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SUMMARY 

The effect of a particular type of heat addition on the flow around a two- 

dlmensional, flapped aerofoil sectIon, at low Mach number, 1s lnvestlgated using 

a transformatux whxh enables the compressible flow with heat addition to be 

deduced approxunately from a certain incompressible flow with flud addltlon. 

The incompressible flow may be determined by the technique of conformal 

maPPIng. It 1s concluded that heat addition ln a suitable distrlbutlon can so 

reduce the adverse pressure gradlent on the upper surface of the flap that 

greater flap angles than are normally possible can be ekployed wlthout separa- 

tlon of the boundary layer (according to a simple separation criterion). The 

result is an Increase In lift. The effect is illustrated for a flapped aero- 

foil SectIon of convenient mathematical form. 
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1 INTRODUCTION 

I 

? 

The effect of heat addition on low speed flow of an inviscid fluid was 

discussed by Broadbent', who demonstrated that in a flow region where 

that is to say, where pressure variations are small compared with variations in 

specific volume, an approximate solution of the relevant flow equations can be 

obtained by a simple transformation of the solution of a certain incompressible 

flow problem. Thrs problem retains the geometry of the original but replaces 

heat sources by fluid sources. Under the transformation, pressure distribu- 

tions are unchanged. In the present Report, this property is used to discuss the 

effect of heat addition on twodimensional flow past a lifting aerofoil sectlon, 

with particular reference to the modification of pressure gradients near 

trailing-edge flaps. 

The possibility was suggested by Broadbent' that a suitable heat source 

distribution, placed in the neighbourhood of the upper surface of a trailing- 

edge flap might reduce the adverse pressure gradient there to such an extent 

that large flap deflection angles could be achieved wlthout the onset of 

boundary layer separation (a conventional flap with no slots or blowing is 

assumed). A first investigation' of the effect of heat addition on adverse 

pressure gradients was made using a simple Joukowski aerofoil, with suffi- 

ciently encouraging results to prompt an examination of the effect on a flow 

past an aerofoll in a configuration of high lift, that is with a trailing-edge 

flap deflected. The essential qualitative features should be exhibited for 

any reasonably realistic aerofoil with a flap. In the sequel, the twodimen- 

sional case is considered, and a family of profiles used which is convenient 

for the application of complex variable methods. 

When a flap is deflected, in low speed flow, its primary effect is to 

increase the circulation around the aerofoil and so increase lift. The 

undesirable secondary effect is to increase the adverse pressure gradient along 

the upper surface of the flap. As the flap deflection is increased, there will 

thus come a point when the flow will separate, resulting in considerable loss 

of lift. In this Report, the complicated problem of boundary layer separation 

will be simplified by the assumption that separation depends only on the 

magnitude of the local adverse pressure gradient. With some standard upstream 
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flow speed and angle of attack, one may define a critical flap angle aon. rad, 

at which separation occurs. This angle, in turn, defines a maximum adverse 

pressure gradient Go under which an attached boundary layer can subsist in 

the region above the flap, and a maximum lift coefficient 0 

cL which can be 

achieved by this flap mechanism. 

Can this situation be improved by heat addition near the flap? If. by 

adding heat, the adverse pressure gradient along the upper surface of the flap 

can be reduced then, according to the above criterion, it may be possible to 

operate the flap at angles aTI > o”TT without separation (i.e. with a m.&.mum 

adverse pressure gradient on the flap of G <Go) and with an increase in lift 

cc, > c;, . 
According to the first paragraph, this problem can be transformed into 

one involving fluid addition in incompressible flow. Subsequent analysis 

applies only to the inviscid, external flow field, the boundary layer being 

assumed to remain attached and of negligible thickness. When a solution of 

the incompressible, inviscid flow equations has been found, a decision may be 

made retrospectively whether a boundary layer on the flap could have remained 

attached under the conditions of pressure gradient predicted. 

Whilst adverse pressure gradients can certainly be reduced by heat addi- 

tion, and so larger flap angles achieved without separation, it is not obvious 

that lifting properties will be improved. There is a secondary effect, namely 

the reduction of tot:1 circulation (assuming the source is added above the 

aerofoil). It is part of the investigation to compare this loss of circulation 

(and hence lift) with the increase which can be gained from the use of greater 

flap angles. 

In section 2, the analogy between incompressible flow with fluid addition 

and compressible flow at low Mach number with heat addition is examined and the 

approximations discussed. The central problem of the Report is treated in 

section 3. As far as possible, progress has been made analytically using com- 

plex function theory and conformal mapping. It is therefore necessary to find 

a reasonably realistic flapped aerofoil section which is the image, under a 

conformal mapping, of one of the geometric shapes for which the flow equations 

can be solved by elementary methods (e.g. a circle). This is done in 

Appendix A. The standard expressions for velocity, pressure etc. are set up in 

Appendix B, and a numerical method is considered in Appendix C. Numerical 

results are discussed in section 4. 

. 

? 

? 



2 THE LNCOl4l'RESSlBLE FLOW - COMPRESSIBLE FLOW ANALOGY 
i 

2.1 A statement of the analogy 

The analogy between compressible flow at low Mach number wth heat addi- 

Tao" and lncompresslble flow with fluld addltuan was set up by Broadbent' and 

a discussIon sufflclent for the present purpose, using simpler mathematxal 
3 Ideas was grve" by Edwards . This dIscussion is summarised here. More 

precrse1y, the analogy IS between: 

(4 a" incompressible flow with a fluid source distribution (and possibly 

also a system of body forces) in a finite reg~o"; 

and (b) a compressible flow I" whrch a heat source distribution and an addi- 

tlonal system of body forces replace the flud source dlstrlbutlon of the 

uvxmpresslble analogue. 

Suppose the flow (a) 1s fully defined so that I" particular, the pattern 

of streamlrnes, the pressure field, and the fluid source distribution (and If 

appropriate, the body force distribution) are known. An attempt is made to 

determine a compressible flow which has precisely the same streamlines and 

pressure field, but in which the fluid source drstributlon is replaced by a 

heat source distrlbutlon and a" additlonal body force dlstrlbution (the heat 

and body force may be thought of in combination sunply as a" energy source 

dlstributlon). This process may be show" possible, giving rise, however, to a 

'compressible flow' in whxh there may be large variations of density due to 

varlatlons 1" temperature caused by the heat addltlon, but varlatlons of pres- 

sure are too small to cause changes of temperature and density. This fact 

limits the 'compressible flow' to Mach,numbers at which normal compressibility 

effects are negligible. The identity of streamlines and pressure 1" the two 

flows, implles the Identity of momentum flux also. 

The analogy may be used to-determine compressible flows at low Mach 

number with energy addition, by first solving a" incompressible flow problem 

with fluld addition. The approxunation so introduced IS precisely that which 

is always associated with the use of incompressible flow calculations for low 

Mach number flows. The 'heat flap' problem subsequently discussed, concerns a 

high lift device used at landing and take-off when speeds are low, so that the 

use of the analogy would appear justified. The following discusslo" is 

expressed in the geometry of flow past an aerofoil as will subsequently be 

required, although the analogy is of far m"re general application. 
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22 Justlflcatzon of the analogy 

A full justlfwatlon of the analogy would require a proof that a com- 

pressible flow with energy addition exists whzch has streamlnes and pressure 

dlstributlon Identical with those of the incompressible flow. This can be 

done followng the method of Broadbent', but here, existence is assumed and a 

suitable energy source distribution obtalned by identifying a limited set of 

propert~s of the two flows. 

Flg.1 depicts the flow about a twodlmensional aerofoll sectlon. Only two 

streamlmes are shown, and they are supposed to include the streamtube S. 

Station 0 1s supposed to be far upstream, and station 1 far downstream. 

Between stations 2 and 3 and in the tube S, is a region R which is 

supposed to contau~ the source and body force dlstrlbutlons. In order to 

present a simple physlcal theory, It 1s supposed that the streamtube S 1s 

sufflclently thin that the flow within may be assumed uniform acro.ss any 

section. In the incompressible flow the region R contains a fluid source 

dlstributlon so that the streamtube is thxker far downstream of R than it 

1s upstream. An ldentlcal thickening of the streamtube ln the compressible 

case can be achieved by heat additron (which raises the temperature and 

reduces the density) although to satisfy the requirement that the momentum flux 

should be the same ln both flows, It can be shown that mechanical energy (or 

equivalently, momentum) must also be added, by means of a body force 

distribution. 

Suppose A = thickness of tube S 

m = total strength of fluld source distrlbutlon in the 

incompressible flow 

Q = total strength of energy source distribution (heat and 

mechanical energy) in compressible flow 

p = pressure 

LI = flow speed 

y = ratio of specific heats of stream fluId 

P = density. 

The suffices 0, 1 are used MI both flows to denote condltzons at stations 0, 

1. The extra suffxes i, c are used to dlstmgush incompressible flow and 

compressible flow variables. 

. 
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In the Lncompresslble flow, <ondltlons far upstream and far downstream 

are the same, and density 1s the same everywhere, hence: 

p11 = po 
Ll 

11 = “0 PII = PO = p . 

At all corresponding Points in the tw flows, the Pressures are equal, hence, 

In particular, 

Plc’ = Pli . 

A consequence of the correspondence between the pressure fields IS that the 

Mach number of the compressible flow must be approximately the same as that of 

the unanpresslble flow (1.e. very small). Varlatlons of density in the com- 

presslble flow are therefore only associated with variations in temperature 

and do not arise from varlatuxx in pressure. The variations in temperature 

are due to energy Introduced into the compressible flow through the energy 

source distribution. 

Since the streamline patterns of the two flows are Identical, the stream- 

tube thickness A 1s the same, for each flow, at every statIon, and m 

particular, 

Al= 
= Al1 = A1 (say) 

The equations of conservatux, of mass for the two flows read: 

po”oAo = pOUOAl - porn (incompressible) 

PO”OAO = plcUlcAl 
(compressible) . 

The equation of conservation of energy in the compressible flow reads: 

The last three equations express conservation of quantities along the tube S. 

This is clearly reasonable in the case of mass, and is justified for energy on 

neglecting diffusion. 

The momentum flux at all corresponding stations is to be equal in the two 

flows, and ln partxular, at the downstream station: 



2 2 
COUO*l = PlcUlcAl . 

All the downstream varmbles may be eliminated between the forgorng equations 

and there follows 

Q=pom+-F *2+m C 0 
+ ;IJ, 

I( 1 uoAo ’ 

an expression which relates the flud source strength m to the energy source 

strength Q and u~volves only known or controllable quantities. In general, 

the energy Q ~111 be mainly heat energy. In fact, it can be shown that if 

the local flow speed in the scaurce region is U, the pressure p, and the 

density p, the energy added as heat 1s 

Q, = 

and the energy added as mechanical energy 1s 

QK = POrnlU2 2 + $- . ( > 00 

The mechanical energy component drvided by the heat component 1s thus equal to 

(lU2) 2 I( ) E = h(y - l)M2 
Y-lP 

where M is the Mach number. Only flow at low Mach number is under considera- 

tion so that this ratio 1s small. Hence the rate of input of heat Q, may be 

accepted as a good approximation to the total energy Input Q. Simlarly, It IS 

clear that: 

Q = + ;(Y - 1)M;l 

‘MO = upstream Mach number). The leading term of thu (neglecting MO) involves 

only m and upstream variables, and wrll be taken, in subsequent applications, 

as the approximation for both Q and QH: 
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3 FLOW ABOUT A FLAPPED AEROFOIL SECTION 

3.1 A famly of flapped aerofoll sections 

It 1s assumed that the ‘heat flap’ effect under dlscusslon may be 

exhlblted by any reasonably realistic aerofoil with variable flap deflection. 

The analogy discussed in the previous section leads to a twodimensional, u~orn 

presslble, irrotational* flow problem (for which solution by complex variable 

techniques is standard) and so it 1s convenient to employ profiles which can be 

mapped by a sunple conformal transformation on to one of the geometrical shapes 

for which the flow equations can be solved by an elementary technique (e.g. a 

circle). It 1s necessary, then, to determine a fannly of proflles in this 

class which may reasonably be thought of as one aerofoil under various condo- 

tions of flap deflection. This 1s done 1x1 Appendix A. Each profile IS defined 

by the parameters: 

L = chord length of wing from leading edge to the knee of the flap 

6 = ratio flap chord length to L 

a (an rad = flap deflection angle) 

E = ‘thxkness parameter’ - see Appendix A 

and the profile so determined IS denoted P(L,G,a,E). Variation of the para- 

meter a is supposed to provide the required variation of flap deflection. 

The profile is obtained from the circle C(E) in the complex <-plane, 

having centre the point -E, and radius 1 + E (C(E) thus passes through the 

point 5 = 1). The region exterior to C(E) is denoted D(E), and 1s mapped 

onto the region exterior to P(L,6,@,E), regarded as lying in a complex 

z-plane, by the mapplng FL 6 a. For brevity, the arguments of P, C and D, 

and suffices of F will of;& be dropped. The details of F are given in 

Appendix A and Figs.14 and 15. The propertIes pertinent here are: 

(a) F is conformal throughout D except at the point 5 = 1 (E > 0) 

(b) F(1) = L exp(-ian) (trailing edge) 

(c) F’(S) -f 0 as C-+1 

(d) F(c) + - as 5 -+ m 

(e) F’(c) + a constant, A as 5’“. 

The profile IS located in the z-plane with the knee of the flap at the origin 

and the Mann wing profile along the negative real ~XLS. 

* The incompressible flow IS xrotatlonal, but rotatlonality is introduced in 
the compressible flow by the transformation. 
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3.2 The uvxmpresslble flow problem 

With a conformal mapping as quoted above, any incompresslble, lrrota- 

tional flow ln the proflle plane 1s sunply related to an uvxmpresslble, 

irrotatlonal flow in the circle plane. The precise relationship is given I* 

Appendix B, together with a direct determination of the circle plane flow. 

The profile plane flow is uniquely determined by the following requirements: 

(a) The zero normal velocity condltlon on the aerofoil. 

(b) The condition at Infinity - the velocity must approach that of the 

free stream. 

(c) Since the flow region 1s doubly connected, a condition fixing the 

circulation around the aerofoil - this 1s provided by Joukowski's 

hypothesis. 

(d) The existence of certain flow singularities - sources, doublets, 

etc., or distrlbutlons of source. In this Report, only sources and 

source dxtributions are introduced. 

On the basis of Appendix B, it IS thus possible to determine all 

characteristics of the flow around any quoted profile P for given far-flow 

conditions, and fluid source dlstrlbutlons. In particular, the following may 

be calculated: 

(a) Lift coefficient CL = tota1 lifi force . 
lPoUoC 

2 
(b) Pressure coefficient Cp = 

P - PO 
2 = 1 - g 

0 
(by Bernoulli's 

IPoUo 0 
equation). 

Here, c = total chord of aerofoll = L(l + 6) for CI and E small 

U = local flow speed u. = U(m) 

p = local pressure PO = p(m) 

PO = undisturbed density = constant density of incompressible flow. 

The lift force mentioned here may be calculated as pOUO~ (K = circulation). 

There is really another term representing the force directly on the source 

distribution, but as this 1s of the order of magnitude of the total source 

strength (which is small in all applications) it is negligible. Similarly, 

the drag is modified by an extra small term. The coefficients CL and C 
P 

may be applied directly to the analogous compressible flow with heat addition, 

as dlscussed in sectlon 1. 
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3.3 Plan tbr numerlcal Invest1gatux 

In Lhe next sectuxl, the following cases are examined numerically using 

the results ,ust set up: 

(a) A profIle P(L,G,a’,i) ’ under certain standard conditions at 

lnfinlty, with a maxunum adverse pr&ure gradlent on the flap of Go 

and lift coefflclent 0 
cL 1s taken is a datum condition, which- for 

realism would be chosen to represent the ‘critical’ situation where flow 

over the flap is on the point of separation (possibly determined by 

experiment) . 

This case ~111 be used to define: 

(i) A lift coefflclent which 1s the theoretlcal maxuuxn obtalnable 

by the flap mechanism under flow conditions mth no recirculation. 

(II) A maximum adverse pressure gradlent on the flap which can be 

wlthstood by the boundary layer (It is assumed that the maxunum 

tolerable adverse pressure gradient varies little over the length of 

the flap). 

(b) Another proflle P(L,6,a,c) with CL > a0 under the same condltlons 

at lnflnity. In the absence of sources, this profile leads to a flow 

with a maximum adverse pressure gradlent on the flap larger than Go so 

that separation is predicted by the above criterion, recirculation occurs 

and the solution 1s invalldated. HOWWar, the solution ~111 imply a lift 

coefficient Crf > Cz. If now a heat source dlstrlbution 1s devrsed which 

modlfres the flow in such a way that the new maximum adverse pressure 

. gradient on the flap 1s G <Go and the lift coefficient is 

CL (CL” < CL < +, It will’ have been shown expllcltly that greater lift 

can be achieved using heat as a ‘catalyst’ to keep the boundary layer 

attached. It remains 

(1) to determine suitable heat distributions 

(1~) to characterise the results of (b) m some way which ~111 

enable judgments of efficiency of the ‘heat flap’ to be made (com- 

pared with other high ilft devices). 

^. 
3.4 Determuatlon of suitable source distributions 

The determination of suitable fluld source (or equivalently heat) dis- 

trlbutions LS governed by three considerations: 
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(a) the requirement to ensure G G Go 

(b) the requirement C,, > C; 

(c) the need tu add heat over a streamtube sufficiently thick to ensure 

that the factor 2 + m/UOAO 1x1 the express1011 for Q the required heat 

addition (sectlon 2.2) is not too large. 

It is convenient to work initially in the circle plane (<-plane) and to des- 

crlbe the scurce dlstnbution by polar coordinates (r,e) defined by 

5 = r exp(18) - E (that is with respect to the centre of the circle C(E) - 

Fig.2). The corresponding profile plane distribution can be obtained by the 

transformation F and it is convenxnt to use coordinates (h,s) shown m 

Fig.2; s is the distance around the upper surface of the profile from the 

trailing edge to the foot of the profile normal passing through the point xn 

questloll; h is the distance from the profile along the profile normal. The 

system IS only well defined in the unshaded region of Fig.2 but all points of 

interest are III thu region. 

Conslderatlon (a) essentially governs the distribution in the s-directlon 

and is not very sensitive to the precise h-dlstrlbution. Consideration (c) 

affects the h-distribution only. Consideration (b) restricts the total source 

strength but is not strongly related to the spatial distribution. 

For the purpose of calculation it 1s very convenient to regard the fluid 

as being added in point sources, but this is inconsistent nth requirement (c) 

su~ce in this case, A0 = 0. Nevertheless, it is reasonable to suppose that 

the 'heat flap' effect is not strongly dependent on the h-distribution and so 

a calculation usng point sources would differ little from a calculation using 

the same total source strength in a distribution smoothed out along the profile 

and over a band of non-zero thickness. This assumes that the point scaurce 

distribution is located at a sufficient distance from the profile to ensure 

that its discrete nature does not cause violent fluctuations in the pressure 

gradlent on the profile. In the sequel point source distributions are used to 

appronmate continuous distributions. One continuous distribution is con- ,, 
sidered directly. 

The s-distribution is governed by the requirement to reduce G to a 

value no greater than Go. Suppose an existing flow pattern arising from the 

free stream and sotie source distribution is modified by the addition of a 

single new source (or concentrated source region) near the pornt z*. The 

situation of interest occurs when: 
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(a) Both modlfled and unmodlfled flows have no stagnatzo" points along 

the upper surface of the proflle. In other words the sources are not 

too strong. 

(b) The new source 1s added somewhere 1" the region above the upper 

surface of the flap. 

The corresponding situation I" the circle plane 1s show" in Fig.3. It 1s 

evident that the effect of superImposIng the addItiona velocity dlstrlbutlon 

associated with the new source on the existing dlstrlbution, is to reduce the 

velocity gradlent close to <* = F-l(z*). A slmllar effect occurs 1" the 

profile plane. Thus close to z* the adverse pressure gradient 1s also 

reduced although It LS lzkely to have increased elsewhere.; This suggests the 

possibility of adding heat in a suitable distributlo" to reduce the adverse 

pressure gradlent where it LS most serious at the expense of lncreaslng it 

where It is less significant. 

In the subsequent numerical work, the value of r at which point sources 

are added 1s arbitrarily selected and then sultable 'a-distributions are 

obtained either by trial and error or by a systematic method given in 

Appendix C. LIkewIse, for the continuous distribution, the r-dependence is 

fixed by choosing the distribution independent of r over a range 

l+s<a<r<b, and zer" for other values of r. The 8-distribution 1s 

obtaned by trial and error. 

3.5 The treatment of point s"urce dlstrlbutlons 

When a point source dlstrlbutlon is considered, It is necessary to assIgn 

to it a non-zero value of AO. The justification for this is mentioned I" the 

previous section. The actual value of A0 selected 1s a matter of choice, but 

clearly the smaller Its value, the mire reasonable is the supposed relationship 

between the point source case and its continuous equivalent (and the more 

reasonable is the discussion in section 1). On the other hand the larger the 

value of A 0 the smaller 1s the factor (2 + m/UoAo) in the heat consumption 

Q and hence the mxe efficient will the heat flap apparently be. Suitable 

streamtube thicknesses will also be affected by conslderatlons of temperature 

rise and fuel to air ratio which might lead to combustion. It 1s evident that 

only the order of magnitude of Q will c"me convincingly from this sort of 

calculation, and so any reasonable value of A0 will suffice. In all the 

point source dlstrlbutions subsequently considered, the s"ufces lie at a mea" 
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height h*L (with an error oE no more than 10%) and so It would appear reason- 

able to select a streamtube of upstream thickness A0 = O.Zh*L which extends 

equal distances above and below the mean lne of sources. The tube thrckness 

in the neighbourhood of the sources may then be shown to be of the same order 

of magnitude as the varlatlon 1n height and the tube lies strictly outside the 

profile. The crucial factor 2 + m/U A 00 1s not strongly dependent on the 

choice of 0.2. Any value glnng rise to A0 zm/Ll 
0 

1s suItable. A typical 

value for m/u 0 
subsequently obtained 1s 0.01 and h* 1s 0.03 so that If 

A = $h*L, any value of $ zO.1 ~11 not alter the flnal order of magnitude. 

3.6 Parameters for the heat dlstrlbutions 

The two slgnlficant features of the system modified by increasing flap 

deflectlon, and adding heat are the extra lift obtalned and the heat added. 

The former 1s clearly expressed by the increment ln lift coefficient 

CLQ = CL - c;. The heat addleion may be conveniently expressed as a specific 

fuel consumption parameter CP defned as: 

weight of fuel consumed by the ‘heat flap’ per unit time 
additional lift obtaIned. 

It is necessary to introduce a suppose calorlflc value H for the fuel (units 

of energy per unit weight of fuel). 

Suppose a particular heat source distrlbutlon involves a total heat addition 

rate Q per unit span 

Q = Y-5po+++qJ. 

If uo and L are taken as velocity and length scales (L 1s the chord length 

of the proflle from leading edge to flap knee - the total chord c is approxi- 

mately equal to L(1+6)), It 1s clear that m = UoL. The rate of fuel consump- 

tlon 1s Q/H and the addItiona lrft developed 1s &pOIJicCLQ, thus: 

CF = 2Q 
2 

pO”OccLQH 

in which the square brackets contain a dimensionless quantity Independent of 

velocity and length scales. CF hasdimensionsl/time, and UOCF is Independent 

of velocity and length scales. If a total operating time t 1s assumed per 
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flight, the quantity tCF measures the total extra fuel load divided by the 
extra lift (it is still inversely proportional to UO). If, for a realistic 

value of u 0 this is small, whilst C 
LQ 

is positive, the effectiveness of the 
'heat flap' would have been shown, as far as is.possible by the present 

analysis. Comparison can be made directly with specific fuel consumptions for 
other high lift devices (e.g. blowing flaps or lift engines). 

In numerical work, SI units are used and a calorific value of 
4.4 x lo6 J/N is assumed for H. The operating time is taken as t = 200 s. 
Values of UoCF, uotcF' and tC F are tabulated, the latter with U. = 60 m/s. 

4 RESULTS AND DISCUSSION 

4.1 Notation and layout 

All the symbols in this section are defined in section 3. Results for 
each solution are displayed in a combination of graph and table. Pressure 
distribution curves have - C 

P 
plotted against s over a range beginning at 

the trailing edge and running along the upper surface to well past the knee of 
the flap. Where a pressure distribution includes the effect of sources, the 

corresponding distribution before sources were added is shown for comparison. 
Point sources are depicted on graphs by a dot at the appropriate value of s, 

the information h, r, 8, m being given in a table. 

4.2 The datum condition 

The datum condition is taken to be the profile P(1.0,0.25,0.05,0.1) 

with U 0 = 1 and angle of attack 0.05~ rad (= 9'). The values of the various 
parameters of the profile are thus: 

L =l 
6 = 0.25 

a0 = 0.05 (flap deflection angle,also about 9') 
E = 0.1. 

The aim of the calculation is to determine initially CE and subsequently con- 
sider C 

LQ 
and UoCF for various source distributions. All these quantities 

are independent of U. and L which one is thus at liberty to take as unity. 

Additionally, 
'LQ 

is dimensionless whilst UOCF has the dimensions of length 

and will be expressed in whatever units of length are used in the constant 
quantities, H, po, pg. The profile is depicted in Flg.l7a, and the pressure 
distribution for no additional sources is shown m Fig.4. The adverse pressure 
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gradient G(s) is the positive slope of this graph. Very close to the 

trailing edge, G is large (G “a 9 for 8 ?r O.OOZ), it then falls to values 

of order 3, then rises to a local maximum of 6.16 at s = 0.2509, which is 

very close to the flap knee. Later G becomes negative, and is only large 

and positive again at and beyond s z 0.6 which is outside the present region 

of interest. One must discount the large G-value at s % 0.002, since such 

values inevitably occur on any non-symmetrical aerofoil. This is essentially 

admitting that a separation does occur very close to the trailing edge and 

trusting that the inviscid solution outside the boundary layer is not appre- 

ciably affected other than in a thin wake extending back from the trailing 

edge. This kind of problem is discussed by Smith4 although it is not yet 

possible to give a final conclusion on the importance of the trailing edge 

separation in distorting the flow further upstream. The value to be taken 

as Go, the maximum tolerable adverse pressure gradient on the flap,is 6.16 

which occurs close to the flap hinge. The lift coefficient in the datum 

condition is Cl = 1.67. 

4.3 The first comparison case 

Consider next, the profile P(1.0,0.25,0.075,0.1), with the same 

upstream velocity Uo = 1 and angle of attack = 0.05~ rad. The only change 

is that the deflection angle of the flap becomes 0.075~ rad (= 13.5’). The 

profile is depicted in Fig.17b. In the absence of sources, the maximum 

adverse pressure gradient on the flap is 10.34 (so that separation is pre- 

dicted by the criterion previously set up) and the lift coefficient is 

C; = 1.96. A selection of source distributions which will reduce the 

maximum adverse pressure gradient on the flap to a value no greater than Go 

(= 6.16) is presented in Figs.5-9. Some of the distributions are obtained by 

trial and error, others by the systematic method (quoting a maximum tolerable 

adverse pressure gradient of 6.16 in one case and 5 and 3 respectively in the 

other two cases, to show the possibilities of the method). The relative 

efficiencies may be judged from the following table: 
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Figure No. Max. adverse 
(te) trial and press"=‘? 

error gradlent 
(s) systematic on flap 

'LQ 
"OCF 

2 
h/s ) 

5(te) 5.65 0.25 0.014 

6(te) 5.56 0.21 0.047 

7(s) 6.16 0.26 0.008 

8(s) 5 .oo 0.245 0.014 

96) 3.00 0.16 0.104 

In calculating these figures, the following values have been used: 

Y = 1.4 

H = 4.4 x lo6 J/N 

t = 200 s 

PO 
= 10 N/m2 

PO = 1.2 kg/m3 

*0 
= 0.2h*L 

The most efficient of these solutions is that described by Fig.7. For this 

solution, a 15.5% n~rease in lift is achieved by a heat addition described by 

a speclflc fuel consumptun at 60 m/s of 0.48 lb wt fuel per hour per lb of lift 

force. This figure is quite comparable with the specific fuel consumptlons for 

e.g. fan lift engrnes. 

4.4 The second comparison case 

Consider the profile P(1.0,0.25,0.1,0.1), wzth the same upstream 

velocity U. = 1 and angle of attack = 0.05~ rad. The only change is that the 

deflectlon angle of the flap has been Increased agaln to 0.1~ rad (2 18'). The 

proflle 1s deplcted 1.n Fig.17c. In the absence of sources, the maximum 

adverse pressure gradient on the flap is 15.58 (so separation 1s predIcted) and 

the lift coefficient Ci = 2.25. Three source distributions xhlch ~111 each 

reduce the maximum adverse pressure gradlent on the flap to a value no greater 

than G o (= 6.16) are presented in Flgs.lO-12. The efflciencles may be Judged 

from the following table: 
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Figure No. Max. adverse 
(te) trial and tc pressure 

‘LQ 
"OCF "OeCF F 

error gradient 2 
(s) systematic on flap (4s ) (m/s) (U. = 60 m/s) 

10(w) 6.15 0.47 0.046 9.3 0.155 

11(s) 6.16 0.50 0.019 3.8 0.063 

12(s) 5.00 0.47 0.032 6.3 0.105 

Here the most efficrent solution is that described in Fig.11. A 30% 

mcrease in lift is achieved by a heat additmn described by a specific fuel 

consumptmn at 60 m/s of 1.14 lb wt fuel per hour per lb of lift force. 

4.5 Contmuous source dlstributmn 

Consider the proflle used III the first comparison case (section 4.3) 

with an equivalent fluid source distribution defined in the circle plane as 

u(c*) where: 

(a) u f0 only in a regmn R(circle) consisting of pomts 

5" = (r,O) with 1.15 <r cl.25 and 33' < 0 < 52.5'. 

(b) In R(circle), p is a functmn of 8 only and 

u(e) = o.o044(e - 33)' 33O < e < 45' 

v(e) = 1.3 - 0.025(8 - 50)2 45' < '0 < 52.5' 

(e measured in degrees in the calculation of p). This distributmn is shown 

d~agramat~cally III F1g.13. The corresponding source distributmn in the 

proflle plane occupies an approximate region R(profile) consisting of points 

(h,s) with 0.12 <s CO.26 and 0.02 <h cO.05, which extends in a narrow 

band above the aerofoil from a point about half way along the flap to just past 

the flap knee (Fig.13). Data for this source distribution is also shown in 

Fig.13 and in partuxlar 

Max. adverse pressure gradient on flap = 4.19 

‘LQ 
= 0.25 

"OCF = 0.032 m/s2 

"0°F = 6.4 m/s 

tCF 'IJo = 60 m/s) = 0.11 

i 
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Here a 12.5% increase m lift 1s obtalned by heat addltlon with a speclflc fuel 

consumption at 60 m/s of 1.92 lb wt fuel per hour per lb of lift force. 

4.6 Energy addition in practice 

It was noted ln section 2.2 that the method of analysis used ~mplxs that 

the heat addltron 1s accompanied by a definite amount of momentum addition. At 

low Mach numbers the total energy supplled 1s only very slightly greater than 

the part supplled as heat, but although the supply of heat alone may be 

relatively stralghtforward the supply of momentum as well may be more dlfflcult, 

since some form'of propulsive system would be needed. 

It is therefore of Interest to speculate on the possible effect of adding 

heat alone. The streamlines would then be affected and XI view of the momentum 

deficit one would expect the streamtubes to get locally fatter. This may 

slightly change the optimum position of the heat source, but qualltatlvely the 

general effect should be similar to that found m the analysis, and may even 

be rather more powerful. No doubt this pant would best be resolved by an 

experiment. 

5 CONCLUSIONS 

The analysis of the preceding sectIons together with the numerical 

examples has demonstrated: 

(a) That a certain family of twodlmenslonal flapped aerofoll sections can be 

constructed using a family of conformal mappngs of a circle. The mappings are 

Inspired by the degenerate case, when the resulting aerofoil is a 'skeleton' 

consisting of a flat plate and a flat plate flap. 

(b) That for such an aerofoil the upper surface pressure distrlbutlon shows a 

slgnlflcant adverse pressure gradlent near the flap knee whose magnitude 

ncreases with Increasing flap deflection. 

(c) That by addlng sultable fluld source distributions ln the outer flow, the 

adverse pressure gradlent for 13.5' and 18' of flap deflectlon can be made as 

good as (or better than) that for go, with a consequent increase of up to 0.5 

in usable cL' 

(d) That on the present theory, the fluld source distributron may be replaced 

by a certan heat source distrlbutlon, wlthout alterrng the effect on adverse 

pressure gradients. In the best example considered, an increase of 0.26 1n 

cL was achieved by increasng the flap deflection and adding heat described by 
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a specific fuel consumptu~n parameter of value 0.48 lb wt fuel per hour per lb 

of lift force. This figure is comparable with the specific fuel consumptions 

of other high lift devices (e.g. fan lift engines). 

In view of these results, it is suggested that an increase ln the usable 

cL of an aerofoll with flap should be possible by adding heat to the external 

flow above the knee, and so reducing the local adverse pressure gradient and 

delaying separation. Sxxe the mazn effect of the heat addition is fairly 

local it is not thought to be important that the aerofoil used m the examples 

is untypical of full scale practice, at least in order to demonstrate the 

principle. 

The attraction of the 'heat flap' suggestion is that the heat has a role 

best described as that of a 'catalyst'. The extra lift 1s not a direct result 

of the heat addition (by way of some sort of thrust) which might be expected 

to requne a very great deal of heat, but is strictly associated with an 

increase in flap deflection. The heat makes the u-xrease possible by retain- 

lng an attached boundary layer. 

If a practical appllcatlon is envisaged, however, a number of points 

need further u,vestlgatlon, e.g.: 

(a) more practical aerofoil shapes 

(b) the effect of heat on the boundary layer 

(c) the modification of the results for finite Mach number 

Cd) possible use in conjunctlon with a slotted flap 

(e) the practical problems of heat addition in the external flow and of a 

SUFJ~~ amount of momentum addition. If It is not possible to add momentum, 

what is the modification of the 'heat flap' effect by omitting it? 

(f) a project balance sheet in which possible gans through using a 'heat 

flap' are offset against the penalties introduced by it. 
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Appendn A 

CONFORMAL MAPPING OF THE EXTERIOR OF A CIRCLE ON TO 
THE EXTERIOR OF A FLAPPED AEROFOIL SECTION 

A.1 Basic rdea 

A skeleton aerofoll conslstlng of a flat plate wrth a deflected flat plate 

flap is first considered, and its outline, which may be regarded as a 'skeleton 

polygon' (Fig.l4a), is mapped onto a unit circle. This 1s done by first mapping 

the exterior of the polygon onto an upper half-plane by a Schwarz-Christoffel 

type transformation (Flg.l4b), and then mapping the half-plane onto the exterux 

of a unit circle (Flg.llrc) by a M6bius transformation. These transformations 

can be arranged so that the points at Infinity in the circle and proflle planes 

correspond, and the tralllng edge of the profile is mapped onto the point 1 in 

the circle plane. 

Flapped aerofoils of non-zero thxkness are now consldered by exammng 

the inverse Image under the above transformation, of the circle C(E) (Fig.15a) 

obtained by 'clothing' the unit cn-cle. This inverse Image turns out to be a 

'clothing' of the skeleton polygon. Stages in the inversion of the transfor- 

matlon are shown in Figs.15b and c, and some resulting profiles appear III Frg.17. 

In this Appendix the notation of Flgs.14 and 15 1s made standard, that is the 

complex varuble z refers to the proflle plane, w to the intermediate plane, 

and 5 to the circle plane. 

A.2 The mapping w + z 

A.2.1 General remarks about Schwarz-Christoffel transformations 

A mapping is required of the region 1m[w1 >O of the complex w-plane 

onto the exterior of the profile PO (Fig.14a) which is conformal except at a 

set of four real points (which are to be mapped onto the vertices (l), (2), 

(3), (4) of the skeleton) and at some point w. with Im[wol >O (whrch IS to 

be mapped onto the point at infinity in the z-plane). The point w. must be 

introduced explicitly since mZ (= m in the z-plane) lies in the flow region 

of the z-plane, and further it is required that 1m[w,1 f0 because mZ is 

not a boundary pant of that region. 

This 1s a special case of the problem of mapping the region 1dw1 >O 

onto the exterior of a flnlte, simple n-sided polygon in the z-plane, with 

vertices at 21'22' . . . Z", viewed ln the ck?kwise directlon, and with 

corresponding angles a1n,a2~, . . . arm rad, (al + a2 + . . . + a,, = 2). 
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This problem 1s to be dlstmgmshed from the more standard Schwarz-Chrlstoffel 

problem, which concerns the Znterwr of the flnlte n-gon. Many texts only 

treat the standard case, but see Narkushevlch' (for example) where the three 

cases - an exterior pomt of a fmite polygon, m a vertex of an infinite 

polygon and m an extermr point of a finite polygon (standard) are considered. 

In the first case, he demonstrates that rf f 1s a mapping with all the 

propertIes demanded above then it must satisfy: 

n 

A l-T (w - al)ai 

f'(w) = 1=1 

(w - wo)2(w - Goj2 

where: 

(a) The al are the u-,verse Images under the mappmg f of the 

correspondrng zl. They are all real, and al > a2 > . . . > an or cyclic 

permutations of that statement. 

(b) Any three al may be arbitrarily selected (as long as the ordermg 

1s respected) and the rest are then uniquely determned by the propor- 

tions of the sides of the polygon. 

Cc) w. (the inverse of image of m under f) satisfies Mwo] > 0 

and (important) a condltmn which ensures that f 1s a one-valued func- 

t1on on Im[w] > 0. This condition 1s that f' should have no residue 

at any point in the upper half plaie. The only point of concern is wo, 

and so this condltmn is simply that the coefficient of l/(w - wo) in 

the expansion of f' about w. be zero. 

(d) The complex constant A is determined by the overall scale and 

orientation of the polygon. Its position in the z-plane fixes a con- 

stant of integratmn. 

By applying a certain Mbbius transformation to the w-plane, It may be 

mapped onto a w*-plane (say) in such a way that the two upper half planes 

correspond, and any one of the ai 1s mapped onto "+. This transformation 

may be combined with f to produce a mapping f* of the &-plane onto the 

z-plane, satisfying: 

5 

3 
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i 

II-1 

l-T 

CL 
A* (w" - a?) 1 

f*'(w*) = 1=1 

(w" - q2(w* - Gg' 
2 (A-1) 

where It has been chosen to map a onto n "b+ and the notation: 

a +a:, w+d, A -f A* 
I 

has been used. In the sequel the +-plane is used directly and the * 

suppressed. 

A.2.2 Transformation of the skeleton polygon 697 

An approprute form of equation (A-l) for the skeleton polygon 1s 

-CL 
f'(w) = A(w - l)(w + X)w 

(w - wo)2(w - ioj2 
(A-2) 

where oi~i = flap deflection angle, and the following correspondences have been 

chosen: 

vertex (1) + 1 

vertex (2) -+ m w 
vertex (3) + -x 

vertex (4) + 0 (see Flg.14) . 

The conditions (a)-(d) of A.2.1 become: 

(a) X >O (images of (l), (Z), (4) have been fzxed). 

(b) X 1s determlned by the parameter 6 = ratlo of flap chord length 

to L (F1g.14a). 

(c) Closure condition (see below). 

Cd) A is fzxed by the parameter L and the orientation of the polygon. 

The Integration constant 1s fixed by notng that f(0) = 0, so that 

w 

f(w) = A 
J 

(t - 1)(t + x)t-" 2dt . 

0 
(t - woj2(t - wo, 
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Remarkably, this integral can be performed analytically, provided the closure 

condltlon (c) 1s unposed. The result of the integration is here stated, and 

the condition (c) deduced from a verification by differentutux. 

Consider 

f(w) = - Aw'-~/(~ + a) 
(w - w,)b - 'jo' 

so that 

f'(w) = 
(I.3 - wo)2(w - Go'2 

This is precisely of the form of equation (A-2) If: 

1 - x = * ("0 + WO) 

and x = l-a - 
l+cr "o"o 

(A-3) 

These two equations amount to one complex condition on w. when X is 

elunnated, and this 1s the closure condition (c) previously discussed. The 

condition f(0) = 0 is respected. 

A.2.3 Matchrng parameters 

The remaxnng constants are fixed by the demands: f(l) = - L and 

f(- X) = 6L exp(- ian). The first becomes, on applying the closure condition 

(A-3): 

- Aa(l - a)/(1 + a) = L 
(1 - a) - (1 + a)X 

The second, after similar manipulation becomes: 

- Aa(1 - a)(- X)-a/(l + u) 
(1 + a) - (1 - a)X = - 6L exp(- ian) . 

(A-4) 

(A-5) 
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After dlvlslon of (A-5) by (A-4), there obtains: 

X-Q (1 - a) - (1 + a)X = * 
(1 - '2)X - (1 + a) 

25 

or, denoting 

(1 -a)l(l+a) = 6 , (6 - X)/(6X - 1) = 6xa . U-6) 

GraphIcal analysis (Fig.16) shows that this equation has a unique solution which 

satisfies 0 < 6 <X <l/B*, for all positive 6, and 0 <a <l. The solu- 

tion may be obtained numerxally. 

Finally from (A-4), 

A = - L(l + a)[(1 - a) - (1 + a)X]/a(l - a) = - L(l + a)(6 - X)/a6 . 

The whole transformation IS thus determined. 

A.3 The mapping 5 -t w 

Thx is a standard, MSbius transformation defined by the demands that 

are to correspond, and the point w = - X IS to correspond with 

The requued mapping is 

<"O - Kio 
w = g(c) = 5-K 

where K=(X+W~)/(X+;~). 

A.4 SUIUUlary_ 

The exterior of the circle 151 = 1, IS mapped cmto the exterior of the 

polygonal curve PO, by the mapping fg, where 

* From equations (A-3), (~rn[w~]}~ = e x - 4 (l + a) 
2 2 

i' - ') . 
n 

It 1s clearly necessary that this expression be positive, and the condition 
for this may be shown to be 6 <X <l/B. 
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w 
&T(C) = 

- KG0 
; _ K > 

f(w) = Awl-'/(1 + a) 
(w - wo' (w - Co' 

Appendix A 

X is the unique solution satlsfymg 6 <X <l/S of 

6Xa = (6 - X)/(6X - 1) , 

and "o"o = x/i3 , wo+wo = (1-X)(l+cx)/a , Im[w,l > 0 , 

A = - L(l + a)(S - X)/c& , 

6 = (1 - a)/(1 + cl) , 

K = (X + Q/(X + io) . 

. 
A.5 The 'clothed' aerofoil 

The final step m constructing the aerofoil 1s to examme the mmge 

under F = fg of the 'clothed' circle C(E), defmed to have centre at 

5=-E and radius 1 + E, so that it passes through 5 = 1 but othewlse 

1~s strictly outslde the unit circle. This means that the image curve will 

be closed, and ~111 have a contmuously turning tangent except at the point 

correspondmg to 5 = 1 (th e trailing edge) where there is a singularity 

the same as that of the skeleton. The trailing edge angle of the 'clothed' 

aerofoil will thus be zero. Beyond this, It is necessary to turn to computa- 

tion to discover the detailed shape. An aerofoll so produced, is defmed by 

the parameters L,G,cr,e and this profile is referred to as P(L,G,G,E). 
Some resultmg profiles are shown in Flg.17. 

A.6 Derivatives of the transformation F 

-a K$, - wo) 
(a) F'(c) = f'(w)gt(c) = A(w - l)? + Xy 2 

(w - wo' (w - wo' (5 - K)' 

=- A(w - l)(w + X)w-' when the results of 
Kbo - io) (w - cToy 

(A-5) are applied. In particular, 
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F’(1) = 0 

and F’(m) = - 
A (w, - l)(w, + X)w, 

K’wo - Go) 
3 

= A (say) . 

(b) As required in Appendix B, 

-$ [log F’ (c)] = 

[ 

.-.!- + 1 - Y- 2 
w-l w+x w w-r3 oz 1 dw 

= u- 2 1 K'Go - w,) 
w+x w x.7-G 

0 (5 - 0’ 
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Appendu B 

THE RELATIONSHIP BETWEEN PROFILE PLANE AND CIRCLE 
PLANE FLOWS, AND THE DETERMINATION OF THE LATTER 

B.l The relatuxshll? 

According to incompressible, lrrotational, invlscid, flow theory, the 

flow around the profile P(L,G,a,c) fixed by the data dlscussed in section 3.2 

may be inferred from a certain flow III the regxon D of the 3-plane, using the 

method of complex potential. The complex potential W(z) 1s analytic except 

at slngularitles of the flow, and satisfies dW/dz = v(z) where V 1s the 

complex velocity and the bar denotes complex conjugate function. The function 

Q(3) = W@(3)) is the complex potential of a flow in D which satisfies: 

(a) The rigld surface boundary condition on C(c). 

(b) If u(3) = dR/d3 (= complex velocity in the 3-plane) and 

V(z) + v. as z + ==, then v(3) + v,, = iiV, as 3 -t m. 

(c) The 3 and z plane flows have the same circulation K and the same 

source-type slngularitles and distributions (of same strengths) at correspond- 

mg points by the mapping F. In the case of a source distrlbutux ~(3) m 

the 3-plane, the corresponding z-plane distribution is m(z) = p(F-l(z)). 

Higher order slngularlties have a more complicated relationshlp but are not 

relevant here. 

This 3-plane problem may be solved by the use of the circle theorem (see e.g. 

Ref.8) or, in the case of source flow, the method of images. The circulation 

is flxed by Joukowskl's hypothesis which requires the velocity to be zero at 

5 = 1. When Q and ; have been determined, the corresponding quantities 

W and 7 follow by the relations: 

W(z) = n(s) V(z) = ;(<)/F’ (3) 

B.2 The functions R, ; and K 

(a) No singularities in the free stream 

(F(C) = 2) . 

n(3) = v,(s + E) + v. '; 1 ,"' 
2 

+ (v 0 
- v,)(l + E) log (3 + E) 

a function to be referred to as nf(3) (f = 'free of sources'), 
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. 
G(5) = z. - “o $+ ( > 2 

l+E 
+ (v. - vo) 5+e 

-( > 
= q5) 

Y = 4rrCl + dIdv,l = Kf . 

(b) A single point source of strength m at the point <* in D(E), with 

1m[s*l > 0 

n(c) = O,(C) +& 
i 

log (C-c*) + 1% 
[ 

(1+c)2 
5+E 

- (;*+E) - (-*)2 (1+e) log (5+c) 1 ll-<*I I 

= Qf(C) + mnI5*,51 

V(C) = Gf(C) + f+ & - 
1. 

i* + E _ _ - c-c* 1 l+E _ 
(l+c)2 - (:*+c)(s+E) 5-E p-<*12 c+E 

= t,(s) + m~Ic*,~l 

K=K - 2m(l+E)Im 5” 
f 

ll-<“I2 

= Kf +nK[5*1 . 

Since for Im[c*l >O, K[<*] <O, the immediate effect of adding a source is 

to reduce the circulation and so cut down lift. 

(c) The complex potential for several point sources or a source distribution 

consists of the basic function Of(c) and a sum or integral over K,* of the 

functions JJ(~*)Q[<*.<], where ~(5”) is the point source strength at K,* 

or source density at c* respectively. Similar expressions hold for ; and 

K. 

B.3 Pressure gradients 

In making decisions on boundary layer separation, the derivative of C 
P 

around the surface of the aerofoil is required. If s is the coordinate 

measured around the profile from the trailing edge, the function of interest is 

G(s) = - d(Cp)/ds, i.e. the adverse pressure gradient. This is calculated as 

follows: 

G(s) - - d(Cp)/ds = d(ti/“,$ds . 
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Suppose the point 8 corresponds to the point 5 = (1 + E)exp(iO) - E on 

C(E). Treating 0 as a new coordinate, one obtains: 

(1 + c)dB/ds = Idc/dzl = l/lF’(5)1 . 

Thus 

G(s) = d(ti)/dB 

$1 + d(F’Wl 

d(V$/dB = ZRe[Vd?/dB] 

dV/dB = (1 + E)i exp(ie)dv/dg 

df/d< = [F’(C)d;/d< - ;(<)dF’/d<]/[F’(<)12 

= [x(C) - vd(log F’)/dCI/F’(<) 

where x(c) = d;/dg. 

Thus one obtains: 

G(s) = - 2 

+(s) I3 
. 

For the casesdealt with in section B.2, x takes the forms: 

(a) 2vo(1 + c)2/(s + E)3 - (v. - Vo)(l + E)/(C + E) 

(b) 

= x,(s) + mx[c*.cl . 

(cl xf plus a sum or integral over c* of p(5*)x[c*,<l. 

The function d(log F’)/dS is computed in Appendix A. 



Appendix C 

A SYSTEMATIC, NUMERICAL METHOD FOR THE REDUCTION 
OF ADVERSE PRESSURE GRADIENTS 

In this Appendix, the problem set up m section 3.3 1s approached m a 

systematic way which may be carrred out completely on a computer. The success 

of the method in all circumstances cannot be guaranteed, but It has worked 

satisfactorily ln a number of cases. 

A segment Z of the upper surface of the profile 1s selected, along which 

It is required to reduce the maxx~~urn adverse pressure gradlent to a quoted value 

Go. The segment Z must not extend too far forward along the profzle as It 

~111 encounter regions where the boundary layer 1s thinner and can therefore 

withstand greater adverse pressure gradients. Neither must it extend right 

to the trallng edge near which numerical investlgatron shows that large adverse 

pressure gradients Inevitably east, even for very small flap deflectlons. It 

is assumed that the resultng separation very close to the trailing edge'appre- 

clably drstorts the external solution only in a thin wake. 

The location so of the maximum value of G(s) on Z is determined and 

then a single point source is added in such a way as to reduce the adverse 

pressure gradlent at so to Go. This 1s done by making use of the following 

algorithm. Le; the suffix u (unmodlfled) refer to the situation before the 

source 1s added (nltially u has the same meanng as f in Appendix B), and 

the suffu m (modified) the situation after the source is added. If the 

source has strength m and is located at z* = F(<*), (assumed to be close 

to E), then: 

v,(c) = LJu(s) + m~[~*,sl 

&6(C) = X,(C) + mx[5*,51 . 

Substituting these in the expression for G(s) obtained in Appendix B (B.3) 

one finds: 

G,(S) = A0[5*,d + d1[C*,51 + m2A2[5*,C1 

where each A 1 is real,and explicitly: 
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= G”(s) 

Al = - 2Im 

A2 = - 211x1 

Suppose now that the point s = SO, h = 0 corresponds with 

5 = (1 + E)exp(ie) - E. The procedure is to add a source at 

<* = (1 + E + r~)exp(l@) - E (where n 1s a preselected positive parameter 

fixing the height above the aerofoll at which the source is added). Having so 

fixed <*, the required source strength is determined by demanding 

Gm(so) = Go, or 

A2m2 + Alm + A 
0 

- Go =o . 

The new adverse pressure gradlent so obtained satisfies Gm(sO) = Go, 

but It 1s possible that G,(s) > Go at some other points s in E. The 

process 1s therefore repeated taking as unmodified functions (u) the functions 

previously sufflxed (m) and adding a suitable source close to the new maximum 

of Gu(s). The process is continued until a subsequent function G,(s) is 

smaller than Go everywhere on z. 

The method is a relaxation process, butonewhich is so physically inspired 

that a mathematical convergence proof is virtually Impossible. Convergence pro- 

pertles are likely to depend on the parameter n and on the form of the initial 

unmodified distribution. It 1s assumed at each stage that the quadratlc equa- 

tion has a real, positive solution. On physical grounds, one would expect this 

to be true since one always has A 
0 - Go >O. Certainly by adding a source of 

sufficient strength, the local adverse pressure gradient Gu(so) (= Ao) can 

be reduced to an arbitrary extent, so the existence of one real, positive 

solution is assured. To cover the possibility of the appearance of two positive 

sources, a routine can be incorporated to choose the smaller (say), z 

The chief drawback of the systematic method is that it tends to produce 

very irregular source distributions, unless, as is often the case, a small 

number of well chosen sources 1s adequate. 
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SYMBOLS 

cF 

‘LQ 
II 

F 

G 

h 

H 

L 

m 

M 

P 
P 

Q 
r 

R 

s 

S 

t 

u 

V 

w 

W 

z 

a 

Y 
6 

E 

5 
e 

K 

A 

area of streamtube which encounters source dlstrlbution 

chord length 

ClL-Cle 

specific fuel consumption parameter 

increment in lift coefficient due to 'heat flap' 

region outslde C 

mapping from circle plane to profile plane 

adverse pressure gradient 

height coordinate above profile 

calor1f1c value of fuel 

length of profIle from leading edge to flap knee 

point fluld source strength or distribution function 

Mach number 

total heat source strength 

polar coordinate III circle plane 

source region 

coordinate measured around upper surface of profile from trailing edge 

streamtube which encounters source dlstributlon 

duration of use of 'heat flap', and time 

flow speed (proflle plane) 

complex velocity (profile plane) 

complex variable (intermediate plane) 

complex velocity potential (profile plane) 

complex variable (profile plane) 

~II = flap deflectlon angle in radians 

ratlo of specific heats 

ratio flap chord length to L 

'thickness parameter' 

complex variable (circle plane) 

polar coordinate III circle plane 

circulation 

lim F'(c) 
5u" 
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SYMBOLS (concluded) 

u fluld source dlstrlbutmn 

” complex velocity (circle plane) 

P density 

X d;/d< 

R complex velocity potential (circle plane) 
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Streamtube 5 

Fig. I The expanded streamtube 

h 

Fig.2 Coordinate systems in profile and circle planes 



The additional velocities induced by the new source ore 
shown by arrowsThere are twoarrow chains: one Is 
the “direct” efWct of the source and its image and to 
this is added an antlclockwise circulation to restore 
the roukowski condition at the trailing edge. 
Magnitude of’velocity is represented by arrow length 

Fig.3 Effect on circle plane flow of addIng a single point source 
(with its image and additional circulation) 



Profile PCO, 0~25,005,0*I) (flop angle 9”) 

Far flaw U 0 = 1.0 angle of attack = oGS5r rod ( 1 2 9“ 

Lbft coeWicient I.61 

Mox flop adverse pressure gmdient 6.16 

Fig. 4 Pressure distrtbution over the rearward upper 
surface in the datum condition 



I-0 

t 
‘CP 

o-5 

c 

Profile P ( 1.0, 0~25,0~075,0-I ) (flap angle 13-V) 

Far flow u, = 1.0, angle of attack = 0.05sr rad (E 9”) 

No source Source as shown 

Lift coeff i ci ent I.96 I.92 

Max flop adverse pressure gradient IO.34 5.65 

uo CF = 0.014 hQ = 0.25 

Fig.5 First comparison case pressure curves 
First solution - trial and error 



Profile P (l.O,O.25, O-075, O-I) (flop angle 13.5’) 

Far flow u,,= 1.0, angle of attock=O-05m rod (Z 9’) 

No source Sources as shown 
Lift coefficient I.96 I-88 

Max flap adverse pressure gradient IO-34 5.56 

llo CF = o-047 CLP = o-21 

Fig.6 First comparison case pressure curves 
Second solution - trial and error 



I*C 

-cP 

t 

0.5 

0 

Profile P( IO, 0.25, 0.075, 0 I) (flap angle 13.5O) 

Far flow U,=I 0, angle of attack = 0.05 n rod (- 9”) 

No source Source as shown 

Ltf t coef f mmnt I 96 I.93 

Max flap adverse pressure qradlant IO.34 6.16 

u,c,= 0008 C LQ = 0.26 

Fig.7 First comparison case pressure curves 
Third solutlon - systematic 



No source 

Sources Sources as shown as sh 

o-s- 

ProfIle P(I-0, 0.25, O-075,0.1) (flap ongle 13.5’) 

Far flow Uo” 1.0, angle af attack = 0-05sr rad (C 9”) 

No source Sources as shown 

Lift coefficient 1.96 I.915 

Max flap adverse pressure gradient IO.34 5.00 

uoc~='014 c LQ = 0.245 

Fig.8 First comparison case pressure curves 
Fourth solution - systematic 



k NO source- 

profile P (1.0, 0~25,0~075,04) (flap angle 13.5~~) 

Far flow U,=I.O, ongle of attack = O-05 n rad (~9") 

No sOurces Sources OS shown 

Lift coefficient I.36 1.83 

Max flap odverse pressure gradient IO-34 3.006 

IJO cp = o-104 CLq =0*16 , 

Fig.9 First comparison case pressure curves 
Fifth solution - systematic 



profile P (bo,o-25,0-l, 0.1) (flop angle IB’) 

Far flow Ua = I.0 , angle of attack= 0.05~ rod (E 9’) 

No source Sources as shown 

Lift coefficient 2.25 t-14 

Mox flap adverse pressure gradient 15.58 6.15 

u,,cF= 0.046 CLQ = 0.47 

Fig.10 Second comparison case pressure curves 
First solution - trial and error 



I 
I-0 

-cP 

0.5 

0 

sources sources as shown as shown 

NO SourCQ $- 
0) ul c 
z 
t 
ii 

s- 0.4 

c 

Profile P(I.0, 0*25,O*I,O~I) (flop angle MO) 

Far flow Uo= I.0 angle of attack = O-05 IT rad (z 9”) 

NO source Source5 as shown 

Lift coefficient 2.25 2.17 

Max flap adverse pressure grodient 15.58 6.16 t 

%‘F = 0.019 C,Q = 0.5 5 

Fig. I I Second comparison case pressure curves 
Second solution - systematic 



Sources os shown 

Profile P (I-0, 0.25, O-I, 04) (Clap ongle 10’) 

For flow u, = 1.0, angle of attack = O-05 w rod (N 9”) 

NO source Sources as shown 

Lift coefficient 2.25 2.14 

Max flap adverse pressure grodient IS* 50 5.0 

% cF = O-032 C LQ = o-47 

Fig. 12 Second comparison case pressure curves 
Third solution -systematic 



IO c 

Dtstribution quoted 
\ 

SOWCQ rogloff ‘R profile) 
profile plane 

( 

SourCQ rkyn 
circle plane 

The detailed source distribution is given in sectton 4.5 

ProfIle P (1.0, 0 05, 0.075, 0.1) (flop onqle I3 5’) 

Far flow u, = 1.0, angle of attack = 0 05 n rad (S 9”) 

No source Distribution quoted 

Lift COQf f lClQ,,t I ‘9b I se 

Max +iap adverse pressure qrOd#Qnt IO.34 4.19 

uocF= 0 032 C LO = 0 21 

t 

c 

Fig.13 First comparison case pressure curves 
continuous source distribution 



a 2 -plane 

-x @I 0 (9 

b w-plane 

’ (I> 
e 

Re kfl 

C f - plane 

Symbols In brackets refer 
to points in the first Plgure 

Fig 14a-c Stages in constructing a flapped aerofoil: 
mapping skeleton onto unit circle 



R= M 

a I- plane 

b w - plane 

Ia= k3 
---- Skalaton 
- “Clothad’ oarofoll 

SLe-i=n 

c z - plane 

d Correspondence of points under f 8 g 

Fig. 15a -d Stages in constructing a flapped aerofoil: 
mapping of “clothed’ circle onto aerofoil 
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t II 

X 

Solution x 
satisfies 

asymptote 

. 

Fig.16 Graphical solution of 6=xwoc (a-x) / (ax- I) 

forO<dtl and 0</3<i 
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a ec= O-05, 6 = 0.25, L= I, E=O-I 

(flap angle 9”) 
.2 - 

b 05=0.075, 6=0.25, L=I, <=0-I 
(flap angle 13.5’) 

(flap angle 18’) 
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