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SUMMARY

The pressures induced on the surface of a flat delta wing as a
result of the ainteraction of the viscous lgyer with the external flow can
result in large increases in the normal force. Equations are derived in
this paper which allow the magnitude of these increases to be assessed.
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Nomenclature

area

reference area

constant
constant
K T
W [
Chapman~Rubesin Factor (: - . ——-)
Mo Tw

where B 1is fluld viscosity and subscripts and

'w! refer to free-stream and wall conditions

co

normal-force coefficient

total normal-force coefficient, including components due %o
both strong- and weak-interaction effects, and also the
inviscid flow

inviseid normal-force coefficient

weak-interaction regicn normal-force coefficient
strong-interaction region normal-f'orce coefficient
weak-interaction plus inviscid normal-force coefficient
strong-interaction plus invisecid normal-force coefficient
insulated-wall total normal-force coefficient
merged-region normal-force coefficient

pressure coefficient

local, total pressure coefficients in weak- and
strong-interaction regions respectively

chord length
half base width of delta

oblique shock inviscid Mach rmumber for plate at incidence
free-stream Mach number

inviscid pressure behind obligque shock

free-stream pressure

Re /
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tad)

free-stream Reynolds number

unit Reynolds number over delta surface based

wall tempersture

free~stream temperature

regervoir temperature

interaction parameter

lengths defined in Fig. 1

on jnviscid conditions outside the viscous
layer

M;fE?Vﬁe'

distance of centre-of-pressure from base

angle of incidence

obligue shock angle

ratio of specific heats

expression used in Section 6, (Part II)

function of « defined in equation (21), (Part I)

and equation (4), (Part II)
sweep-back angle for delts wing

viscous-interaction parameter,

X

X

2

based on

based on

Rew My

Re , M
L] -

n

(&), (Part II)

(8) ana (12), (Part I)
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Introduction

As a result of the great activity during the last decade in the
field of low-density aerodynamics, stimulated largely by the problems of
spacecraft re-entry, there is a wealth of information on the viscous-induced
pressure distributions for simple geometric shapes. These data can usually
be represented by equations of first or second order in terms of a viscous-
interaction correlation parameter Y which will be described later, and the
values of the constants in these equations and the validity of the second-
order terms are the subject of much discussion.

Without entering into such a discussion (which is beyond the terms
of reference of the present paper) we shall take some examples of likely
first- and second-order equations in order to illustrate the effects of
viscous interaction on the normal force acting on a flat delta wing.

These effects can be significant for the moderate Reynolds numbers
and hypersonic Mach numbers frequently encountered in test facalities, and
in order that meaningful analyses may be made it is necessary that the magni-
tude and range of applicability of the viscous-interaction corrections to
the aerodynamic forces be determined. This is the purpose of the present

paper.

The paper is davided into two sections. In the first a simple
theory is used to develop first~order expressions only, and an the second
a more general' two-dimensional second-order theory 1s presented.

Part
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The term 'general' used in this context merely implies that the
equations are in a form into which any first-or second-order

correlating theory may be substituted. It does not imply any
completeness; on the contrary this is still an elementary two-

dimensional strip-theory approach.



Part I. Simple Two-Dimensional First-Order Theory

1. Effects of Viscosity

The pressure distribution on a flat plate at zero incidence in a
hypersonic flow at moderate or low Reynolds number can be very different
from the value assumed for the inviscid flow. The extent of the departure
depends on the Mach number and Reynolds number. The flow near the leading
edge is very complex, particularly if the density is low enough for free
molecular flow to be present, but for our present purposes let it suffice
that at the leading edge the shock and boundary layer merge, and that this
is followed by a 'strong-interaction region' where the boundary layer grows
roughly as x3/4, Here the streamline inclinations produced in the extern-
al flow are large and the pressure and viscous terms have about the szame
magnituded.  Purther downstream, where the boundary-layer growth is propor—
tional to x*/?, there is the 'weak-interaction régime' which extends far
downstream. Here the effects produced by the houndary layer on the external
flow are mainly perturbations on the existing wniform flow. The regions
where the various régimes join depend on the flow Mach number, Reynolds number
and the temperature of the plate surface.

A viscous-interaction correlation parameter § can be used to
describe these various regions of the flow,where *

X - M: jE-/!E- ces (1)

Here C is the Chapman-Rubesin factor relating temperature and viscosity.

For a 'cold-wall' plate where the surface temperature is a small fraction of

the reservoir temperature, the boundary between the strong- and weak-interaction
regions occurs typically at a value X = 10, whereas for an 'insulated-plate’
surface, where the surface temperature approaches that of the reservoir, the
appropriate value is X = 3*5., 4 further correlation parameter V is more
relevant in the region where there is merging between the shock and the boundary
layer, and

- [T, - e (@

Metcalf et 312, amongst others, have shown that merging occurs, over a wide
range of Mach numbers, for veluss of V in the range 015 <V ¢ 0-2.

The surface pressure distributions on the plate differ for the cold-
and insulated-wall conditions, and so whilst determining the effects of
boundary-layer growth for the present series of tests where cold-wall condi-
tions apply, we have also derived the conditions appropriate to the insulated-

wall case.

The effects of viscosity briefly introduced above will be examined
in detail, as they apply to the flat delta wing, in the next section.

2./
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2. The Effects of Viscosity on the Flow over a Flat Delta Wing

Cooke3 has suggested that for the inviscid-flow design craiteria
to be met the greatest allowable value of ¥ at the maximum chord length
of a caret wing should not exceed 0+22. For values less than this no more
than 5% of the wing area would be affected significantly by viscous inter-
action. Instead of following Cooke's approach we will derive analytical
expressions for the forces acting as a result of viscous interaction for
both the cold and insulated wall cases, using a modified form of strip theory.
In this method we take strips parallel to the leading edge, instead of the
centre chord, so that the value of % remsins constant along any strip.

At incidence (a) we assume that the boundary layer on a strip grows as a
function of the local inviscid-flow conditions predicted by oblique-shock
theory or Prandtl-Meyer expansion.

The pressure distributions over the flat plate are given in terms
of X by expressions of the form

n(X)

and p(X)

P, * P, &X ... Tirst-order weak interaction - (3)

P, bX ree first-order strong interaction <<+ (4)

where Py is the appropriate local static pressure for inviscid flow (note
that at zero incidence Py =P ).
-

Here % is referred to conditions outside the viscous layer.
The values of the constants a and b will depend on wall temperature.
A number of values of a and b have been deraved and are quoted in the
literature, and some of these have been collected and discussed in Refs. 4

and 5.

The method of solution in the present paper will be discussed with
reference to Fig. 1. The area of an elementary strip is x tan ¢ dx and
the forces acting on this strip will depend on the particular pressure-
distribution equation used. We assume that the weak-interaction régime
exists up to a distance x; which is calculated using the appropriate value
of % for the junction criterion. Strong-interaction theory is then used
from xi up to x5, where merging is assumed to terminate the integration,
and xg has been computed using V = 0-2, In fact, x4 is so near the
leading edge for our calculations that we have assumed, with little loss an
accuracy, that strong-interaction theory can be used right up to the leading
edge. This allows for some simplification as will be demonstrated. However,
the full equations are included for use at low Reynolds numbers. What
happens when there is an appreciable merged region, a situation produced in
a recent experiment by Metcalf et al for example, is a little beyond the
terms of reference of the present paper but some tentative suggestions are
made briefly in a later section.

The force coefficient acting normal to the compression surface of
the delte can therefore be represented by an equation of the form

' EN = Gﬁ,w * Cﬁ,s e )

where/
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where EN is the total force on this surface formed by the sum of the

normgl-force contributions in the weak-interaction and strong-interaction
regions (Cﬁ w and Cﬁ 5 respectively). Using the first-order pressure-
’ 2

distribution equation we have for the weak-interaction régine

oy ) o av. _
pr(52)=(p(x)1=_,). =(Pbe xp_)- 2 =Cpi+a(ﬂ>_xz_
» P_ VM..B P" yu..ﬁ » P.. YM..B
vee (6)

where Cp w is the ftotal local pressure coefficient in the weak-interaction

»

region, and CP i
2

the forces acting on the surface for the weak-interaction region is therefore

is the component due to inviscid pressure. The sum of

X 2 t
c;}w:zf (c i+a<z‘2> §>x a,nqux. cer (7D
b ] A P> P.. ‘VM”’ AR

s e (2) “b‘m%qbf‘ * o
= . + -

l vi? (v.. N A

X1 X1 X
=gy l +g,(a)[ &-xdx -oe (8)
Q

0
where E 1 (a) is a constant for fixed «. Note that we assume \/'(_lb = 1.

In the strong-interaction region

C, s = ( R PR, ) 2__ ( i %*%"Pb*P.) 2

] a
P, Y™, P, ye,
p 2
=C i+—9.(1n?-1)———- =ee (9)
P’ poo vm.n

and the force contributed by this region to the surface is given by

*
cN’ /



o[ G2 ) e e
=cN,iI:+Es(a)znmdx-ﬁa(a)[a2xdx e (11)
where 4 . !
an®g nb’ 2  tan ¢
£ 3(@) =Y—“F<§f> i -{R_eu, and Ea(ﬂt)=yu.:I ";(%)

eee (12)

Equation (5) can now be modified to

r: _ ] * _ sen
Cn = Cw * X8 = w1 * Cnyw * On,s (13)

where Cﬁ W and Cﬁ g ore the appropriate viscous terms from equations (8)

¥ 2
and (11) and GN w and CN g &re now the incremental normal-force coeffici-
> |

ents induced by weak- and strong-interaction effects respectively. The
effects of viscosity can therefore be conveniently represented as a perturba~
tion on the force coefficient for inviscid flow.

Equation (13) is the general expression for viscous interaction if
the 1limit x5 1s allowed to go to the leading edge, and the celd- or
insulated-wall cases can be obtained by inserting the appropriate values for
a and b, and for the integration limits.

3. Insulated Wall

For the constants a and b we have chosen those guoted by

Cox and Crebtree®, and x; has been determined using ¥ = 3+5. It is
assumed that xg = £ (see Fig. 1). The expression for the normal force

for an insulated-wall plate is therefore

Cy,1v = Onyet %51(“) [(3 - 1) (m(xi + 2&)> + 2&%]

a
- E3(a) (¢~ x,7) - (1)

L. Cold Wall

In this case we have again chosen values of a and b fr9m
Cox and Crabtree, and since the value of ¥ for the overlap'reglon gives
a value of xi which is very close to x5 , and similarly since X3

as/
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is approximately equal to &, we have assumed that x4 = xg=24¢.
Consequently there is no strong-interaction contribution te the normal
force, and equation (13) has the following simple form

3

Gy = Gy, *+ = Eala)e? -+ (15)

5. Comparison of Forces in Inviscid and Viscous Flow

The insulated- and cold-wall force coefficients normal to the
lower or pressure surface of a 76° swept delta for the NFL shock-tunnel
conditions and for the ancidence range 0% ¢ a £ 20° have been plotted in
Fig. 2. The two viscous-flow cases are compared with the curve for invis-
c1d flow using two-dimensional strip theory, and in Fig. 3 the percentage
ancreases in normal force for the two viscous-flow cases are indicated.

It is evident that relatively large departures from the inviscid-flow values
of normal force will occur as a result of viscous interaction, and that the
increase for the insulated-wall case is some two or three times the cold-wall
values. The consequences of this conclusion wall be signifiicant for con-
tinuocusly-running facilities and for actual cruising flight conditions where
the insulated-wall conditions may sometimes apply.

6. Movement of the Centre-of'-Pressure

The position of the centre-of-pressure for a flat delta in anvascid
flow is along the centre line a distance of 2/3 chord from the apex. However,
when viscous-interaction effects are significant the centre-of-pressure will
lie closer %o the apex because of the higher pressures produced near the
leading edge.

The general expression for the centre-of-pressure distance from
the trailing edgze of the delts, including the effects of viscous interaction,
1s

C.-C. . L gy'(a) -0 b 3
X p (1 +N—EA—1-> — o — [(— - 1)(2&’4&—1:1--&(&-1:1)5 +
. . 3 5 3

Cx, 3 Cn,i “\®
2 S 16 s
+ - (‘5‘11)2>+ — 8 }
5 15
Ea'(a) D b 3 2 5
s - (2&’\/6-::9 - —t{t-x, )%+ — (4-x1)’>
c. . a 3 5
N,i
Eg'(a)
- (x2®~-x4) «or (16)
3

(whe re/
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{where Ei'(a) = Ei(a) tan 6/2)

B

() 5
R 26

N,i
Eaia) b ga' (a)
- - f(xg,&) - (Xis"xas) e (17)
cN,i 8 3

Here L 4is the centre chord length.
For the insulated-wall case if we assume that x5 =4 then

0 ;

f(x:l_ » ‘6)
for the cold-wall case we assume that x4 =xg=4& and so

f(xg,2) = f(x1,4) =0 ;

"

therefore equation {17) reduces to the simple expression

L E'(e) 16 5 . -C .t
X = -4 — 2% N\ (1 .,,_I\T_._._..C;N..ai - (18)
C.Pl 3 c 15 c
N,i N,i

The centre~of-pressure positions for the three cases {inviscid flow,
insulated wall and cold wall respectavely), have been plotted as functions of
incidence in Fig. 4. As in the normal-force comparison we find that the
largest effect occurs with an insulated wall, In Fig. 4 the continuous
curves are those obtained using the above theory, whereas the broken curves

')
have been computed by using (—-':).)'( instead of % 4in the pressure

Mb

functions. This point is discussed further in Section 8.

e Rectangular Flat Plate at Incidence

In the rectangular flat-plate case we take sirips agaan paraliel to
the leading edge, as we did for the delta, but now the problem 1is of course
much simpler. The details of the calculations are very similar to those
for the delta and wall therefore not be repeated. For the insulated-wall
case the normal-force equation has the form

R I TORNOIRTNOES BENOICEESY

N 2
ree {19)

For/
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For the cold-wall case the equation is

- Zila) 1
¢t <o+ (20)

2

Here & 1is the plate length in the streamwise direction, and W its width

where Za (a) = ﬂ(-&)-) Mbs -l w
N e, VR a
IS AN YN
%Zala) = yMj(p‘.)\fl—f%.AR_;i()a > (21)

]

2a(a) = — (%)

2
VM. P-

y

As in the case of the delta wing the centre-of-pressure lies nearer the
leading edge for the viscous case than when the flow 1s assumed inviscad.

8. Discussion

The effects of viscous interaction on the normal force for the
pressure {lower) surface of a flat delta are seen from Figs. 2 and 3 to be
guite large even for moderately high Reynolds numbers. In the present
calculations the Reynolds number based on chord length was O<45 x 10°%, and
the Mach number was 8¢6; for these conditions increases of over 507 in
lower-surface normal force are to be expected for incidences less than 5°
when insulated-wall condations apply, and increases of over 157 are obtained
for the cold-wall cases. These percentages shown by the full curves in
Figs. 2, 3 and 4 are probably underestimates due to the use of the pressure
distribution derived assuming that the boundary layer grows as a function of
the oblique-shock conditions of inviscid flow. Metcalf has suggested,
from correlations of flat-plate pressures at incidence, that a weighting
factor (M../M'b) should be used® so that the coefficient of X is the

product of the oblique-shock value times the weighting factor. I we do
this then we obtain the broken curves in Figs. 2, 3 and 4, which indicate a
significant increase in the predicted effects of viscous interaction.

The combination of increased normal force and forward movement
of the centre-of-pressure will result in a large increase in pitching moment
about the base. Clearly then it is the pitching moment which will be most
affected by viscous interactaon. For example a 5% increase in normel
force, together with a 5% forward movement of the centre-of-pressure, will
produce a 10% increase in pitching moment about the base line of the delta

wing.
The/
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The effects of decreasing Reynolds number on total normal force
for the lower surface are indicated in Fig. 5, where the results consequent
upon an order of magnitude decrease in Reynolds number are illustrated.
There is almost {00% increase in for the insulated-wall case for incad-
ences less than 5°, and the cold-wa'll values have increased by about half
this amount.

As regards the upper, or expansion, surface of the delta wing, the
local Mach number increases considerably with incidence and there as a large
fall an local Reynolds number. This combinatzon leads to & large increase
in X and hence considerable viscous interactaon effects. However as
can be seen from Figs. 6 and 7 (where the total inviscid-flow and viscous-
flow normal forces for this surface and their percentage dafferences are
plotted respectively), the change in normal force is not as dramatic as may
have been expected. The reason for this is that although a considerable
pressure perturbation is produced, the expression (1 - pb/b-) tends to

unity as incidence increases and so even an increase of two or three times
the inviscid pressure will not result in s large change in the absolute level
of the surface pressure coefficient, or of course to the magnitude of the
upper surfaces contribution to the wing normal force.

The conclusion is therefore that except for the zero incidence
case, and for very small incidence, where the upper and lower normal force
coefficients are comparable (for the infinitely thin delta wing) it is the
lower, or pressure, surface force increment which is dominant.

In Part II the general, two-dimensional equations for viscous
normal force are derived and it will be seen that the results are in many
ways similar to those described above.

Part II1./
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Part II. General Two-Dimensional Second-Order Theory

In this section the general equations for the effects of
viscosity on the flow over a flat delta wing at hypersonic speeds wall
be deraved. The approach 18 very similar to that described in Part I,
and hence only the outline of the theory will be gaven.

1.  Weak-Interaction Régime

The pressure on the surface of a straip in Fig. 1 will now be
represented as an equation of second order in % , as follows

— = &8 ,+a X+as¥ = a_ X cee (1)

The total ncrmal force on the surface in the weak-interaction region is
therefore

o “ n=0 ®

and on integrating we have

X4 2 :3
= GN’i l v+ ¥ () xa® 4 ; ¥ oa) ‘:2{.2 -Ver, (% ¢ 2&)] +
)
+ ¥3(a) Enqe&& - (%2 +loge(&-x1 ) &):| eee (3)
where
2 tan ¢ N
(@) = (ag - 1) 2. —— . —
p, YM’ A
. 1
bai Py %> tan® ¢ >
a) = s Tk . eer (L)
Vala) VM: . J'IEI' "
hag p & 1
4‘3(a) = -—b. — — J
VM-n poo Reu AR

For/
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For the cold-wall case, if we let x,=¢ everywhere except in
the expression log, (¢ - x,), then

- & 3 y
(CN) = CN i + *1(“}68"' - *Q(ﬂ)&’ + *3(&) lo{ ) “ve (5)
T, o ’ 3 L - x4
T
° P
and for general first-order theory (— =8, +a, )'() s where \I{a(a) =0
then P
4 3
) = Cy 4+ ¥ala)e®+ = ¥o(a)e? eee (6)
T 4 3
2,0
T
o

e Strong Interaction

The total normal force on the surface in the strong-interaction
region is

Xa 2 2 xtan ¢
Cy o = 2[ (-Il‘?- anﬁn-w) . ax oo (7)
23 P YM..B AR

where 2
e T _ .
> b X" =b D X+ X,
n=0

On integrating we have

b o-1) 2b
c = G xls-l-io—-“—ir;(a)(xg’-I:.’)"’__t‘hl(a) X
N,S N,l (3 -1 3 a4
X4 0

x [ﬁ(xi+ 2) ~V¢ - x5 (x3+ 26):|+

+B-’-ﬂfa (2)] x1- x.+loge(& = )&] .- (8)

ag 4 - xg

Most/
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Most weak-interaction pressure distributions are represented in
terms of ¥ as shown ine quation (2). However the strong~interaction
region pressure distribution is not always a function of increasing powers
of ¥. If we therefore assign the function £(n) as the power to which

X is raised, where f(n) is any simple function of =n, e.g. (1 - n) (Ref,6),
then

E
Pp

and it is readily shown that in this case
m
- -X
C = A b*
N,s ' {[ X » { (£(n)-1)
n=0 (¢ - x)

(1-£())

(& - x) (x5?- x.%)
'(::ff(nn H = 2 ]

= b

- f(n)
L X

(2 - £(n))

X
Py 1 tan ¢
where A =h— . — ..
p, YA, &
e ()
n n
Reu Hb

For the computations in the present paper, however, the form given
in equation (8) will be used exclusively.

3. Total Force

If we now combine the contributions to the total force from the
weak- and the strong-interaction regions, we have
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- (b - 1) 2 3
C. = C, . + ¥ala) e o2 X, -y q(a 8 _
N N,i * x 30_1)(1 x ):l+3ﬂr()[2&

—E\’?—-—x;(xg+2&)+(ii--1)\f&_:_x;(xg+2&)]+

by ay
(e () (F2 Y ] o
where
b gt
£ = —

4. Centre-of -Pressure Position

The moment of the weak-interaction region force about the base
line is

tan ¢ x,° x,? tan ¢
— — + {1 (a) tan¢—3—+\{ta(a)

p’i AR

X C = G

& 3 2 5§ 416 5
x [-2&'&-1,_4--6(&—3:1)’ -— (& - x4 +—&’]+
3 5 15

. ys (@) ta’:"[hge( ’ )&'- "(2‘2“ “)] e (10)

&"Zi

and for the strong-interaction region
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- tan ¢ (b, = 1) ¥a(a) tan ¢
Is CN g = c T (xgs- x:3) + xg® - x4%) +
] Py 6 AB. (ao - 1) 3
+——\]Jg(a) f— 2&”6—::94--&(&—1:3)’-—(&-xg)” +
A 2 L 3 5

4 T2 5
+ APV - X -—6(L-x4)" + - (¢ -Xs.)n:l*'
3 5

+ — yala) - + L(xy - x3) +

bg tan ¢ xf Xq
ag [: 2 2

69

+10%C::> :I cer (41)

The centre-of-pressure position is then found from

X, p+ 0y = (xw cN,,‘r + X cN,s) eee (12)

The normal-force predictions for various available theories for viscous-
interaction effects are plotted in Fig. 8.

Be Merged-Region Force Coefficient

The form of the pressure distribution in thas region is neot at all
well known, because of the difficulty in making measurements very close to
the leading edge. Any guess at the form of the distribution must necessarily
be tentative in the extreme. However, it is observed that when merging
occurs the pressure reaches a plateau and subsequently falls to about the free-
stream value at the leading edge. As a first guess a trigonometric repres-
entation may be used, and one form of the integral could be

e =2 [1(2) Yl Tar =GR e

P
n=0

This would no doubt give an order of magnitude for the force but any value
computed must be suspect.

6./
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AY
6. Discussion

As discussed in Part I the coefficients of ¥ should perhaps be
nultiplied by (H“/hb) for the flat plate at incidence, otherwise the

surface pressure will be underestimated. The form of the polynomial will

L [(5)+]-

n=0

P |

This is the form that we have used throughout in the numerical examples
presented in this section.  As regards the coefficients (an) used, we

have chosen those of Hayes and Prv'.)'matte:l.n‘l s and of Bertram and BZl.e:.ck..sstoc:l:.7
Bertram and Blackstock, for example, have shown that the viscous-

induced pressure on g flat plate in the weak-interaction region can be
expressed in terms of Y by the eguation

P
- = 14+ f(isyamwfro) + f.(i:V:(Tw/To))
Py
where
T, A ) A
f iy,—-): |_+ ]
(' v/ TeR L 2(1ea)
vex
l=""—;
2
v-1,7,
and g=1-?208———(—+0-3859> for a
2 T
o

Prandtl number of unity.

Computations using Bertram and Blackstock's equation have been
carried out for the cold~wall case (T /T - 0). _ These data have been
curve fitted and the coefficients for Use in equation (1} are

a, 098036743
ag 0= 40887103
ag 0+00055225112

giving a good fit to the actual theoretical values for the range 0<¥ < 20
Similerly,/
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Similarly, for the insulated-wall case (T w/T + 1), the
coefficients are °

a 0-595391181

Q

ay 0- 42157154
ag 0-001817357%
and the range of applicability of this fit is 0 g ¥ < 10.

The upper limit in the insulated-wall case was determined so that
X would be well in excess of the crossover value (from weak to strong inter-
action), which Bertram and Blackstock identif'y as occurring when the induced
pressure becomes greater than four times the value for inviscid flow. TFor
the insulated wall this occurs for ¥ » 7. For the cold-wall condition the
induced pressure does not exceed four times the inviscid pressure untal a
value of ¥ is reached which is well within the merged region, and this
suggests, as we observed in the first section (Part I), that there w21l be
no strong-interaction region.

The insulated-wall pressure distribution for the strong-interaction
region computed from Bertram and Blackstock's paper 1s given by

P
— x 1+ 0°510036 ¥
By

The total normal forces on the lower or pressure surface of the delta com-
puted using the variaous first- and second-order theories are shown in Fig. 8.
In this figure the term O(1) denotes that first-order theory has been used
for both the weak- and the strong-interaction regions, and 0(2) + 0(1)
means that second-order theory has been used for the wesk-interaction region
and first-order theory for the strong-interaction region.

Note that both the second-order weak-interaction theories result
in insulsted-well normal forces which are in agreement and lie significantly
above the first-order, weak-interaction data. To a slightly smaller extent
this also applies to the data using viscous-interaction data quoted by Cox
and Crabtree®, As regards the variations of ¥ with ancidence, it is the
increase in Reynolds number and decrease in Mach number over the surface of
the delta with increasing incidence up to about 15°, and thereafter mainly
the decreasing Mach number, which produces a steady decrease in ¥. In
fact because the Reynolds number is only raised to the power 0+5 whereas the
Mach number is raised to power 3 it is the Mach number of course which plays
the important role in viscous-interaction effects, when the change in
Reynolds nuumber is mecderate. It is most important that this be borne in
nind when determining the operational range of hypersonic facilities.

7./
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7. Conclusions

As a result of the induced pressures produced by the interaction
of the viscous layer with the continuum flow, significant changes will
occur in the normal-force coefficient for the pressure surface of a {lat
delta at the moderate Reynolds numbers and hypersonic Mach numbers
frequently encountered in test facilities, It is felt that the present
approach enables a reasonable estimate to be made of the possible changes
in viscous-induced force and moment characteristics, at least for simple
planforms and surface shapes.,
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