

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

An Approximate Method of Deriving the Transient Response of a Linear System from the Frequency Response

By

C. A. A. Wass, B.Sc., A.M.I.E.E., A.Inst.P.
and E. G. Hayman, B.E.

November, 1951

ROYAL ATHCEANF LSTABLISHE ENT

An Approximate Mcthod of Derivang the Transient
Response of a Linear System from the
Frequency Response
by

C.A.A. Wass, B.Sc., A.M.I.E.E., A.Inst.P.

and
E. G. Hayman, B.E.

SUMMARY

There are several publushed methods of deriving the transient response of a linear system from the known Crequency response, brt these are all rather lengthy. Another method is described, which is much more rapid, although less accurate. It is based on the calculation of the response of the system to a square wave as expressed by a Fourier Series.

For any system there is an optimum square wave frequency, and the process of selection of this fundmental frequency is described. It is shown that consideration of responses up to the eleventh harmonic only can give transient response curves which are in error by less than 2%. A desorription' is givon of a circular computor which speeds the calculationsifand two tables of values are included for use whth the computer.

LIST OF CONTMNS

Page
1 Introduction 3
2 Square Wave Response 3
3 The Approximate Transient Response 4
4 Aids to Calculation * 6
4.1 The ${ }^{\prime 2} \frac{A_{2 n-1}}{\pi}{ }^{2 n-1}$ Table 6
4.2 The " φ " Table 7
4.3 The Uircular Computor 7
5 Steps in Obtalning an Approxumate Transient Response Curve 8
6 Typıcal Ixamples 10
References 11
Table I 12
Table II 13
LIST OF ILLUSTRATIONS
Figure
Gain Curves 1
The Circular Computor 2
Frequencý Réspônsé Curves, System 1 3
Frequency Response Curves, Systom 2 4
Typucal Ca录culation, Systen 1 5
Typical Calculation; Systom 2 6
Transiont-Response Curves, Systems -1 and-2 7

The analysis and design of a servo system, based on the steady state response to a sinusoidal input, is called the Frequency Approach, and the characteristocs of the system are most usually portrayed by ourves of gain in decibels against log-frequency, and phasc change in degrees against log-froquency. These curves can be drawn either from data obtaincd experimentally, or from the expression for the transfer function of the system, for example by using an asymptote approximation method (Ref.1). By examination of these two curves, examples of which are shown in Fig. 3, a considerable amount of information may be deduoed about the responsc charactoristics, c.g. damping ratio and undamped natural frequency, and about the stability of the system.

Altermatively, the Transient Approach to the analysus of a system is based on its response, expressed in terms of output or error, when the system is subjected to a step or impulse function. The result is portrayed by curves of output or error against time, and from such curves detalls conceming the initial rate of response, overshoot, damping etc. can be obtained.

Whalst the major part of the design of a servo system oan be carried out by using relationships based upon the frequency response, it is of ten important that the transient response of the proposed system be knowm during the deslgn period. Consequently $1 t$ would be of great assistance to have a method of calculating the tronsient response of a system being given its frequoncy rosponsc. Such a method oould be used to obtain a transient response from gain and phase curves obtained either by plotting from the tronsfor function (whthout the need for solving polynomials) or from experamental results.

Several such methods have alroady been developed, apart from the exact mathematical one which requires analytical knowledge of the transfer function of the system (Ref.2). If the real part of the frequency responsc is plotted against tho angular frequency, the response of tho systom to a unct impulse may be derivod by a graphical integration (Ref.3); or af the real part of the frequency response divided by the angular frequency is plotted agannst the angular frequency, a harmonic analyser can be used to obtain the response to a step unput (Ref.4). Another method uses special charts for the summation of the terms of a Fourler Sories to give the responsc to a squaro wave anput which is of fixed frequency (Ref.5).

All of these are rather tedious procedures, and for some time now a more rapid if less accurate method has been sought. It is thought that the present method is of some mernt beoause of its speed, simpluoity and flexibility, combined with reasonable dccuracy.

2 Square Wave Response

A olue to a rapid method of performing the transztion from frequency to transient responsc is given by the nature of the frequency response ourves. These curves express the attenuation and change of phase suffered by cach single-frequenoy signal, or by each component frequency of a complex signal, as it passes through the systom, so that by expressing an input signal as a series of single-f'requency components, the system output can be calculated.

For the normal transient response curves, the input is a step funotion, which unfortunately cannot be expressed by a Fourier Series. But a square wave, which can be represented by such a series, can also be regarded as a series of step functions, provided that the half-permod of the wave is sufficzently long that the system output has settled to a stationary value before the input changes to its other stationary value. In other words, the response to each half-wave of a square wave signal will alosely represent the transient response of a system which is not too lightly damped.

Now the Fourier Series for a square wave $F_{i}(t)$ with equal mark-tospace ratio, minimum value zero, maximum value unity and fundamental angular frequency ω_{F}, can be written as

$$
\begin{equation*}
F_{i}(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) \omega_{F} t \tag{1}
\end{equation*}
$$

If this signal is fed into a gaven servo system, the amplitude and phase of the various components will be ahanged, and the resultant output wave will be expressible as

$$
\begin{equation*}
F_{0}(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{A_{2 n-1}}{2 n-1} \sin \left[(2 n-1) \omega_{F} t+B_{2 n-1}\right] \tag{2}
\end{equation*}
$$

where
$A_{2 n-1}$ is the gain of the system at an angular frequency $(2 n-1) \omega$;
$B_{2 n-1}$ is the phase ohange at that same frequency.

Consequently an approximate transient response curve can be obtained by evaluating equation (2) for values of t from zero to slightly less than a halfwermod of the fundamental frequency ω_{F}, using values of $A_{2 n-1}$ and $B_{2 n-1}$ obtained fram the frequency response curves, and plotting the results against t.

3 The Approximate Transient Response

In order to reduce this square wave concept to a practical method of obtaining transient response from frequency response curves, the summation of equation (2) must be curtailed at a reasonably low number of terms, and a suitable fundamental frequency must be selected for the square wave. If the selected square wave frequency is too low, the method becomes rather laborlous iveoause a large number of terms of the series have to be summed; on the other hand, if the selected frequency is too high, accuracy may be saorificod because of possible violation of the restriction that the system transient must dic out during each half cycle. The method of selecting the square wave frequency will be outlined for vamous types of frequency response.

It has been found by experience that it is possible to achieve a satisfactory compromise between labour and accuracy by considering up to the eleventh harmonic of the square wave frequency; that is, considering six terms of the summation of equation (2). On this basis, a suitable
fundamental frequency ω_{F} for the square wave is approximately one fifth of the lowest undamped natural frequency of the system.

Because the systems for which this method was primarily developed have a predominant quadratic factor in the transfer function, it is appropriate to consider firstly a system whth a quadratic frequency transfer function. An example is

$$
\begin{equation*}
G(j \omega)=\frac{1}{\left(\omega_{n}{ }^{2}-\omega^{2}\right)+2 j \omega \zeta \omega_{n}} \tag{3}
\end{equation*}
$$

where $\omega_{n} / 2 \pi$ is the natural frequency and ζ_{ζ} the damping ratio. The gain/frequency curve of this system will be asymptotic to two lines, intersecting at an angular frequency ω_{n}, the lines being the 0 db axis for low values of ω, and a line $a t-12 \mathrm{db} /$ octave for high values of ω. The transition section whll, vary in shape according to the value of ζ, tendıng towards a hıgh peak for low ζ (see Fig.1).

When the gain curve of the system exhibits a definite peak, (as for $\zeta<0.7$ in Fig 1, and System 1, Fig.3) the peak occurs near the resonant frequency ω_{0}, and selection of ω_{F} at one fifth of ω_{0} has been found to be satisfactory. As the resonant frequency ω_{0} is less than the natural frequenoy ω_{n} by an amount governcd by ζ, it is possible to make ω_{F} slightly greater than $\omega_{0} / 5$ and still have it approximately cqual to $\omega_{n} / 5$. Selection of $\omega \mathrm{F}$ anywhere within the range from $\omega / 5$ to $\left(\omega_{0} / 5+20 \%\right)$ produces consistent results, whereas, selection of ω_{F} as less than $\omega_{0} / 5$ introduces error into the result. The reason for the error 1 is that whth a low square wave frequency ω_{F} the systom gain at the eleventh harmonic frequency $11 \omega_{\mathrm{F}}$, is not sufficiently low compared to that at the fundmental frequency, so that the series sumation of equation (2) has not convergod sufficlently. The errors in such a case could bo reduced by considering hlgher harmonics than the eleventh.

If in the system with a quadratic transfer function, ζ_{0} is greater than 0.7, there 1 s no peak in the gain curve (F1g.1). The undamped natural frequency in such a case is selectod by using the phase curve, since the phase shift at the natural froquency is 90°. There again, selection of ${ }^{\omega} \mathrm{F}$ greater than one fufth of ${ }^{(1)} \mathrm{n}$ is to be preferred to a lower value.

For systems having factors like $\frac{1}{1+j \omega \tau}$ in the frequency transfer function, the gain/frequency curve will be of a different form, and no such direct-method of aelection of ω_{F} exists. If however, by neglectang trends in the high-frequency portion of the gain curve, it becomes sumilar to that for a purely quadratic system, then the method given above may be used to get a farst estimate of ω_{F}. If on the other hand, the gain curve is of a complicated form, then a first estimate of ω_{F} may be made by sclection of the eleventh harmonic at a frequency such. that the gain has fallcn by 15 db below that at very low frequericy. : In the se cases the calculation is carried through, as described later, with this estimated ω_{F}, and the maximum contribution of the 11th-harmonic to the funal result is noted. If this contribution is approximately 2% or less of the maximum contribution of the fundamental, then the result should be accuratc within the capabilities of this method. If at as more than $\%$ then the estimate of ${ }^{\omega}{ }_{F}$ is
unsatisfactory, and the calculation should be repeated with a revised higher value of ω_{F} (or the calculation can be carried on to the 13 th hamonic). On the other hand, if the maximum convribution of the 7 th hamonic to the funal result is less than 2% of that of the fundamental, and the 9 th and 11 th harmonios contribute neglagible amounts, the value of ω_{F} as originally estimated vas too high, and the calculation should be repeated with a lower value of ω_{T}.

The selection of the fundamental frequency of the square wave, ω_{F}, as outlined above is all based on obtainng a frequency which is appropriate to curtalling the summation of terms of equation (2) after considering six terms, i.e. after the 11th harmonic.

Having thus selected the square wave frequency, the appropriate values of $A_{2 n-1}$ and $B_{2 n-1}$ are read from the frequency response curves of the system, and the evaluation of equation (2) carried out for 6 terms for a suitable number of valucs of t. To facilitate this calculation, tables of values and a computor, as described in Section 4, have been developed.

As a check on the accuracy of thas approximate method, it has been applied in a number of cases where there existed an exact transient response curve and corresponding frequency response curves. Onoe familiarity with the procedure is gained, partzoularly appreciatzon of the selection of the $\omega_{\mathbb{F}}$ frequency, it was found that the resulting curves were in error by less than 5%, and of ten less than 2%.

4 Aids to Calculation

To reduce substantzally the time taken in evaluating the expression of equation (2), two special tables of values and a circular computor have been developed.
4.1 The $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1}$ Table -Table I

In the expression for the output $F_{0}(t)$ of a system subjected to a square wave input, which is repeated here for convenzence,

$$
\begin{equation*}
F_{0}(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{A_{2 n-1}}{2 n-1} \sin \left[(2 n-1) \omega_{F} t+B_{2 n-1}\right] \tag{2}
\end{equation*}
$$

$\mathrm{A}_{2 n-1}$ is the absolute gain of the system, and sance the gain curve is usually plotred in terms of decibels against log-frequency, a conversion must be carried out. Decabel to power ratio or voltage ratio conversion tables are available, but in this work it has been found convenient to prepare one to give values of the composite term $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1}$, showing the value of this for various $d b$ values, and $n=1,2, \ldots \ldots .7$. The values are obtained from the expression

$$
\begin{equation*}
\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1}=\frac{2}{\pi} \cdot \frac{1}{2 n-1} \text { antilog} 10 \frac{A_{2 n-1}(d b)}{20} \tag{4}
\end{equation*}
$$

and are shown in lable I. In using this table $1 t$ is not necessary to interpolate between the db values given.

Both this and Table II have been extended to give figures for calculating the 13 th hamnonic if it proves necessary to obtain greater accuracy, and this is more expedient than repeating the whole calculation with a revised value of ω_{F}.

4.2 The " φ "Table - Table II

Without some change being made an the form of equation (2), it will be necessary in making each separate evaluation to select suitable values of t. If however a symbol T defined as $1 / \omega_{0}$ is introduced, then equation (2) may be revrititen as

$$
\begin{equation*}
F_{0}(t)=\frac{1}{2}+\frac{2}{\pi} \sum \frac{A_{2 n-1}}{2 n-1} \sin \left[(2 n-1) \frac{\omega^{F}}{\omega_{0}} \cdot \frac{t}{T}+B_{2 n-1}\right] \tag{5}
\end{equation*}
$$

In future $(2 n-1) \frac{\omega_{F}}{\omega_{0}} \cdot \frac{t}{T}$ will be denoted by φ.
Now as t / T is non-dimensional, a standard sct of values for this parameter may be used, and a table could be prepared giving the value of φ for various t / T. But, because the system phase change $B_{2 n-1}$ is usually expressed in degrees 16 has been found expedient to make this table so that φ can be read off in degrees for suitable valuos of t / T and $n=1,2,3 \ldots 7$. Since the angular frequency of the fundamental component of the squar wave (ω_{F}) has been selccted as $1 / 5$ of the angular frequency of the peak of the gain curve $\left(\omega_{0}\right)$, then $\omega_{\mathrm{F}} / \omega_{0}=0.2$, and the " $\varphi-t / T$ " table gives values of

$$
\begin{align*}
\varphi & =(2 n-1) 0.2 \cdot \frac{t}{T} \cdot \frac{360}{2 \pi} \\
& =(2 n-1) \cdot \frac{36}{\pi} \cdot \frac{t}{T} \tag{6}
\end{align*}
$$

Further, to facilutate the use of a special circular computor, the values of φ obtained from equation (6) have been roduced by multiples of 360°, so that Table II gives the equivalent angle in the range 0° to 360°.

4.3 The Circular Computor

The final aid to the computation of the transient response curves by chis approximate method is a circular computor for rapidly cvaluating the expression

$$
\begin{equation*}
f_{0}(t)=\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1} \sin \left(\varphi+B_{2 n-1}\right) \tag{7}
\end{equation*}
$$

This computor', oonsists of a circular base graduated both around the perphery from 0° to -360° and acroas the face fram -1.2 through 0 to +1.2 (or -0.6 to 0 to +0.6) as shown in Fig. 2. Across this graduated circle swing two arms which can be set wath any angle between them and along one of these a cursor can be sct at any radius from 1.2 down to 0.1 (or 0.6 to 0.05).

Assume that the computor is temporamly set up as shown in Fig. 2a, when $O A$ and $O B$ are the two arms, and the cursor C on $O B$ is set (on the scale along $O E$) to be equal to $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1}$ as given by Table I. The angle $A O B$ between the two anms is the phase angle $B_{2 n-1}$ corresponding to the particular value of $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1}$; generally $B_{2 n-1}$ will be a negatıve angle, but the method applies equally well if it is positive. If now $O A$ is set to a value of φ as guven by Table II, then the length $C D$ represents $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1} \sin \left(\varphi+B_{2 n-1}\right)$, and its value is obtained from the scale along EOF , vith due rogard to sign.

Thus if $O C$ is set to the value of $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1}$ for $n=1$, and the angle $A O B$ is set to the appropriate $B_{2 n-1}$, then as $O A$ is advanced to the values of φ as shown on the $\varphi-t / T$ table, the various values of $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1} \sin \left(\varphi+B_{2 n-1}\right)$ may be read off the linear scale. This can be repeated for $n=2,3 \ldots 6$ and the neoessary sumation carried out to get the points to plot for the transient responsc. These values can be cither plotted against t / T, or should a correct time scale be required, the corresponding values may be obtained, remembering that $T=1 / \omega_{0}$.

5 Steps in Obtaining an Approximatc Transient Response Curve

The vamous steps for obtaining a transient response curve by thas method will now be set out in logleal sequence.
(1) Select the most suitable value of ω_{F} by referring to the given frequency response curves. If the gain/frequency curve is of the same general shape as the $\zeta=0.1$ and $\zeta=0.5$ curves of Fig.1, select ω_{F} so that the angular frequency at the maximum gain is 5 wr . If the gain curve falls off monotonically, as for $\zeta=1.0$ in Fig.1, select ω_{F} so that at $5 \omega_{F}$ the phase-shift 1 s -90°. For more complex gain curves, estimate ω_{F} so that at $11 \omega_{F}$ the gain of the system has fallen by 15 db below the very low frequency value. Although the selection of ω_{F} is fairly critical, where the choice is not obvious it $1 s$ best to err (up to 20%) towards a hagher valuc.

Having selected $w_{\text {F }}$, read off from the gain and phase curves the data to complete the following schedule, in which $\omega_{2 n-1}$ is equivalent to $(2 n-1) \omega_{F}$.

n	1	2	3	4	5	6
$\omega_{2 n-1}$						
$A_{2 n-1}$						
$\mathrm{~B}_{2 n-1}$						

(2) Referring to Fig.2, set the cursor C so that $O C$ corresponds on the scale of $E O F$ to the value of $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1}$ as given by Table I, for $n=1$ and the gain as shown in the schedule above; it is not necessary to interpolate between the db values given in Table I. Then with $O B$ along the 0° line, set $O A$ on $-B_{2 n-1}$; 1.e. at an angle equal in magnitude but opposite in sign to the phase change a.t the frequency given by $n=1$.
(3) Set $O A$ on the furst value of φ from Table II ($n=1$ column), read off the value or $\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1} \sin \left(\varphi-B_{2 n-1}\right)$ on the appropriate linear soale along EOF , and recond it. Repeat this for sufficient values of φ, putting the resulting figures in a tabular form as shown below.

Seconds						
n		0.5	1.0	1.5		
1						
2						
3						
4						
5						
6						
2						
0.5						

The "Seconds" row gives the time values corresponding to the t / \mathbb{T}, which if required are obtained by using the relation $T=\frac{1}{\omega_{0}}=\frac{1}{5 \omega_{F}}$,
(4) Repeat the procedure given in steps 2 and 3 for values of $\mathrm{n}=2,3,4,5$ and 6 , so completing the body of the table of step 3.
(5) Check the suitability of the value of ω_{F} used. The maximum value in the $n=6$ row should be approximately 2% of the maximu value in the $n=1$ row. If these values are negligible and the maximum value in the $n=5$ or even $n=4$ row are about 2% of the maximum in the $\mathrm{n}=1$ row; then the selected ω_{F} as too high, and the calculation should be repeated-inth a lower ω_{F}; if these values are much greater than $\%$ then $-\omega_{F}$ is too low, and either the calculation should be repeated with an higher ω_{F}, or the 13 th hamonic should be calculated. Should this-additional hamonnc not produce sufficient accuracy the calculation will have to be repeated with a higher ω_{F}.
(6) Sum each of the columns of six (or seven) values, and to each add 0.5. This gives figures which when plotted aganst t / T, or time, give the required transient response curve. The 0.5 is the first term of equation (2).

A more rapid plot of the transzent response curve may be made by using only selected values of t / T, to gave only the general form of the curve.

6 Typical Examples

Typical frequency response curves for two dufferent systems are show in Figs. 3 and 4. System 1 (Tig.3) Is a smple proportional control system with an inertia and fruction load, so that it has been possible to compute exactly the transient response of the system from the transfer function which is

$$
G(p)=\frac{k}{J p^{2}+f p+k}
$$

with $k=1, J=1$, and $f=0.6$.
The sets of figures used in the calculation are shorm in Fig. 4. The values of gain and phase change as read from the curves are set out in Fig. 4a, - this is the "schedule" of Step 1, Section 5 - and the figures obtained from the circular computor are set out in Fig. 4 b . These results are plotted in Fig.7. Supermposed on the curve for System 1, dan be seen several additional points, which are the values obtained from the exact soluwion for the transient response of the system.

System 2 is a practical servo system, the frequency response curves shown in Fig. 4 being derived from the transfor function of the system. The calculations are in this case shown in Fig. 6 , and once again the resulting values are plotted in Fig. 7 to give the transient response curve.

No.

Author

1 Greenwood, Holdam and MacRae

2 Gardner and Barnes

3 Browm and Camplbell

4 Merson

5 Bedford and Fredendall

Title, etc.

Electronic Instruments. MIT RL Series No. 21, Chapter 10.

Transients in Linear Systens. John Wiley \& Sons, 1942.

Principles of Servomechanisms. John Wiley \& Sons, Chapter 11, 1948.

The Usc of a Mader Harmonic Analyser for derıving Transıent from Frequency Response Curves.
R.A.E. Technical Note to be published.

Transient Response of Television Amplifıers. Proc. I.R.E., Vol. 30 , pp.440-457, October, 1942.

TABLE I

A_{db}	$\begin{aligned} & \log _{10} \mathrm{~A} \\ & =\frac{\mathrm{A}_{\mathrm{db}}}{20} \end{aligned}$	$\mathrm{A}_{\text {abs }}$	$\frac{2}{\pi} \cdot \frac{A_{2 n-1}}{2 n-1}$						
			n	= 2	$=3$	$n=4$	$\mathrm{n}=5$	$\mathrm{n}=6$	$\mathrm{n}=$
+10.0	0.5000	3.162	2.013	0.673	0.403	0.288	0.224	0.183	0.155
+9.0	0.4500	2.818	1.794	0.598	0.359	0.256	0.199	0.163	0.138
+8.0	0.4000	2.512	1.599	0.533	0.320	0.229	0.178	0.145	0.123
+7.0	0.3500	2.239	1.425	0.475	0.285	0.204	0.158	0.130	0.109
+6.0	0.3000	1.995	1.270	0.423	0.254	0.182	0.141	0.116	0.098
+5.0	0.2500	1.778	1.132	0.377	0.226	0.162	0.126	0.103	0.087
+4.5	0.2250	1.679	1.069	0.356	0.214	0.153	0.119	0.097	0.082
+4.0	0.2000	1.585	1.009	0.336	0.202	0.144	0.112	0.092	0.078
+3.5	0.1750	1.496	0.952	0.328	0.191	0.136	0.106	0.087	0.073
+3.0	0.1500	1.413	0.900	0.300	0.180	0.129	0.100	0.082	0.069
+2.5	0.1250	1.334	0.849	0.283	0.170	0.122	0.094	0.077	0.065
+2.0	0.1000	1.259	0.802	0.267	0.160	0.115	0.084	0.073	0.062
+1.5	0.0750	1.189	0.757	0.252	0.151	0.108	0.084	0.069	0.058
+1.0	0.0500	1.122	0.714	0.235	0.143	0.102	0.079	0.065	0.055
+0.75	0.0375	1.090	0.694	0.231	0.139	0.099	0077	0.063	0.053
+0.5	0.0250	1.059	0.674	0.225	0.135	0.097	0.075	0.061	0.052
+0.25	0.0125	1.029	0.655	0.219	0.131	0.094	0.073	0.060	0.050
0	0.0000	1.000	0.637	0.212	0.127	0.091	0.071	0.058	0.049
-0.25	-1.9875	0.9716	0.619	0.206	0.124	0.088	0.069	0.056	0.048
-0.5	-1.9750	0.9441	0.601	0.200	0.120	0.086	0.067	0.055	0.046
-0.75	-1.9625	0.9173	0.584	0.195	0.117	0.083	0.065	0.053	0.045
-1.0	-1. 9500	0.8913	0.567	0.189	0.114	0.081	0.063	0.052	0.044
-1.5	-1.9250	0.8414	0.536	0.179	0.107	0.077	0.060	0.049	0.041
-2.0	-1. 9000	0.7943	0.506	0.169	0.101	0.072	0.056	0.046	0.039
-2	-1.8750	0.7499	0.477	0.159	0.096	0.063	0.053	0.043	0.037
-3.0	-1.8500	0.7079	0.451	0.150	0.090	0.064	0.050	0.041	0.035
-3.5	-1.8250	0.6683	0.426	0.142	0.085	0.061	0.047	0.039	0.033
-4.0	-1.8000	0.6310	0.402	0.134	0.080	0.058	0.045	0.036	0.031
-4. 5	-1.7750	0.5957	0.379	0.126	0.076	0.054	0.042	0.034	0.029
-5.0	-1.7500	0.5623	0.358	0.119	0.072	0.051	0.040	0.033	0.028
-6.0	-1.7000	0.5012	0.319	0.106	0.064	0.046	0.035	0.029	0.025
-7.0	-1.6500	0.4467	0.284	0.095	0.057	0.041	0.032	0.026	0.022
-8.0	-1.6000	0.3981	0.253	0.085	0.051	0.036	0.028	0.023	0.019
-9.0	-1.5500	0.3548	0.226	0.075	0.045	0.032	0.025	0.021	0.017
-10.0	-1. 5000	0.3162	0.201	0.067	0.040	0.029	0.022	0.018	0.015
-11	-1.4500	0.2818	0.179	0.060	0.036	0.026	0.020	0.016	0.014
-12	-1.4000	0.2512	0.160	0.053	0.032	0.023	0.018	0.015	0.012
-13	-1.3500	0.2239	0.143	0.048	0.029	0.020	0.016	0.013	0.011
-14	-1.3000	0.1995	0.127	0.042	0.025	0.018	0.014	0.012	0.010
-15	-1.2500	0.1778	0.113	0.038	0.023	0.016	0.013	0.011	0.009
-16	-1.2000	0.1585	0.101	0.034	0.020	0.014 ,	0.011	0.010	0.008
-17	-1.1500	0.1413	0.090	0.030	0.018	0.013	0.010	0.008	0.007
-18	-1.1000	0.1259	0.080	0.027	0.016	0.011	0.009	0.007	0.006
-19	-1.0500	0.1122	0.071	0.024	0.014	0.010	0.008	0.007	0.005
-20	-1.0000	0.1000	0.064	0.021	0.013	0.009	0.007	0.006	0.005

TABLE II

The " $\varphi-\frac{t}{T}{ }^{\text {" Table }}$

$\frac{t}{T}$	1	2	3	4	5	6	7	
0.50	5.7	17.2	28.6	40.1	51.6	63.0	74.5	0.50
0.75	8.6	25.8	43.0	60.2	77.3	94.5	111.7	0.75
1.00	11.5	34.4	57.3	80.2	103.1	126.1	149.0	1.00
1.25	14.3	43.0	716	100.3	128.9	157.6	186.2	1.25
1.50	17.2	51.6	85.9	120.3	154.7	189.1	223.5	1.50
1.75	20.1	60.2	100.3	140.4	180.5	220.6	260.7	1.75
2.00	22.9	68.8	114.6	160.4	206.3	252.1	297.9	2.00
2.25	25.8	77.3	128.9	180.5	232.0	283.6	335.2	2.25
2.50	28.6	85.9	143.2	200.5	257.8	315.1	12.4	2.50
2.75	31.5	94.5	157.6	220.6	283.6	346.6	49.7	2.75
3.00	34.4	103.1	171.9	240.6	309.4	18.2	86.9	3.00
3.25	37.2	111.7	186.2	260.7	335.2	49.7	124.1	3.25
3.50	40.1	120.3	200.5	280.7	1.0	81.2	161.4	3.50
3.75	43.0	128.9	214.9	300.8	26.7	112.7	198.6	3.75
4.00	45.8	137.5	229.2	320.9	52.5	144.2	235.8	4.00
4.25	48.7	146.1	243.5	340.9	78.3	175.7	273.1	4.25
4.50	51.6	154.7	257.8	1.0	104.1	207.2	310.4	4.50
4.75	54.4	163.3	272.2	21.0	129.9	238.7	347.6	4.75
5.00	57.3	171.9	286.5	41.1	155.7	270.3	24.8	5.00
5.50	63.0	189, 1	315.1	81.2	207.2	333.3	99.3	5.50
6.00	68.8	206.3	343.8	121.3	258.8	36.3	173.8	6.00
6.50	74.5	223.5	12.4	161.4	310.4	99.3	248.3	6.50
7.00	80.2	240.6	41.1	201.5	1.9	162,4	322.8	7.00
7.50	85.9	257.8	69.7	24.1 .6	53.5	225.4	37.3	7.50
8.00	91.7	275.0	98.4	281.7	105.1	288.4	111.7	8.00
8.50	97.4	292.0	127.0	321.8	156.6	351.4	186.2	8.50
9.00	103.1	309.4	155.7	1.9	208.2	54.5	260.7	9.00
9.50	108.9	326.6	184.3	42.0	259.8	117.5	335.2	9.50
10.0	114.6	343.8	213.0	82.1	311.3	180.5	49.7	10.0
10.5	120.3	1.0	241.6	122.2	2.9	243.5	124.1	10.5
11.0	126.0	18.2	270.3	162.4	54.9	306.6	198.7	11.0
11.5	131.8	35.3	298.9	202.5	106.0	9.6	273.1	11.5
12.0	137.5	52.5	327.5	242.6	157.6	72.6	347.6	12.0
12.5	143.2	69.7	356.2	282.7	209.1	135.6	62.1	12.5
13.0	149.0	86.9	24.8	322.8	260.7	198.7	136.6	13.0
13.5	154.7	104.1	53.5	2.9	312.3	261.7	211.1	13.5
14.0	160.4	121.3	82.1	43.0	3.8	324.7	285.6	14.0
14.5	166.2	138.5	110.8	83.1	55.4	27.7	0	14.5
15.0	171.9	155.7	139.4	123.2	107.0	90.8	74.5	15.0

Values of φ in degrees for various n and $\frac{t}{T}$, calculated from the expression

$$
\varphi=(2 n-1) \frac{36}{\pi} \frac{t}{T} .
$$

FIG.I. GAIN CURVES. SYSTEM TRANSFER FUNCTION $\frac{1}{\left.\left(\omega_{n}^{2}-\omega^{2}\right)+2 j \omega\right\} \omega_{\mu}}$

FIG. 2 \& 2a

FIG.2.

FIG. 2 a.

FIG. 2\&2a. THE CIRCULAR COMPUTER.

FIG. 3. FREQUENCY RESPONSE CURVES. SYSTEM I.

FIG.4. FREQUENCY RESPONSE CURVES. SYSTEM 2.

FIGURE 5

Calculation - Systen 1

Select $\omega_{0}=0.90$ at the peak of the gain curve, so that $\omega_{\mathrm{F}}=0.18$
(a)

n	1	2	3	4	5	6
$\omega_{2 n-1}$	0.18	0.54	0.90	1.26	1.62	1.98
$A_{2 n-1}$	+0.2	+2.1	+4.7	+0.3	-5.5	-10.0
$B_{2 n-1}$	-6.3°	-24.6°	-705°	-127.8°	-150.1°	-158.4°

(b)

Since $\quad \omega_{0}=0.90, \quad T=\frac{1}{\omega_{0}}=1.11$

Secs	0.56	1.11	1.67	2.22	2.78	3.33	3.89	4.4.4	5.0	5.55	6.11	5.66	7.22	7.77	8.33	8.88	9.44	10.0
$\omega t / T$	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	5.0
1	-0.01	+0.06	+0	+0.18	+0.25	+0.31	+0.36					+0. 58					. 66	
2	-0.04	+0.05	+0.12	+0.19	+0.24	+0.26	+0.26	+0.25	$+0.21$	+0.15	+0.07	-0.01	-0.09	-0.16	-0,21	-0.25	-0.27	-0.26
3	-0.15	-0.05	+0.06	+0.15	$+0.21$	+0.21	+0.17	+0.08	-0.03	-0.13	-0.19	-0.21	-0.18	-0.11	-0.01	$+0.10$	+0.18	+0.21
4	-0.09	-0.07	-0.01	+0.05	+0.09	-0.09	+0.04	-0.02	-0.08	-0.09	-0.07	-0.01	$+0.05$	-0.09	+0.09	+0.04	-0.02	-0.08
5	-0.03	-0.03	0	+0.03	+0.03	+0.01	-0.02	-0.03	-0.03	0	+0.03	+0.03	$+0.01$	-0.02	-0.03	-0.03	0	+0.03
6	-0.02	-0.01	+0.01	+0.02	+0.01	-0.01	-0.02	0	+0.01	-0.02	0	-0.02	-0.02	0	+0.02	$+0.01$	0	-0.02
Σ	-0.34	-0.05	+0.30	+0.62	+0.83	+0.87	+0.83	+0.70	+0.54	+0.46	+0.39	+0,36	+0.38	+0.43	+0.51	+0.53	+0.55	+0.53
+0.5	+0.16	+0.45	+0.80	+1.12	+1.33	1.37	+1.33	+1.20	+1.04	+0.96	+0.89	+0.86	+0.88	+0.93	+1.01	+1.03	+1.05	+1.03

FIGURE 6

Calcularion - System 2

Neglect gain curve peak at $\omega=750 \mathrm{rad} / \mathrm{sec}$.
Select ω_{F} by the -90° phase-shzft criterion.
For $-90^{\circ}, \omega \doteq 83$.
Choose $\omega_{F}=18$ which is $\frac{83}{5}+10 \%$.

n	1	2	3	4	5	6
$\omega_{2 n-1}$	18	54	90	126	162	198
$\mathrm{~A}_{2 n-1}$	-0.75	-3.5	-8	-11	-15	-17
$\mathrm{~B}_{2 n-1}$	-24.5	-63	-96	-120	-133	-140

Since $\omega_{0}=90, T=\frac{1}{\omega_{0}}=0.011$

Secs	0.005	0.0111	0.0167	0.0222	0.0278	100333	0.0389	0.0448	0.050	0.0555	0.0611	0.0666	0.0722	0.0777	0.0833	0.0888	0.0944	0.010
${ }^{\text {n }}$	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
1	-0.19	-0.13	-0.08	-0,02	+0.04	+0.10	+0.16	+0.21	+0.26	+0.32	+0.36	+0.41	+0.45	+0.48	+0.51	+0. 54	+0.56	+0. 77
2	-0.10	-0.07	-0.03	+0.01	+0.06	+0.09	+0.12	+0.14	+0.14	+0.14	+0.12	+0.09	+0.05	+0.01	-0.04	-0.08	-0.11	-0.13
3	-0.05	-0.03	-0.01	+0.02	+0.04	+0.05	+0.05	+0.04	+0.02	-0.01	-0.03	-0.05	-0.05	-0.04	-0.02	0	+0.03	+0.05
4	-0.03	-0:02	0	+0.02	+0.03	+0.02	+0.01	-0.01	-0.02	-0.03	-0.02	0	+0.02	+0.03	+0.02	+0.01	-0.01	-0.02
5	-0.01	-0.01	0	+0.01	+0.01	0	-0.01	-0.01	-0.01	+0.01	+0.01	+0.01	0	-0.01	-0.01	-0.01	+0.01	+0.01
6	-0.01	0	+0.01	+0.01	0	-0.01	-0.01	0	+0.01	+0.01	0	-0.01	-0.01	0	+0.01	0	0	-0.01
Σ	-0.39	-0.26	-0.11	+0.05	+0.18	+0.25	+0.32	+0.37	+0.40	+0.44	+0.44	+0.45	+0.46	+0.47	+0.47	+0.46	+0.48	+0.47
+0:5	+0.11	+0.24	+0.39	+0.55	+0.68	+0.75	+0.82	+0.87	+0.90	+0.94	+0.94	+0.95	+0.96	+0.97	+0.97	+0.96	+0.98	+0.97

FIG.7. TRANSIENT RESPONSE CURVES. SYSTEMS I AND 2.

Crown Copyright Reserved

PUBLISHED BY HER MASESTY'S STATIONERY OFFICE

To be purchased from
York House, Kingsway, LONDON, w c 2 : 423 Oxford Street, LONDON, w 1 P.O Box 569, london, se.l

13a Castle Street, edinburgh, $2 \mid 1$ St Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, $3 \mid 80$ Chichester Street, belfast
or from any Bookseller
1953
Price 4s. Od. net
printed in great britain

