

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

C.P. No. ⁴247³

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Gust Loads on Comet Aircraft

by

1. W. Kaynes

Structures Dept., R.A.E., Farnborough

LONDON: HER MAJESTY'S STATIONERY OFFICE

1973

PRICE 85p NET

CP No.1247* August 1971

٢

٢

GUST LOADS ON COMET AIRCRAFT

by

I. W. Kaynes

SUMMARY

Counting accelerometers have been used to record normal accelerations on BOAC Comet 4 and RAF Comet 4C aircraft for flight distances of 910 000 km and 388 000 km respectively. Two Comet 4 aircraft carried instruments and a significant difference is found between the frequencies of gusts observed on each. Revised data for the BOAC Comet 1 and RAF Comet 2 are presented and comparison of the four fleets shows that loads were recorded more often on the civil airline operations. The effect of the cloud warning radar carried by only the later aircraft is studied.

* Replaces RAE Technical Report 71165 - ARC 33682

Ē,

t

CONTENTS

Page

1	INTRO	DUCTION			3
2	INSTR	UMENTATION			3
3	DATA	PROCESSING			3
4	RESUL	TS OF ANALYSIS			6
	4.1	Presentation of results			6
	4.2	Gust frequencies for each fleet			7
	4.3	The influence of cloud collision warning radar			8
	4.4	Variations with altitude			8
5	CONCL	USIONS			10
Table	s l to	17	12	to	38
Refer	ences				39
Illus Drg:	tratio s. 011	ns /906942 to 011/906953	Figures 1	to	12
Detacl	hable	abstract cards			

CP No.1247* August 1971

GUST LOADS ON COMET AIRCRAFT

by

I. W. Kaynes

SUMMARY

Counting accelerometers have been used to record normal accelerations on BOAC Comet 4 and RAF Comet 4C aircraft for flight distances of 910 000 km and 388 000 km respectively. Two Comet 4 aircraft carried instruments and a significant difference is found between the frequencies of gusts observed on each. Revised data for the BOAC Comet 1 and RAF Comet 2 are presented and comparison of the four fleets shows that loads were recorded more often on the civil airline operations. The effect of the cloud warning radar carried by only the later aircraft is studied.

* Replaces RAE Technical Report 71165 - ARC 33682

٤

5

C

رہ

٢

ŝ,

2

-

CONTENTS

1	INTRODUCTION	3
2	INSTRUMENTATION	3
3	DATA PROCESSING	3
4	RESULTS OF ANALYSIS	6
	4.1 Presentation of results	6
	4.2 Gust frequencies for each fleet	7
	4.3 The influence of cloud collision warning radar	8
	4.4 Variations with altitude	8
5	CONCLUSIONS	10
Table	s 1 to 17	12 to 38
Refer	ences	39
Illus Drg	trations s. 011/906942 to 011/906953	Figures 1 to 12
Detac	hable abstract cards	-

Page

ð

ê

4

1

Ĵ

î

~

1 INTRODUCTION

٢

۲

:

<u>,</u>

Centre of gravity accelerations have been recorded in passenger transport aircraft for many years and the records were extended by installing counting accelerometers on two Comet 4 and one Comet 4C aircraft operated by BOAC and RAF Transport Command respectively. In the period from November 1959 to September 1962 data were collected for 1200 flying hours of the BOAC aircraft, representing a distance of 910 000 km, and between January 1964 and February 1967, 500 flying hours (388 000 km) of the RAF aircraft were observed. In the present paper the turbulence encountered by these three aircraft is studied together with a re-analysed form of the previously published ^{1',2} recordings from the BOAC Comet 1 and RAF Comet 2.

2 INSTRUMENTATION

All data presented here were obtained from counting accelerometers measuring the vertical acceleration at a point near the aircraft centre of gravity. The counting accelerometer^{3,4} is an instrument that counts the number of times given levels of upward or downward acceleration are exceeded, the counter for a given level being activated when the acceleration has returned to some preset lower level. The counters, a clock and instruments recording the altitude and speed of the aircraft are photographed at intervals of a few minutes. All aircraft except the Comet 1 carried the Mk.4 instrument, which incorporates an airspeed switch to ensure that recording starts after take-off and stops before landing by switching on the instrument when the airspeed exceeds 125 kn ias and switching off when it fall below 100 kn ias. The Mk.2 instrument fitted to the Comet 1 did not include this feature so that the first and last intervals of each flight included ground loads and were consequently neglected in the analysis.

3 DATA PROCESSING

The recorded data were initially coded on to punched cards. The films were read to obtain the accelerations counted at each level during each interval which were then punched on a card together with the duration in minutes of the interval and the altitude and indicated airspeed at the end of the interval. These last two quantities were recorded in units of 1000 ft and 10 kn respectively. Operational details of each flight were available on supplementary data sheets and so codes were punched representing the particular route, the date and the weight of the aircraft at take-off.

This information on cards was then processed by computer to give a modified form of these records on magnetic tape for later analysis. The airspeed and the altitude at the beginning and end of an interval were both averaged so that the acceleration counts could be associated with the mean of the flight parameters during that time. In early work these means were recorded in the same units as the original data but the accuracy of the basic data is now preserved by using units of 500 ft for the altitude and 5 kn for the airspeed. Results are subdivided by 13 altitude bands (Table 2) spaced between the mid-points of these 500 ft units. The classification of data by flight condition is according to five categories defined as follows: 'initial climb' is the first interval after take-off, 'final descent' is the last interval before landing, 'climb' and 'descent' describe other intervals, during which the altitude increased or decreased by 2000 ft or more. 'Cruise' includes all remaining observations. The initial climb and final descent records have been ignored in cases that might have included ground loads. Other information recorded on the magnetic tape included the accelerometer mark number and codes by which individual aircraft and routes may be identified.

The observations for all the Comets were written in this format and used as input for a program to calculate the required details of the flying and acceleration records, subject to specified subdivisions. The program classifies information according to flight condition and altitude band, within which it calculates the recorded time, distance, mean altitude and the number of times that each positive and negative acceleration increment was exceeded. The latter results are presented both as the measured number and the number per unit distance for each of positive, negative and combined accelerations. A similar output is produced when converting accelerations to equivalent gust velocities. In this case a gust response factor, as described later, is calculated for each interval so that the gust velocities corresponding to the levels of acceleration may be found. Thus the number of times that each of these gust velocities were exceeded is known and the following interpolation scheme is used to estimate the exceedances of a required set of velocities. If one of these falls between the equivalent velocities of two acceleration levels both of which have been exceeded once or more, a log-linear interpolation is used. If the required velocity is greater than that corresponding to the highest level exceeded then it is assumed that the number of exceedances drops to zero according to a parabola with its vertex at the next level.

4

â

ŝ

î

A

Two methods of calculating the conversion from accelerations to gust velocities have been used here, both assuming that the aircraft is rigid and does not pitch. The procedure due to Zbrozek assumes a discrete gust and takes account of compressibility and unsteady lift for a finite aspect ratio wing. A ramp shaped gust is used here with a basic gradient distance of 30 m; making allowance for the sweep of the Comet wing by the method of Zbrozek increases the effective gradient distance to 37 m. The other conversion to gust velocity was calculated from the gust response factor derived by the author⁶. This assumes that the atmospheric turbulence may be regarded as continuous and homogeneous in the horizontal plane with the energy of the vertical component distributed with frequency according to the Von Karman two-dimensional spectrum. The scale length used in the spectrum is equal to the inverse density ratio times 1000 ft except for flight below 1000 ft, in which case the scale length is taken to be equal to the altitude. The calculations of the response to continuous turbulence include the effects of compressibility unsteady lift, wing sweepback and spanwise variations of both the turbulence and the wing loading; the basic data is summarised in Table 1.

Ċ

Ē

ŝ,

۰.

ê,

Throughout this paper in making conversion to gust velocity reference is made to discrete or spectral models and discrete or spectral response factors. In the particular sense used here discrete refers to the Zbrozek calculation of alleviation factor for a ramp shaped gust and spectral refers to the author's derivation of gust response factor.

It should be noted that each of these methods gives its own equivalent vertical gust velocity for a normal acceleration experienced under particular conditions. Comparisons may be made between the turbulence encountered by different aircraft using either conversion, with accuracy depending upon the compatibility of the assumptions used in the theory with the actual characteristics of the aircraft and the atmosphere. Where simple models of the turbulence and the response do not yield consistent results for different aircraft more appropriate physical models become necessary. There is little value in relating the results of the different methods but it may be noted that the equivalent gust speed given by the spectral model (Kaynes) here is about 1.5 times the equivalent gust speed given by the discrete model (Zbrozek), the variations with altitude being given in Table 3. Taylor⁷ has included a constant factor of 1.2 on the response factor to allow for the amplification by structural flexibility of the recordings of an accelerometer mounted near the centre of gravity; this constant has been omitted in this work.

Results calculated using spectral response factors have been shown both as the number per kilometre of gusts exceeding given values (equivalent to the discrete model results) and also with the number per kilometre of gusts normalised by dividing by the predicted number of zero crossings⁶ for the conditions of each turbulence record. In this way`allowance is made for the effect of aircraft responses on the apparent number of gusts encountered in a unit of flying distance. If applied to aircraft of differing size and geometry this gives a better comparison than would be possible using a direct acceleration to gust conversion; Taylor⁷ has obtained consistent results from aircraft with a wide range of zero crossings values.

÷

Ξ

î

4 RESULTS OF ANALYSIS

4.1 Presentation of results

The tabulated results are classified by altitude bands which are defined in Table 2. Table 3 summarises the distance and time flown in each band by each fleet with the corresponding spatial mean values of altitude, speed, mass parameter and the gust speeds predicted by the discrete and spectral models to produce a 1 g acceleration at the aircraft centre of gravity. The ratio of the gust speeds calculated by Kaynes response factors to those of Zbrozek increases slightly with altitude, varying for the Comet 4 and 4C from 1.45 at low altitude to 1.52 under normal cruising conditions, the corresponding ratios for the earlier types of aircraft are slightly higher, namely 1.57 to 1.67 for the Comet 1 and 1.54 to 1.69 for the Comet 2. It can be seen from Table 3 and Fig.1 that the Comet 2 cruise was largely within altitude band 12 (37750 to 41750 ft) while for the other three fleets it was almost equally divided between bands 10 and 11, that is about 6000 ft lower.

The recorded accelerations for each fleet are presented in Tables 5-8, the recorded gusts as derived by the discrete model in Tables 9-12 and those for the spectral model in Tables 13-16. The basic details of the distance and time flown are repeated in each case so that complete comparisons may be made easily between aircraft within any group of tables. For most flying, except that at low level, the minimum gust speed of 2.5 m/s given in the discrete gust tables corresponds to an interpolation between the numbers of accelerations counted at the lowest two levels. So that this also applies to the tables of spectral equivalent gusts, a minimum speed of

6

ţ

3 m/s was chosen for these tables. The numbers of gusts have been rounded to the nearest integer, with the result that in some cases the total for all altitudes is not precisely the sum of the individual integers.

4.2 Gust frequencies for each fleet

Ō

۹

2

۰.

٩

The variation of gust frequency with gust speed for each Comet fleet at all altitudes is illustrated in Figs.2 and 4 for climb and descent, and in Figs.3 and 5 for cruise. The Comet 1, which was the only type not fitted with cloud collision warning radar, is seen to have encountered most gust speeds more frequently and also gusts of greater magnitudes than the other aircraft. During climb and descent the civil aircraft have recorded gusts appreciably more frequently than the military aircraft, which might have been caused by differences in operating techniques. The data recorded on the BOAC aircraft have approximately 65% of the total distance flown within the cruise category, as defined here, while the data for RAF operations show 75% cruise. The histograms in Fig.1 show the distribution with altitude of the total flying distance, plotted on a logarithmic scale of percentage of the total distance at all altitudes. It is noticeable that the military aircraft spent proportionally less time at the more turbulent lower altitudes. In view of this a more useful indication of gust frequency is given by subdivisions of the data such as given in Figs.6 and 7 which show the gust frequency distribution for climb and descent in altitude bands 4 to 6 and 7 to 9, and Fig.8 which applies to cruise in band 10 and above. These figures represent about 20% and 35% of the total climb and descent and 98% of the cruise respectively. Finer subdivisions would have further reduced the significance of the climb and descent samples and have introduced the effects of operational differences on the cruise. The numbers of up and down gusts have a similar distribution and so have been added together for these figures.

Fig.9 shows a modified use of the spectral response factors. Instead of the direct conversion of accelerations to gusts that is used in the discrete gust method, the number of gusts counted in each interval have been normalised by dividing by the number of zero crossings per kilometre calculated using the procedure of Ref.6. The zero crossings factor is of a similar magnitude for each Comet type and thus these gust frequency curves are nearly equivalent to the previous spectral ones (Figs.7 and 8) with a change of vertical scale.

4.3 The influence of cloud collision warning radar

The difference between the Comet 1 and the other types during high altitude cruise is marked. In the original analysis¹ of the Comet 1 data it was shown that BOAC crew weather reports associated cumulus cloud with most of the turbulence that had gusts greater than 3 m/s EAS and with all the gusts that exceeded 6 m/s EAS. The other aircraft show a reduction in the frequency of the large gusts, suggesting that the radar had been successfully used to avoid most of the severe turbulence associated with the cumulus clouds. This had previously been noted for the Comet 2^2 . By removing the accelerations recorded on the Comet 1 in known cumulus conditions the distributions of gust frequency shown by the broken lines in Fig.8 were obtained. For gust speeds greater than 3 m/s EAS (discrete gust method) these are between the gust frequency curves for the other radar equipped Comet fleets. This removal of the known cumulus records probably exaggerates the effects of cloud collision warning radar, since an aircraft with radar flying in similar conditions might have flown through some lesser disturbances while making a detour around the severe turbulence.

Bullen and Judy Aplin⁸ compared the accelerometer records from Viscount operations with and without radar, which constituted a more precise comparison than is possible between the different Comet fleets. The Viscount was flying in Africa and at lower altitude than the Comets so that it encountered more turbulence. In order to compare these results, reduction ratios of gust frequencies for the Viscounts with radar to those without radar was applied to the Comet 1 and the frequency distribution obtained was approximately that of the later types of Comet.

4.4 Variations with altitude

The relative frequencies of up and down loads exceeding 4 m/s is shown in Fig.10 together with the empirical expression proposed by Bullen¹¹. A general decrease in the ratio with altitude is detectable but above 10000 ft the variations for each fleet show no consistent trends, this may be influenced by different operating techniques.

In Fig.ll the frequencies of 4 m/s and 6 m/s gusts (based on spectral factors) have been plotted against altitude. Altitude bands have been combined if the recorded distances were considered insignificant. The three major flight conditions have been combined and the initial climb and final descent

ŝ

۵

-

2

Ξ

records have been ignored. The curves for the civil and military fleets are seen to be distinct, most particularly at lower altitudes, which was also noted for the gust frequency distributions. The Comets 1 and 2 both show an increase in gust frequency at altitudes greater than the normal cruise, this being most marked for the more severe turbulence. This is mainly explained by the operational technique of changing height to avoid some areas of turbulence; the increase is not observed on the later aircraft, suggesting that height holding requirements were more rigid.

4.5 Variations between individual aircraft

٢

۷

The Comet 1 fleet had counting accelerometers fitted on three aircraft, the Comet 4 fleet two aircraft and the Comet 4C only one aircraft. Seven Comet 2s were equipped with instruments, so that the records on the individual aircraft of this fleet were too small to justify separate study.

Table 4 subdivides the distance flown by each aircraft according to the zone. Apart from the 75000 km recorded on G-APDA while flying on routes in the Western hemisphere, the geographical distributions of the data for this and the other Comet 4 (G-APDB) are similar, also, the individual Comet 1 aircraft each visited different parts of the world in nearly the same pattern. The seasonal distributions of the data for the former type are similar but G-ALYS was the only Comet 1 to have yielded observations for the whole year. The other two aircraft records introduce some bias, since they are concentrated between the months August to December. Within this restriction 1t may be expected that the five BOAC aircraft flew through atmospheric samples of similar characteristics, after excluding from the Comet 1 data that turbulence known to have been in the vicinity of cumulus activity.

Fig.12 compares the aircraft of the Comet 1 and Comet 4 fleets for cruising flight higher than 29750 ft and for climb and descent between 5750 and 29750 ft. The lines have been drawn up to the highest gust speeds at which four or more gusts had been counted. G-APDB encountered gusts at between two and three times the frequency of the other Comet 4 during cruise and between three and four times the frequency in climb and descent. This consistent discrepancy is rather more than would have been expected for this quantity of data had it been recorded from flying over the same route and season pattern by identical aircraft and instruments. The ranges of gust frequencies corresponding to gust counts within two standard deviations of the observed value were calculated by the method of Bullen⁹ for both aircraft and the ranges for climb and descent were found to be distinct up to a gust speed of 4 m/s. For the cruise data this level of significance did not extend to gust speeds of 3 m/s, there being fewer gusts counted under these flight conditions and consequently wider significance limits.

۵.

ŝ.

3

Sturgeon¹⁰ has described differences of this type for two nominally identical aircraft. The accelerometer on one recorded double the number of low magnitude loads counted on the other aircraft and, since analogue traces were also available, a more severe autopilot hunting could be detected in the motion of the 'rogue' aircraft. It was stated that this contributed to the moderate loads but had no detectable effect on the severe loads, these occur so infrequently that differences between these loads would have little statistical significance. The Comet 4s studied here might have displayed similar differences in autopilot behaviour if the appropriate data had been available.

The Comet 1 data do not show such significant differences between aircraft. The gust frequency curves for the cruise are very close to the mean for the fleet and the variations at higher gust speeds during climb and descent have no statistical significance. As stated earlier in this section, seasonal factors may have affected the relationship between the loads recorded on each Comet 1 and so it cannot be deduced from the results that there were no significant differences between the turbulence response of the individual aircraft.

5 CONCLUSIONS

Analysis of the counting accelerometer data from the operation of four marks of Comet aircraft has shown that the magnitude and number of loads recorded differed considerably between the distinct types of operations covered.

Comet 1 and Comet 4 records for civil flying were found to be closely comparable after removing from the Comet 1 data all encounters with turbulence known to be in the vicinity of cumulus clouds. This implies that the cloud collision warning radar on the Comet 4 was used successfully to avoid areas of cumulus activity.

Significant discrepancies between the two individual aircraft were found in the Comet 4 observations. It is possible that this might be explained in terms of differences in aircraft dynamics, such as autopilot behaviour.

The Comet 2 and 4C flying military transport services encountered fewer gusts than the civil aircraft. This applied both to individual phases of flight and particularly to the gust frequencies measured during all flying, since a greater proportion of the total time was spent at high altitude with consequently less frequent turbulence encounters.

٢

÷

÷

<u>Table 1</u>

AIRCRAFT CHARACTERISTICS

2

=

3

ŝ

2

The following values were assumed to apply approximately to all Comet aircraft, except for wing area.

Wing span		35	m
Wing area	Comet 1	187	sq m
	Comet 2	188	sq m
	Comet 4 and 4C	197	sq m
Low speed slope of	the lift curve	4.8	per radian
Maximum value of si	lope of the lift		
curve (at Mach num	per 0.79)	6.40	per radian
Gust gradient dista	ance for discrete		
gust response calcu	lations		37 m

<u>Table 2</u>

IDENTIFICATION OF ALTITUDE BAND NUMBERS

Band number	Altitude (ft)
1	0 - 1750
2	1750 - 3750
3	3750 - 5750
4	5750 - 9750
5	9750 - 13750
6	13750 - 17750
7	17750 - 21750
8	21750 - 25750
9	25750 - 29750
10	29750 - 33750
11	33750 - 37750
12	37750 - 41750
13	Above 41750

.

ŧ

Ξ

ş

٢

5

Table	Зa

DETAILS OF RECORDED FLYING IN ALL FLIGHT CONDITIONS BOAC AIRCRAFT

3

đ

ŝ

ŝ

¥

2

			Mean	condit	ions	Mean gust speed				
Altitude band	Distance km	Time mín	Altitude	Speed	Mass	(m/s) cor to 1 g ac	celeration			
			ft	EAS	parameter	Discrete	Continuous			
			Co	met 1						
1	301	65	1000	148	12.1	11.3	17.7			
2	2 298	445	2600	161	12.6	10.3	16.2			
3	6 527	1150	4700	171	14.3	10.0	15.6			
4	33 623	5055	7700	217	16.0	8.9	14.0			
5	34 466	4470	11400	210	18.0	8.0	12.7			
6	37 428	4435	15700	214	20.8	7.7	12.3			
7	46 485	5210	19600	212	23.6	7.7	12.3			
8	8 60 666 6476 2360			208	27.0	7.7	12.4			
9	83 936	8500	27700	204	31.1	7.8	12.5			
10	281 308	25360	31900	212	34.9	7.1	11.6			
11	470 711	9680	35400	212	36.1	6.4	10.7			
12	94 805	7615	38600	207	37.8	6.0	10.2			
13	744	60	42800	186	42.8	6.0	10.7			
			Co	omet 4						
1	3 618	747	1100	154	17.4	14.9	21.2			
2	9 474	1648	2700	179	18.8	13.2	19.4			
3	7 918	1194	4700	200	19.9	11.6	17.1			
4	16 942	2187	7800	223	21.9	10.3	15.2			
5	17 933	2002	11700	242	24.9	9.5	14.0			
6	21 198	2160	15900	248	28.3	9.1	13.4			
7	26 050	2490	19900	248	31.6	8.8	13.1			
8	29 094	2533	23700	255	35.3	8.4	12.5			
9	57 141	4565	28200	256	27.6	7.6	11.6			
10	351 792	25303	32100	265	40.4	7.0	10.5			
11	353 823	25138	34700	255	43.5	7.0	10.7			
12	15 159	1167	38500	228	46.8	7.0	11.1			

Tal	ble	3b

DETAILS OF RECORDED FLYING IN ALL FLIGHT CONDITIONS RAF AIRCRAFT

ŝ

÷

÷

÷

٤

.

			Mean	condit	Mean gust speed				
Altıtude band	Distance km	Time min	Altitude	Speed	Mass	to 1 g ac	celeration		
		ft	EAS	parameter	Discrete	Continuous			
			Co	met 2					
1	990	207	1300	152	14.1	12.2	18.6		
2	4 643	832	2600	174	15.9	11.4	17.3		
3	2 103	336	4700	189	15.1	9.5	14.7		
4	6833	919	7700	214	18.6	9.1	14.0		
5	7 357	906	11900	219	21.0	8.6	13.2		
6	7 717	880	15900	222	24.0	8.4	13.0		
7	10 728	1156	19800	220	27.0	8.3	12.9		
8	11 991	1192	23700	223	31.6	8.2	12.8		
9	14 428	1341	27800	222	34.8	7.8	12.4		
10	24 817	2148	31900	221	39.2	7.6	12.0		
11	101 708	7867	36500	226	41.3	6.6	10.7		
12	273 121	20587	39900	214	42.0	6.1	10.2		
13	29 481	2243	42500	199	45.1	6.1 10.4			
•			Co	met 4C					
1	2 709	608	1000	142	17.6	16.5	23.3		
2	3 383	626	2600	168	18.0	13.5	20.0		
3	2 435	356	4700	207	20.8	11.7	17.0		
4	5 769	722	7600	231	22.1	10.1	14.9		
5	5 742	620	11700	251	26.3	9.6	14.0		
6	5 883	588	15800	253	29.1	9.1	13.5		
7	6 729	625	19700	256	33.8	9.1	13.4		
8	8 976	770	24100	257	37.1	8.6	12.7		
9	27 035	2083	28300	265	37.9	7.4	11.2		
10	146 941	10673	32100	262	40.8	7.1	10.7		
11	171 098	12318	34700	252	42.3	6.9	10.6		
12	1 705	115	38000	250	64.8	9.0	12.8		

Table 4

GEOGRAPHICAL DISTRIBUTION OF FLYING DISTANCE RECORDED ON INDIVIDUAL AIRCRAFT (km)

Zone	7000		Comet 1		Comet 2	Come	Comet 4			
number	Zone	G-ALYS	G-ALYX	G-ALYW	(all aircraft)	G-APDA	G-APDB	Comet 4C		
0	Europe	233 997	106 546	47 407	141 347	107 157	55 457	127 925		
1	Indian Ocean				126 887	34 116	17 948	171 125		
2	Africa	220 894	95 372	36 970	74 424	87 770	99 081			
3	Middle and Far East	243 411	84 238	51 687	115 903	181 766	161 333	89 355		
4	Australasia				11 056	50 121	29 184			
5	North Atlantic				8 671	39 611				
6	Pacific	25 900	6 877		6 285	3 857	6 694			
7	North America				11 348	1				
8	South America					36 049				
	Total	724 202	293 033	136 064	495 918	540 447	369 697	388 405		

(i i)

.

н)

Table 5

1

ļ

COMET 1 ACCELERATION DATA

	1	r													- 	<u> </u>			
r 114 - 1- 1-			_ ••				Number	of ti	mes ea	ch acc	elerat	ion in	cremen	t (g)	was ex	ceeded			
condition	band	Distance km	Time minutes			1	Do	wn			-	ĺ			(U	P			
ł				0.92	0.82	0.72	0.62	0.52	0.43	0.33	0.23	0.23	0.33	0.43	0.52	0.62	0.72	0.82	0.92
	1	300	65			1					1	11	7		,		<u> </u>		
	2	2 298	445		2	6.	5	7	11	32	78	216	78	15	10	2	2		
	3	6 527	1150			ſ	1	4	14	75	225	454	145	40	14	3	2		
	4	33 623	5055		1	5	8	22	76	364	987	1873	691	212	69	21	11	3	1
	5	34 466	4470	1	1	3	5	13	31	151	444	733	247	63	16	8	3	2	
Climb	6	37 428	4435	1	3	5	6	14	26	93	216	343	136	45	21	8	3	Í	ļ
and	7	46 485	5210			1	3	7	18	63	152	272	97	35	17	9	4	1	
descent	8	60 500	6455	1	2	2	2	5	11	41	120	214	60	17	' 7	1	1	1	1
ł	9	78 844	8030			2	2	2	8	46	161	203	52	12	6	2			}
	10	81 401	7825			1	1	5	11	31	111	184	62	20	6	3	3	1	1
i t	11	33 911	2960	1	1	ļļ	2	4	8	29	86	114	39	9	3	1		1	
1	['] 12	2 237	180								1	1							1
•	TOTAL	418 020	46280	4	10	23	35	83	214	925	2582	4618	1614	468	169	58	29	8	3
	8	166	21		1														
÷	9	5 092	470						4	7	15	29	14	10	5	2	1	}	
Cruise	10	199 907	17535	1	1	3	6	10	20	74	262	332	85	20	9	7	6	2	1
,	11	436 800	36720	5	7	15	24	62	134	428	946	1259	455	171	84	43	31	19	5
1	12	92 569	7435				3	8	15	59	179	268	82	20	9	2	1	<u> </u>	+
ł	13	744	60								3	8	2						
	TOTAL	735 279	62241	6	8	19	33	80	173	568	1405	1896	638	221	107	54	39	21	6

Table 6a

1

, **I**.,

i

COMET 2 ACCELERATION DATA

		1.0									
		0.8	2	2							
eeded	с.	0.6	14	5	1	1					
was exc	Þ	0. 4	5 39 2	46	2 10 2	14	4 13	3 2 1		13 11 1	48
nt (g)		0.3	21 158 11	190	7 54 9 6	76	1 13 42	15 9 3	1 2 3	41 38 2	170
Incremen		0.2	48 500 42	590	71 172 39 13	295	14 58 178	85 57 29	21 17 40	112 151 8	770
cation i		0.2	35 313 33	381	20 75 21 2	118	1 36 125	48 38 29	24 19 26	105 128 4	583
accelei		0.3	12 83 7	102	20 3	25	5 22	6 7 3	10 4 3	35 40 3	138
es each		0.4	<u>533</u>	-63-			1 6		2	1	26
of time	Down	0.6	5	5							
Number		0.8			•						
		1.0									
		1.2									
	Time minutes		51 438 31	520	141 237 68 48	494	62 205 862	899 872 1064	1139 1338 1940	2002 1543 150	12076
-	Distance kun		2 84 2 534 186	3 005	635 1 252 397 303	2 587	350 1 317 6 470	7 303 7 648 9 949	11 469 14 396 22 220	24 696 19 873 1 924	127 615
	Altitude band		901	TOTAL	4 9 9 1	TOTAL	4 3 5	765	8 9 10 8	11 12 13	TOTAL
Flight condition		Initial climb	L	Final descent	<u> </u>		C1 imb	and descent	I	I	

î

.

-

•

·

•

Table 6b

(11

•)

(1)

~

-

.

COMET 2 ACCELERATION DATA

	<u> </u>	· · · · · ·													<u> </u>	
			Time minutes	Nu	mber	of ti	mes e	ach a	ccele	ratio	n inc	remen	t (g)	was	excee	ded
Flight condition	Altitude band	Distance km		Time Down ninutes							Up					
				1.2	1.0	0.8	0.6	0.4	0.3	0.2	0.2	0.3	0.4	0.6	0.8	1.0
	1 2 3	71 507 203	15 95 32						1	9 1	29 4	2				
	4 5 6	60 54 68	9 7 8								1 1					
Cruise	7 8 9	779 523 33	92 53 3							1	4 1					
	10 11 12	2 597 77 013 253 248	208 5865 19044	1	1	3	4	31	3 109	6 68 527	5 73 602	1 12 140	4 43	9	3	1
	13	27 557	2093				1	3	12	76	122	28	3			
	TOTAL	362 711	27524	1	1	3	5	34	125	688	842	183	50	9	3	1

.

(a)

Table 7a

COMET 4 ACCELERATION DATA

Flight	Altitude	Distance	Time	Nu	mber o	f time	s each was	accel excee	eration led	n incre	ement	(g)
condition	band	km	minutes		Dov	wn				Up		
				0.6	0.4	0.3	0.2	0.2	0.3	0.4	0.6	0.8
Initial climb	1 2 3	1 232 4 575 1 376	218 749 216		8 1	8 31 18	139 365 172	171 513 245	17 81 57	1 13 5	1	
	TOTAL	7 184	1183		9	57	676	929	155	19	1	
Landing	1	940	226				15	25	3	1		
Landing 	1 2 3	1 323 4 265 6 068	278 778 899		8	3 6 24	55 269 417	95 393 538	14 77 97	3 7 19	2	
Climb	4 5 6	16 450 17 849 20 996	2114 1990 2138	1	17 13 11	81 54 36	996 530 344	1192 558 424	212 69 69	32 13 10	2 2 2	
and descent	7 8 9	24 603 28 327 52 123	2356 2463 4160		6	17 7 8	244 211 220	231 193 128	31 31 15	5 7 2	2 1	1
	10 11 12	94 000 33 419 1 917	7028 2434 138	1	22 6	65 23 3	585 122 16	413 126 10	57 29 1	18 8	5 1	1
	TOTAL	301 341	26776	2	83	327	4009	4301	702	124	17	2

ા હ

(*

LP

Table 7b

•1

(1)

.

۲.

COMET 4 ACCELERATION DATA

Flicht	A1+;+	Dictores	Time	Nu	mber o	f time	s each was	accel excee	eratio ded	n incr	ement	(g)
condition	band	km	minutes		Do	wn				Up		
				0.6	0.4	0.3	0.2	0.2	0.3	0.4	0.6	0.8
	1 2 3	123 633 474	25 121 79			6 2	2 113 50	10 34 53	5 4			
	4 5 6	472 64 172	70 9 18				51 5	72 2 43	9			
Cruise	7 8 9	1 447 767 5 018	134 70 405			1 1	10 6 6	5 9 34	2 4			
	10 11 12	257 791 320 404 13 243	18275 22704 969		22 10	63 80	754 939 3	441 878 1	69 105	16 24	3	
	TOTAL	600 608	42879		32	153	1939	1582	198	40	3	

.

(4)

Table 8a

COMET 4C ACCELERATION DATA

				Numb	er of i	times e	each a	cceler	ation :	increme	ent (g)	was e	exceeded
Flight condition	Altitude band	Distance km	Time min			Dow	n				Up		
				0.8	0.6	0.4	0.3	0.2	0.2	0.3	0.4	0.6	0.8
Init1al climb	1 2 3	866 686 22	180 141 4				1 2	26 12	48 17 1	4 4			
	Total	1574	325				3	38	66	8			
Landing	1	967	243										
	2 3 4	1199 2070 5390	197 298 672			1 3	2 5	3 17 46	7 31 56	4 8	1 2		
	5 6 7	5524 5799 6527	595 579 606			1 1	4 1 4	24 13 14	23 _23 _19	7 3 5	3	1	1
and descent	8 9	8880 13801	762 1100				1 2	8 9	9 9	1	1		
	10 11	27558 5955	2064 429			1	5	42 4	44 7	10			
	Total	82703	7302			7	24	180	228	39	8	1	1

(**.**

40

**

(=

<u>Table 8b</u>

-

٠ • ١

·• •

				Numb	er of	times	each a	ccelerat	ion ind	erement	: (g) v	was exc	eeded
Flight condition	Altitude band	Distance km	Time min]	Down					Up	<u> </u>	
				0.8	0.6	0.4	0.3	0.2	0.2	0.3	0.4	0.6	0.8
	1 2 3	887 1 498 342	185 288 54			1	1 1	4 16 1	16 48 10	12	2		
	4 5 6	379 218 84	50 25 9			2	5	13 1 ‡	21 2	4	1		
Cruíse	7 8 9	201 96 13 234	19 8 983		7	26	60	156	114	64	31	4	1
	10 11 12	119 384 165 144 1 705	8609 11889 115	1	1	5	7 27 1	70 163 3	94 136 3	11 23 1	1 5	1	
	Total	303 160	22234	1	8	34	102	427	444	115	40	5	1

COMET 4C ACCELERATION DATA

2

τ í

Table 5 GUSTS ENCOUNTERED BY COMET 1, DISCRETE RESPONSE FACTOR

г у

		F	1	1	T	1		1	r		<u> </u>	
		6	5				2				ļ	
		8	<u> </u>	m			^		 			
		4	4 H	~			15					
ST		9	4 11	26 3 1	1	ę	20	m	~	 	 	6
m/s Eł		5	13 26	60 13 8	10 2 2	4	138	6 1	22			30
speed	dn	4	2 34 78	206 43 22	21 9 7	10	430	46	54	4		70
Gust	ļ	3.5	7 64 135	374 94 38	34 16 11	16 3	161	7 12	92	6		120
		e	9 116 223	684 187 86	61 29 24	30 8	1458	11 29	168	15		223
		2.5	11 194 382	1193 359 164	110 62 55	63 18	2609	14 72	315	40		441
		2.5	1 76 202	647 229 100	67 40 49	36 13	1459	6 59	265	30		360
ed was	 	e	48	361 111 50	40 20 24	18	793	4 25	137	14		179
st spee		3.5	30 57	189 57 27	22 10 9	10	414	1 14	65	7		87
ach gu eded	ЦМ	4	18 26	97 32 15	10 5 4	2	215	σ	34	т		46
mes e exce	Do	5	9	29 8 7	6 6 7 0 M	1	67	۳	œ	2	-	13
of ti		9	1 0	0 6 4	7.7		28		5			e
mber		2	'n	5 - 1 - 6			14		2			с
Nu		80					4					
		6		₩			1					
Time	nin		65 445 1150	5055 4470 4435	5210 6455 8030	7825 2960 180	46280	21 470 17535	36720	7435	60	62241
Distance	kin		300 2 298 6 527	33 623 34 466 37 428	46 485 60 500 78 844	81 401 33 911 2 237	418 020	166 5 092 199 907	436 800	92 56 <mark>9</mark>	744	735 279
Altitude	band		3 2 1	¢ 5	7 8 9	10 11 12	Total	8 9 10	11	12	13	Total
Flight	Flight Altitude Distance Time condition band km min				and descent	L			د		L	

) (

-

۱<u>۱</u>

-

<u>Table 10a</u>

GUSTS ENCOUNTERED BY COMET 2, DISCRETE RESPONSE FACTOR

•

í-

Ŷ

٠

¢

2

				Nu	mber	of t	imes	each	gust	spee	d was (exceede	ed	<u> </u>		6	ust	peed n	n/s E/	AS			
flight condition	Altitude band	Distance km	Time min						l Down									Up					<u> </u>
, 	 			10	9	8	7	6	5	4	3.5	3	2.5	2.5	3	3.5	4	5	6	7	8	9	10
Initial climb	1 2 3	284 2 534 186	51 438 31	1	1	2	1 3	2 10	5 22	13 59 2	19 100 5	28 171 11	43 300 24	54 481 32	38 294 17	28 184 9	21 105 4	8 36 1	4 16	3 6	2 3	1 2	1 2
	Total	3 005	520	1	1	2	4	12	28	74	124	210	366	567	349	221	130	45	21	8	5	3	3
Final	1 2	635 1 252	141 237							1 2	2 8	6 19	16 39	63 101	27 57	9 26	4	2 3	1				
descent	3 4	397 303	68 48							1	3	5	11	26 7	14 5	7 3	32						
	Total	2 587	494							4	13	31	66	197	102	45	19	5	1				
	2 3 4	350 1 317 6 470	62 205 862					1	3	7	1 14	3 22	8 40	6 17 70	1 9 34	4 17	1	1					
Climb	5 6 7	7 303 7 648 9 949	899 872 1064					ŧ		1	1 2	4 3 1	9 9 4	19 15 3	6 6 1	3 3	2-2	1					
and descent	8 9 10	11 469 14 396 22 220	1139 1338 1940							1	2	5	8 1 2	1 1 2									
	11 12 13	24 696 19 873 1 924	2002 1543 150							1	3 2	8 5 1	19 15 1	23 18 2	10 8 1	4 3							
	Total	127 615	12076					1	3	11	25	52	116	176	78	34	14	2					

,

<u>Table 10b</u>

GUSTS ENCOUNTERED BY COMET 2, DISCRETE RESPONSE FACTOR

TTISche	A1 4 4 - 3-	Distance	m:		Numb s	per d	of ti l was	mes ea excea	ach gu eded	st	(Gust s	peed 1	n/s E	AS	
condition	band	km	min				Do	wn					Up			·
				7	6	5	4	3.5	3	2.5	2.5	3	3.5	4	5	6
	1 2 3	71 507 203	15 95 32						1	4 1	15 2	5	2	1		
	4 5 6	60 54 68	9 7 8													
Cruise	7 8 9	779 523 33	92 53 3													
	10 11 12	2 597 77 013 253 248	208 5865 19044	1	1	3	5	9	18	34	1 5 50	2 22	1 11	6	3	1
	13	27 557	2093				1	2	3	6	7	3	1			
	Total	362 711	27524	1	1	3	6	11	23	45	79	33	14	7	3	1

<u>Table lla</u>

GUSTS ENCOUNTERED BY COMET 4, DISCRETE RESPONSE FACTOR

۰,

۰.

۶,

ø

۰

\$

,

Flight	Altitude	Distance	Time	1	Numb	er of t	imes ea excee	ch gust ded	speed	Was			Gust	speed	m/s EA	LS			
condition	band	km	min				Dow	n						Up			<u></u>		
				7	6	5	4	3.5	3	2.5	2.5	3	3.5	4	5	6	7	8	9
Initial climb	1 2 3	1 232 4 575 1 376	218 749 216	1	4	2 10 2	27 43 13	65 106 33	132 254 83	230 560 192	312 671 261	178 359 136	92 185 80	44 95 47	9 25 12	1 8 2	4	2	1
	Total	7 184	1183	1	5	14	83	205	469	982	1244	674	357	186	46	11	4	2	1
Landing	1	940	226				2	6	14	25	40	24	13	7	2	1	1		
	1 2 3	1 323 4 265 6 068	278 778 899		1	1 6	7 7 28	21 37 62	47 123 139	88 285 313	154 398 439	81 212 228	40 110 119	18 56 56	5 12 9	2 2 3	1 1		
	4 5 6	16 450 17 849 20 996	2114 1990 2138		1 1	5 3 2	35 9 6	83 20 12	184 55 28	454 166 70	668 195 113	325 67 45	161 26 18	79 12 9	25 4 2	11 2	4	2	1
Climb and descent	7 8 9	24 603 28 327 52 123	2356 2463 4160			1	5	9	15 2 1	34 9 6	50 25 11	25 10 3	13 5 1	6 3 1	2 1	1 1	1 1	1	
	10 11 12	94 000 33 419 1 917	7028 2434 138			1	9	16	24 2	43 7	43 10	25 3	15 1	10 1	4 1	1			
	Total	301 341	26776	1	3	18	107	260	621	1476	2106	1025	510	250	65	22	8	3	1

Table 11b

		Distance	min			3	Numb	er of	time G	s eac ust s	h gus peed 1	t spe m/s E	ed was AS	s ex	cee	ded			
condition	band	bistance km	min				D	own						Up					
				7	6	5	4	3.5	3	2.5	2.5	3	3.5	4	5	6	7	8	9
	1 2 3	123 633 474	25 121 79			1	6 1	17 4	1 48 14	3 129 38	13 38 45	6 20 18	2 10 6	4 2	1				
	4 5 6	472 64 172	70 9 18					3	18	50	73 2	34	15	6					
Cruise	7 8 9	1 447 767 5 018	134 70 405							1	2	1							
	10 11 12	257 791 320 404 13 243	18275 22704 969				5	12 2	26 6	50 29	54 44	23 16	9 8	3 4					
	TOTAL	600 608	42879			1	12	39	114	300	271	118	50	20	1				

28

GUSTS ENCOUNTERED BY COMET 4, DISCRETE RESPONSE FACTOR

Table 12a

(4)

4.

01

(**#**)

-

GUSTS ENCOUNTERED BY COMET 4C AIRCRAFT, DISCRETE RESPONSE FACTOR

Flight	Altitude	Distance	Time	Nt	umbeı spe	ed wa	imes e s exce	each g eeded	gust		(Sust s	peed	m/s E	AS		
condition	band	km	min			I)own						Up				
			-	6	5	4	3.5	3	2.5	2.5	3	3.5	4	5	6	7	8
Initial climb	1 2 3	866 686 22	180 141 4	1	4 3	20 8	33 13	50 19	70 27	124 34 2	88 24 1	59 17 1	36 11	9 4	2 1		
	Total	1574	325	1	7	28	45	69	97	159	113	76	47	13	3		
Landing	1	967	243														
	2 3 4	1199 2070 5390	197 298 672		1	2 2	3 5	1 5 9	1 12 21	7 19 22	3 8 11	1 5 6	3 3	1			
Climb and	5 6 7	5524 5799 6527	595 579 606			1, 2	1 3	3 5	9 2 8	10 5 8	6 1 4	3 2	2 1	1	1	1	1
descent	8 9 10	8880 13801 27558	762 1100 2064					1	1 2 3	1 1 5	1 1	1	1	1			
	11	5955	429														
	Total	82703	7302		1	6	12	24	59	78	34	18	10	3	2	1	1

.

()

(**4**)

Table	12ъ
-------	-----

		· · · · · · · · · · · · · · · · · · ·									<u> </u>			•			
Flicht	Altitudo	Distance	Time			Num	ber of	tim	es eac Gust s	h gust peed m/	spee s EA	d was S	exce	ede	d		
condition	band	km	min				Down					U	p				
				6	5	4	3.5	3	2.5	2.5	3	3.5	4	5	6	7	8
	1	877	185			1	2	3	6	21	10	3					
	2	1498	288	1	1	1	3	8	18	52	31	17	10	3	1		
:	3	342	54				:		1	9	3						
	4	379	50			1	2	4	7	10	4	2	1				
	5	218	25														
Cruino	6	84	9														
Cruise	7	201	19														
	8	96	8														
1	9	13 234	983	1	7	15	22	31	47	59	38	22	12	4	2	1	
	10	119 384	8609						2	4	1						
	11	165 144	11889	1	1	1	2	6	15	13	5	3	2				
	12	1 705	115														
	Total	303 160	22234	3	9	19	31	53	96	168	91	47	25	7	3	1	

(•

•

GUSTS ENCOUNTERED BY COMET 4C AIRCRAFT - DISCRETE RESPONSE FACTOR

(4

4)

Table 13

GUSTS ENCOUNTERED BY COMET 1, SPECTRAL RESPONSE FACTOR

'-

٠

14

¢

		·····	7 -						<u> </u>							4							
Flight	Altitude	Distance	Time		Numl	per o	f t1m	es ead	ch gus	t spee	d was o	exceeded	1				Gust s	peed m	/s EAS	_			
condition	band	km	min						Down									Up					
				14	12	10	9	8	7	6	5	4	3	3	4	5	6	7	8	9	10	12	14
	¹ 2 3	300 2 298 6 527	65 445 1150		3	6	6 1	9 4	12 11	22 35	42 90	1 73 193	2 143 385	15 369 769	11 190 370	8 99 188	4 45 97	21 47	12 24	5 14	2 8	3	2
Climb	4 5 6	33 623 34 466 37 428	5055 4470 4435	1	3 1 1	7 3 4	12 4 5	26 8 6	57 20 11	130 40 21	304 90 42	640 224 104	1333 512 203	2397 802 365	1178 357 169	582 157 73	274 64 30	129 27 16	59 12 8	33 5 3	19 2	4	
descent	7 8 9	46 485 60 500 78 844	5210 6455 8030		1	1 2	3 2 1	3 2 2	5 4 2	16 8 6	34 17 21	69 42 53	137 106 131	262 182 175	116 65 60	55 26 21	26 12 9	17 5 5	11 1 2	5 1 1	2 1	1	
	10 11 12	81 401 33 911 2 237	7825 2960 180				1	2	5 2	9 3	17 7	39 17	97 52	159 59	70 22	29 8	14	8	5	3	3	1	
	Total	418 020	46280	1	8	23	36	64	130	289	664	1453	3102	5555	2608	1247	577	276	134	70	38	10	3
	8 9 10	166 5 092 199 907	21 470 17535		1	1	1	3	6	12	5 23	7 66	13 188	26 229	15 79	11 27	7	3 8	2 6	1 4	2	1	
Cruise	11 12 13	436 800 92 569 744	36720 7435 60		1	3	7	13 2	27 2	58 7	138 15	321 40	721 101	932 157 3	373 54	170 16	85 9	48 3	30 1	17	7		
	Total	735 279	62241		2	4	9	18	36	78	181	434	1024	1347	521	223	110	62	39	21	9	1	[

Table 14 GUSTS ENCOUNTERED BY COMET 2 AIRCRAFT, SPECTRAL RESPONSE FACTOR

• •

_	_			.								
			14	5 1	۳.							
			12	9 F	2							
			10	5	10		1					
			6	4 15	19	~ ~	2					
	s EAS		00	28 28 1	34	0 0	4	1	T			2
-	eed m	dŋ	~	10 45 2	56	1 1 2	6	3	11			9
	Gust sp		9	19 99 4	122	14 14 12	24	2 9	2		2	20
			ŝ	30 207 12	248	17 42 11	74	1 7 23	ካሪጣ		9 1	58
			4	46 397 26	469	56 93 24 7	181	5 16 59	16 14 2	1 2	25 20 2	162
			e	76 774 64	914	137 203 55 12	408	17 47 169	67 43 13	9 6 18	62 62 3	516
.	J J		с	64 492 48	604	34 83 29 1	147	1 29 102	30 27 12	16 7 11	56 38 3	353
	- E E E E E E E E E E E E E E E E E E E		4	33 241 19	295	10-35-13-					-1-2-	109
	was ex		ц	20 113 7	140	14	22	2 17	5 2	m	14 7	39
	t speed		9	12 56 2	70		9	2	,	-1	1 7	13
	n gus	Down	7	6 27 1	34			4	-1			5
	s eac		80	17	21			5				2
	L1me		6	6	11							1
4 c	er or		10	1 4	5							
M		Ī	12	2	2							
			14									
				51 438 31	520	141 237 68 48	494	62 205 862	899 872 1064	1139 1338 1940	2002 1543 150	12076
	Distance	Ę		284 2 534 186	3 005	635 1 252 397 303	2 587	350 1 317 6 470	7 303 7 648 9 949	11 469 14 396 22 220	24 696 19 873 1 924	127 615
	Altitude	band		35 г	Total	4 3 5 1	Total	4 3 2	465	8 9 10	11 12 13	Total
	Flicht	condition		Initial climb		Fínal descent				descent	<u></u>	

Q

÷

/

r

Table 14b

GUSTS ENCOUNTERED BY COMET 2 AIRCRAFT, SPECTRAL RESPONSE FACTOR

-)

•,

J.

رہ

- 4

н**с**,

`

r J

Flight	Altitude	Distance	Time	Nu	nber o	f time	es ea	ch gu	st sp	eed was	s exce	eded	• • ••••••••••••••••••••••••••••••••••			Gus	t spee	d m/s	EAS			
condition	band	km	min			.		Dow	n		-							Up		<u> </u>		
				12	10	9	8	7	6	5	4	3	3	4	5	6	7	8	9	10	12	14
	1 2 3	71 507 203	15 95 32							1	3	12 2	42 6	13 2	3	1						
	4 5 6	60 54 68	9 7 8										1			1						
Cruise	7 8 9	779 523 33	92 53 3					And and a second se					1									
	10 11	2 597 77 013	208 5865									3 5	3 16	1 5	2					<u> </u>		
	12 13	253 248 27 537	19044 2093	1	1	2	3	4	8 1	19 3	42 8	167 27	199 44	60 10	23 3	11	6	3	2	1		
	Total	362 711	27524	1	1	2	3	5	9	23	53	215	312	90	32	12	6	3	2	1		

Table 15a

GUSTS ENCOUNTERED BY COMET 4 AIRCRAFT, SPECTRAL RESPONSE FACTOR

			Time]	Numb	er o	f time	es eac exceed	h gust ed	speed v	7as			G	ust sp	eed m	/s EA	S			
condition	band	bistance km	min					Down								Up					
		, 1		10	9	8	7	6	5	4	3	3	4	5	6	7	8	9	10	12	14
Initial climb	1 2 3	1 232 4 575 1 376	218 749 216	1	3 1	6 1	3 12 2	18 33 11	64 112 38	167 366 130	334 1070 381	466 1120 517	224 483 188	92 194 86	32 78 42	11 31 16	3 13 5	1 7 2	4	1	1
	TOTAL	7 184	1183	2	4	8	18	61	215	663	1784	2103	895	372	151	57	20	9	4	1	1
Landing	1	940	226					2	8	21	40	58	31	13	6	3	1	1	1		
	1 2 3	1 323 4 265 6 068	278 778 899		1	3	1 1 11	4 6 28	21 53 80	60 212 234	129 530 656	221 694 817	97 317 344	40 133 145	15 53 54	7 19 16	3 5 5	2 2 2	1 1 1		
	4 5 6	16 450 17 849 20 996	2114 1990 2138		1 1	2 2 1	10 4 3	35 9 6	106 29 16	321 111 49	1123 495 215	1419 549 293	515 136 84	201 36 25	79 13 9	35 6 4	19 3 2	11 2	6 1	2	1
Climb and descent	7 8 9	24 603 28 327 52 123	2356 2463 4160				2	6	10	25 5 3	114 54 38	135 83 37	40 18 7	18 6 2	7 3 1	3 1	2 1	1	1 1	1	
	10 11 12	94 000 33 419 1 917	7028 2434 138				3	9	19 1	36 6	122 26 4	99 35 2	36 8	19 2	10 1	6 1	3	1			
	TOTAL	301 341	26776	1	3	9	35	104	336	1062	3506	4385	1601	626	244	98	44	23	12	3	1

1

;

0

•

A

Ŷ

•

۲

.

Table 15b

Flicht	Altitudo	Distance	Timo	N gu	umber st sp	of t eed w	imes ea as exce	ach eeded	(Gust s	peed	m/s E	AS	
condition	band	km	min		_	Dow	n		t		Up			
				7	6	5	4	3	3	4	5	6	7	8
	1 2 3	123 633 474	25 121 79	1	5 1	1 23 6	2 91 25	5 363 88	23 64 89	11 30 31	3 12 8	4 2	2	1
	4 5 6	472 64 172	70 9 18			6	38	99	147 3 4	58 1	20	7	1	
Cruise	7 8 9	1 447 767 5 018	134 70 405				1	2 - 4 1	4 4 4	2				
	10 11 12	257 791 320 404 13 243	18275 22704 969	1	5 1	18 3	41 19	129 129 1	135 156	43 32	13 12	4	1	
	TOTAL	600 608	42879	2	12	57	217	822	633	207	68	20	4	1

n.

,

۶

GUSTS ENCOUNTERED BY COMET 4 AIRCRAFT, SPECTRAL RESPONSE FACTOR

<u>Table 16a</u>

GUSTS	ENCOUNTE RE D	ΒY	COMET	4C	AIRCRAFT.	SPECTRAL	RESPONSE	FACTOR

				N	umber	of time was	s each exceede	gust sp	eed			Gust	speed 1	m/s EAS		· · · ·	.
condition	Altitude band	Distance km	Time min				Down						Up				<u> </u>
				8	7	6	5	4	3	3	4	5	6	7	8	9	10
Initial climb	1 2 3	866 686 22	180 141 4	1 1	5 3	14 6	30 13	54 22	86 35	153 43 3	97 28 2	55 17 1	25 9	9 5	4 2	1	
	TOTAL	1574	325	2	7	20	43	76	120	199	127	72	35	13	5	2	
Landing	1	967	243														
	2 3 4	1199 2070 5390	197 298 672	1	1	2 2	3 5	1 9 14	4 26 47	14 39 51	5 13 15	1 5 7	3	1	1		
Climb and	5 6 7	5524 5799 6527	595 579 606			1 1	1 3	6 1 6	19 6 14	20 12 18	9 3 7	4 2	2 1	1	1	1	1
descent	8 9 10	8880 13801 27558	762 1100 2064				1	1 1 3	4 5 14	3 3 18	1 1 4	1	1	1			
	11	5955	429						1	1							
	TOTAL	82703	7302	1	2	5	14	42	139	177	59	20	9	4	2	1	1

<u>Table 16b</u>

• •

• ÷

		Di	m:	N	lumi	ber spe	of t ed w	imes as e	eac xcee	h gu ded	st		Gus	t sp	eed	m/s	EAS	р <u>.</u>	
condition	band	bistance km	min				E)own							Up				<u> </u>
				10	9	8	7	6	5	4	3	3	4	5	6	7	8	9	10
	1 2 3	877 1 498 342	185 288 54		1	1	1	1 1	2 5	5 14 1	9 [°] 34 2	36 83 18	17 44 6	5 20 1	10	4	2	1	
	4 5 6	379 218 84	50 25 9					1	3	6	12	21	7	2	1				
Cruise	7 8 9	201 96 13 234	19 8 983		1	5	9	15	25	41	86	71	53	27	12	6	3	2	1
	10 11 12	119 384 165 144 1 705	8609 11889 115		1	1	1	2	4	1 12	13 51 2	19 40 2	2 10	4	2	1			
	TOTAL	303 160	22234	1	3	7	11	19	38	79	208	291	139	60	26	11	5	3	1

GUSTS ENCOUNTERED BY COMET 4C AIRCRAFT, SPECTRAL RESPONSE FACTOR

• •

				<u>Ta</u>	able 1.	1						
NUMBERS	OF	EXCEEDANCES	RECORDED	ON	COMET	1	IN	THE	VICINITY	OF	CUMULUS	CLOUD

Flight	Altitude	Distance	Time		Down					A	ccelera	tions,	g					Up	
condition	band	km	min	0.92	0.82	0.72	0.62	0.52	0.43	0.33	0.23	0.23	0.33	0.43	0.52	0.62	0.72	0.82	0.92
Climb and descent	8 9 11	89 482 338	10 50 30	1	1	1	1 2	1 3	4 7	18 22	1 35 44	3 47 46	1 13 24	1 4 8	1 2 3	1 1			
Cruise	10 11 12	831 5251 813	80 480 70	1 5	1 7	1 15 1	1 21 2	1 57 5	5 112 12	17 337 30	69 617 59	78 774 64	25 336 36	5 142 13	3 73 7	2 39 1	2 28	1 18	1 5

Flight	Alt	itude		Down	n	Gus	st speed	, m/s EAS		Discre	ete gust	response	factor	.	Up	
condition	b	and	7	6	5	4	3.5	3.0	2.5	2.5	3.0	3.5	4	5	6	7
Climb and descent		8 9 11			1 1	3 2	6 4	13 6	18 12	2 15 12	1 8 5	1 5 2	1 3	1		
Cruise		10 11 12	1 2	1 2	1 8 2	2 31 3	4 58 5	10 121 11	22 217 22	32 252 24	14 142 12	5 79 7	3 47 2	2 20	2 7	1

Flight	Altitudo	[Down				Gust s	peed, m/	s EAS			Spectr	al respon	nse fac	tor			Up	
condition	band	12	10	9	8	7	6	5	4	3	3	4	5	6	7	8	9	10	12
Climb and descent	8 9 11			1	1 1	1 2	4	12 7	19 15	1 25 31	4 38 32	2 16 15	1 8 6	1 4 2	1 2	1	1		
Cruise	10 11 12	1	1 3	1 7 1	1 13 2	1 25 2	3 55 5	9 126 12	24 264 28	75 546 49	81 670 54	35 301 28	13 147 14	4 75 7	3 43 2	2 28	2 16	2 7	1

j.

\$

39

~

REFERENCES

<u>No.</u>	<u>Author</u> (s)	<u>Title, etc</u> .
1	J. R. Heath-Smith	Turbulence encountered by Comet 1 aircraft. ARC CP No.248 (1955)
2	Judy E. Aplin	Atmospheric turbulence encountered by Comet 2 aircraft carrying cloud collision warning radar. ARC CP No.713 (1963)
3	J. Taylor	Accelerometers for determining aircraft flight loads. Engineering, 11 and 18 April, 1952 p473-475 and 506-507
4	J. Taylor	Design and use of counting accelerometers. ARC R and M 2812 (1950)
5	J. K. Zbrozek	Gust alleviation factor (Parts I, II and III). ARC R and M 2970 (1953)
6	I. W. Kaynes	Aircraft centre of gravity response to two- dimensional spectra of turbulence. ARC R and M 3665 (1969)
7	J. Taylor	Gust loads for structural design. International conference on Atmospheric turbulence. R Ae S May 1971
8	N. I.Bullen Judy E. Aplin	Loads experienced in turbulence by a Central African Airways Viscount without and with cloud warning radar. ARC CP No.1038 (1968)
9	N. I. Bullen	The analysis of normal accelerations experienced by fleets of transport aircraft. International conference on atmospheric turbulence R Ae S May 1971
10	J. R. Sturgeon	Turbulence experience recorded by CAADRP. International conference on atmospheric turbulence R Ae S May 1971
11	N. I. Bullen	A review of counting accelerometer data on aircraft loads. ARC CP No.933 (1966)

5

Fig.1 Distance flown in each altitude band, as a percentage of the total distance, (climb, cruise and descent)

Fig.3 Gusts encountered by each Comet fleet during cruise at all altitudes.Discrete gust response factors

đ

Fig.5 Gusts encountered by each Comet fleet during cruise at all altitudes. Spectral gust response factors

Total	dist	ance	25	
Comet	1	2	4	4C
km x 1000	106	21	55	17

Fig.7 Gusts encountered by each Comet fleet during climb and descent between 17750ft and 29750 ft

Fig.8 Gusts encountered by each Comet fleet during cruise above 29750 ft

Fig.9 Normalised number of gusts encountered by each Comet fleet, calculated by Kaynes' response factors.

 N_w = number of up and down gusts exceeding speed w, per km N_o = calculated number of zero crossings in continuous turbulence, per km

÷

e

Fig.11 Variation with altitude of the frequency of gusts, calculated with spectral response factors

Royal Ancraft I stablishmont Lamborough Dd 505716 K45/73

3

۲

5

*(***1**)

ē

ARC CP No.1247 August 1971 Kaynes, I W GUST LOADS ON COMET AIRCRAFT Counting accelerometers have been used to reco Comet 4 and RAF Comet 4C aircraft for flight of 388 000 km respectively Two Comet 4 aircraft difference is found between the frequencies of g for the BOAC Comet 1 and RAF Comet 2 are p fleets shows that loads were recorded more ofte effect of the cloud warning radar carried by only	533 6 048 5 rd normal accelerations on BOAC listances of 910 000 km and carried instruments and a significant susts observed on each Revised data resented and comparison of the four n on the civil airline operations The y the later aircraft is studied	These abstract cards are inserted in Technical Reports for the convenience of Librarians and others who need to maintain an Information Index
ARC CP No 1247 August 1971	533 6 048.5	
Kaynes, I. W.		1
GUST LOADS ON COMET AIRCRAFT		1 1 2
Counting accelerometers have been used to reco Comet 4 and RAF Comet 4C arcraft for flight of 388 000 km respectively Two Comet 4 aircraft difference is found between the frequencies of g for the BOAC Comet 1 and RAF Comet 2 are p fleets shows that loads were recorded more ofte effect of the cloud warning radar carried by only	rd normal accelerations on BOAC distances of 910 000 km and it carried instruments and a significant justs observed on each. Revised data resented and comparison of the four in on the civil arline operations The y the later aircraft is studied.	
DETACHABLE ABS	TRACT CARDS	Cut here
X maj îei	-	ا التي ب ا

© Crown copyright 1973

. . .

Published by HER MAJESTY'S STATIONERY OFFICE

To be purchased from 49 High Holborn, London WC1 V 6HB 13a Castle Street, Edinburgh EH2 3AR 109 St Mary Street, Cardiff CF1 1JW Brazennose Street, Manchester M60 8AS 50 Fairfax Street, Bristol BS1 3DE 258 Broad Street, Birmingham B1 2HE 80 Chichester Street, Belfast BT1 4JY or through booksellers

C.P. No. 1247

SBN 11 470805 3