " *** (21) 

a " " 

2w % ‘z.(a) = - - ( ) vhf= p ” ” 
As in the case of the delta wing the centre-of-pressure lies nearer the 
leading edge for the viscous case than when the flow IS assumed inviscd. 

a. Discussion 

The effects of viscous interaction on the normal force for the 
pressure (lower) surface of a flat delta are seen from Figs. 2 and 3 to be 
quite large even for moderately high Reynolds numbers. In the present 
cdculaticns the Reynolds number based on chord length was 0.45 x IOe, and 
the Mach number was 8.6; for these conditions increases of over 5C$ in 
lower-surface nod force are to be expected for incidences less than 5' 
when insulated-wall ccnd~tuxs apply, and increases of ever I@ are obtained 
for the cola-wall cases. These percentages shown by the full curves in 
Figs. 2, 3 and I+ are probably underestimates due to the use of the pressure 
datribution derived assuming that the boundary layer grows as a function of 
the oblique-shock conditions of inviscid flow. Metcelf has suggested, 
from correlations of flat-plate pressures at incidence, that e weighting 
factor (MI/Mb) should be used5 so that the coefficient of ji is the 

product of the oblique-shock value times the weight- factor. n- we a0 
this then we obtain the broken curves in Figs. 2, 3 and 4, which indicate a 
signdicant increase zn the predicted effects of viscous interaction. 

The combination of increased normal force end forward movement 
of the centre-of-pressure will result in a large increase in pitching moment 
about the base. Clearly then it is the pitch-g moment whzoh mill be most 
effected by v~sccus interactax. For example a $ increase in normal 
force, together with a 5% forward movement of the centre-of-pressure, will 
produce a lC$ increase in pitching moment about the base line of the delta 
*g. 



- 13 - 

The effects of decreasing Reynolds number on total. norms~ force 
for the lower surface are indicated. in Fig. 5, where the results consequent 
upon an order Of nagnltude decreas_e in Reynolds number are illustrated. 
!cb.ere is almost lcc$ increase in for the insulated-wall case for inold- 
ences less than 50, % and the cold-m 1 val.ues have increased by about half 
this smoult. 

As regards the upper, or expansion, surface of the delta wing, the 
local Mach number mcreases considerably with incidence and there 1.s e large 
fall an local Reynolds number. This combinstlon leads to a large increase 
in ji and hence considerable viscous interaction effects. However as 
OSII be seen from Figs. 6 and 7 (where the total mviscid-flow and viscous- 
flow normal forces for this surface and their percentage tiferences are 
plotted respectively), the change in normal force is not as dramatic as may 
have been expected. The reason for this is that although a considerable 
pressure perturbation is produced, the expressxon (1 - pb/p,) tenas to 
UInty as i.ncidence increases and so even an increase of two or three times 
the inviscid pressure will not result in a large change in the absolute level 
of the surface pressure coefficient, or of course to the ma.@tude of the 
upper surfaces contnbut~on to the wing normal force. 

The ccnclusicn is therefore that except for the zero incidence 
case, and for very small mcidence, where the upper and lower normal force 
coefficients eze comparable (for the infinitely thin delta wing) it is the 
lower, or pressure, surface force increment which is aon!inmt. 

In Part II the general, two-dimensional equations for viscous 
normd. force are derived and it will. be 8een that the results exe in many 
ways similar to those described above. 

Part II./ 
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Part II. General Two-Dimensional Second-Order Theory 

In this section the general equatmns for the effects of 
vucoslty on the flow ever e flat delta wing at hypersonic speeds m.l.l 
be derived. The approach 1s very similar to that described in Part I, 
and hence only the outline of the theory will be @"en. 

1. Weak-Interaction Bdgime 

The pressure on the surface of 8 strip in Fig. 1 will now be 
represented 8s an equatKJn of second order ln ji , as follows 

P 
2 

- = ac+a*~+alji~= 
pb n=O 

*a- (1) 

The total noma force on the surface 111 the weak-interactun regmn is 
therefore 

and on integrating we have 

Xl 2 

3 
= c N,i 

I 
+$x(a) xi*+- ta(a) L- 2.2 -Gi(x,+u) + 

3 3 0 

where 
2 tan f# 

qr(a) = (a0 - I) 3 . - . - 
P" y",' 'k 

bn Pb “be ’ 
S&l) = yM.-. 

B P” 
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For the cold-wall case, if we let Xl = 6 
the expression loge(C - x.,), then 

everywhere except in 

and for general first-order theory - = a0 + ai z , where $,(a) = 0 

then % 

3 
G,) = cN,i + $r(aW+ 4 t.( a)ci 1.. (6) 

T 
A0 
To 

2. Strong Interactmn 

!l!he total normal force on the surface in the strong-interaction 
region is 

where 

bo + b,i! + bp 2'. 

On integrating we have 

$a s = 2 % I , 

x 
C 

JC(r1+ 26) -4-z (xa+ 2c) + 1 

Most/ 
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Most weak-mteraction pressure distributions are represented in 
terms of ji as shown inequation (2). However the strong-interactIon 
region pressure distribution is not always a function of mcreasing powers 
of ii. If we therefore assign the function f(n) as the power to which 

2 is raised, where f(n) is any simple function of n, e.g. (i - n) (~ef.6), 
then 

and it is readily shown that in this case 

C(d - $-f(n)) =a (x*” - =%a) 

(2 - e-4) 31 2 3 & 

pb ' tan + 
where xi=4-.-.- 

P" y", Ba 

and b:, = bn (6 .($)'") 

For the computations in the present paper, however, the form given 
in equation (8) nFU be used exclusively. 

3. TOtal Force 

If we nwv combine the contributions to the total force from the 
weak- and the strong-interaction regions, we have 
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- 3 
t, = CN 1 b. I) ,. + *da) + - 2 

(a0 
(x*B- x2) 1 *a(a) 22- 

- I) 3 

-“‘fi( 
b 

x.+24)+(~-1)vzQ+z)]+ 

where 

4. Centre-of-Pressure Position 

The moment of the weak-mteraction re&on force about the base 
line is 
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xs ZN s = c y (x,3- x13) + (b. - I) *da) tan $ 
I P,i 6 (*,-I) 3 

( xpJ-x13) + 

2 
tan 6 ,r- 4 3 

+ $!A4 2Pm + - c(c - x,)i - a: 3 
; (4 - x,,: + 

b, tan y5 
+-+(a)--- --- 

aa 2 [ 
Xl2 x1* 

+ 4(x, - XP) + 
2 2 

The centreof-pressure position is then found from 

X C.P.' % = ("w 'N,w + '.Y 'N,s) *-- (12) 

The normal-force prediotions for various available theories for visoous- 
lnteractlon effects are plotted in Fig. 8. 

5. Mera;ed-Fteglon Force Coefficient 

The form cf the pressure distribution in thu region is not at all 
well Imown, because of the difficulty in making measurements very olose to 
the leading edge. Any guess at the form of the distribution must necessarily 
be tentatwe in the extreme. However, it is observed that when merging 
occurs the pressure reaches a plateau and subsequently falls to about the free- 
stream value at the leading edge. As a first guess a trigonometric repres- 
entatlon may be used, and one form of the integral could be 

This would no doubt give an order of magnitude for the force but any value 
computed. must be suspect. 
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6. hmsion 
As discussed in Part I the coefficients of ji should perhaps be 

multiplied by (M-4) for the flat plate at incidence, othemise'the 
surface pressure will be underestimated. The form of the polynomial will 
then be 

P - 

pb 

This is the form that we have 
presented in this section. 

used throughout in the numerical examples 

have chosen those of Hayes 
As regards the coefficients (a,) used, w; 

and Probatein' , and of Bertram and Blackstock. 

Bertram and Blackstook, for example, have shown that the visoous- 
induced pressure on a flat plate in the weak-interaction region cm be 
expressed in terms of 2 by the equation 

P 
- = 1 + f(ji,~,T$~) + f'(ji,v,(T$,)) 
pa 

where 

f(Lv, ;) x 
r 

h =- I+ m- 2(1 + h) ’ 1 
v& 

x =-) 
2 

g = I.7200 (v-‘) s+oj85y ( * 
2 T ) for e 

0 

Prandtlnuxher of unity. 

Computations u8ing Bertram and Blackstock's equation have been 
carried out for the cold-wall case (T$r + 0). These data have been 
curve fitted and the coefficients for useDin equation (?) *Fe 

giviog a good fit to the actual theoretud velues for the range 0 s z d 20. 

s-arlY,/ 
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Similarly, for the insulated-wall case 
coefficients are 

(T$, + I), the 

a 0 0*95391181 

*1 O-42157154 

*a 0*0018173574 

and the range of applicability of this fit is 0 < ji < 10. 

The upper limit. in the insulated-wall case was determined so that 
ji would be well in excess of the crossover value (from weak to strong inter- 
action), which Bertram and Blackstock identdy as occurring when the induced 
pressure becomes greater than four times the value for invucid flow. For 
the insulated wall this occurs for x > 7. For the cold-wall condition the 
induced preessure does not exceed four times the invu.cid pressure until a 
value of Y is reached whxh is well within the merged region, and this 
suggests, as we observed in the first section (Part I), that there wdl be 
no strong-interaction region. 

The insulated-wall pressure dutribution for the strong-interaction 
region computed from Bertram and Blackstock's paper is given by 

P 
- z I + 0-510036 ji 
% 

The total normal forces on the lower or pressure surface of the delta com- 
puted using the YBPLOW first- and second-order theories are shown in Fig. 8. 
In this figure the term O(1) denotes that first-order theory has been used 
for both the week- and the strong-interaction regions, and o(2) + O(l) 
means that second-order theory has been used for the weak-int-eractlon region 
ana first-order theory for the strong-interaotlon region. 

Note that both the second-order weak-mterac'uon theories result 
in insulated-wdl normal forces which are in agreement and lie significantly 
above the first-order, weak-interaction data. To a slightly smaller extent 
this also ap 

% 
ies to the data using viscous-interaction data quoted by COX 

and Crabtree . Ae regards the variations of ii with ylcidence, it is the 
increase in Reynolds number and decrease in Mach number over the surface of 
the delta with increasing incidence up to about ISo, and thereafter mainly 
the decreasing Mach number, which produces a steady decrease in Y. In 
fact because the Reynolds number is only raised to the power 0.5 whereas the 
Mach number is raised to power 3 it is the Mach number of course whxh plays 
the important role in viscous-interaction effects, when the change in 
Reynolds number is moderate. It is most important that this be borne in 
mind when determining the operational range of hypersonic facilities. 

7./ 
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7. Conclusions 

As a result of the induced pressures produced by the interaction 
of the nscous layer with the continuum flow, significant changes will 
occur in the nod-force coeffxient for the pressure surface of a flat 
delta at the moderate Reynolds numbers and hypersonic Mach numbers 
frequently encountered in test facilities. It is felt that the present 
approach enables a reasonable estimate to be made of the possible changes 
in nscous-induced force and moment characteristics, at least for simple 
planforms and surPaoe shapes. 
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