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SUMMARY

Unsteady aerodynamic forces on a wing due to a uniform step gust are
expressed as a sine transform of those due to sinusoidal gusts over the spectrum
of wavelength. The sinusoidal gusts are treated by subsonic lifting-surface
theory until the wavelength becomes so small as to demand excessive terms in the
chordwise loading. Beyond this, the substitution of piston theory is discussed
for a wing representative of design for subsonic cruise., Lift and pitching
moment are calculated for normal entry into a step gust at Mach numbers 0.4 and
0.8, with reasonable success in the latter case. The results for small distances
of penetration are examined critically. It is recommended that the proportional
growth of aerodynamic force be taken between the results of piston theory and the
present method for small distances before approaching the latter result, which
leads to the correct asymptotic behaviour soon after the wing is completely
1mmersed in the gust. The investigation ends with some calculations by the
present method for normal entry into a ramp gust and by piston theory for oblique

entry into a step gust.

* Replaces RAE Technical Report 72010 - ARC 33854
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1 INTRODUCTION

The study of aerodynamic forces on an aircraft in level flight in
response to a sharp—-edged up-gust is rightly associated with the name of
K’dssner1 (1936), whose original solution to the problem of a uniform gust in
twodimensional incompressible flow opened up an extensive field of research.

The Kdissner function for the growth of 1ift in terms of the distance travelled
into the gust has been determined under more general conditions, and an account
of the developments up to about 1955 is given by Lomaxz. He refers to
theoretical studies in twodimensional compressible flow and in threedimensional
supersonic flow and to the lack of solutions for threedimensional subsonic flow.
Considerable difficulties have subsequently been encountered in seeking
numerical solutions for wings in subsonie flight. On the assumption that linear
principles can be applied, there are several distinct approaches to this aeroc-—
dynamic problem, most of which involve integrals of superposition over the
frequency spectrum (section 2). A promising method from the numerical stand-
point is to combine results for sinusoidal gusts of wavelengths from zero to

infinity.

In practical applications to transient aircraft response, Mitche113’4 has
introduced a Fourier transform method to avoid the direct evaluation of the
Kussner functions. Whilst such an approach is highly desirable, it may tend to
gloss over any inaccuracies implicit in the treatment of the aerodynamiecs. It
therefore remains necessary to b; able to examine the forcing terms due to the
gust, as derived from the available oscillatory aerodynamic data. This Report,
being a detailed study of the accuracy in calculating these terms, makes no
further reference to aircraft response and excludes all structural considera-

tions; it concerns the dynamics of the air and not of the aircraft.

The linearized lifting-surface method of Ref.5 is used because of its
capability up to frequencies outside the flutter range. However, limitations
do arise at very high frequency (section 3.1) and the hope is that in this
extreme range it might prove satisfactory to substitute piston theory
(section 3.2). Imperfections in this procedure are readily detected and
recelve critical discussion {section 3.3) with serious implications at small
Mach number. Application is made to the planform in Fig.la of aspect ratio 6,
taper ratio 1/3 and mid-chord sweepback 30° at Mach numbers of 0.4 and 0.8
Very few previous attempts, if any, have been made to evalgate the gust-induced
loading on such a planform, chosen to be typical of design for high subsonic

cruise.



The basic calculations for sinusoidal gusts are built into results for a
normal step gust, that is, a stationmary uniform up-gust with its front in a
plane normal to the flight path (section 4.1); the most precarious part of the
calculation concerns small distances of penetration. It 1s a simple matter of
superposition to form a normal ramp gust (Fig.lb); 1n the results, sc deduced,
the imperfections become much less noticeable (section 4.2). The case of an
oblique step gust with arbitrary inclination of the vertical gust front to the
flight path (Fig.lec) is only considered qualitatively by piston theory
{section 4.3). The normalized Kussner functions then show no effect of Mach
number but are expected to become increasingly unreliable at the lower speeds
of flight.

2 CHOICE OF METHOD

Consider a wing in level flight at wvelocity U inclined at an angle vy
to the normal to the vertical front of an up~gust of uniform velocity wg. In

the notation of Fig.lc, let

X -y tan y = gc (1)

define the gust front relative to the wing of geometric mean chord c after

its leading apex (or origin of planform) has travelled a distance
ge = Ut (2)

since entering the gust at time t = 0. Then the boundary condition on the

wing is simply

w o= wg (x -y tan ¥ < UE)]
- (3)
w = 0 (x - y tan ¢ > oc)
In the following treatment of this boundary condition it is convenient to
choose the origin so that no part of the planform has entered the gust when
g = 0. By virtue of the well-known identity
.[ §l£;£§ dx = +lv according as b > or <0 , (4)
0

with be = x - y tan ¢ * oc, equation (3) can be replaced by

1
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The two parts of equation (5) contribute equally to w in the region
X -y tan > - gc, while only the square bracket contributes to w = w
where x -y tan p <~ oc. In this latter range upstream of the wing the

behaviour of w 1s immaterial; therefore for o =2 0

wi = -Tl-r-fexp {1—_\_)- (x -y tan ¢|)] §—-1£_-U—Od\-) (6)
g o c v

and
1=1+£fexp%(x-ytaw)]ﬂ__‘zzd; )
wg u c v

OO

may be regarded as alternative expressions equivalent to equation (3) or (5).

The most straightforward approach to the evaluation of the unsteady wing
loading associated with equation (3) is first to solve the oscillatory problem
with circular frequency w = Uv/c for a sinusoidal gust with boundary

condition

<=

c

= exp {-l_i (x - y tan l]))} . (8)

Let Qi(s) be the corresponding coefficient of generalized force in some mode
of vertical displacement zi(x,y). Then the unsteady generalized force due to

the step gust

o

w 1 r Qi(G) sin vo _ ; [ Ql(\_)) cos vo _
ng(G) = ——Ugv[-i-; f ; dv + in(O) + E ‘ - dv

- -—00

i CF Qe -
Lz'le(O) + 2—1;7 f e wcdu]
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]
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. P QW -Q O .-
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is derived for ¢ >0 by superposition from equation (5). This is essentially
the form of Kussner function given by Drischler in equation (8) of Ref.6 and
used in his calculations. The results for normal gusts in subsonic flow in

Appendix A of Ref.6 are restricted to unswept wings with approximate expressions

a

= . n
Q. (v) - Q.(0) = iv) ———— (10)

1 i .
nb +1v
n

to represent the generalized force over the frequency spectrum. However, there
does not appear to be any justification for this form of series in compressible

flow when the frequency parameter is large.

An alternative approach, used by Drischler and Diederich in the appendix
to Ref.7, is to represent the boundary conditions of the step gust in terms of
those for leading-edge flaps with hinge lines parallel to the gust frent. From
a knowledge of the generalized force for flaps of various sizes in plunging
motion at sufficient values of the frequency parameter, it is possible to
evaluate a double integral for Qig(a). This 'plunging-flap' method has been
applied successfully to twodimensional problems, but it is less suiltable for
wings of finite aspect ratio. Although the downwash mode becomes independent of
frequency parameter, the discontinuity in boundary condition at the flap hinge

is a severe complication and a likely source of inaccuracy. Another scheme of

ot

calculation involves the reverse-~flow theorem, by which the sinusoidal-gust and
the plunging-flap methods can be shown to be equivalent. However, in the con-

text of equation {9), the reverse flow merely offers an alternative calculation

[11]

of Qi(G) with no obvious improvement. Nevertheless, for any particular mode
zi(x,y), there might be some economy in that the same set of solutions with
different v for the reversed planform could be utilized, whatever the gust

inclination .

Unlike the methods mentioned above for subsonic compressible flow, there
i1s one that involves a general relation between the downwash and the load dis-
tribution with arbitrary time dependence. In equation (15) of Ref.8, Drischler
presents a triple integral in one time and two spatial variables for w(x,y,t)
in terms of the unknown load distribution and its history. Although it is

claimed that the integral should lend itself readily to modern high-speed

a)

computing machines, the present author 1s not aware of any such application to
finite wings 1in compressibie flow. Apart from linearization, the equation is

all-embracing and remarkably compact. It 1s particularly instructive how the

i
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circular spatial region of integration relates to the travel of acoustic waves
from the pressure disturbances, as this physical feature of the aerodynamics is

guite unrecognizable in equation (9).

Because the recent development of a lifting-surface method for general
frequency in Ref.5 gave the opportunity to calculate Qi(;) with more
reliability than was possible formerly, the sinusoidal-gust approach has been
chosen for the present investigation. In place of equation (9), equivalent
expressions for Qig(c) are cbtained by combining equation (8) with the

alternative expressions (6) and (7) for w/wg to give respectively

w oot Q (v) sin vo
= _8 1 o
Qig U .[ = dv (11)
and
W . Q.(;) cos Vo
0, = l}i(O) * w[ - dv:I : (12)

With a change of notation from that of Ref.5, it is convenient to separate

Ql(s) into its real and imaginary parts by writing
- - { -
= ' s AN
Q]: (v) Ql(\)) + 1Qi vy (13)

where Qi(;) is an even function of v and Q;(G) is an odd function. The

normalized Kilssner function is used when the steady-state value
2&
o = '
Q. = = £ (14)

is non-zero; from equations (11) to (14) we write

Q. (o) QO .o
1 _ 2 1 sin vo .~
ki(o) = -ET_Q. =y [ 37 (%) - dv (15)
ig o 1
and alternatively '
FAle s

kl(o) cos_vg - (16)

I
—_
[
NI
Oox—,
Vo
e -
~~~
(=)
o
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M1tche119 has derived and calculated the transient forces from similar
equations. Equation {16) corresponds to equation {(8a) of Ref.9, while
equation (15) 1s equivalent to Mitchell's equation (8b) when the sign of the
integral is corrected. His technique is to truncate the upper range of integra-
tion in equations (15) and (16) in a careful manner, but this involves some
extrapolation beyond the values of v for which the theoretical data for Qi(;)
are reliable. It is important to note that, for small values of ¢ at least,
equation (16) gives ki(U) as the difference between two nearly equal
quantities and only small percentage errors in the integral can be tolerated.
The integral in equation (15) is less critical in this respect; it auto-

matically vanishes when o =0 and is therefore preferred to equation (16).

3 NUMERICAL PROCEDURE

The evaluation of equation (15) falls naturally into three parts. The
first stage 1s the calculation of Qi(;), the real part of the generalized
force 1n some mode zl(x,y) corresponding to the sinusoidal gust defined in
equation (8). While it is clear from section 2 that the formulation is
basically unaltered by the inclination of the gust fronmt, the calculations by
lifting-surface theory5 in section 3.1 are limited to the symmetrical case
¢ = 0, Being a collocation method, Ref.5 will inevitably fail if v is too

large. Rather than truncate the integral in equation (8), as Mitchell9 did, we

*)

approximate to the integrand by means of piston theory and seek to justify this

in section 3.2. Finally, in section 3.3, the accuracy of integration is

i

discussed and difficulties in reconciling equations (15) and (16} are brought

to light,

3.1 Sinusoidal gust

Conside1 the case of a normal gust when equation (8) reduces to

W ivx/c
5 = e . (17)
In applying section 4.2 of Ref.5 to the wing in Fig.la, the planform area

S = 2s¢ 1is taken as reference area and geometric mean chord ¢ as reference

length. Thus

1}

0 = - —= ff 2, (,9)L(x,y) dxdy (18)
28c g
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where the 1lift per unit area as a fraction of the dynamic pressure }pU" 1is

written as

N
8s cos (g - 1) + cos qb
1Y) = oy q£1 r,» in g (19)
with
x = x,(y) + fc(y)(l - cos ¢) . (20)

The planform has central rounding, as specified in section 5.4 of Ref.5, to
ensure that the leading edge xg(y) and chord c¢(y) have continuous second
derivatives. The N spanwise loading functions in equation (19) are expressed

as

2

m+ 1
T

Fq(y) =

nr~18

m
[F . z sin pe sin po (21)
1 q n=1 r

in terms of their values qu at the m collocation sections

rT
y =y = —scos(m+1) = 5§ cos Br (22)

and as functions of

8 = cos_l (— %) . (23)

We consider two force modes zi(x,y), namely

z. = - ¢ (lift)

. . , (24)
z2, = ~ (x - xo) (negative pitching moment)

where the pitching axis x = %5 will be either at the root leading edge

(xo = 0) or at the aerodynamic centre.
No attempt will be made here to describe the method of Ref.5 in any
detail. Suffice it to say that the modified downwash

ivx/c

W
T e (25)

v
u

corresponding to the loading in equation (19) is evaluated as a double

integral with



10
A = a(m+1) -1 (26)

spanwise integration points and is then equated to the value from equation (17)

ivx/c 2ivx/c
. xfe _ o2 x/c

at each of the mN collocation points given by
x = x = x(y)+ iy ) - cos 0) |
pv 2w v P
y =y, = - s cos (m :ﬂl) , v = 1()m r . (28)
e p = 1(L)N |

The resulting complex linear simultaneous equations are solved for the unknown
coefficients qu, so that the nondimensional generalized forces Qi can be
evaluated from equations {18) to (24). The procedure involves the three
arbitrary positive integers from equations (26) and (28), (N,m,a), each of
which must be large enough to achieve the desired numerical convergence. As a
computational aid to the evaluation of the required input data W/U from
equation (17), it proved convenient to use the output data w/U of

equation (25) resulting from the simpler input w/U = 1.

Guide lines for the selection of a suitable combination of integers
(N,m,a) are summarized by the following inequalities from section 4.3 of

Ref.5:

~
N > 2 +0g + 2
7"
m = 10
4sc ? i (29)
m > T + _stecﬂ.t
C
alm + 1) > (2N - 4)(1 + 24)

J

where the polynomial (x/c—:)g(y/s)T indicates the nature of the mode of oscilla-

tion and respectively s, c_, A and A dencte semi-span, root chord,

R’ 't
trailing edge sweepback and aspect ratio of the planform. If these inequalities

s

LY

Wk
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are satisfied, roughly three-figure accuracy should be obtainable. In the

present circumstances T =0 and m = 20 should suffice for the planform data
of Fig.la. The condition on N 1s less clear-cut, but if we aseign the value
o = 2v/m as being representative of equation (17), N = 6 together With14

= 5 would satisfy the conditions for frequency parameters up to v = .

Above v = 2 m, however, N 29 with a>9 would be required, aﬁd tﬁé com—

2
bination (N,m,a) = (9,20,9) exceeds the storage limit of the KDF9 computer 1n
the time- sharing mode and would otherw1se involve an excessive rueclﬁéittgé of '
about 3 hours. Although the problem of accuracy in the e\;r.aluatlc;;l:l::;i‘f)‘J Qi(v“ﬂ”“
is greatly aggravated by the large aspect ratio A = 6, this haé"§33é3§ 3T
O TR R T

lowered the value of v above which the program of Ref.5 ceases to be reliable.

Whatever the aspect ratio, some compromise in accuracy would be necessary.

Like the majority of the pitching derivatives for the same planform in
section 5.4 of Ref.5, the present calculations for M = 0.4 and 0.8 have been

made for a combination of 1ntegers (N m,a) = (6,15 4) that falls somewhat

: % ef Vv, b N
short of the conditions (29). The frequency parameters are taken fro& E £ o
', : ' ' } ' r ooy CIG
formula

-7 ! Lo
IS

- - <.t 3B banman

v = \Jf = i cot (20 tan (%) N JJ(BO)
. ‘ : VoL HOedO 3w
wanla QLo

such that the finlte-range pﬁg f € 10 covers the whole frequency spectrum
and the results for Q1 and r—Cjz 1ntTab1es 1 and 2 correspond to’ Trisvet o
f = 0 i, 1, 2, 3, 4, 5, 6, 6} and 7. From the study of convergence in Ré% % '
1t appears that the pitching derivatives begin to show 51gn1f1cant s
1naccuracies at v = 4.345(f = 6). The evidence in Table 6 of Ref.5 ié'!ﬁét‘”
the effect of increasing N above 6 1s more important than that of 1nc}éﬁélﬁg

a above 4 and may expose errors of the order 2Z. Moreover, Table 5 .ofi Ref.5"
indicates the possibility of similar changes in pitching derivatives when m

15 1ncreased above 15. It 18 envisaged that the value of N would HEEd‘EP-nf

greater to cope with the wavy mode of a sinusoidal gust than with the linea:

f
R N TR N

mode of pitching. However, the following calculations for M = Qfép apg”

= 3.157(f =

OGS
v srag ling

¢ 1@ DYuOoY

(N,m,a) Ql Q2(x0‘= 0) LU Tae

(6,15,4) | 0.3906 -1 1.0844 |1.3626 -1 0.7008

(7,15,4) | 0.3920 -1 1.0814 |1.3633 -1 0.6986 Crie. s
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suggest that N = 6 1s adequate up to that frequency parameter. Accordingly,
we use the data 1n Tables 1 and 2 with the proviso that they become less and
less reliable as v 1increases beyond the flutter range; thus the results for

the three highest frequencies are treated with reserve,

The real component of Q1 is plotted against v for M =0.4 and
M = 0.8 to produce the undulating full curves in Fig.2. There is a tendency
for the reversals of sign to occur at lower frequencies for the lower Mach
number. Comparable curves by Murrow et aZ.lO are available for a very limited
range of frequency parameter k = ﬁch/U. From the upper curves of Figs.Ze
and 2f of Ref.10, it is interesting to note that the real part of the lift for

M = 0.4 reverses sign at

v o= == = 1,42k = 1.1 when A = 4

and at about v = 0.6 when A = 9.43. For the same order of sweepback and
taper, the intermediate reversal point v = 0.85 from the present calculations
of Qi for A =6 confirms the trend that frequency effects are more pro-
nounced at the higher aspect ratios. On the other hand, the quarter-chord
sweepback of 33.5% is a contributory factor, as other results in Fig.2 of
Ref.10 show. Indeed the larger streamwise extent of the wing as a fraction of
the wavelength 2we/v of the sinusoidal gust would be expected to encourage
the undulations in the present Fig.2. The more important part of the frequency
range is adequately covered, and the remainder v > 4.345 is hardly expected
to influence the aerodynamic loading due to a step gust once the wing is

immersed.

3.2 Piston theory

The introduction of piston theoryll’l2

into the present discussion has a
threefold purpose. It is used 1n an attempt to offset the deficiencies of the
subsonic lifting-surface method in the upper range of frequency: it is a common
tool in calculations of gust loading in the absence of other theoretical data,
and here is the opportunity to judge 1ts effectiveness: it serves to provide
rough estimates of the aerodynamic forces induced by an oblique gust, which is

not covered by the present lifting-surface calculations.

The relevant equations from piston theory are derived in the appendix.

Although its applicability to oscillatory flow is subject to the severe

restrictions

e

e
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WM > 1
R (31)

AWM > 1

there must exist an upper range of frequency parameters i1n which the theory is
valid when M > 0. The nondimensional complex 1lift Ql(G) and the real part
of Qz(v) from equations (A-7) to (A-9) of the appendix are inversely
proportional to M and are evaluated for M = 0.8 in Tables 1 and 2.
Although it 1s fortuitous that Q{(O) is so close to the present lifting-
surface value for M = 0.8, the remarkable agreement between the two curves of
Qi(G) in Fi1g.2 at the high-frequency end encourages us to use piston theory
for the whole upper range v 2 4.345(f 2 6). The justification for this
procedure at the lower Mach number M = 0.4 1is less convincing, because the
conditions (31) for the validity of piston theory are more stringent and dis-
crepancies are apparent in the upper diagram of Fig.2. Nevertheless, the
appeal to piston theory is further supported by the fact that the frequent
changes in the sign of the real parts of equations (A-7) to (A-9) ensure that
their contributions to equation (15) in the upper range of integration are

minor ones.

With regard to the use of piston theory in 1ts own right, expressions
for the normalized Kissner functions kl(d) and kz(c) in the special case
¢ = 0 are derived as exact polynomials in ¢ 1in equations (A-12) and (A-13)
respectively. The formulae change whenever a corner of the planform enters
the gust. The corresponding functions for an oblique gust are less convenient
to formulate, but a procedure for their calculation is described in the
appendix in four stages through equations (A-14) to (A-23). The lift is still
guadratic in o, while the moments remain cubie functions. Without
prejudice to the argument in section 2, the origin is taken at the root
leading edge. Thus, when >»A2, the wing tip enters the gust while
o <0 (Fig.lc). The final equations (A-22) and (A-23) give expressions for
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where N
nose-up pitching moment about x = Xy
c = .
m %pUZSc
- . »
Cg _ port-—wing ugﬁ;olllng moment & . (32)
pU Ss
CLoo = 2Q1(0) 1s the final 11ft ceefficient

It is convenient to take the pitching axis through the aercdynamic centre
Xy = X such that QZ(O) = 0. Then both pitching and rolling moments can be
treated as transient functions that disappear as soon as the wing is fully

immersed in the gust.

3.3 Evaluation of integral

Irrespective of the undulations 1in Qi(G) for large G, the factor
sin vo 1n the integrand of equation (15) becomes highly oscillatory in this
region and complicates numerical integration, especially when ¢ 1is large. A
possible way round the difficulty is to express Qi(s) in the form of
equation (10) and thereafter use exact integration. This approach was rejected,

as 1t had been found unsuitable in a previcus investigation and as it did not

appear to be compatible with equations (4-7) to (A-9). Instead, numerical
integrations of two types were considered. Firstly, for small o, the whole
integrand was treated by Simpson's rule after transformation to the independent

variable f. Thus by equations (15) and (30)

10 ., - L
2 f Qi(v) sin vo dv
T QI(O) 3 df

kl(o) df , (33)

0

dv ™ Ui 2 {nf _ T T -2 m
& - 70 cot (%) sec (—?_—c—)) = m[cot(%)-l- 4v° tan (56)] . (38

The range O < f < 6 was handled by careful interpolation in Tables 1 and 2 to

where

give values in steps of }. Secondly, for large ¢ and G, consistent poly- s

nomials for Q{(v)/u were taken over the same intervals and exact integrations

with respect to v were formulated and evaluated. The discrepancies between

[l

the two methods were never very large, and the latter one was only found to be

necessary in a few instances.
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As explained 1n section 3.2, the range 5 < £ < 6 1is used to fair

Qi(;) into 1ts value from piston theory. Equation (33) is then re-written as

»

w =, - 10 =y =1 .-
Q: (v - Q:(v) - Q)
_ 2 i 510 Vo 2 i i sin vo QX ‘
; ki(o) = f Qi(o) —= dv + - [ Q{(O) — a df
¢ 0]
Q (0) 2 ? Qi(c) ) a{(;) sin vo dv

#]

where ai(;) and Ei(o) here denote the quantities from piston theory in
equations (A-7) to {(A-9), (A-12) and (A-13) to distinguish them from those
calculated by the present method. While most of the calculations have been
based on equation (35), the upper limit of integration is arbitrary. It must
be neither so low that the approximation Qi(;) = 6{(3) is unacceptable at
that limit, nor so high that the calculated values Qi(v) become unacceptable
below that limit. It 1s already apparent from Fig.2 that this dilemma may be
troublesome at M = 0.4, 1if not at M = 0.8.

As explained at the end of section 2, the alternative equation (16) for
ki(c) is regarded as having less numerical potential than equation (15). The

corresponding alternative to equation (35) is

cos ;D’ _éi
i -
q© R

6 -_— - -
Q ) QY (v) = QV(v)
2[ LS L df (36)

. ki) = 1 Q(O)[k(o) 1 -=

and the consequences of 1ts direct calculation will be examined briefly in

section 4.1.

Particular attention is now given to the identity that follows from the
limits of equations (15) and (16) as ¢ tends to zero. Equation (15) gives
ki(O) = (@, and the resulting integral from equation (16) must satisfy the

condition

b Q1.l (;)
2 1 - o
in(O) .[ — dv = 1 . (37)
: 0

.
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It can be verified that equation (A-7) from piston theory satisfies
equation (37) and indeed that the integral lies within 17 of its correct value
if the infinite upper limit 1s replaced by any value of v > 3. Each set of

data in Table 1 is used to evaluate the 1i1ft integral (i = 1) with variable

L]

upper limit, as tabulated below.

v | Value of integral (37) for upper limit v
Method

M 1.026 1.609 2.294 3.157 4,345

Piston theory Any 0.805 i.001 1.033 0.998 0.999
Present theory | 0.8 [ 0.639 0.815 0.841 0.804 0.802
Present theory | 0.4 | 0.795 0.946 0.878 0.740 0.700

The situation for M = 0.8 1is easy to visualize in relation tc piston theory.

The steady-state quantity Qi(O) is much the same in the two cases and,

throughout the range 0 < v < 4.345, QI(V)-< Q;(v) from piston theory.

Accordingly the integral from the present theory 1s on the small side. To recoup

the additional amount 0.197 from the range v > 4.345, 1t would seem necessary

not only that [Q:(G) - 5;(;)] should change sign, as it does in Table 1, but

also that this positive difference should continue to grow before tending

slowly, perhaps logarithmically, to zero. This would seem to contradict the .
validity of piston theory until the frequency parameter is several orders of
magnitude higher than the value 4.345. The situation for M = 0.4 1in the table
is even less satisfactory. Because we place less reliance in piston theory at
this lower Mach number, it 1s perhaps easier to accept the deficit of 0.300 that
is required to satisfy equation (37). This deficit, however, is the value

kl(o) as calculated from equation (36), which must clearly be rejected unless

¢ 1is large enough to prohibit significant contributions from the upper range of
frequency 6 < £ < 10. It 1s recognized that inaccuracies in QE(G) at high v
probably 1mply 1naccuracies also in Qi(v), so that considerable care must be
taken in interpreting the calculated Kussner functions for small o £from

equation (35).

Rigorous justification of the present method for small as well as large o

&

would demand overlapping lower and upper ranges of Vv where respectively the
lifting-surface method and piston theory apply. The failure to satisfy

equation (37) implies a gap between these ranges, which can only be bridged by

i»

more elaborate collocation solutions over a substantial range of high frequency
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parameter. The 1dentity (37) seems to pose the ultimate challenge to any who
seek to improve the numerical techniques of solving the linear problems of a

rapidly-oscillating lifting surface in subsonic flow.

4 DISCUSSTION OF RESULTS

The method of calculation, expressed i1n equation (35), has been applied
to the tapered swept wing of Fig.la entering a normal step gust. The results
for lift and pitching moment are presented and appraised in section 4.1; con-
sideration is given to the rate of propagation of disturbances on the wing and
to anomalies in the calculations for small time. The corresponding functions
for a normal ramp gust are derived in section 4.2, and in section 4.3 the case
of an oblique step gust is considered approximately on the principle of piston

theory.

4.1 Normal step gust

The Kiissner functieoms, kl(c) for 1lift and kz(c) for pitching moment
about the axis through the root leading edge, have been calculated from
equation (35) for the two Mach numbers 0.4 and 0.8, and also from
equations {(A-12) and (A-13) of piston theory which are more suitable for higher
Mach numbers., The results in the range o < 8 are listed in Table 3 and
presented graphically in Figs.3 and 4. The three regions of particular

interest are

¢ small, when most of the wing has still to enter the gust,
o A~ 2.73, at which the wing becomes fully 1mmersed,

o large, when the steady state 1s approached asymptotically.

We consider these in the reverse order, starting with demonstrable precision

and ending with inconsistencies that are difficult to interpret.

The only complication where o 1is large is that the integrand of
equation (35) becomes highly oscillatory. Special care in numerical integra-
tion is needed with resort to the second procedure mentioned below equation (34).
However, the factor sin (;d)/; ensures that the result is insensitive to the
problematical values of Qi(;) when v is large. The asymptotic form of
ki(0)13for subsonic flow is known exactly from the analysis of Garner and
Milne ~. Equation (26) of Ref.l13 (with subscript J omitted for a uniform

gust) gives
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k() ~ 1- r 000 . (38)

g

Thus to order 0_2 the asymptotic curve of ki(c) 1s independent of 1, and
we obtain !

2

for M 0.4 , k (o) 1-0.50086_}
2

_ (39)
for M = 0.8 , ki(o) ~vo 1 - 0.6089¢

When results from Table 3 and equations (39) are compared in the following

table, the agreement 1s fairly convincing.

y i Table 3 Eqn. (39)
k@ [k | ¥
0.4 | 6 |0.987 [ 0.985 0.986
0.4 | 8 10.994 | 0.994 0.992
0.8 [ & [0.980 | 0.980 0.983
0.8 | 8 [0.990 | 0.990 0.990

I+

A corollary to equation (38) is that the transient pitching moment about the

. . 3 .
aerodynamic centre is only of order o as the steady state is approached.

s

The region o = 2.73 1s where discrepancies between the present method
and piston theory would be expected. Piston theory predicts that the steady
state is reached as soon as the whole wing is immersed in a uniform step gust.
Thus in Figs.3 and 4 the broken curves from piston theory lie above those con-
ditioned to equations (39), but the discrepancies are less than 10%. In accord
with these asymptotic results, the values ki(2'73) for M = 0.8 1lie below
those for M = 0.4 while piston theory, the true limit as M =+ «, indicates a
reversal of this trend once supersonic speeds are reached. It is interesting
to note that, for both lift and pitching moment, the curves with ™M = 0.4 and
M = 0.8 intersect near ¢ = 2.3 or 2.4, so that in the lower range o <2

the trend with Mach number is progressive. :

In the attempted calculations for smaller o, the function Q;(G) for

large v plays an increasingly important role. The expedient of using piston

1]

theory to determine Qi(;) with v > 4.345 may appear to be quite promising
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for M = 0.8 1in section 3.2, but in the final paragraph of section 3.3 it
becomes questionable not only for M = 0.4 but to a lesser extent for

M = 0.8. The results from equation (35) in Table 3 show negative values of

k, and k, at o = 0.25, which are more persistent for pitching moment than

1 2
for lift and more pronounced at the lower Mach number; indeed, k, appears

to remaln negative at M = 0.4 until v>1.4. The unlikely phenimenon of
negative kl(o) in Fig.3 is very slight for M = 0.8 and can practically be
overlooked, but it 1s so marked for M = 0.4 that calculations for v < 1.5
can probably be discounted. With reference to Fig.4, on the other hand, it

will be argued that small regions of negative kZ(U) are at least plausible,

As remarked in section 2, there exists in Ref.8 a general formulation of
the linear problem with arbitrary time—dependent loading, in which the range
of travel of acoustic waves from the pressure disturbances is clearly
represented. Numerical sclutions that preserve this feature are difficult to
realize, and the present method founders in this respect in so far as
equation (19) 1s adopted for the load distribution, Thus, an exceedingly
large number of chordwise terms would be needed to maintain an approximation
to zero loading until such time as a disturbance is physically possible. By
way of illustration, a formula analogous to equation (35) has been used to
evaluate the local loading at a few points on the root chord whenm the gust
penetration, o = 0.5, corresponds to the neéatlve minimum of kl(c) as
calculated for M = 0.4 1in Fig.3. The approximate results for three chord-

wise locations are given in the following table.

Eqn. (20) 2(x,0) when
with y =0 g = 0.5

) x/c |M=0.4 |M=0.8
0,257 0.355 3.5 4.5
0.507 0.863 =-3.0 1.1
0.75m 1.370 -3.1 -1.5

It 15 easlily seen that £(x,0) should vanish in the region

1.250 when M

1

>

TR RET

i
M (40)

It ]
o L&)
© o~
A s

0.625 when M
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beyond the limit of disturbances propagated from the origin at the instant

¢ =0. For M = 0.4, negative loading 1n the range

< 1.250

Q
]
o
v
A

R RES

1s possible, but the large negative value at x/c = 1.370 1s quite unrealistic
and doubtless provides an important contribution to the negative kl(c).
However, a moderate negative value of £(x,0) at x/c = 0.863 might be
expected to arise from positive downwash induced aft of the gust front. By
contrast, when M = 0.8 such downwash 1s restricted to the small region

0.5 < < 0.625 ,

ollm

and the total contribution to kl(O.S) from the loading further aft would
appear to be reasonably small, if not correctly zero. At all events, the few
tabulated values of §(x,0) are compatible with kl(O.S) as shown in Fig.3
and do not allay suspicion of the result for M = 0.4. With regard teo the
negative values in Fig.4, kz(o) would be expected to lie below the curve
predicted by piston theory, partly because of negative loading induced between
the gust front and the rearward emvelope of acoustic disturbances from the

wing, and partly because the loading ahead of the gust front does not reach

X

its steady state instantaneously. Since piston theory gives kz(o)

. 3 . . .
proportional te ¢~ with zero gradient and curvature at o = 0, the possi-

e

bility of a small region of negative kz(o) cannot be ruled out, but the true

result would be difficult to establish.

As a further indication of the order of accuracy of the calculated
kl(O.S), the upper limit of integration in equation (35) has been varied; the
consequence of using the less reliable equation (36) has also been examined.
From Fig.2 it appears that the difference function Qi(;) - ﬁi(G) in
equation (35) is trivial when v > 4.345(f > 6) and M = 0.8. At M = 0.4,
however, there are pertinent differences between the calculated oscillatory

lift from the present method and pisten theory, and we obtain the following

results,

[I¥]
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Values of kl(O.S) for M =0.4
Upper limit

of integration Equation (35) Equation (36)
£f=6 -0.106 *0.171
£ o7 0.072 +0.163

The excessive positive values from equation (36) must be rejected like the
corresponding result kl(O) = 0.300 discussed at the end of section 3.3. Ewven
though the calculations from both equations (35) and (36) are consistent in
predicting dklldo < 0, this result is unconvincing, because the gust is
expected to produce a positive rate of growth of 1ift. The only glimmer of
success in the above table for ¢ = 0.5 1s the improvement with the longer
range of integration in equation (35), which suggests a preference for the
unconverged results from lifting-surface theory in the range 4.345 < v < 6.196
rather than those from piston theory for M = 0.4. However, once the wing is
immersed 1n the gust {o > 2.73), the magnitude of the change in kl(o) due
to the increase i1n the range of integration falls below 0.0l and, even for

M = 0.4, the present calculations are validated by equation (39).

We may conclude that in the range 0 <o < 1.5 the functions kl(c)

and kz(c) should lie somewhere between the curves from piston theory and

the present method. Above ¢ = 1.5, when about half the wing is immersed in
the gust, the functions should be approaching the latter curves, which seem to
be adequate for all practical purposes in the upper range o > 2. This inter-
pretation of the present method presumes that the flow is sufficiently com~
pressible, The relative success of the calculations at M = 0.8 as opposed
to M =0.4 1mplies that the influence of the upper range of v (> 4.345)
diminishes as Mach number increases; the same 1s true as gust penetration
increases. The truncated upper limit of integration in equation (35) should
probably satisfy some condition Mov > 4, say, on the frequency parameter
based on penetration distance and the speed of sound. Thus the present method
would suffice for o > 1/M, while for very small o piston theory might be

the more reliable guide to the Kussner functions for 1lift and pitching moment.

The foregoing discussion relates to subsonic compressible flow and to swept
wings of high aspect ratic, such that the streamwise length of planform is

large relative to the geometric mean chord. In the lifting-surface calculations
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the difficulties of numerical convergence for high v are aggravated by the
need for large numbers of spanwise, as well as chordwise, terms; all three
parameters (N,m,a) need to be fairly large (section 3.1). Let us compare the

situation with that for wings of low aspect ratio in incompressible flow, and

‘-

in particular for the planform considered by Mitchell in Fig.la of Ref.9. 1Im
Fig.4 of Ref.9, he establishes consistent results for ki(U) from the sine and
cosine transforms corresponding to the present equations (15) and (16) and thus
satisfies the identity (37) well enough. Moreover, there 18 no suggestion of
negative ki(c); on the contrary, the initial growth of 1lift in Fig.5 of

Ref.9 1s far in excess of the ratio kl(c) that would be predicted by piston

theory and relatively close to the result according to slender-wing theory

2
_ | s
kl(O) = [‘—;—] s (41)

where s(o) denotes the local semi-span at the gust front. Although the
infinite rate of travel of acoustic disturbances might suggest a greater
susceptibility to negative lift aft of the gust front, this effect is precluded
by the principles of slender-wing theory which must apply to a considerable
degree. Likewise, the above assertion that the influence of the upper range of
v increases as Mach number decreases may well be true for high aspect ratio,
but untrue for low aspect ratio. By the inequalities (31) both low aspect
ratio and low Mach number i1nvalidate piston theory and its use in the present
method, which cannot be relevant to the example congidered by Mitchell. By the
inequalities (29), on the other hand, there are weaker restrictions on the
parameters ®wm and a required in the lifting-surface method of Ref.5, and for
moderately low aspect ratio this can probably be applied up to a frequency
parameter at which it is safe, as Mitchell did, to truncate the range of inte-
gration in equation (15). There seems to be no reason why, under linear con-
ditions, the influence of compressibility should not ease calculations for low

and high aspect ratio alike.

4.2 Normal ramp gust

Consider a stationmary ramp gust with gradient distance Agz, as sketched

in Fig.lb. In the special case ¥ = 0 the boundary condition in place of

o

equation (3) is
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w o= wg xé(o-lg)?‘
w < _ -
w = TE(U_:) (o0 - X )e<x<oc L . (42)
g
g c
w = 0 e € x
J
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§x _‘f_g
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g

c

with delay times from EE/U =0 to J\gE/U. Thus the Kissner functions of

section 4.1 can be generalized in the form

1
ki(d,J\g) Tg f ki(cf - £)dE <0< )tg
0

N . (43)

]
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1
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89

where ki(o - £) 1is given in Table 3 or by equations (39) if o -~ £ > 8, More

conveniently

[+2
k,{c,A ) = i[ k.(g")do' 0o |
1 g A 1 g
€0
} »  (44)
a
= i ¥ ¥
= 3 ki(c }do ?\géc
& 52 J
g

where the integrals are evaluated by Simpson's rule from the knowledge of
ki(c') for o' = 0(0.25)8 and by analytical integration over the range

8o €0, if necessary.

The functions kl(U,lg) and kz(o,}\g) for lift and pitching moment
about the root leading edge have been calculated for M = 0.8. The respective
results in Tables 4 and 5 cover the range o < 16 for nondimensional gradient

lengths )\g =2, 4, 6, 8, 12 and 16. Alternative graphical presentations of‘
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kl are found in Figs.5 and 6. If k1 is plotted against o, as in Fig.5,
the limiting case of a step gust (Ag = 0) from Fig.3 can be included; the
effect of increasing Ag is seen as a gradual flattening of the curve, so that
it more nearly approaches the steady state k1 =1 at the instant

g = Ag + 2.73 when the whole wing has traversed the ramp. The curves against N
o/lg in Fig.6 emphasize the other limiting case Ag = =, when the lift ratio

has the same shape as the ramp. The growth of 1lift in the early stages can now

be calculated with greater confidence, and the present results could easily be

extended to gusts of arbitrary profile and finite length.

It is interesting to present results in the form of a transient pitching

moment about the aerodynamic centre. The respective pitching axes

ac jucl
= — = - = (45)
.~ ,©

%o X c Q, ()
c

from the present methoed at M = 0.4 and 0.8 and from piston theory are given

in Table 2. In accord with the definitions in equations (32),

C X
25 [k, () - k,(0)] (46)

m_ .
CLa c

£

is calculated from Table 3 for a step gust and plotted against ¢ in Fig.7a.

The result for M = 0.4 15 discredited, though there may be some substance in

i»

the delayed maximum at o = 1.8, The virtual disappearance of Cm/CLOD at

¢ = 2.73 1is a consequence of equation (38), as remarked below it. Hence piston
theory gives the right qualitative picture in Fig.7a and predicts the maximum
value for M = 0.8 within 12%. The other curve in Fig.7a illustrates the
smaller maximum in the case of a ramp gust. Even for the fairly steep ramp

Ag = 2 the maximum ACm/CLcu has fallen by 327. TFor longer ramps the maximum
is replaced by a plateau of height inversely proportional to Ag' This
phenomenon in Fig.7b would be correctly predicted by piston theory, since in the
range 2.73 <o < Ag the downwash from equation (42) is not only proportional to

llkg, but its rate of growth is uniform over the whole wing.

4,3 Oblique step gust

ok

The derivation of the equations in section 2 serves to indicate that there
is no difficulty in principle in extending the present method to the more com-

plicated case of an oblique step gust. The basic oscillatory problem of the
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sinusoidal gust in equation (8) then involves two parameters, the wavelength
2nc/v  and the inclination ¢y as defined in Fig.lc. Even for a single non=-
zero value of y, the computing time for Qi(s) would be doubled, as for each
value of v it would be necessary to run separate solutions for the symmetrical
and antisymmetrical parts of w/U in the spanwise sense. Such calculations
have not been attempted but, as mentioned in section 2, the most economical

approach would probably involve the reverse-flow theorem.

In the absence of results for the oblique step gust by the present
method, the relatively simple application of piston theory has been made; a
suitable method of calculation is outlined in the appendix and discussed 1n
section 3.2. Since piston theory has been shown to give fair predictiomns for
normal gusts at M = 0.8 1in Figs.3, 4 and 7a, the formulae (A-21) to (A-23)
are likely to yield a useful indication of the behaviour of the lift, pitching
moment and rolling moment. The normalized Kussner functions kl(c) and
kZ(G)’ the transient pitching moment about the aerodynamic centre and the
transient rolling moment have been computed in Table 6 for four special values

of tan ¢, wviz.,

tan ¥ = (.4107, ¢ = At, gust front parallel to trailing edge,

tan ¢ = 0.7440, Y = AE’ gust front parallel to leading edge,

tan Y = 0.9107, root leading edge and tip trailing edge enter gust
simultaneously,

tan Y = 1.4107, root leading edge and mid-trailing edge enter gust

simultaneously.

The origin is taken at the root leading edge, so that it enters the gust when
c =0, When ¢ = At, the aerodynamic quantities show discontinuities 1in
slope at o = 1.5 when the whole starboard trailing edge enters the gust.
Similarly, the calculated forces have non-zero slope at o = 0 in the

special case Y = AE when the gust front coincides with the starboard leading

edge. For larger ¢, the gust strikes the wing tip first at the instant
¢ = — 3 (tan y - tan ¢2) . (47)

It is clear from equations (A-17) to (A-20) of the appendix that the lift is

quadratic and both moments are cubic in o, and that each polynomial function
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collocation method to deal with sinusoidal gusts of very small wavelength. 1In
view of restrictions on the number of chordwise terms, it becomes difficult to
calculate the wing loading after only small penetration into the step gust.
Piston theory is applicable in compressible flow when the frequency parameter
is very high, and the consequences of replacing subsonic lifting-surface theory

by piston theory in an upper frequency range are most instructive,

(3) The above procedure has been adopted in equation (35), which has been
applied to a normal step gust for Mach numbers 0.4 and 0.8 with reasonable
success in the latter case. The relative failure at the lower Mach number
appears to be associated partly with the unsuitability of piston theory when
compressibility is slight, and partly with the greater importance of the higher
frequencies at lower speeds. It appears that the reciprocal of the frequency
parameter based on penetration distance and the speed of sound may provide a

measure of the influence of a particular frequency on the Kiissner functions.

(4) The 1ift and nose-down pitching moment about the leading apex are
calculated to be negative for small penetration distances, more persistently in
the case of pitching moment and the lower Mach number. While the phenomenon of
negative 1lift is discredited, it is considered plausible, but unsubstantiated,
that in gubsonic compressible flow the downwash aft of the gust front could
induce negative loading compatible with a nose-up pitching moment on a wing of

high aspect ratio in the early stages of gust entry.

(5) The present method gives good correlation with the known asymptotic
behaviour in equation (38) at large time as the steady state is approached.
This restores confidence in the calculations at the lower Mach number once most
of the wing is immersed in the gust. An interesting corollary te equaticn (38)
is that the transient pitching moment about the aerodynamic centre disappears
inversely as the cube of the distance travelled, although in practice this
would be obscured by aircraft response and there would be a corresponding delay

in approaching steady lift.

{6) The present method is at a disadvantage when the aspect ratio 1s high,
because large numbers of spanwise, as well as chordwise, terms are needed.
Provided that they are presented in suitable nondimensional form, calculations
by piston theory alone may well be reliable within 10 or 20%. It 18 recommended
that the proportional growth of aerodynamic force should be taken between the
results of piston theory and the present method for small penetration distances,

should approach the latter result before the wing is completely immersed in the
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gust and should follow the correct asymptotic behaviour soon after this con-

dition is reached.

<t

(7) The alternative cosine transform of equation (16) or (36) has proved to

be remarkably unsuccessful at small penetration distances, primarily because it

f

does not automatically vanish at the instant when the wing first meets the gust.
This necessary condition yields the identity in equation (37), which can be
regarded as an ultimate challenge to a general numerical technique of solving
oscilletory linear problems in subsonic flow. While the infinite integral (37)
converges rapidly to unity by means of piston theory, its inferred slow con—
vergence from lifting-surface theory suggests that the two theories are much
slower to coalesce at high frequency than is anticipated in the use of

equation (35) or (36).

(8) Rigorous justification of the present method for small as well as large
distances of penetration would demand overlapping lower and upper ranges of
frequency parameter where respectively the lifting~surface method and piston
theory apply. The failure to satisfy equation (37) implies a gap between these
ranges, which can only be bridged by more elaborate collocation solutions over
a substantial range of high frequency parameter. To extend the investigation
in this respect, or in range of planform, would be justified if there were

sufficient uncertainty in the prediction of aircraft response to a known

L]

vertical gust due to approximations in the unsteady aerodynamic input.

(9) Although a lifting-surface method may cope satisfactorily with a given

(s

oscillatory downwash distribution, it may not be ideally suited to the calcula-~
tion of loads resulting from a vertical gust. Through the assumption of the
finite summation in equation (19) the present method implies non-zero loading
over all regions of the planform, even before it is physically possible for
acoustic waves to travel from the intersection of the wing and the gust front.
The calculated negative lift at small time includes a contribution from
impossible negative loads aft of all acoustic disturbances. This feature of a
collocation method is especially hard to eradicate, but the integral equations

for doing so exist in Ref.8.

(10} There 1s no difficulty in principle in extending the present method from
a normal step gust to an oblique gust of arbitrary profile and length. All
that has been done in this respect is to derive results for a normal camp gust

in section 4.2, Unless the ramp is steep, the transient pitching moment about

]

the aerodynamic centre exhibits the plateau behaviour in Fig.7, which would also

be predicted by piston theory.
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(11) Some qualitative results for an oblique step gust have been calculated

by piston theory alone and discussed in section 4.3. The rapid initial growth
of lift and the possible occurrence of negative pitching moment about the aero-
dynamic centre are primarily associrated with the sweepback of the planform.

The large maximum rolling moment for moderately small inclination of the gust
front illustrates the importance of the lateral aercdynamic characteristics of

a wing in a vertical gust.
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Appendix
GUST FUNCTIONS FROM PISTON THEORY

Piston theory provides a simple method for the evaluation of wing loading
in unsteady conditions. Its numerous applications to high-speed flow have been
. 11 .
discussed by Ashley and Zartarlan1 . In the context of linear theory we only

need to consider the small-disturbance relation for the loading

Anz - - AWDSHS) , (A‘l)
loU

where w(t) 1s the local upward velocity of the wing with arbitrary time-

dependence. It is clear from section 1.4 of Ref.1l2, that under oscillatory

conditions equation (A-1l) 1s subject to the severe restrictions
WM > 1

(A-2)

AWM > 1

Nevertheless, unless the flow is incompressible, there 1s an upper range of
frequency parameter for which piston theory becomes available. The second
condition is more readily satisfied for the wing of high aspect ratio to be

considered.

For a sinusoidal gust we consider the equivalent wing motion

w(x,t) = real part of - U exp (iwt + i%ﬁ) . (A-3)
As usual, the harmonic time-dependence factor e?®t {5 omitted and
equation (4-1) is combined with
v o= -pett (A-4)

where v = wc/U and £ = x/c. The corresponding nondimensional complex lift

is simply

0,(3) = -Sl~f

_A.PLZ.dS - X ﬁ e™Vededn . (A-5)
M
g PV

S
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The area of the particular planform in Fig.la is defined by

"'\
0 < |n] € —2— 0 <£<1.5

Y3 + 0.5
Eo LS o] € —— (1.5<5</§+o.5)>, (A-6)
/3"'0-5 ‘/3—""0.5
£ - 1.5
=2 < |n] <1 (V3+0.5<E<V3+ 1)
V3 - 0.5 )

and it follows that

G 5 [eiG(l.S) _ OBy iv(/340.5) e
Q= = - A-7
M2 V3 - 0.5 Y3 + 0.5

Similarly the complex pitching moment is represented by

Q) = ff( )—P— as = 5 ﬁ ( ) eHeazan (4-8)
C‘.
__ T Q + 2L g 42 Av(/3+0.5) 1.5V 13 - (3, ety (3D . (a-9)
S R )
c v Mv V3 - 0.5

The real and imaginary parts of Q1 from equation (A-7) are included in

Table 1, while the real part of Q2 1s given 1in Table 2 both for Xy = 0 and

for the pitching axis through the aerodynamic centre

- %+—§-./3‘ = 1.4717 . (A~10)

The results are expected to become reliable when v 1is much larger than 1/M.
Little confidence can be placed in equation (A-10), however, since there is no

justification for piston theory in steady flow.

A normal step gust can be built up by superposition, and the growth of
lift or pitching moment can be formulated from equation (11) or (12) together
with equation {A-7) or (A-9). Exact integration leads to different polynomial
expressions for kl(c) and kz(c) according to the range of o. A simpler

derivation is to set

(7]

[

ta

(o
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A 2w

L - w 0<¢<o

pU (A-11)
= 0 E >0

\
k1(0)=2—1-%(§—:2-=0 ‘ (c <0)
- 0.224010% 0 go< 1.5
- 0.224015% - 0.40583(c = 1.5)° (1.5 < ¢ < 2.23205) ? - @l
= -0.405830% +2.217480 - 2.02914 (2.23205 < g < 2.73205)
-1 (¢ > 2.73205)
4
Similarly for the axis Xy = 0
Q,_ () )
kZ(U) = 02(0) =0 (o0 <0)
= 0.101!&803 (0 g0 g 1.5
- -0.082360° + 0.413640> - 0.31023 (1.5 < 0 < 2.23205) F - (A1)
= -0.183840° + 0.753380% - 0.87444 (2.23205 < ¢ < 2.73205)
1 (6 > 2.73205)
J

Numerical results from equations (A-12) and (A-13) appear in the last tweo
columns of Table 3 and are independent of Mach number., Such results would be
valid 1in high supersonic flight, but for subsonic speeds they should be

regarded as approximations to be used when nothing better is available.

Similarly, piston theory provides rough approximations to aerodynamic
forces from oblique entry into a stationary step gust; more accurate results
would be exceedingly tedious to obtain. Following the pattern of
equations (A-12) and (A-13), the lift is quadratic in o while the pitching
and rolling moments are cubic in o, and their formulae change whenever a
vertex of the planform enters the gust. Let ¢ denote the inclination of
the transverse axis y = 0 to the gust front (Fig.lc). Then the following

numerical procedure is recommended.
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(1) Evaluate and place in increasing order the quantities

'

0 , c.cosy , X,.*tssinyg ,

N .
R oT + cT) cos ¥ * s sin ¢,

*or

-

the normal distances from each of the six vertices to the gust front at

o =0 as it passes the origin (Fig.la). Label them

hn = 0o c cos P (n=1,2,...6) . {(A-14)

(2) Consider each strip cn=€ o< O +1 28 traversed by the gust. It con-

tains a trapezium of planform with vertices

(V1) 0 (Vo) > Oy 19Vn41,10) (xn+l,2’yn+1,2) ;

because of the reflex angle at (cR,O) a second trapezium can appear when

o<y <2At, the angle of sweepback of the trailing edge. Then calculate

Boel “ B = OG0 T Fap) 908 VT Uy g T Yy sin Y
_ (A-15)
(41,20~ Fp2) 08 ¥ = (3 5 " Vyy) sind) .
With the gust front at ' )
g = (1 - A)on + Ao .l O=srs 1D (A-16) *
evaluate the length of strip
o= (1= M8+ M
where for each n r. (A-17)
L = (xn2 - an) cosec Y = (yn2 - ynl) sec wJ

&) Evaluate the contributions to lift, pitching moment (xo = 0) and rolling

[

moment from the region between o, and o in the respective formulae

£ ]
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8C A(h - h )
. L _ n+%S n (¢ + 8] ; (4-18)
Lee
8C A(h - h)
m n+l n
-— = - - fx_, v x (R + )
CLm 29 [ nl n2 n
1
+ E'A(Xn+1,l + Xn+1,2 Xy xnz)(ﬂ.n + 22{] (A-19)
and
§C Alh - }
L n+l n
. 4Ss [%(ynl * g Uy v R
1
* 3 A(yn+1,1 * yn+1,2 Ya1 ~ yn2)(p’n * 22{} > (A=20)

where CLm = 2Q1(0) is the final lift coefficient.

(4) Substitute X = 1 1n equations (A-1B) to (A-20) to deal with the com-

plete strips and calculate

C n-1h 4C

- h
L u+l u L
O =g e ) oy gl e (A-21)
Loeo u=1 Leo
C X §¢ wn-1h ., -h
m 0 m u+l u
L s k(o) e - ) ———— [ (x +x )22+ 2 )
CLon c ! Cle w1 128¢ ul - Tzt el
G %01, (g * 28 ) (a-22)
and
c 8¢, n-lh , -
L L u+l u
¢~ T ¢ ! e Ly Y (@, ay)
Leo Le u=1
P Oue1,1 T T2 Gu Bl (4-23)

Although this general procedure applies to an arbitrary straight-tapered
swept wing and to any inclination of the gust front, the first two stages vary
considerably according to the geometry. Naturally the number of strips will be

reduced when two vertices enter the gust simultaneously. The illustrative
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values 1in Table 6 are not sufficient to define the curves against g, because
each change of interval oy <o <:°n+1 introduces discontinuities in
curvature. Moreover, there can be sudden changes of slope when an edge of the
planform coxncides with the gust front. The quantities from equations (A-21)
to (A-23) are plotted in Figs.8 to 10 for the planform of Fig.la, and these

results are discussed in section 4.3. !
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Table 1

COMPLEX LIFT Q; FROM A SINUSOIDAL GUST OF WAVELENGTH 2ne/v

Present theory

Present theory

Piston theory

M=0.4 M= 0.8 M =0.8

0 2.0979 +i 0.0000 2.5505+1i 0.0000 2.5000 +1i 0.0000
0.2484 1.8203+1 0.7414 2.2255+1 0.6627 2.3107 +1i 0.8849
0.5000 1.1705+1 1.3878 1.5915+1 1.3647 1.7761+i 1.6104
1.0257 | -0.6414+1 1.6289 | -0.0312+i 1.9127 0.1153 +i 2.0871
1.6085 | -1.8120+1 0.2473 | -1.2496+1i 0.9746 | -1.1629+1i 1.0795
2.2936 | -1.0749 -1 1.3584 | -0.9798-1 0.3365 | -0.8829 -1 0.3025
3.1569 0.3906 -1 1.0844 0.0384-1 0.3352 0.1154-1 0.2719
4.3451 0.2424-1 0.1631 | -0.0808+1 0.0737 | -0.0944+1 0.0778
5.1516 0.0659+1 0.0185 | -0.0361+1i 0.0090 | -0.0170-1 0.0374
6.1957 | -0.2405+1 0.3374 | -0.1632+1 0.1483 | -0.0545+1 0.0843
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Table 2

REAL PART OF PITCHING MOMENT —Qé FROM

SINUSOIDAL GUSTS

Theory M xaclc
Present 0.4 ] 1.2583
Present 0.8 (1.2736
Piston Any | 1.4717

Present theory Present theory Piston theory
x, =0 X, = M=0.8
- 0 0 ac
Y
M=0.4 |M=0.8 M=0.4 |M=0.8 |x =0 X, =X
0 0 ac
0 -2.6398 | —-3.2483 0 0 -3.6792 0
0.2484 | ~-2.2248 | -2.7522 +0.0657 +0.0823 | -3.3294 | +0.0713
0.5000 | ~1.2414 | -1.7202 +0.2314 | +0.3068 | -2,3500 | +0.2638
1.0257 +1.3577 | +0.9110 +0.5506 | +0.8712 +.5720 | +0.7417
1.6085 +2,4854 | +2.4184 | +0.2054 | +0.8268 | +2,4208 | +0.7094
2.2936 +0.4797 | +1.1232 | -0.8729 ~-0.1248 | +1.1547 -0.1447
3.1569 | -1.3626 | ~0.6884 | -0.8711 -0.6395 | -0.7481 -0.5784
4.3451 +0.0787 +0.1648 | +0.3837 +0.0619 +0.2319 +0.0930
5.1516 -0.0847 | -0.0214 | -0.001% | —-0.0674 | -0.0613 | -0.0863
6.19537 | +0.3302 +0.2022 | +0.0275 | -0.0056 | +0.0363 | -0.0439

)
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RATIO OF TRANSIENT TO FINAL LIFT AND PITCHING MOMENT (xo = 0)

Table 3

AFTER NORMAL ENTRY INTO A STEP GUST

Present theory

Present theory

Piston theory

M= 0.4 M=0.8
o]

ky ky ky ky ky ky
0.25 | -0.078 |-0.027 | -0.009 | -0.030 |[0.014 |o0.002
0.50 |-0.106 |-0.054 | 0.014 |-0.048 | 0.056 |0.013
0.75 | -0.096 |-0.078 | 0.074 | -0.040 |o0.126 |0.043
1.0 |-0.046 |-0.092 | 0.168 | 0.004 |o0.224 |o.101
1.5 | 0.234 | 0.036 | 0.447 | 0.235 | 0.504 |o0.342
2.0 | 0.636 | 0.431 | 0.732 | 0.590 [0.795 |o0.685
2.5 | 0.941 | 0.909 | 0.912 | o0.8%0 | o0.978 | 0.962
3.0 | 0.964 | 0.965 | 0.939 | 0.938 | 1.000 | 1.000
4.0 | 0.976 | 0.971 | 0.955 | 0.956 | 1.000 | 1.000
6.0 | 0.987 | 0.985 | 0.980 | 0.980 | 1.000 | 1.000
8.0 | 0.994 | 0.994 | 0.990 | 0.990 | 1.000 | 1.000
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Table 4

LIFT RATIO kl FROM A NORMAL GUST WITH RAMP LENGTH AgE
o} Ag Ag =6 g = lg = 12 kg = 16

0 0 0 0 0
0.5 -0 0. 0.000 0.000 0.000 0.000
1.0 0. 0. 0.006 0.005 0.003 0.002
1.5 0. 0. 0.031 0.023 0.0l6 0.012
2.0 0. 0. 0.081 0.061 0,040 0.030
2.5 0. G. 0.150 0.113 0.075 0.056
3.0 0. 0. 0.228 0.171 0.114 0.086
4.0 0. 0. 0.386 0.289 0.193 0.145
5.0 0. 0. 0.546 0.410 0.273 0.205
6.0 0. 0. 0.709 0.532 0.354 0.266
7.0 0. 0. 0.867 0.655 0.436 0.327
8.0 0. 0. 0.957 0.778 0.519 0.389
10.0 0. 0. 0.983 0.966 0.684 0.513
12.0 0. 0. 0.991 0.986 0.850 0.638
16.0 0. 0. 0.996 0.995 0.989 0.887

.y
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Table 5
PITCHING MOMENT RATIO k2 FROM A NORMAL GUST WITH RAMP LENGTH th
o Ag = 2 Ag = 4 Ag = 8 Ag = 16
0 0 0 0 0
0.5 -0.007 -0.004 -0.002 -0.001
1.0 -0.016 -0.008 -0.004 -0.002
1.5 0.010 0.005 0.002 0.001
2.0 0.113 0.056 0.028 0.014
2.5 0.309 0.151 0.075 0.038
3.0 0.549 0.267 0.133 0.067
4.0 0.894 0.504 0.252 0.126
5.0 0.956 0.752 0.372 0.186
6.0 0.969 0.932 0.494 0,247
7.0 0.979 0.968 0.617 0.309
8.0 0.986 0.978 0.741 0.370
10.0 0.992 0.989 0.961 0.494
12.0 0.995 0.994 0.986 0.619
16.0 0.997 0.997 0.995 0.868

41
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Table 6

T}

LIFT AND PITCHING MOMENT RATIOS AND PITCHING AND ROLLING
MOMENTS FROM OBLIQUE STEP GUSTS BY PISTON THEORY

K cm Cﬁ
tan ¥ o kl 2 CLm CLm
1.000 | 0.3222 | 0.2099 0.1652 | -0.0382
1,250 | 0.4878 | 0.4017 0.1267 | —-0.0661
0.4107 1.500 | 0.6624 | 0.5907 0.1055 | -0.0924
(p = At) 2.482 |1 0.8468 | 0.7786 0.1003 | -0.0576
3.464 | 0.9746 | 0.9572 0.0256 | -0.0118
3.964 | 1.0000 1.0000 0.0000 0.0000
0.250 | 0.1285 | 0.1057 0.0335 | -0.0312
0.500 | 0.2640 | 0.2344 0.0435 | -0.0622
0.7440 1.500 | 0.6260 | 0.5642 0.0909 | -0.0971
(p = Ag) 2,982 | 0.8395 | 0.7708 0.1010 | -0.0600
4,464 | 0.9820 1 0.9693 0.0187 | -0.0086
4.964 1.0000 1.0000 0.0000 0.0000
0 0.1250 | 0.1405 | -0.0229 | -0.0417 4
0.750 | 0.4346 | 0.4143 0.0299 { -0.0956 i
0.9107 ,1.500 | 0.6133 | 0.5558 0.0846 | -0.0985 .
3.232 10.8369 | 0.7682 0.1011 | -0.0609
4.964 | 0.9842 | 0.9731 0.0164 | -0.0076
5.464 1.0000 1.0000 0.0000 0.0000
-1.500 {0.0312 | 0.0470 | -0.0232 | -0.0143
0 0.3125 | 0.3464 | -0.0499 | -0.0885
1.4107 1.500 | 0.5870 | 0.5398 0.0695 | -0,1008
3.982 | 0.8314 | 0.7626 0.1012 § -0.0625
6.464 | 0.9886 | 0.9804 0.0121 { ~0.0055
6.964 1.0000 1.0000 0.0000 0.0000

%)
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SYMBOLS

spanwise integration parameter in equation (26)
aspect ratio of planform; 2s/c

local chord

geometric mean chord; $§/2s

root chord, tip cherd

rolling moment coefficient in equation (32)
lift/(ipUZS), 1ts steady-state value

nose-up pitching moment/(ipUZSE), its steady-state value

auxiliary frequency parameter in equation (30)

initial location of planform vertices (n = 1,2,...6) normal to
gust front

growth of 1ift (1 = 1) or pitching mement (1 = 2) in
equation (15)

ki(o) from piston theory (where the distinction 1s necessary)

lift per unit area/(%pUz)

length of strip where gust front intersects planform

number of collocation sections
Mach number of flight )
number of chordwise functions in equation (19)

generalized force (i = 1,2) due to sinusoidal gust;

Qi (v) + iQi (V)

Qi(;) from pisten theory (where the distinction is necessary)

generalized force due to step gust normalized as in equation (18)

semi-span of wing

area of planform

time

velocity of flight

upwash velocity

modified complex upwash 1n equation (25)
velocity of uniform up-gust

upwash velocity due to a sinusoidal gust
distance aft of the origin (Fig.la)

location of pitching axis
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SYMBOLS (concluded)}

location of aerodynamic centre in equation (45)

o,

ordinate of leading edge

ordinate of tip leading edge; xg(s) A

fl

ordinate of points where gust front (o Un) intersects planform

ordinate of colleocation point in equation (28) (p = 1,2,...N)

distance to starboard (Fig.la)

ordinate of points where gust front (o = cn) intersects planform
location of leoading section in equation (22) (r = 1,2,...m)
location of collocation section in equation (28) (v = 1,2,...m)

distance upwards (Fig.lb)

force modes (1 = 1,2) 1n equations {(24)

loading coefficients in equations (19) and (21)

contribution to C; in equation (A-18); similarly &C

L dcm

2’
lift per unit area

spanwise ordinate y/s

-+

angular spanwise parameter in equation (23), (22)

auxiliary variable for o in equation (A-16) -

gust gradient distance as a fraction of ¢
angle of sweepback of leading edge, trailing edge

frequency parameter wc/U

particular value of v associated with the variable f

chordwise variable x/c
density of air
location of gust front; nondimensional time Ut/c

ordered values of ¢ when planform vertex enters gust
(n=1,2,...6)

indices of polyneomial EOnT representative of oscillatory mode

angular chordwise parameter in equation (20), (28)

(2}

inclination of gust front to plane x = constant (Fig.lc)

Al

circular frequency of oscillation »
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