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by 

H. C. Garner 

SUMMARY 

Unsteady aerodynamic forces on a wing due to a uniform step gust are 

expressed as a sine transform of those due to sinusoidal gusts over the spectrum 

of wavelength. The sinusoidal gusts are treated by subsonic lifting-surface 

theory until the wavelength becomes so small as to demand excessive terms in the 

chordwise loading. Beyond this, the subptitution of piston theory is discussed 

for a wing representative of design for subsonic cruise. Lift and pitching 

moment are calculated for normal entry into a step gust at Mach numbers 0.4 and 

0.8, with reasonable success in the latter case. The results for small distances 

of penetration are examined critically. It is recommended that the proportional 

growth of aerodynamc force be taken between the results of piston theory and the 

present method for small distances before approaching the latter result, which 

leads to the correct asymptotic behaviour soon after the wing is completely 

umnersed in the gust. The investigation ends with some calculations by the 

present method for normal entry into a ramp gust and by piston theory for oblique 

entry into a step gust. 

* Replaces RAE Technical Report 72010 - ARC 33854 
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1 INTRODUCTION 

i 

The study of aerodynamic forces on an aircraft in level flight in 
response to a sharp-edged up-gust is rightly associated with the name of 
Kiissner' (1936)) whose original solution to the problem of a uniform gust in 
twodxnensional incompressible flow opened up an extensive field of research. 
The Ktissner function for the growth of lift in terms of the distance travelled 
into the gust has been determined under more general conditions, and an account 

of the developments up to about 1955 is given by Lomax'. He refers to 
theoretical studies in twodimenslonal compressible flow and in threedimensional 
supersonic flow and to the lack of solutions for threedimensional subsonic flow. 
Considerable difficulties have subsequently been encountered in seeking 
numerical solutions for wings in subsonic flight. On the assumption that linear 
principles can be applied, there are several distinct approaches to this aero- 
dynamic problem, most of which involve integrals of superposition over the 
frequency spectrum (section 2). A promising method from the numerical stand- 
point is to combine results for sinusoidal gusts of wavelengths from zero to 
Infinity. 

In practical applications to transient aircraft response, Mitchell 3'4 has 
introduced a Fourier transform method to avoid the direct evaluation of the 
Ki~ssner functions. Whilst such an approach is highly desirable, it may tend to 
gloss over any inaccuracies impllcit in the treatment of the aerodynamics. It 
therefore remains necessary to be able to examine the forcing terms due to the 

gust, as derived from the available oscillatory aerodynamic data. This Report, 
being a detailed study of the accuracy in calculating these terms, makes no 
further reference to aircraft response and excludes all structural considera- 
tions; it concerns the dynamics of the air and not of the aircraft. 

The linearized lifting-surface method of Ref.5 is used because of its 
capability up to frequencies outside the flutter range. However, limitations 
do arise at very high frequency (section 3.1) and the hope is that in this 
extreme range it might prove satisfactory to substitute piston theory 

(section 3.2). Imperfections in this procedure are readily detected and 
receive critical discussion (sectlon 3.3) with serious implications at small 
Mach number. Application is made to the planform in Fig.la of aspect ratio 6, 
taper ratio l/3 and mid-chord sweepback 30' at Mach numbers of 0.4 and 0.8 

Very few previous attempts, if any, have been made to evalyate the gust-induced 

loading on such a planform, chosen to be typical of design for high subsonic 

cruise. 



The basic calculations for sinusoidal gusts are built into results for a 

normal step gust, that is, a stationary uniform up-gust with its front in a 

plane normal to the flight path (sectmn 4.1); the most precarious part of the 

calculation concerns small distances of penetration. It 1s a smple matter of 

superposltlon to form a normal ramp gust (Fig.lb); in the results, so deduced, 

the imperfectlons become much less noticeable (section 4.2). The case of an 

oblique step gust with arbitrary lnclinatlon of the vertical gust front to the 

flight path (Fig.lc) is only considered qualitatively by piston theory 

(section 4.3). The normalized Kussner functions then show no effect of Mach 

number but are expected to become increasingly unreliable at the lower speeds 

of flight. 

2 CHOICE OF METHOD 

Consider a wing in level flight at velocity U inclined at an angle JI 

to the normal to the vertical front of an up-gust of uniform velocity 
wg’ In 

the notation of Fig.lc, let 

x - y tan J, = 0; (1) 

defuw the gust front relative to the wing of geometric mean chord c after 

its leading apex (or origin of planform) has travelled a distance 

oc = ut 

sxxe entering the gust at time t = 0. Then the boundary condition on the 

wmg is simply 

w = w 
g 

(x - y tan * < UC) 

(x - y tan JI > UC) 1 * w = 0 

In the following treatment of this boundary condition it is convenient to 

choose the origin so that no part of the planform has entered the gust when 

0 = 0. By virtue of the well-known identity 

CJ 

J 
sin bx 

x 
dx = +;T according as b > or <0 , 

0 

with b: = x - y tan $ + oc, equation (3) can be replaced by 

(2) 

(3) 

(4) 

i 



r 

(5) 

The two parts of equation (5) contribute equally to w in the region 
x-y tan*>-&, while only the square bracket contributes to w = w 

x-y tan*<-oc. 
g 

where In this latter range upstream of the wing the 
behaviour of w 1s immaterial; therefore for O>O m w = 1 J I .- . - w i exp s (x - y tan $) 1 sln-vO d; 

g c " -m 

and 
m 

.- 

+ (x - y tan JI) 'OS "' d; 
c ; 

(6) 

(7) 

my be regarded as alternative expressions equivalent to equation (3) or (5). 

The most straightforward approach to the evaluation of the unsteady wing 
loading associated with equation (3) is first to solve the oscillatory problem 
with circular frequency w = U;/c for a sinusoidal gust with boundary 
condition 

w 
1 

.- 
is = exp g (x - y tan *) . 

c 1 
(8) 

Let Qi(;) be the corresponding coefficient of generalized force in some mode 
of vertical displacement zi(x,y). Then the unsteady generalized force due to 
the step gust 

QigW 

Q,(;) sin ;o cos Go 
d; + lQi(0) + & d; 

; ; -cu 1 

(9) 
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is derrved for o >0 by superposition from equation (5). This is essentially 

the form of Kussner function given by Druchler in equation (8) of Ref.6 and 

used in his calculations. The results for normal gusts in subsonic flow in 

Appendix A of Ref.6 are restricted to unswept wings with approximate expressions 

a 
Q,(i) - Q;(O) = i; 1 n 

nb + ii n 

to represent the generalized force over the frequency spectrum. However, there 

does not appear to be any justlflcation for this form of series in compressible 

flow when the frequency parameter is large. 

An alternative approach, used by Drischler and Diederich in the appendix 

to Ref.7, is to represent the boundary conditions of the step gust in terms of 

those for leadlng-edge flaps with hinge lines parallel to the gust front. FJXIU 

a knowledge of the generalized force for flaps of various sizes in plunging 

motion at sufficient values of the frequency parameter, it is possible to 

evaluate a double integral for Q i,w. This 'plunging-flap' method has been 

applied successfully to twodimensional problems, but it is less suitable for 

"lngs of finite aspect ratio. Although the downwash mode becomes independent of 

frequency parameter, the discontinuity III boundary condition at the flap hinge 

is a severe complication and a likely source of inaccuracy. Another scheme of 

calculation involves the reverse-flow theorem, by which the sinusoidal-gust and 

the plunging-flap methods can be shown to be equivalent. However, in the con- 

text of equation (9), the reverse flow merely offers an alternative calculation 

of Qi(;) with no obvious improvement. Nevertheless, for any particular mode 

zi C&Y), there might be some economy in that the same set of solutions with 

different ; for the reversed planform could be utilized, whatever the gust 

inclination $. 

Unlike the methods mentloned above for subsonic compressible flow, there 

is one that involves a general relation between the downwash and the load dis- 

tribution with arbitrary time dependence. In equation (15) of Ref.8, Drischler 

presents a triple Integral in one time and two spatial variables for w(x,y,t) 

in terms of the unknown load distribution and its history. Although it is 

clamed that the Integral should lend itself readily to modern high-speed 

computing machines, the present author IS not aware of any such application to 

finite wings III compressible flow. Apart from linearization, the equation is 

all-embracing and remarkably compact. It 1s particularly instructive how the 
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circular spatial region of integration relates to the travel of acoustic waves 

from the pressure disturbances, as this physical feature of the aerodynamcs is 
quite unrecognizable in equation (9). 

Because the recent development of a llftmg-surface method for general 
frequency in Ref.5 gave the opportunity to calculate Q,(i) with more 
reliability than was possible formerly, the sinusoidal-gust approach has been 
chosen for the present investigation. In place of equation (9), equivalent 
expressions for Qig(u) are obtained by combining equation (8) with the 
alternative expressions (6) and (7) for w/wg to give respectively 

m Q,(G) - 

J 
sin vu 

d; 
; -m 

and 

Qig = $ [,$O, + $ [ Qi(') rs " d;] . (12) 

(11) 

With a change of notation from that of Ref.5, it is convenient to separate 

9, (;) Into its real and imaginary parts by writing 

Q;(G) = Q;(z) +'iQy(;) , (13) 

where Q;(i) is an even function of v and Q:(v) is an odd function. The 
normalized Kiissner function is used when the steady-state value 

1"9 
Qig(-) = u Q; (O)  

is non-zero; from equations (11) to (14) we write 

and alternatively 

kl (0) 
Q'!(L) - 1 cos vu d; . 
Q;(O) ; 

(14) 

(15) 

(16) 



Mitchell' has derived and calculated the transxnt forces from similar 

equatmns. Equation (16) corresponds to equation (Ba) of Ref.9, while 

equation (15) IS equivalent to Mitchell's equation (Bb) when the sign of the 

integral is corrected. HIS technique is to truncate the upper range of integra- 

tlon in equations (15) and (16) in a careful manner, but this involves some 

extrapolation beyond the values of ; for which the theoretical data for Qi(;) 

are reliable. It 1s important to note that, for small values of o at least, 

equation (16) gives ki(u) as the difference between two nearly equal 

quantities and only small percentage errors in the integral can be tolerated. 

The Integral in equation (15) is less critical in this respect; it auto- 

matically vanishes when 0 = 0 and is therefore preferred to equation (16). 

3 NUMERICAL PROCEDURE 

The evaluation of equation (15) falls naturally into three parts. The 

first stage 1s the calculation of Q;(G), the real part of the generalized 

force in some mode z=(x,y) corresponding to the slnusoidal gust defined in 

equation (8). While it is clear from section 2 that the formulation is 

basically unaltered by the inclination of the gust front, the calculations by 

lifting-surface theory5 in section 3.1 are limited to the symmetrical case 

* = 0. Being a collocation method, Ref.5 will inevitably fail if ; is too 

large. Rather than truncate the integral in equation (8), as Mitchell' did, we 

approxxnate to the integrand by means of piston theory and seek to justify this 

in section 3.2. Finally, in section 3.3, the accuracy of integration is 

discussed and difficulties in reconciling equations (15) and (16) are brought 

to light. 

3.1 Sinusoidal gust 

Considel the case of a normal gust when equation (8) reduces to 

In applying section 4.2 of Ref.5 to the wing in Fig.la, the planform area 

S = 2s: is taken as reference area and geometric mean chord c as reference 

length. Thus 

(18) 

. 



where the lift per unit area as a fraction of the dynamic pressure ipU2 is 
written as 

as 
!L(X,Y) = - Y rq (Y) 

cos (q - l)$ + cos q$ 
TC(Y) q=l sin C$ (19) 

with 

x = X,(Y) + IC(Y)(l - cos $) . 0.0) 

The planform has central rounding, as specified in section 5.4 of Ref.5, to 
ensure that the leading edge x,(y) and chord c(y) have continuous second 
derivatives. The N spanwise loading functions in equation (19) are expressed 

as 

in terms of their values r at the m collocation sections 
qr 

and as functions of 

e = cos -1 -Y 
( > s * 

We consider two force modes zi(x,y)' namely 

5 = - c (lift) 

' z2 = - (x - x,,) (negative pitching moment) 

where the pitching axis x = x0 ~111 be either at the root leading edge 

b 0 = 0) or at the aerodynamic centre. 

No attempt will be made here to describe the method of Ref.5 in any 
detail. Suffice it to say that the modified downwash 

(21) 

(22) 

(23) 

(24) 

(25) 

corresponding to the loading in equation (19) is evaluated as a double 
integral with 
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A = a(m + 1) - 1 (26) 

spanwise integration points and is then equated to the value from equation (17) 

(27) 

at each of the mN collocatmn points given by 

x = x 
PV 

= x,(y,) + Ic(y,)(l - cos tJp) 

Y = y, = - s cos (28) 

bp = 2rrp 
2N+1' 

The resultmg complex linear simultaneous equations are solved for the unknown 

coefficients r , so that the nondimensional generalized forces Q. can be 

evaluated from zluations (18) to (24). 
I. 

The procedure involves the three 

arbitrary positive integers from equations (26) and (28), (N,m,a), each of 

which must be large enough to achieve the desired numerical convergence. As a 

computational ald to the evaluation of the required input data W/U from 

equation (17), it proved convenient to use the output data i/U of 

equation (25) resulting from the simpler Input w/U = 1. 

Guide 1~~s for the selection of a suitable combination of integers 

(N,m,a) are sumnarized by the following inequalItIes from section 4.3 of 

Ref.5: 

N > 2+o+s 
11 

1 
m > 10 

4SCR 
m > r + -2 set At 

c 

a(m + 1) > (2N - 4)(1 + 2A) 

(29) 

where the polynomial (~/c)'(y/s)~ lndlcates the nature of the mode of osc~lla- 

tlon and respectively s, CR, A, and A denote semi-span, root chord, 

trailing edge sweepback and aspect ratio of the planform. If these rnequalltvss 
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are satisfied, roughly three-figure accuracy should be obtainable. In the <'I > .'$ I 
present circumstances T = 0 and m = 20 should suffice for the,pla+mn data 

of Fig.la. The condltlon on N 1s less clear-cut, but if we assign the=value 

(T = 2;Jn as bemg representative of equation (17), N = 6 together with,. 

a = 5 would satisfy the conditions for frequency parameters up to ; = 11. 

Above ; =; TI, however, N29 with a > 9 would be required, a& tA, com- 
L 

bination (N,m,a) = (9,20,9) exceeds the storage limit of the KDF9 c'bmputer.In 
J ' . v 33 :+I i 

the tune-sharing mode and would o&wise involve an excessive runmng tune o?' 
r I - --""J,,,, 

about 3 hours. Although the problem of accuracy in the evaluati&3b?: Q,(y) 
I_ 

is greatly aggravated by the large aspect ratio A = 6, this has"~~~~l$‘ 
,.J:Ei- 

lowered the value of ; 
'-i~>,.T I,r.r 

above which the program of Ref.5 ceases to be reliable. 

Whatever the aspect ratio, some compromise in accuracy would be nec8~sar$.‘ 

Like the maJority of the pitching derlv?tives for the same planform in 

sectIon 5.4 of Ref.5, the present calculations for M = 0.4 and 0.8 have been 

made for a combination of integers (N,m,a) = (6,15,4) that falls somewhat 

short of the conditions (29). ~ 
1,*dr, 3s Sm. 

The frequency paramet&s are taken from the 
,. 4 IV !3Ii3 

formula 
,12q* ! 

17 ;p ?., 

such that the finlte.range ?,< f < 10 
.I A2 31 f I 1’1 

covers the whole frequency spectrum 
c -,:i S.-s. : d, 

and the results for 
Ql 

and -Q; 1x1 Tables 1 and 2 correspond to' 

f = 6, 1, 1, 2, ?, 4, 5, 6, 61 and 7. From the study of cbnvergence i>'~~~.>;' 

It appears that the pitchmg derivatives begin to show significani ' 
I 1.,2.x, 

maccuracies at ; = 4.345(f = 6). The evidence in Table 6 of Re'f.'5 &'!&t“ 
3 :. 'I, - 

the effect of increasing N above 6 1s more mportant than that of mcreasmg 

a above 4 and may expose errors of the order 2%. Moreover, Table ‘5 -qfl_Ref:5 

indicates the possibility of smilar changes in pitching derivativ,es.w&n m 

IS mcreased above 15. It 1s envisaged that the value of N wo$d,n~$,&~+$~ 

greater to cope with the wavy mode of a sinusoidal gust than with ,t,he lmear. _ -,lli <11:,1 
mode of pitchmg. HOWeVer, the following calculations for M = 0:4, a$,, -OGj 

; = 3.157(f = 5) , . >-:*,s, Lnc 

:2, P~jLWl 

(N,m,=) Ql Q, (x0' = 0) ic 2 >: 3:) 1st“ 

(6,15,i) 0.3906 -i 1.0844 <.'3626 - i 0.7008 ' Ir 
‘ /1 r'.‘ Ii 

(7,15,4) 0.3920 -1 1.0814 1.3633-i 0.6986 1 '>,,.:2 
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suggest that N = 6 1s adequate up to that frequency parameter. Accordingly, 

we use the data m Tables 1 and 2 with the provxo that they become less and 

less reliable as ; increases beyond the flutter range; thus the results for 

the three highest frequencies are treated with reserve. 

The real component of Q, is plotted against ; for M = 0.4 and 

M = 0.8 to produce the undulating full curves m Fig.2. There is a tendency 

for the reversals of sign to occur at lower frequencies for the lower Mach 

number. Comparable curves by Mm-row et al. 10 are available for a very lmlted 

range of frequency parameter k = jwcR/u. From the upper curves of Figs.Ze 

and 2f of Ref.10, it is interesting to note that the real part of the lift for 

M = 0.4 reverses sign at 

; 2:k = - = 1.42k = 1.1 when A = 4 
CR 

and at about ; = 0.6 when A = 9.43. For the same order of sweepback and 

taper, the intermediate reversal pmnt ; = 0.85 from the present calculations 

of Q; for A = 6 confirms the trend that frequency effects are more pro- 

nounced at the higher aspect ratios. On the other hand, the quarter-chord 

sweepback of 33.5' is a contributory factor, as other results in Fig.2 of 

Ref.10 show. Indeed the larger streamwise extent of the wmg as a fraction of 

the wavelength 2nc/; of the sinusoidal gust would be expected to encourage 

the undulations in the present Fig.2. The more important part of the frequency 

range is adequately covered, and the remamder ; > 4.345 is hardly expected 

to mfluence the aerodynamic loading due to a step gust once the wing is 

imersed. 

3.2 Piston theory 

The introduction of piston theory 11,12 into the present discusslon has a 

threefold purpose. It is used in an attempt to offset the deficiencies of the 

subsonic lifting-surface method in the upper range of frequency: it is a ccmmon 

tool in calculations of gust loading in the absence of other theoretical data, 

and here is the opportunity to judge Its effectiveness: it serves to provide 

rough estimates of the aerodynamic forces induced by an oblique gust, which is 

not covered by the present lifting-surface calculations. 

The relevant equations from piston theory are derived in the appendix. 

Although its applicablllty to oscillatory flow is subject to the severe 

restrictions 

, 
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VM 

A;M 
i 

(31) 

. 
there must exist an upper range of frequency parameters III which the theory is 

valid when M >O. The nondimensIona complex lift Ql(;) and the real part 

of Q,(;) from equations (A-7) to (A-9) of the appendix are inversely 

proportional to M and are evaluated for M = 0.8 in Tables 1 and 2. 

Although it 1s fortuitous that Q;(O) is so close to the present lifting- 

surface value for M = 0.8, the remarkable agreement between the two curves of 

Qi (;I in Flg.2 at the high-frequency end encourages us to use piston theory 

for the whole upper range ; > 4.345(f > 6). The justification for this 

procedure at the lower Mach number M = 0.4 is less convincing, because the 

conditions (31) for the validity of piston theory are more stringent and dis- 

crepancies are apparent in the upper diagram of Flg.2. Nevertheless, the 

appeal to piston theory is further supported by the fact that the frequent 

changes in the sign of the real parts of equations (A-7) to (A-9) ensure that 

their contributions to equation (15) in the upper range of integration are 

minor ones. 

With regard to the use of piston theory in Its own right, expressions 

for the normalized Kdssner functions kl(u) and k2(o) in the special case 

$I = 0 are derived as exact polynomials in o III equations (A-12) and (A-13) 

respectively. The formulae change whenever a corner of the planform enters 

the gust. The corresponding functions for an oblique gust are less convenient 

to formulate, but a procedure for their calculation is described III the 

appendix in four stages through equations (A-14) to (A-23). The lift is still 

quadratic in 0, while the moments remain cubic functions. Without 

prejudice to the argument in section 2, the origin is taken at the root 

leading edge. Thus, when $ >Ae, the wing tip enters the gust while 

0 <0 (Fig.lc). The final equations (A-22) and (A-23) give expressions for 

C 
m cL 

'Lm 
and - , 

cLm 
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where 

cm = 
nose-up pitchmg moment about x = x0 

IplJ2SC 

CL = * ort-wmg-up rolling moment 

PlJ2SS 
(32) 

C Lm = 2Ql(O) 1s the final lift coefficient 

It is convenient to take the pltchmg axis through the aerodynamic centre 

"0 = Xac such that Q2(0) = 0. Then both pitching and rolling moments can be 

treated as transient functions that disappear as soon as the wing is fully 

rmmersed in the gust. 

3.3 Evaluation of Integral 

Irrespective of the undulatmns III Q:(L) for large ;, the factor 

sin YJ m the mtegrand of equatmn (15) becomes highly oscillatory in this 

region and complicates numerical Integration, especially when o is large. A 

possible way round the dlfflculty is to express Qi(;) in the form of 

equation (10) and thereafter use exact integration. This approach was rejected, 

as It had been found unsuitable in a previous mvestigation and as it did not 

appear to be compatible with equations (A-7) to (A-9). Instead, numerical 

integratmns of two types were considered. Firstly, for small 0, the whole 

in&grand was treated by Simpson's rule after transformation to the independent 

variable f. Thus by equations (15) and (30) 

lo Q! (;) 

J 
- - 

k=(o) = i ~siyvO&!df , 

0 
Q;(O) " 

(33) 

where 

d; 
;iT = $cot(+ec~(~) = ++)+ 4z2 +)I . (34) 

The range 0 < f < 6 was handled by careful interpolation in Tables 1 and 2 to 

give values in steps of 4. Secondly, for large o and ;, consistent poly- 

nomials for Qf(;)/; were taken over the same intervals and exact integrations 

with respect to ; were formulated and evaluated. The discrepancies between 

the two methods were never very large, and the latter one was only found to be 

necessary in a few mstances. 

f 
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. 

As explained m section 3.2, the range 5 < f < 6 is used to far 

Q; 6) into its value from piston theory. Equation (33) is then rewritten as 

k;(o) = i 
- G!(i) - 
J +..m ‘In “’ d; + + 

Q;(i) - ‘?j(;) sin ;. d; 

o Qi(0) ; Q;(O) ; 
=df 

’ Q;(;, - $(;, . - - 

J 
‘In “’ $ df , 

0 
Q;(O) ; (35) 

where $(;, and Ei(o) here denote the quantities from piston theory in 

equations (A-7) to (A-9), (A-12) and (A-13) to distinguish them from those 

calculated by the present method. While most of the calculations have been 

based on equation (35), the upper limit of integration is arbitrary. It must 

be neither so low that the approximation Q:(t) = ef(;) is unacceptable at 

that limit, nor so high that the calculated values Q;(L) become unacceptable 

below that limit. It 1s already apparent from Fig.2 that this dilemma may be 

troublesome at M = 0.4, if not at M = 0.8. 

As explained at the end of section 2, the alternative equation (16) for 

k;(o) is regarded as having less numerical potential than equation (15). The 

corresponding alternative to equation (35) is! 

kib) = 1 + g [i; (o) _ 1] _ 11 QP;oq;(;) cos ;o 2 df , 
i i 77 

(36) 

0 i " 

and the consequences of Its direct calculation will be examined briefly in 

SectlO* 4.1. 

Particular attention is now given to the identity that follows from the 

limits of equations (15) and (16) as o tends to zero. Equation (15) gives 

k;(O) = 0, and the resulting Integral from equation (16) must satisfy the 

condition 
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It can be verlfled that equation (A-7) from piston theory satisfies 

equation (37) and indeed that the integral lies within 1% of its correct value 

if the inflnite upper limit 1s replaced by any value of E > 3. Each set of 

data in Table 1 is used to evaluate the lift integral (i = 1) with variable 

upper limit, as tabulated below. 

Value of Integral (37) for upper limit G 
Method 

1.026 1.609 2.294 3.157 4.345 

hY 0.805 1.001 1.033 0.998 0.999 

0.8 0.639 0.815 0.841 0.804 0.802 

Present theory 0.4 0.795 0.946 0.878 0.740 0.700 

Piston theory 

Present theory 

The situation for M = 0.8 is easy to visualize in relation to piston theory. 

The steady-state quantity Q;(O) is much the same in the two cases and, 

throughout the range 0 <; < 4.345, Q';(z) < @(;) from piston theory. 

Accordingly the integral from the present theory 1s on the small side. To recoup 

the additional amount 0.197 from the range ; > 4.345, It would seem necessary 

not only that [Q"(i) - $(;)I should change sign, as it does in Table 1, but 

also that this positive difference should continue to grow before tending 

slowly, perhaps logarithmically, to zero. This would seem to contradict the 

validity of piston theory until the frequency parameter is several orders of 

magnitude higher than the value 4.345. The situation for M = 0.4 in the table 

is even less satisfactory. Because we place less reliance in piston theory at 

this lower Mach number, it 1s perhaps easier to accept the deficit of 0.300 that 

is required to satisfy equation (37). This deficit, however, is the value 

kl(0) as calculated from equation (36), which must clearly be rejected unless 

0 is large enough to prohibit significant contributions from the upper range of 

frequency 6 < f < 10. It 1s recognized that inaccuracies in Q';(G) at high ; 

probably Imply inaccuracies also in Qi(;), so that considerable care must be 

taken in interpreting the calculated Kussner functions for small 0 from 

equation (35). 

Rigorous justification of the present method for small as well as large o 

would demand overlapping lower and upper ranges of 3 where respectively the 

lifting-surface method and piston theory apply. The failure to satisfy 

equation (37) implies a gap between these ranges, which can only be bridged by 

more elaborate collocation solutions over a substantial range of high frequency 

. 

. 

. 



17 

parameter. The Identity (37) seems to pose the ultimate challenge to any who 

seek to improve the numerical techniques of solving the linear problems of a 

rapidly-oscillating lifting surface in subsonic flow. 

. 4 DISCUSSION OF RESULTS 

The method of calculation, expressed III equation (35), has been applied 

to the tapered swept wing of Flg.la entering a normal step gust. The results 

for lift and pitching moment are presented and appraised in sectIon 4.1; con- 

sideration is given to the rate of propagation of dlsturbances on the wing and 

to anomalies in the calculations for small time. The corresponding functions 

for a normal ramp gust are derived in section 4.2, and in section 4.3 the case 

of an oblique step gust is considered approximately on the principle of piston 

theory. 

i 

. 

4.1 Normal step gust 

The Kiissner functions, kl(u) for lift and k2(o) for pitching moment 

about the axis through the root leadlng edge, have been calculated from 

equation (35) for the two Mach numbers 0.4 and 0.8, and also from 

equations (A-12) and (A-13) of piston theory which are more sultable for higher 

Mach numbers. The results in the range o < 8 are listed in Table 3 and 

presented graphically in Figs.3 and 4. The three regions of particular 

interest are 

u small, when most of the wing has still to enter the gust, 

u = 2.73, at which the wing becomes fully Immersed, 

o large, when the steady state IS approached asymptotically. 

We consider these in the reverse order, starting with demonstrable precision 

and ending with inconsistencles that are difficult to interpret. 

The only complication where o is large is that the integrand of 

equation (35) becomes highly oscillatory. Special care in numerical Integra- 

tion is needed with resort to the second procedure mentioned below equation (34). 

nowever, the factor sin (;o)/; ensures that the result is insensitive to the 

problematical values of Qf(;) when ; is large. The asymptotic form of 

k;(o) for subsonic flow is known exactly from the analysis of Garner and 
13 Milne . Equation (26) of Ref.13 (with subscrlpt .I omitted for a uniform 

gust) @"es 



kl (0) 21 l- 
AQ;(O) -3 

Em2 
+0(0 ) . (38) 

Thus to order ii -2 the asymptotic curve of ki(u) 1s Independent of 1, and 

we obtam 

for M = 0.4 , k=(o) % 1 - 0.50080 
-2 

I 
-2 . 

for M = 0.8 , ki(o) rlr 1 - 0.60890 
(39) 

When results from Table 3 and equations (39) are compared in the followmg 

table, the agreement 1s fairly convincmg. 

Table 3 
M 

0.4 

0.4 

0.8 

0.8 

0 kl (01 k2b) 
6 0.987 0.985 

L 
8 0.994 0.994 

6 0.980 0.980 

8 0.990 0.990 

Eqn. (39) 
ki(d 

0.986 

0.992 

0.983 

0.990 

A corollary to equatmn (38) is that the translent pitching moment about the 

aerodynamic centre is only of order o -3 as the steady state is approached. 

The region a S= 2.73 1s where discrepancies between the present method 

and piston theory would be expected. Piston theory predicts that the steady 

state is reached as soon as the whole wing is immersed in a uniform step gust. 

Thus in Figs.3 and 4 the broken curves from piston theory lie above those con- 

dltioned to equations (39), but the discrepancies are less than 10%. In accord 

with these asymptotic results, the values ki(2.73) for M = 0.8 lie below 

those for M = 0.4 while piston theory, the true limit as M -f m, indicates a 

reversal of this trend once supersonic speeds are reached. It is interesting 

to note that, for both lift and pitchmg moment, the curves with M = 0.4 and 

M = 0.8 intersect near o = 2.3 or 2.4, so that in the lower range CJ < 2 

the trend with Mach number is progressive. 1 

In the attempted calculatmns for smaller 0, the function Q:(i) for 

large G plays an increasingly important role. The expedient of using piston 

theory to determine Q;(g) with ; > 4.345 may appear to be quite promising 
t 
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for M = 0.8 in section 3.2, but in the final paragraph of section 3.3 it 

becomes questionable not only for M = 0.4 but to a lesser extent for 

M = 0.8. The results from equation (35) in Table 3 show negative values of 

kl and k2 at 0 = 0.25, which are more persistent for pitching moment than 

for lift and more pronounced at the lower Mach number; indeed, k2 appears 

to remain negative at M = 0.4 until ; > 1.4. The unlikely phenomenon of 

negarlve kl(o) in Fig.3 is very slight for M = 0.8 and can practically be 

overlooked, but it IS so marked for M = 0.4 that calculations for ; < 1.5 

can probably be discounted. With reference to Fig.4, on the other hand, it 

~111 be argued that small regions of negative k2(u) are at least plausible. 

As remarked in section 2, there exists in Ref.8 a general formulation of 

the linear problem with arbitrary tlme-dependent loading, in which the range 

of travel of acoustic waves from the pressure disturbances is clearly 

represented. Numerical solutions that preserve this feature are difficult to 

realize, and the present method founders III this respect in so far as 

equation (19) IS adopted for the load distrlbutlon. Thus, an exceedingly 

large number of chordwise terms would be needed to maintain an approximation 

to zero loading until such time as a disturbance is physically possible. By 

way of illustration, a formula analogous to equation (35) has been used to 

evaluate the local loading at a few points on the root chord when the gust 

penetration, 0 = 0.5, corresponds to the neiatlve minimum of klW =s 

calculated for M = 0.4 in Fig.3. The approximate results for three chord- 

wise locations are given in the following table. 

Eqn. (20) 2(x,0) when 
with y=O 0 = 0.5 

It 1s easily seen that e(x,O) should vanish in the region 

5 

> 

= 

1.250 when M 

= 

0.4 
c 

2 = 0.625 when M = 0.8 I 
(40) 
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beyond the luut of disturbances propagated from the Oregon at the uxtant 

ci = 0. For M = 0.4, negative loading in the range 

I3 = 0.5 < ; < 1.250 
c 

1s possible, but the large negative value at x/c = 1.370 1s qute unrealistic 

and doubtless provides an important contribution to the negative kl (0) . 

HOWVet-, a moderate negative value of 9.(x,0) at x/c = 0.863 might be 

expected to arise from positive downwash Induced aft of the gust front. By 

contrast, when M = 0.8 such downwash 1s restrlcted to the small region 

0.5 < x < 0.625 , 
c 

and the total contribution to k1(0.5) from the loading further aft would 

appear to be reasonably small, if not correctly zero. At all events, the few 

tabulated values of 9.(x,0) are compatible with k1(0.5) as shown in Fig.3 

and do not allay suspicion of the result for M = 0.4. With regard to the 

negative values in Fig.4, k2(o) would be expected to lie below the curve 

predicted by piston theory, partly because of negative loading Induced between 

the gust front and the rearward envelope of acoustic disturbances from the 

wing, and partly because the loading ahead of the gust front does not reach 

its steady state instantaneously. 

proportional to o3 

Since piston theory gives k2(o) 

with zero gradient and curvature at o = 0, the possi- 

bility of a small region of negative k2(a) cannot be ruled out, but the true 

result would be difficult to establish. 

As a further indication of the order of accuracy of the calculated 

k1@.5), the upper limit of integration in equation (35) has been varied; the 

consequence of using the less reliable equation (36) has also been examined. 

From Flg.2 it appears that the difference function Q;(;) - I in 

equation (35) is trivial when i > 4.345(f > 6) and M = 0.8. At M = 0.4, 

however, there are pertinent differences between the calculated oscillatory 

lift from the present method and piston theory, and we obtain the following 

results. 

. 
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Upper limit 
Values of k1(0.5) for M = 0.4 

of integration Equation (35) Equation (36) 

f=6 -0.106 +0.171 

f=7 -0.072 +0.163 

The excessive positive values from equation (36) must be rejected like the 

corresponding result kl(0) = 0.300 discussed at the end of section 3.3. Even 

though the calculations from both equations (35) and (36) are consistent in 

predicting dkl/do <0, this result is unconvincing, because the gust is 

expected to produce a positive rate of growth of lift. The only glimmer of 

success in the above table for o = 0.5 1s the improvement with the longer 

range of integration in equation (35), which suggests a preference for the 

unconverged results from lifting-surface theory in the range 4.345 <; < 6.196 

rather than those from piston theory for M = 0.4. HOWeVer, once the wing is 

immersed III the gust (o > 2.73), the magnitude of the change in kl(u) due 

to the increase III the range of integration falls below 0.01 and, even for 

M = 0.4, the present calculations are validated by equation (39). 

We may conclude that in the range 0 < IJ < 1.5 the functions kl(u) 

and k2(u) should lie somewhere between the curves from piston theory and 

the present method. Above u = 1.5, when about half the wing is immersed in 

the gust, the functions should be approaching the latter curves, which seem to 

be adequate for all practical purposes in the upper range o > 2. This inter- 

pretation of the present method presumes that the flow is sufflclently com- 

pressible. The relative success of the calculations at M = 0.8 as opposed 

to M = 0.4 ImplIes that the influence of the upper range of ; (> 4.345) 

diminishes as Mach number increases; the same IS true as gust penetration 

increases. The truncated upper limit of integration in equation (35) should 

probably satisfy some condition MO; > 4, say, on the frequency parameter 

based on penetration distance and the speed of sound. Thus the present method 

would suffice for o > l/M, while for very small 0 piston theory might be 

the more reliable guide to the Kllssner functions for lift and pitching moment. 

The foregoing discussion relates to subsonic compressible flow and to swept 

wings of high aspect ratio, such that the streanwise length of planform is 

large relative to the geometric mean chord. In the lifting-surface calculations 
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the dlfflcultles of numerical convergence for high ; are aggravated by the 

need for large numbers of spanwme, as well as chordwxe, terms; all three 

parameters (N,m,a) need to be fairly large (section 3.1). Let us compare the 

situatmn with that for wings of low aspect ratlo m incompressible flow, and 

in particular for the planform considered by Mitchell in Fig.la of Ref.9. In 

Fig.4 of Ref.9, he establishes consistent results for k;(o) from the sine and 

cosme transforms corresponding to the present equations (15) and (16) and thus 

satisfies the identity (37) well enough. Moreover, there 1s no suggestion of 

negative ki(a); on the contrary, the inrtial growth of lift in Flg.5 of 

Ref.9 1s far in excess of the ratio kl(o) that would be predicted by piston 

theory and relatively close to the result accordmg to slender-wing theory 

(41) 

where s(u) denotes the local semi-span at the gust front. Although the 

Infinite rate of travel of acoustic disturbances mght suggest a greater 

susceptibility to negatrve lift aft of the gust front, this effect is precluded 

by the principles of slender-wmg theory which must apply to a considerable 

degree. LIkewise, the above assertion that the influence of the upper range of 

" increases as Mach number decreases may well be true for high aspect ratlo, 

but untrue for low aspect ratio. By the inequalities (31) both low aspect 

ratio and low Mach number Invalidate piston theory and its use in the present 

method, which cannot be relevant to the example considered by Mitchell. By the 

inequalities (29), on the other hand, there are weaker restrictions on the 

parameters m and a required in the llftmg-surface method of Ref.5, and for 

moderately low aspect ratio this can probably be applied up to a frequency 

parameter at which it is safe, as Mitchell did, to truncate the range of inte- 

gration In equation (15). There seems to be no reason why, under linear con- 

ditions, the influence of compressibility should not ease calculations for low 

and high aspect ratio alike. 

4.2 Normal ramp gust 

Consider a stationary ramp gust with gradient distance Xgc, as sketched 

in Fig.lb. In the special case $I = 0 the boundary condition in place of 

equation (3) is 

. 
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. 

w = (0 - Xg)C < x < 0; . (42) 

w = 0 oc < x 

This contrlbutes a succession of ldentlcal elementary step gusts of velocity 

with delay times from Cc/U = 0 to hgC/IJ. Thus the Kiissner functions of 

sectlon 4.1 can be generalized in the form 

ki(u,hg) = + 
P 

kib - S)dE O<O=GX 

g0 
g 

x > (43) 
g 

1 =- 
x J 

klb - S)dS 

80 

xg < 0 

where ki(o - 5) is given in Table 3 or by equations (39) if o - E > 8. More 

conveniently 

0 

ki(o,Xg) = + 
I 

ki(u')do' 

g0 

0 

1 =- 
h J 

ki(u')da' 

g o-h 
g 

O<O<X 
53 

1 

, (44) 

xg < 0 

where the Integrals are evaluated by Simpson's rule from the knowledge of 

ki(o') for u' = 0(0.25)8 and by analytical integration over the range 

8 <a' < ~7, if necessary. 

The functions kl(u,Xg) and k2(o,Xg) for lift and pitching moment 

about the root leadlng edge have been calculated for M = 0.8. The respective 

results in Tables 4 and 5 cover the range o Q 16 for nondimensional gradient 

lengths X 
g 

= 2, 4, 6, 8, 12 and 16. Alternative graphlcal presentations of 
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kl are found in Flgs.5 and 6. If kl is plotted aganst 0, as in Fig.5, 

the limiting case of a step gust (hg = 0) from Fig.3 can be included; the 

effect of increasing h 
g 

is seen as a gradual flattening of the curve, so that 

it more nearly approaches the steady state kl = 1 at the instant 

0=x 
g 

+ 2.73 when the whole wing has traversed the ramp. The curves against 

a/x in Fig.6 emphasize the other limiting case Xg = m, when the lift ratio 
g 

has the same shape as the ramp. The growth of lift in the early stages can now 

be calculated with greater confidence, and the present results could easily be 

extended to gusts of arb;itrary profile and finite length. 

It is interesting to present results in the form of a transient pitching 

moment about the aerodynamic centre. The respective pitching axes 

“0 Xac C Q,(O) 
-= -= -mm = - 
c c cL- Q,(O) 

(45) 

from the present method at M = 0.4 and 0.8 and from piston theory are given 

in Table 2. In accord with the deflnitzons in equations (32), 

C 
m = & [kl(o) - k2(o)] 
CL- c 

(46) 

is calculated from Table 3 for a step gust and plotted against 0 in Fig.7a. 

The result for M = 0.4 1s dlscredited, though there may be some substance in 

the delayed maximum at CI = 1.8. The virtual disappearance of Cm/CL, at 

o = 2.73 is a consequence of equation (38), as remarked below it. Hence piston 

theory gives the right qualitative picture in Flg.7a and predicts the maximum 

value for M = 0.8 within 12%. The other curve in Fig.7a illustrates the 

smaller maximum in the case of a ramp gust. Even for the fairly steep ramp 

A 
g 

= 2 the maximum ACm/CL_ has fallen by 32%. For longer ramps the maximum 

is replaced by a plateau of height inversely proportional to X . This 
g 

phenomenon in Fig.7b would be correctly predicted by piston theory, since in the 

range 2.73 <o <A 
g 

the downwash from equation (42) is not only proportional to 

l/A 
g' 

but its rate of growth is uniform over the whole wing. 

4.3 Oblique step gust 

The derivation of the equations in section 2 serves to indicate that there 

is no difficulty in principle in extending the present method to the more com- 

plicated case of an oblique step gust. The basic oscillatory problem of the 
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sInusoIda gust in equation (8) then involves two parameters, the wavelength 

2nc/; and the inclination J, as defined 1x1 Fig.lc. Even for a single non- 

zero value of jr, the computing time for Q,(z) would be doubled, as for each 

value of ; it would be necessary to run separate solutions for the syrmnetrical 

and antisymmetrical parts of w/U in the spanwise sense. Such calculations 

have not been attempted but, as mentioned in section 2, the most economical 

approach would probably involve the reverse-flow theorem. 

In the absence of results for the oblique step gust by the present 

method, the relatively simple application of pxton theory has been made; a 

suitable method of calculation is outllned in the appendix and discussed III 

section 3.2. Since piston theory has been shown to give fair predictions for 

normal gusts at M = 0.8 III Figs.3, 4 and 7a, the formulae (A-21) to (A-23) 

are likely to yield a useful lndicatlon of the behaviour of the lift, pitching 

moment and rolling moment. The normalized Kiissner functions kl (0) and 

k2(o), the transient pitching moment about the aerodynamic centre and the 

transient rolling moment have been computed in Table 6 for four special values 

of ta* *, "IS., 

tan J, = 0.4107, * = At' gust front parallel to trailing edge, 

tan * = 0.7440, * = Aa, gust front parallel to leading edge, 

tan * = 0.9107, root leading edge and tip trailing edge enter gust 

simultaneously, 

tan * = 1.4107, root leading edge and mid-trailing edge enter gust 

simultaneously. 

The origin is taken at the root leading edge, so that it enters the gust when 

0 = 0. when *=llt, the aerodynamic quantities show discontinulties III 

slope at 0 = 1.5 when the whole starboard trailing edge enters the gust. 

Similarly, the calculated forces have non-zero slope at o = 0 in the 

special case * = All when the gust front coincides with the starboard leading 

edge. For larger $I, the gust strikes the wing tip first at the instant 

IJ = - 3 (tan J, - tan I),) . (47) 

It is clear from equations (A-17) to (A-20) of the appendix that the lift is 

quadratic and both moments are cubic in o, and that each polynomial function 
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collocation method to deal with sinusoidal gusts of very small wavelength. In 

view of restrictions on the number of chordwlse terms, it becomes difficult to 

calculate the wing loading after only small penetration into the step gust. 

Piston theory is applicable ln compressible flow when the frequency parameter 

is very high, and the consequences of replacing subsonic lifting-surface theory 

by piston theory in an upper frequency range are most instructive. 

(3) The above procedure has been adopted in equation (35), which has been 

applied to a normal step gust for Mach numbers 0.4 and 0.8 with reasonable 

success in the latter case. The relative failure at the lower Mach number 

appears to be associated partly with the unsuitability of piston theory when 

compressibility is slight, and partly with the greater importance of the higher 

frequencies at lower speeds. It appears that the reciprocal of the frequency 

parameter based on penetration distance and the speed of sound may provide a 

measure of the influence of a particular frequency on the Kiissner functions. 

(4) The lift and nose-down pitching moment about the leading apex are 

calculated to be negative for small penetration distances, more persistently in 

the case of pitching moment and the lower Mach number. While the phenomenon of 

negative lift is discredited, it is considered plausible, but unsubstantiated, 

that in subsonic compressible flow the downwash aft of the gust front could 

induce negative loading compatible with a nose-up pitching moment on a wing of 

high aspect ratio in the early stages of gust entry. 

(5) The present method gives good correlation with the known asymptotic 

behaviour in equation (38) at large time as the steady state is approached. 

This restores confidence IFI the calculations at the lower Mach number once most 

of the wing is immersed in the gust. An interesting corollary to equation (38) 

is that the transient pitching moment about the aerodynamic centre disappears 

inversely as the cube of the distance travelled, although in practice this 

would be obscured by aircraft response and there would be a corresponding delay 

in approaching steady lift. 

(6) The present method is at a disadvantage when the aspect ratio IS high, 

because large numbers of spanwise, as well as chordwise, terms are needed. 

Provided that they are presented in suitable nondimensional form, calculations 

by piston theory alone may well be reliable withln 10 or 20%. It zs recommended 

that the proportional growth of aerodynamic force should be taken between the 

results of piston theory and the present method for small penetration distances, 

should approach the latter result before the wing is completely immersed in the 
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gust and should follow the correct asymptotic behaviour soon after this con- 

dition is reached. 

(7) The alternative cosine transform of equation (16) or (36) has proved to 

be remarkably unsuccessful at small penetration distances, primarily because it 

does not automatically vanish at the instant when the wing first meets the gust. 

This necessary condition yields the identity in equation (37), which can be 

regarded as an ultxnate challenge to a general numerical technique of solving 

oscill?to+y linear problems in subsonic flow. While the infinite integral (37) 

converges rapidly to unity by means of piston theory, its rnferred slow con- 

vergence from lifting-surface theory suggests that the two theories are much 

slower to coalesce at high frequency than is anticipated in the use of 

equation (35) or (36). 

(8) Rigorous justification of the present method for small as well as large 

distances of penetration would demand overlapping lower and upper ranges of 

frequency parameter where respectively the lifting-surface method and piston 

theory apply. The failure to satisfy equation (37) implies a gap between these 

ranges, which can only be bridged by more elaborate collocation solutions over 

a substantial range of high frequency parameter. To extend the investigation 

in this respect, or in range of planform, would be justified if there were 

sufficient uncertainty in the prediction of aircraft response to a known 

vertical gust due to approximations in the unsteady aerodynamic input. 

(9) Although a lifting-surface method may cope satisfactorily with a given 

oscillatory downwash distribution, It may not be ideally sulted to the calcula- 

tion of loads resulting from a vertical gust. Through the assumption of the 

finite summation in equation (19) the present method implles non-zero loading 

over all regions of the planform, even before it is physically possible for 

acoustic waves to travel from the intersection of the wing and the gust front. 

The calculated negative lift at small time includes a contribution from 

impossible negative loads aft of all acoustic disturbances. This feature of a 

collocation method is especially hard to eradicate, but the integral equations 

for doing so exist in Ref.8. 

(10) There is no difficulty in principle in extending the present method from 

a normal step gust to an oblique gust of arbitrary profile and length. All 

that has been done in this respect is to derive results for a normal ramp gust 

in section 4.2. Unless the ramp is steep, the transient pitching moment about 

the aerodynamic centre exhibits the plateau behaviour in Fig.7, which would also 

be predicted by piston theory. 

c 
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(11) Some qualltatlve results for an oblique step gust have been calculated 

by piston theory alone and discussed in sectlon 4.3. The rapid initial growth 

of lift and the possible occurrence of negative pitching moment about the aero- 

dynannc centre are primarily associated with the sweepback of the planform. 

The large maximum rolling moment for moderately small inclination of the gust 

front illustrates the importance of the lateral aerodynamic characteristics of 

a wing in a vertical gust. 
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: GUST FUNCTIONS FROM PISTON THEORY 

, 

Piston theory provides a simple method for the evaluation of wing loading 

m unsteady conditions. Its numerous applications to high-speed flow have been 
11 

dxscussed by Ashley and Zartarian . In the context of linear theory we only 

need to consider the small-disturbance relation for the loading 

LFL~~, 
lPU2 

(A-1) 

where w(t) is the local upward velocity of the wing with arbitrary time- 

dependence. It is clear from section 1.4 of Ref.12, that under oscillatory 

conditions equation (A-l) IS subject to the severe restrictions 

iM * 1 

1 A;M > 1 ' 
(A-2) 

Nevertheless, unless the flow is incompressible, there 1s an upper range of 

frequency parameter for which piston theory becomes available. The second 

condition is more readily satisfied for the wing of high aspect ratio to be 

considered. 

For a sinusoidal gust we consider the equivalent wing motion 

w(x,t) = real part of -Uexp(iut++) . 

As usual, the harmonic tune-dependence factor e iwt is omitted and 

equation (A-l) is combined with 

(A-3) 

w = - Uei;S , (A-4) 

where ; = WC/U and 5 = x/c. The corresponding nondimensional complex lift 

is smply 

i 

Q,(c) = + (A-5) 
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The area of the partxular planform in F~g.la is defmed by 

0 4 Ill < 5 (0 < 5 < 1.5) 
v5 + 0.5 

< 5 (1.5 < 5 < fi + 0.5) , (A-6) 
Js + 0.5 

I 

and it follows that 

Q,(;) = 3 
MU 

.iG(1.5) _ siZ(J?+l) -1-e i;(fi+O.5) 1 (A-7) 
fi - 0.5 fi+o.5 * 

Appendix 

Similarly the complex pitching moment is represented by 

(~-8) Q,(;) = + /l(y) 3 dS = $ jli (5 - :)@dCdri 

S 

2Qs, ’ 
2 +kQ1+- iG(fi+O.5)+ 1.5s iG(1.5) _ (~5+ l)e iG(J5+1) =- 

c ; MV2 43 - 0.5 1 P 
. (A-9) 

The real and imaginary parts of Q, from equation (A-7) are included in 

Table 1, while the real part of Q, IS given m Table 2 both for x0 = 0 and 

for the pitching axis through the aerodynamic centre 

“0 Q,(O) 3 
_ = Q,(o) = z + 2 fi = 1.4717 . 
c 

(A-10) 

The results are expected to become reliable when ; is much larger than l/M. 

Little confidence can be placed in equation (A-lo), however, since there is no 

Justification for piston theory in steady flow. 

A normal step gust can be built up by superposition, and the growth of 

lift or pitching moment can be formulated from equatmn (11) or (12) together 

with equation (A-7) or (A-9). Exact integration leads to different polynomial 

expressions for kl(u) and k2(o) according to the range of o. A simpler 

derivation is to set 

f 
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os‘i<o 
1 (A-11) 

5>0 

. 

in equations (A-5) and (A-8) to give Q lg(") and Q,,(o). Hence 

(0 s 0) 
I 

= o.2240102 

= o.2240102 - 0.40583(a - 1.5)2 

= -0.4058302+2.217480 -2.02914 

= 1 

Similarly for the axis x0 = 0 

k*(o) = s = 0 
2 

= 0.101480~ 

= -0.082360 3 + 0.413640~ - 0.31023 

= -0.183840~ + 0.753380~ - 0.87444 

=l 

(0 < 0 s 1.5) 

(1.5 Q o S 2.23205) 

/ 

' 
(A-12) 

(2.23205 So S 2.73205) 

(o > 2.73205) 

(1.5 4 o S 2.23205) ' 
(A-13) 

(2.23205 So S 2.73205) 

J 

(o 2, 2.73205) 

Numerical results from equations (A-12) and (A-13) appear in the last two 

columns of Table 3 and art? independent of Mach number. Such results would be 

valid II-I high supersonic flight, but for subsonic speeds they should be 

regarded as approximations to be used when nothing better is available. 

Similarly, piston theory provides rough approximations to aerodynamic 

forces from oblique entry into a stationary step gust; more accurate results 

would be exceedingly tedious to obtain. Followng the pattern of 

equations (A-12) and (A-13), the lift is quadratic in CI while the pitching 

and rolling moments are cubic in o, and their formulae change whenever a 

vertex of the planform enters the gust. Let li, denote the inclination of 

the transverse axis y = 0 to the gust front (Fig.lc). Then the following 

numerical procedure is recommended. 
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(1) Evaluate and place III increasing order the quantities 

the normal distances from each of the six vertices to the gust front at 
o = 0 as it passes the origin (Fig.la). Label them 

h, = oj COB J, (n = 1,2,. . .6) . (A-14) 

(2) Consider each strip on 40 < on+1 as traversed by the gust. It con- 
tains a trapezium of planform with vertices 

(X *l’Y,l) ’ Cxn2’yn2) ’ (xn+l,l’yn+l,l) ’ %+l,z’yn+1,2) ; 

because of the reflex angle at (c,,O) a second trapezium can appear when 
O<$<A t’ the angle of sweepback of the trailing edge. Then calculate 

h - h n+l n = (xn+l 1 - ~~1) ~0s JI - (y,+l 1 - y,l) sin J, , 
(A-15) 

= (X n+1,2 - x*2 ) ~0s * - (Y,+~ 2 - yn2) sin * 
I 

. 

With the gust front at 

0 = (1 - X)0, + AO,+1 (0 4 x < 1) (~-16) 

evaluate the length of strip 

9. = (1 - h)L, + Aen+ 

where for each n 

lln = (Xn2 - Xnl) cosec 11, = (Y,* - Y,l) set * 

(A-17) 

(3) Evaluate the contributions to lift, pitching moment (x0 = 0) and rolling 
moment from the region between on and o in the respective formulae 

. 
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r  

i 

6cL X(h,+l - hn) 
-= 
C 2s [ “n +a1 I 

L.= 

6C 
2 = - 

A@,+1 - hn) 

C Lm 2s: 
(Xnl + xn2) (En + e) 

+; h(x tl+1,1 + x n+1,2 - Xnl - Xn2)@* + 2E) 1 (A-19) 
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(~-18) 

and 

6% X(h,+l - hn) 
- = - 
cLm 4ss (Y,l + Yn2) a* + i) 

++ X(Y n+l,l + Y,+~,~ - ynl - yn2) (an + 29,) 1 > (A-20) 

where CL- = 2Q1(0) is the final lift coefficient. 

(4) Substitute X = 1 in equations (A-18) to (A-20) to deal with the com- 

plete strips and calculate 

cL n-l h 
kl(o) = - = 1 

u+l 
-h 

=L 

cLm 2s u [ ll” + i”+ll + - , (A-21) 
u=l CLm 

C “0 6C n-l h -h 
-.% = :kl(u) +m- 
CLm c cL- 

c 
u+l 

ll=l 12s: 
lJ [ (xul + xu2)Wu + 11”+1) 

+ (x u+l,l +X u+1,2)(iu + 2eU+,,1 (A-27.) 

and 

5 6cQ n-l h u+l -z. -- 
cLm cL= 

1 
Ll=l 

24;shu [ (Yul + Yu2)m” + ““+1) 

+ (Y u+l,l + y,+1,2)(iu + 2L”,l)l * (A-23) 

Although this general procedure applies to an arbitrary straight-tapered 

swept wing and to any inclination of the gust front, the first two stages vary 

considerably according to the geometry. Naturally the number of strips ~111 be 

reduced when two vertices enter the gust simultaneously. The illustrative 
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values III Table 6 are not sufficient to define the curves against o, because 

each change of Interval o n <O <on+l introduces discontinuities in 

curvature. Moreover, there can be sudden changes of slope when an edge of the 

planform colncldes with the gust front. The quantltles from equations (A-21) 

to (A-23) are plotted in Figs.8 to 10 for the planform of Fig.la, and these 

results are discussed in section 4.3. 

. 
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Table 1 

COMPLEX LIFT Q, FROM A SINUSOIDAL GUST OF WAVELENGTH 2n& 

Present theory 
M = 0.4 

0 2.0979+i 0.0000 

0.2484 1.8203+i 0.7414 

0.5000 l.l705+i 1.3878 

1.0257 -0.6414+i 1.6289 

1.6085 -1.812O+i 0.2473 
2.2936 -1.0749-i 1.3584 

3.1569 0.3906-i 1.0844 

4.3451 0.2424-i 0.1631 
5.1516 o.o659+i 0.0185 

6.1957 -0.2405+i 0.3374 

Present theory 
M = 0.8 

2.5505 + i 0.0000 

2.2255+i 0.6627 
1.5915+i 1.3647 

-O.O312+i 1.9127 
-1.2496+i 0.9746 
-0.9798-i 0.3365 

0.0384-i 0.3352 
-O.O808+i 0.0737 
-O.O361+i 0.0090 
-o.l632+i 0.1483 

Piston theory 
M = 0.8 

2.5000 + i 0.0000 

2.3107 +i 0.8849 
1.7761+i 1.6104 
0.1153 +i 2.0871 

-1.1629 +i 1.0795 
-0.8829-i 0.3025 
0.1154-i 0.2719 

-0.0944+i 0.0778 
-0.0170-i 0.0374 
-O.O545+i 0.0843 
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Table 2 

REAL PART OF PITCHING MOMENT -Q; FROM SINUSOIDAL GUSTS 

v 

0 -2.6398 
0.2484 -2.2248 

0.5000 -1.2414 
1.0257 +1.3577 
1.6085 +2.4854 
2.2936 +0.4797 
3.1569 -1.3626 
4.3451 +0.0787 
5.1516 -0.0847 
6.1957 +0.3302 

T Present theory 

xo = 0 

M = 0.4 M = 0.8 

-3.2483 
-2.7522 
-1.7202 
+0.9110 

+2.4184 
+1.1232 
-0.6884 
+0.1648 
-0.0214 
+0.2022 

T 

M 
- 
0.4 
0.8 

Any 
- 

Present theory 

"0 = Xac 

M = 0.4 

0 
+0.0657 

to.2314 
+0.5506 
+0.2054 
-0.8729 
-0.8711 
+0.3837 
-0.0019 
+0.0275 

M = 0.8 

0 
+0.0823 
+0.3068 
+0.8712 
+0.8268 
-0.1248 

-0.6395 
a.0619 
-0.0674 
-0.0056 

Puton theory 
M = 0.8 

x0 = 0 

-3.6792 
-3.3294 
-2.3500 
+0.5720 
+2.4208 
+1.1547 
-0.7481 
+0.2319 
-0.0613 
+0.0363 

“0 = Xac 

0 
+0.0713 
+0.2638 
+0.7417 
+o. 7094 
-0.1447 
-0.5784 
+0.0930 
-0.0863 
-0.0439 

1 

. 



Table 3 

RATIO OF TRANSIENT TO FINAL LIFT AND PITCHING MOMENT 'x0 = 0) 

AFTER NORMAL ENTRY INTO A STEP GUST 

0.25 
0.50 
0.75 
1.0 
1.5 
2.0 
2.5 
3.0 
4.0 
6.0 
8.0 

Present theory 
M = 0.4 T Present theory 

M = 0.8 1 Piston theory 

kl k2 kl k2 kl 

-0.078 -0.027 -0.009 -0.030 0.014 

-0.106 -0.054 0.014 -0.048 0.056 
-0.096 -0.078 0.074 -0.040 0.126 
-0.046 -0.092 0.168 0.004 0.224 
0.234 0.036 0.447 0.235 0.504 

0.636 0.431 0.732 0.590 0.795 

0.941 0.909 0.912 0.890 0.978 

0.964 0.965 0.939 0.938 1.000 

0.976 0.971 0.955 0.956 1.000 

0.987 0.985 0.980 0.980 1.000 
0.994 0.994 0.990 0.990 1.000 

k2 

0.002 
0.013 
0.043 
0.101 
0.342 
0.685 
0.962 

1.000 
1.000 
1.000 
1 .ooo 

. 

r 

. 



Table 4 

LIFT RATIO kl FROM A NORMAL GUST WITH RAM? LENGTH X : 

A =2 
g 

xg = 4 x 6 = 
g 

A 8 = 
g ig = l2 i = 16 

g 

0 0 0 0 0 0 0 

0.5 -0.001 0 .ooo 0.000 0.000 0.000 0.000 

1.0 0.019 0.009 0.006 0.005 0.003 0.002 
1.5 0.094 0.047 0.031 0.023 0.016 0.012 
2.0 0.242 0.121 0.081 0.061 0.040 0.030 
2.5 0.452 0.226 0.150 0.113 0.075 0.056 
3.0 0.665 0.342 0.228 0.171 0.114 0.086 
4.0 0.916 0.579 0.386 0.289 0.193 0.145 
5.0 0.955 0.810 0.546 0.410 0.273 0.205 
6.0 0.969 0.942 0.709 0.532 0.354 0.266 
7.0 0.980 0.967 0.867 0.655 0.436 0.327 
8.0 0.986 0.978 0.957 0.778 0.519 0.389 

10.0 0.992 0.989 0.983 0.966 0.684 0.513 
12.0 0.995 0.994 0.991 0.986 0.850 0.638 
16.0 0.997 0.997 0.996 0.995 0.989 0.887 

. 

f 



Table 5 

PITCHING MOMENT RATIO k2 FROM A NORMAL GUST WITH RAMP LENGTH h i 

X8 = 2 xi5 = 4 hg = 8 

0 0 0 0 
0.5 -0.007 -0.004 -0.002 
1.0 -0.016 -0.008 -0.004 
1.5‘ 0.010 0.005 0.002 
2.0 0.113 0.056 0.028 

2.5 0.309 0.151 0.075 
3.0 0.549 0.267 0.133 
4.0 0.894 0.504 0.252 

5.0 0.956 0.752 0.372 
6.0 0.969 0.932 0.494 
7.0 0.979 0.968 0.617 

8.0 0.986 0.978 0.741 
10.0 0.992 0.989 0.961 
12.0 0.995 0.994 0.986 
16.0 0.997 0.997 0.995 

\ = 16 
8 

0 
-0.001 
-0.002 
0.001 
0.014 
0.038 
0.067 
0.126 
0.186 
0.247 
0.309 

0.370 
0.494 
0.619 
0.868 
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Table 6 

LIFT AND PITCHING MOMENT RATIOS AND PITCHING AND ROLLING 
MOMENTS FROM OBLIQUE STEP GUSTS BY PISTON THEORY 

tan $ 

0.4107 

c* = At) 

0.7440 

(ji = A,) 

0.9107 

1.4107 

kl k2 
C 
m 
cL== 

ct - 
cLm 

1.000 0.3222 0.2099 0.1652 -0.0382 

1.250 0.4878 0.4017 0.1267 -0.0661 
1.500 0.6624 0.5907 0.1055 -0.0924 
2.482 0.8468 0.7786 0.1003 -0.0576 

3.464 0.9746 0.9572 0.0256 -0.0118 
3.964 1.0000 1.0000 0.0000 0.0000 

0.250 0.1285 0.1057 0.0335 -0.0312 

0.500 0.2640 0.2344 0.0435 -0.0622 

1.500 0.6260 0.5642 0.0909 -0.0971 

2.982 0.8395 0.7708 0.1010 -0.0600 
4.464 0.9820 0.9693 0.0187 -0.0086 
4.964 1.0000 1.0000 0 .oooo 0.0000 

0 0.1250 0.1405 -0.0229 -0.0417 
0.750 0.4346 0.4143 0.0299 -0.0956 

1.500 0.6133 0.5558 0.0846 -0.0985 
3.232 0.8369 0.7682 0.1011 -0.0609 

4.964 0.9842 0.9731 0.0164 -0.0076 

5.464 1.0000 1.0000 0.0000 0 .oooo 

-1.500 0.0312 0.0470 -0.0232 -0.0143 

0 0.3125 0.3464 -0.0499 -0.0885 
1.500 0.5870 0.5398 0.0695 -0.1008 
3.982 0.8314 0.7626 0.1012 -0.0625 
6.464 0.9886 0.9804 0.0121 -0.0055 
6.964 1.0000 1.0000 0.0000 0 .oooo 

f 

t 
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a 

A 

C(Y) 

c 

=R' 'T 

5 

C 
L' cLm 

C m' cw 

f 

h* 

ki(d 

m 

M 

N 

Qi (;) 

i 

Q,(3 

Q. 
1g 

s 

S 

t 

Ll 

w 

w 

wg 
w 

x 

“0 

SYMBOLS 

spanwise integration parameter in equation (26) 

aspect rat10 of planform; 2s/c 

local chord 

geometric mean chord; s/2s 

root chord, tip chord 

rolling moment coefficient in equation (32) 

lift/(jpU2S), Its steady-state value 

nose-up pitching moment/(JpLJ2Sc), its steady-state value 

auxiliary frequency parameter in equation (30) 

initial location of planform vertices (n = 1,2,...6) normal to 
gust front 

growth of lift (1 = 1) or pitching moment (i = 2) in 
equation (15) 

ki(u) from piston theory (where the distinction 1s necessary) 

lift per unit area/(ipU2) 

length of strip where gust front intersects planform 

number of collocation sections 

Mach number of flight 

number of chordwise functions in'equation (19) 

generalized _force (i = 1,2) due to smusoidal gust; 
Q;(v) + iQy(v) 

Q,(;) from piston theory (where the distinction is necessary) 

generallzed force due to step gust normallzed as in equation (18) 

sem-span of wulg 

area of planform 

time 

velocity of flight 

upwash velocity 

modified complex upwash III equation (25) 

velocity of uniform up-gust 

upwash velocity due to a sinusoidal gust 

distance aft of the origin (Fig.la) 

locatmn of pitchmg axis 
. 
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x 
ac 

X,(Y) 

%T 

x x nl' n2 

xPV 

Y 

y yn2 nl' 

yr 

Y, 

2 

=l(x,Y) 

rq, r q= 
6cL 

AP 

n 

8, er 

h 

x 
g 

A At a' 

; 

vf 

5 

P 

0 

0 
n 

* inclination of gust front to plane x = constant (Flg.lc) 

w circular frequency of oscillation 

SYMBOLS (concluded) 

locatIon of aerodynamic centre in equation (45) 

ordinate of leading edge 

ordinate of tip leading edge; XL(S) 

ordinate of points where gust front (0 = on) intersects plallform 

ordinate of collocation point in equation (28) (p = 1,2,...N) 

distance to starboard (Fig.la) 

ordinate of pants where gust front (0 = an) intersects planform 

location of loading section in equation (22) (r = l,Z,...m) 

location of collocation section in equation (28) (v = l,Z,...m) 

distance upwards (Fig.lb) 

force modes (1 = 1,2) III equations (24) 

loading coefficients in equations (19) and (21) 

contribution to CL in equation (A-18); similarly 6CQ, 6C 
m 

lift per unit area 

spanwise ordnate y/s 

angular spanwise parameter in equation (23), (22) 

auxiliary variable for o in equation (A-16) 

gust gradient distance as a fraction of c 

angle of sweepback of leading edge, trailing edge 

frequency parameter WC/U 

particular value of Z associated with the variable f 

chordwise variable x/c 

density of air 

location of gust front; nondxnensional tune Ut/c 

ordered values of u when planform vertex enters gust 
(n = 1,2,...6) 

indices of polynomial S"nT representative of oscillatory mode 

angular chordwise parameter in equation (ZO), (28) 

i 

E 

,. 
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THE CALCULATED GROWTH OF LIFT AND MOMENT ON I 
A SWEPT WING ENTERING A DISCRETE VERTICAL GUST I 
AT SUBSONIC SPEEDS I 

I 
1 Unsteady aeradynamlc forces on a ,“,“s due 1” a ““lfor”, step gust are expressed as a s,“e 
II trmdom of ,hoSe due to smusmdalgusts over the spectrum of v,aveIe”@h The smu- 

; 

, soldalgusts are tieated by subsoruc bf,q-surface theory unW the wavelen& becomes I 
, so malI as to demand excessne terms m the chordwlse Ioadlng Beyond ,ha, the sub- 
1 st,tu,mn of ~1st”” theory LS d,scussed for a w~“g reprerenfabw of design for s,,bro”,c 

_; 

f CNISC LSt and pltchlng “mmen, are calculated for “onnal entry m,” a I 
“umber 0 4 and 0 8, w1t.h reasonable success ITS the lane, case 7 

gust at Mach 
I The results “I small 

; 

I distances of pene~atm” are examned cn,~calIy It IS recommended that the propor- I 
I tmnal growth of aerody”a”uc force be taken between the results of plsto” theory and 

the present method for small dntances before appraacbmg the Latter result. wh,ch leads 
/ 

! t” the conec, asymptotw behanour SO”” after the wmg IS completely immersed m Ule I 
’ / gust The mvestlgation ends wth some alculatmns by the present method for “onnal 

entry mfo a ramp gust and by pl~ton theory for obbqque e&y n,,o a step gust 
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