

MINISTRY OF DEFENCE (PROCUREMENT EXECUTIVE) AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Numerical Studies on Hypersonic Delta Wings with Detached Shock Waves

By
V. V. Shanbhag,
Cambridge University, Engineering Department

NUMERICAL STUDIES ON HYPERSONIC DELTA WINGS
 WITH DETACHED SHOCK WAVES
 - by -
 V. V. Shanbhag,
 Cambridge University Engıneering Department

Abstract

SUMMARY In this report a numerical procedure is described for calculating the inviscid hypersonic flow about the lower surface of a conical wing of general cross-section. The method is based on thin-shock-layer theory and the cross-section of the wing may be either described by a polynomial (up to fourth degree) or given as tabulated data. The actual numerical scheme is an improvement on that used by earlier workers and the computation time is much shorter. This reduction in computation time has been exploited to produce a complete iterative procedure for the calculation of the pressure distribution and shock shape on a given wing at given flight conditions. (In earlier work graphical interpolation was used.)

The report includes a complete set of tabulated non-dimensional pressures and shock shapes for flat wings with detached shocks for reduced aspect ratios from 0.1 to 1.99 , and some sample results for wings with caret and bi-convex cross-sections.

[^0]It has been shown by Messiter ${ }^{1}$, Squire ${ }^{2.3}$, Hillier ${ }^{4}$ and others that thin shocklayer theory gives pressure distributions and shock shapes on delta wings with simple cross-sections which are in very close agreement with experiments. The use of this theory involves the solution of a complex integral equation for the cross flow velocity (w) with boundary conditions at the centre line and at the leading edge. Once this cross flow velocity is found the pressure distribution and shock shape follow by direct integration. Most of the calculated results for the detached shock case have been obtained by Squire and Hillier for wings with simple cross-sections (flat wings, diamond cross-section wings, and some circular arc sections). They converted the integral equation into differential equation and marched out from the centre line using the first derivative of w at the centre line as a parameter $\left(a_{1}\right)$. This method was very lengthy but by obtaining results for a number of values of a_{1}, they could use graphical interpolations from these results to obtain results for a particular wing at given flight conditions. However, the direct application of this numerical scheme to iterate to find the actual solutions corresponding to given flight conditions would require a very large computer time. Also this method can only be used for the simple sections mentioned above.

In the present report a direct method of solution of the integral equation is described which produces a considerable reduction in computer time and therefore it is possible to combine this method with a direct iterative scheme for the calculation of pressure distribution and shock shape on a given wing at given flight conditions.
2. Derivation of Equations

For steady flow of an ideal, inviscid gas the continuity, momentum and entropy equations can be written as

Continuity

$$
\frac{\partial}{\partial \bar{x}}(\bar{\rho} \bar{u})+\frac{\partial}{\partial \bar{y}}(\bar{\rho} \bar{v})+\frac{\partial}{\partial \bar{z}}(\bar{\rho} \bar{w})=0
$$

Momentum

$$
\begin{array}{ll}
\bar{x} & \bar{u} \frac{\partial \bar{u}}{\partial \bar{x}}+\bar{v} \frac{\partial \bar{u}}{\partial \bar{y}}+\bar{w} \frac{\partial \bar{u}}{\partial \bar{z}}+\frac{1}{\bar{\rho}} \frac{\partial \bar{p}}{\partial \bar{x}}=0 \\
\bar{y} & \bar{u} \frac{\partial \bar{v}}{\partial \bar{x}}+\bar{v} \frac{\partial \bar{v}}{\partial \bar{y}}+\bar{w} \frac{\partial \bar{v}}{\partial \bar{z}}+\frac{1}{\bar{\rho}} \frac{\partial \bar{p}}{\partial \bar{y}}=0 \\
\bar{z} & \bar{u} \frac{\partial \bar{w}}{\partial \bar{x}}+\bar{v} \frac{\partial \bar{w}}{\partial \bar{y}}+\bar{w} \frac{\partial \bar{w}}{\partial \bar{z}}+\frac{1}{\bar{\rho}} \frac{\partial \bar{p}}{\partial \bar{z}}=0
\end{array}
$$

Entropy

$$
\bar{u} \frac{\partial}{\partial \bar{x}}\left(\frac{\bar{p}}{\bar{\rho}} r\right)+\bar{v} \frac{\partial}{\partial \bar{y}}\left(\frac{\bar{p}}{\bar{\rho}}\right)+\bar{W} \frac{\partial}{\partial \bar{z}}\left(\frac{\bar{p}}{\bar{\rho} r}\right)=0
$$

These equations must be solved subject to Rankine-Hugoniot jump conditions at the shock. These are:

Continuity: -

$$
\left[\bar{\rho} \cdot\left(\overrightarrow{\vec{q}} \cdot \vec{n}_{s}\right)\right]=0
$$

Momentum: -

$$
\left[\bar{p}+\bar{p}\left(\vec{q} \cdot \vec{n}_{s}\right)^{2}\right]=0
$$

Energy: -

$$
\left[\frac{1}{2}\left(\overrightarrow{\vec{q}} \cdot \vec{n}_{s}\right)^{2}+\frac{r}{r-1} \frac{\bar{p}}{\bar{\rho}}\right]=0
$$

Tangential velocity:-

$$
\left[\vec{q} \times \vec{n}_{s}\right]=0
$$

where the square brackets denote the change in the enclosed quantity
across the shock discontinuity and \vec{n}_{s} denotes a unit vector normal to the shock surface and directed away from the body. The body boundary conditions require the streamlines to become tangential to the surface i.e.

$$
\begin{equation*}
\overrightarrow{\bar{q}}_{B} \cdot \vec{n}_{B}=0 \quad \text { on } \quad \bar{y}=\bar{y}_{B} \tag{3}
\end{equation*}
$$

In thin-shock layer theory for conical wings the co-ordinate system is first stretched to

$$
\begin{align*}
& x=\bar{x} \\
& y=\bar{y} / x \epsilon \tan \alpha \tag{4}\\
& z=\bar{z} / x \epsilon^{1 / 2} \tan \alpha
\end{align*}
$$

Where the barred symbols refer to physical co-ordinate system and unbarred quantities refer to transformed (or stretched) co-ordinates. In this transformed co-ordinate system the wing semi-span and thickness become

$$
\begin{align*}
& \Omega=b / x \epsilon^{1 / 2} \tan \alpha \\
& t_{0}=h / x \in \tan \alpha \tag{5}
\end{align*}
$$

respectively.
For a shock which differs only slightly from a plane shock Messiter suggested an expansion of flow properties in terms of ϵ which is the inverse of the density ratio across a basic shock, lying in the plane of the leading edges of the wing. In the limit $\epsilon \rightarrow 0$ the expressions tend to basic Newtonian solutions. The basic density ratio across the shock is given by

$$
\begin{equation*}
\epsilon=\frac{r-1}{r+1}+\frac{2}{r+1} \frac{1}{m_{\infty}^{2} \sin ^{2} \alpha} \tag{6}
\end{equation*}
$$

where α is the incidence of the plane of the leading edges. The suggested expansions for flow properties are

$$
\begin{aligned}
& c_{p}=\frac{\bar{p}-\bar{p}_{\infty}}{\frac{1}{2} \bar{p} u_{\infty}^{2}}=2 \sin ^{2} \alpha(1+\epsilon p(y, z))+O\left(\epsilon^{2}\right) \\
& \frac{\bar{u}}{u_{\infty}}=\cos \alpha+\epsilon \sin \alpha \tan \alpha u(y, z)+O\left(\epsilon^{2}\right) \\
& \frac{\bar{v}}{u_{\infty}}=\epsilon \sin \alpha V(y, z)+O\left(\epsilon^{2}\right) \\
& \frac{\bar{W}}{U_{\infty}}=\epsilon^{1 / 2} \sin \alpha W(y, z)+O\left(\epsilon^{3 / 2}\right)
\end{aligned}
$$

Substitution of these quantities into the equations of motion lead to a consistent system of equations and boundary conditions which are

$$
\begin{gather*}
\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \\
(v-y) \frac{\partial v}{\partial y}+(w-z) \frac{\partial v}{\partial z}=-\frac{\partial p}{\partial y} \tag{8}\\
(v-y) \frac{\partial w}{\partial y}+(w-z) \frac{\partial w}{\partial z}=0
\end{gather*}
$$

with shock boundary conditions

$$
v_{s}=\left(y_{s}-z \frac{d y_{s}}{d z}\right)-1-\left(\frac{d y_{s}}{d z}\right)^{2}
$$

$$
\begin{equation*}
w_{s}=-\frac{d y_{s}}{d z} \tag{9}
\end{equation*}
$$

$$
P_{s}=-1-\left(\frac{d y_{s}}{d z}\right)^{2}+2\left(y_{s}-z \frac{d y_{s}}{d z}\right)
$$

where $Y_{S}(z)$ is the equation for the shock, and V_{S}, W_{S} and P_{s} denote components of velocities and pressure immediately downstream of the shock. The equation (8) have two sets of real characteristics given by $Z=$ const. and $\xi=$ const. where

$$
\begin{equation*}
(v-y) \frac{\partial \xi}{\partial y}+(w-z) \frac{\partial \xi}{\partial z}=0 \tag{10}
\end{equation*}
$$

Since the operator $(v-y) \frac{\partial}{\partial y}+(w-z) \frac{\partial}{\partial z} \quad$ is the total derivative along a streamline to this approximation, the $\xi=$ const. characteristic coincides with the projected streamlines in the conical plane. Equations (8) also show w to be constant along a streamline and therefore it is a function of ξ only.

Messiter fixed the constant on \mathcal{F} characteristics by putting
$\xi=Z$ on the shock. He also showed that solution of equations (8) depend on one parameter $W(\xi)$ and by considering body boundary conditions he showed that

$$
\begin{equation*}
w(\xi)=Z_{b} \tag{11}
\end{equation*}
$$

for the detached shock case.

The solution of equation (8) leads after much algebra to

$$
\begin{equation*}
\left(\frac{d y}{d z}\right)_{b o d y}=-w\left(z_{b}\right)-\frac{1}{w\left(z_{b}\right)-z_{b}}+\int_{\xi}^{z_{b}} \frac{d s}{[w(s)-s]^{2}} \tag{12}
\end{equation*}
$$

This is the fundamental equation for the determination of $W(\xi)$.
The pressure on the body and the shock shape are given by

$$
\begin{align*}
& p(z, \xi)=-1-w^{2}(z)+2\left[\Delta_{0}+t_{0}-\int_{0}^{z} w(s) d s\right] \\
&+2 z w(z)+\left[-1+\frac{1}{\{w(s)-s\}^{2}}\right] \frac{d w(z)}{d z} \int_{j}^{z} \frac{[w(s)-z]^{3}}{[w(s)-s]^{2}} d s \\
& p^{*}=p(z, \xi)-2 t_{0} \tag{14}\\
& y_{s}(z)=\Delta_{0}+t_{0}-\int_{0}^{z} w(s) d s \tag{15}
\end{align*}
$$

Messiter also showed that the appropriate boundary conditions for
$W(\xi)$ are $W(0)=0$ and $W(\Omega)=1+\Omega$. The first condition corresponds to zero cross -flow on the centre line. The second condition was chosen to give a singularity in the shock curvature at the leading edge since a similar singularity occurs in certain two-dimensional blunt body flows. By equation (9) there is a similar singularity in the spanwise derivative of $W(Z)$ at the edge and this leads to some difficulty in the numerical solution of equation (12).

3. Numerical Solution of the Integral Equation

The analysis up to this section was similar to that of Messiter and Squire. Squire solved the integral equation by differentiating once again and then using Runge-Kutta procedure for integration of the resultant differential equation. This procedure takes a long time for computation of $W(\xi)$ for a single value of the parameter a_{1}. Againthe step size for Runge-Kutta type of integration must be extremeIy small (0.001) so that large storage was required. The Runge-Kutta procedure was used up to a certain point (i.e. $W(t)>1+0.75 t$) and for the remaining part manual graphical extrapolation was used. By a suitable choice of a_{1} it was thus possible to get a set of results for a range of $?$ and C where C is thickness ratio of the wings with diamond cross-sections. These results were then used to produce a set of charts which could be used to find the pressure distributions and shock shapes for any given wing witi diamond cross-section at given flight conditions. A similar method was used for caret wings, and for wings with biconvex cross-sections. In general this method cannot be used for general cross-sections.

In the present evaluation of the integral equation (12), a different approach was used*. This approach is as follows.

Let us assume that the solution has been obtained up to the $i^{\text {th }}$ station. Then at the $i^{\text {th }}$ station

$$
\begin{equation*}
\left(\frac{d y_{b}}{d z}\right)_{i}=-w\left(z_{b}\right)_{i}-\frac{1 \cdot 0}{w\left(z_{b}\right)_{i}-b_{b i}}+\int_{f_{i}}^{z_{b i}} \frac{d s}{[w(s)-s]^{2}} \tag{16}
\end{equation*}
$$

[^1]\[

$$
\begin{align*}
& \text { Similarly at } i+1^{\text {th }} \text { station } \\
& \left(\frac{d y_{B}}{d z}\right)_{i+1}=-W\left(z_{b}\right)_{i+1}-\frac{10}{w\left(z_{b}\right)_{i+1}-z_{b i+1}}+\int_{\xi_{i+1}}^{z_{b_{i+1}}} \frac{d s}{[w(s)-s]^{2}} \\
& \therefore\left(\frac{d y_{B}}{d z}\right)_{i+1}-\left(\frac{d y_{B}}{d z}\right)_{i}=W\left(z_{b}\right)_{i}-W\left(z_{b}\right)_{i+1} \\
& +\frac{10}{W\left(z_{b}\right)_{i}-z_{b_{l}}}-\frac{1 \cdot 0}{W\left(z_{b}\right)_{i+1}-z_{b_{i+1}}} \\
& -\int_{\xi_{i}}^{z_{b_{i}}} \frac{d s}{[w(s)-s]^{2}}+\int_{\xi_{i+1}}^{z_{b_{i+1}}} \frac{d s}{[w(s)-s]^{2}} \\
& =W\left(z_{b}\right)_{i}-W\left(z_{b}\right)_{i+1}+\frac{1.0}{W\left(z_{b}\right)_{i}-z_{b_{i}}}-\frac{10}{W\left(z_{b}\right)_{i+1}-z_{b}{ }_{i+1}} \\
& +\int_{z_{b_{i}}}^{z_{b_{i+1}}} \frac{d s}{[w(s)-s]^{2}}-\int_{\xi_{i}}^{\xi_{i+1}} \frac{d s}{[w(s)-s]^{2}} \tag{19}
\end{align*}
$$
\]

If we take the step length to be sufficiently small the integrals
can be evaluated using the trapezoidal rule and the equation
become

$$
\begin{align*}
& \left(\frac{d y_{B}}{d z}\right)_{i+1}-\left(\frac{d y_{B}}{d z}\right)_{i}=W\left(z_{b}\right)_{i}-W\left(z_{b}\right)_{i+1} \\
& +\frac{1.0}{W\left(Z_{b}\right)_{i}-Z_{b i}} \\
& \frac{1 \cdot 0}{W\left(z_{b}\right)_{i+1}-z_{b_{i+1}}} \\
& +\frac{\Delta 9}{2}\left[\frac{1 \cdot 0}{\left\{W\left(z_{b}\right)_{i+1}-z_{b i+1}\right\}^{2}}+\frac{1 \cdot 0}{\left.\left\{W\left(z_{b}\right)_{i}-z_{b i}\right\}^{2}\right]}\right. \\
& -\frac{\Delta \xi}{2}\left[\frac{1 \cdot 0}{\left.\left\{W(\xi)_{i+1}-\right\}_{i+1}\right\}^{2}}+\frac{1 \cdot 0}{\left\{W(\xi)_{i}-\xi_{i}\right\}^{2}}\right] \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
& \Delta g=z_{b i+1}-z_{b_{i}} \tag{21}\\
& \Delta \xi=\xi_{i+1}-\xi_{i}
\end{align*}
$$

Equation (20) was solved by a marching process for a given starting's
parameter a_{1}, until $W(t)>1+0.75 t \quad$ and then a parabolic type of extrapolation was used to find the value of ? which satisfies $W(\Omega)=1+\Omega$. The whole process was iterated to get correct value of a_{1} (i.e. correct $W(\xi)$ function) for given boundary conditions of cross-sectional profile, Mach number and incidence.

Equation (20) was solved subject to boundary conditions

$$
W(0)=0 \text { and } W(\Omega)=1+\Omega \text {. Near the }
$$

origin (i.e. $Z_{b}=\xi=0$) \quad fifth power series solution was assumed for $W(\xi)$ i.e.

$$
\begin{equation*}
W(\xi)=a_{1} \xi+a_{2} \xi^{2}+a_{3} \xi^{3}+a_{4} \xi^{4}+a_{5} \xi^{5}+O\left(\xi^{6}\right) \tag{22}
\end{equation*}
$$

This is similar to Squire's treatment for analytic cross-section case. Here a_{2}, a_{3}, a_{4} and a_{5} are related to the cross-sectional shape of the body by the following expression

$$
\begin{align*}
& \left(\frac{d y}{d z}\right)_{b o d y}=\mp\left[\frac{a_{1}-1}{a_{1}\left(a_{1}-1\right)^{2}}-\frac{2 \log a_{1}}{\left(a_{1}-1\right)^{3}}\right] a_{2} \\
& -\left[a_{2}^{2}-a_{2} a_{3}+a_{1}^{4}\right] \frac{z}{a_{1}^{3}} \\
& +\left[\frac{\left(1+a_{1}\right)}{a_{1}^{5}}\left(2 a_{1}^{3}-3 a_{1} a_{2} a_{3}+a_{1}^{2} a_{4}\right)-\frac{a_{2}}{a_{4}}\left(a_{1}^{4}-a_{1} a_{3}+a_{2}^{2}\right)\right] z^{2} \\
& +\left[-a_{3}-\frac{a_{3}^{2}}{a_{1}^{5}}\left(a_{1}^{2}+2 a_{1}+2\right)+\frac{a_{5}}{3 a_{1}}\left(3 a_{1}^{2}+4 a_{1}+3\right)\right. \\
& -\frac{2 a_{2} a_{4}}{a_{1}^{5}}\left(a_{1}^{2}+2 a_{1}+2\right)+\frac{a_{2}^{2} a_{3}}{a_{1}^{6}}\left(3 a_{1}^{2}+8 a_{1}+10\right) \\
& \left.-\frac{a_{2}^{2}}{3 a_{1}^{7}}\left(3 a_{1}^{2}+10 a_{1}+15\right)\right] z^{3} \tag{23}
\end{align*}
$$

In the case of an analytic cross section in the form of a polynomial up to fourth degree it is easy to calculate the slope $\left(\frac{d y}{d z}\right)$ body and
to equate coefficients of powers of Z to calculate $a_{2}, a_{3}, a_{4}, a_{5}$, in terms of a_{1}. (This is the parameter which is to be determined by the iterative procedure mentioned above.) This procedure was used by Squire and Hillier for delta wings with diamond and circular arc cross-sections.

But the real problem in the general case arises as follows; first, if the given profile was a polynomial of more than fourth degree and secondly, if the profile was given in the form of a table at finite number of discrete points. To overcome this problem, we approximate the crosssectional shape by a five point Lagrangian formula then by differentiating this formula with respect to Z, an expression for $\left(\frac{d y}{d z}\right)_{\text {body }}$ can be obtained at any Z. This expression for $\left(\frac{d y}{d z}\right)_{\text {body }}^{\frac{d z}{z}}$ third degree polynomial in Z as follows. body
where

$$
\begin{aligned}
& \left(\frac{d y}{d z}\right)_{b o d y}=k_{4} z^{3}+k_{3} z^{2}+k_{2} z+k_{1} \\
& k_{1}=-\sum_{i=1}^{5} y_{i} \frac{\sum_{\substack{j=1, k=1, i=1 \\
j \neq k \neq i \neq i}}^{5} z_{j} z_{k} z_{i}}{\prod_{\substack{j=1 \\
j \neq i}}^{5}\left(z_{i}-z_{j}\right)} \\
& k_{2}=2 \sum_{i=1}^{5} y_{i} \frac{\sum_{\substack{j=1, k=1 \\
j \neq k \neq i}}^{5} z_{j} z_{k}}{\prod_{\substack{j=1 \\
j \neq i}}^{5}\left(z_{i}-z_{j}\right)} \\
& k_{3}=-3 \sum_{i=1}^{5} y_{\substack{i}}^{y_{i} \frac{\prod_{\substack{j=1}}^{5}\left(z_{1}+z_{2}+z_{3}+z_{4}+z_{5}-z_{i}\right)}{\left.k_{j}\right)}} \\
& k_{4}=4 \sum_{i=1}^{5} \frac{\prod_{\substack{j=1}}^{5}\left(z_{i}-z_{j}\right)}{j \neq i}
\end{aligned}
$$

These coefficients were used to calculate $a_{2}, a_{3}, a_{4}, a_{5}$ at the origin for any given a_{1}.

After the initial polynomial expansion for $W(t)$ (t being the running variable) has been found, the direct solution of the equateion can be undertaken, The actual step by step procedure is best understood by noting that $W\left(Z_{b}\right)$ is the same function of Z_{b} as $W(\xi)$ is that of \mathcal{F}. So if a solution has been obtained up to a particular value of the independent variable (say t_{f}) then $W\left(z_{b}\right), z_{b}, W(\xi)$ and ξ are known for all values of \mathbf{z}_{b} and f less than, or equal to t_{f}.

Now suppose, at $t_{f} ; \quad W\left(t_{f}\right)<t_{f}$, in this case we can identify $t_{\text {with }} \xi$ and since $z_{b}=W(\xi)<\xi, W\left(z_{b}\right)$ in known. Therefore equation (20) can be written as,

$$
\begin{align*}
\left.\frac{\Delta \xi}{2}\left[\frac{1 \cdot 0}{\left(w(\xi)_{i+1}-\xi_{i+1}\right.}\right)^{2}\right]= & \left(\frac{d y_{b}}{d z}\right)_{i}-\left(\frac{d y_{b}}{d z}\right)_{i+1} \\
& +W\left(z_{b}\right)_{i}-W\left(z_{b}\right)_{i+1} \\
& +\frac{1 \cdot 0}{W\left(z_{b}\right)_{i}-z_{b i}}-\frac{1 \cdot 0}{W\left(z_{b}\right)_{i+1}-z_{b i+1}} \\
& +\frac{\Delta g}{2}\left[\frac{1 \cdot 0}{\left\{W\left(z_{b}\right)_{i+1}-z_{b_{i+1}}\right\}^{2}}+\frac{1 \cdot 0}{\left\{W\left(z_{b}\right)_{i}=z_{b i}\right\}^{2}}\right] \\
& =\frac{\Delta \xi}{2}\left[\frac{1 \cdot 0}{\left.\left\{W(\xi)_{i}-\xi_{i}\right\}^{2}\right]}\right. \tag{24}
\end{align*}
$$

In this equation $W(\xi)_{i+1}$ and $W\left(z_{6}\right)_{i+1}$ are unknowns. But if we know $W(\xi)_{i+1}$ which is equal to $\left(z_{6}\right)_{i+1}$, and as $W(\xi)_{i+1}<\xi_{i+1}, W\left(z_{6}\right)_{i+1}$ will be less than $z_{b i+1}$ and $c a n$ be interpolated from previous values. The method of bisections was used to evaluate the correct value of $W(\xi)_{i+1}$ from a first approximation (which was the linear extrapolated value from the previous step), so that equation (24) was satisfied. Once the correct value of $W(\xi)_{i+1}$ was obtained, the solution was carried for the next step.

On the other hand, if $W\left(t_{f}\right)>t_{f}$, then t is identified with Z_{6} and since in this case $\xi<Z_{6}$ it can be interpolated from already computed solutions at previous t values. Rearranging the equation (20) we get a cubic equation in $W\left(Z_{b}\right)_{i+1}$ i.e.

$$
\begin{align*}
& W\left(z_{b}\right)_{i+1}^{3}+W\left(z_{b}\right)_{i+1}^{2}\left\{-2 z_{b i+1}+R H S\right\} \\
& +W\left(z_{b}\right)_{i+1}\left[z_{b_{i+1}}^{2}+1-2 z_{b}(R H S)\right] \\
& +\left[(R H S) z_{b i+1}^{2}-z_{b i+1}-\frac{\Delta g}{2}\right]=0 \tag{25}
\end{align*}
$$

where

$$
\begin{align*}
R H S= & \left(\frac{d y_{B}}{d z}\right)_{i+1}-\left(\frac{d y_{B}}{d z}\right)_{i}-w\left(z_{b}\right)_{i}-\frac{1 \cdot 0}{w\left(z_{b}\right)_{i}-z_{b i}} \\
& -\frac{\Delta g}{2}\left[\frac{1 \cdot 0}{\left\{w\left(z_{b}\right)_{i}-z_{b i}\right\}^{2}}\right] \\
& +\frac{\Delta \xi}{2}\left[\frac{1 \cdot 0}{\left\{w(\xi)_{i+1}-\xi_{i+1}\right\}^{2}}+\frac{1 \cdot 0}{\left\{w(\xi)_{i}-\xi_{i}\right\}^{2}}\right] \tag{26}
\end{align*}
$$

Equation (25) was solved by Newton-Raphson method for $W\left(Z_{b}\right)_{i+1}$ So, to summarise, if $W(t)>t \quad$ equation (25) was solved whereas if $W(t)<t$ equation (24) was solved.

Solving the above equations step by step, cross-flow velocity distributions of one of the following two cases (i.e. case A or B) are obtained.

If the cross-flow velocity distribution was as in the case A the whole set of calculations were repeated with a new value of a_{1} equal to half of $a_{i e}$ and conversely if the distribution was as in the case B, the new value of a_{1} was taken as twice the value of $a_{1_{w}}$. This process was repeated till we get both cases A and B. The correct value of a_{1} and the corresponding $W(\xi)$ distribution lies in between these two cases. After obtaining this upper and
lower bounds of the cross-flow velocity distribution, the iterative process was continued with new a_{1} parameter such that

$$
a_{1_{n e w}}=a_{1_{e}}+\frac{\left(a_{1 e}-a_{1 w}\right)[w t(\Omega)]}{\left[W t(\Omega)-\Omega_{\text {given }}-E O M E G A\right]}
$$

This process was repeated till we get the $W(\xi)$ distribution such that EOMEGA or $W t(\Omega)$ is within one percent of the correct value of Ω given or $1+\Omega$ given respectively. After obtaining the correct cross-flow velocity distribution, the nondimensional pressure coefficient, C_{p}, shock shape, C_{L}, C_{D}, etc., were calculated.

A different approach, namely

$$
a_{1_{n e w}}=\frac{a_{1_{e}}+a_{1 w}}{2} \quad \text { was also tried }
$$

but it was found that the first procedure converges slightly faster than this second procedure.

There are two main difficulties in the integration procedure. One concerns the outer boundary condition given by $W(\Omega)=1+\Omega$. This boundary condition was chosen by Messiter to coincide with the singularity in the shock curvature. Squire (2) has found that near the point where $W(\Omega)=1+\Omega, W(t) \alpha(\Omega-t)^{1 / 2}$ + So the solution of the equation was stopped when $W(t)>1+0.75 t$ and then remaining portion of the curve was obtained by a parabolic type of extrapolation with the vertex of the parabola having co-ordinates (Ω extrapolated, $1+\Omega$ extrapolated) consistent with the $W(t)$ values calculated so far.

The other difficulty arises when $W(t)=t$ since at $W(t)=t$ the equation becomes indeterminate. A trap was therefore included such that when $W(t)$ curve crosses the line $W(t)=t$, as found during the solution of equation (24) the value for that step was obtained by 6 point Nevil type of extrapolation from previous solutions. This is best explained in fig. 2 curve (a).

If $W(t)$ as extrapolated above falls below the $W(t)=t$ line as in the case of case (B) fig. 2, this indicates that $W(t)$ is increasing rapidly and the $W(t)$ value is influenced by the square root singularity at the leading edge. So $W(t)$ value was re-calculated using a parabolic type of extrapolation (stipulating similar type of singularity as that at the leading edge).
4. Result

Using the above programme, the pressure p^{*}, pressure coefficient c_{p} and shock shapes were calculated on flat delta wings. Sample calculations are also given for a caret wing and for a circular arc cross-section wing when the cross-section was given in the analytic form as well as in the form of a table ($\left.\bar{z}_{i}, \bar{y}_{i}\right)$ at 51 points. For flat wing the functions, p^{*} in the pressure coefficient and the non dimensional shock shape are functions of z / Ω and Ω. These functions have been calculated for the range $0.1 \leqslant \Omega \leqslant 1.99$ and are tabulated in tables Ia and Ib and plotted in Figs. For these calculations the programe was modified to read Ω directly, together with number of steps into which wing span has to be divided, which determines step length, and the starting value of a_{1}. The number of steps used when $\Omega \leqslant 1.0$ was 200 and $\Omega \geqslant 1.0$ was 400 . The accuracy of the result was tested by doubling the number of steps in the same case and it was found that there is no variation of results up to four figures. A typical solution for flat delta wing takes about 5 to 8 seconds on Cambridge University IBM $370 / 165$ computer with FORTRAN G1 compiler.

An interesting result shows up if we plot the correct a_{1} parameter against Ω for the flat delta wing, fig. (4). In the region between $\Omega=0.5$ and $0.51 a_{1}$ jumps from $a_{1}>1.0$ to $a_{1}<1.0$. This can be explained by the sketches of the flow field (fig. 3). If a <1.0
 flow field will look like fig. 3(b) and so at certann the flow field will jump from (a) to (b) or vice versá, depending on whether Ω is increased
or decreased.
Table II gives p^{*}, c_{p} and shock shapes for a caret wing.
Table III compares results for circular arc (biconvex) crosssection when the cross-section was given in the analytic form with that when the cross section was given in the form of a table at 51 points. Both the results compare very well. The results of calculations were compared with experimental results of Squire (ref. 5) in fig. 5, which shows a good agreement.

Although the programme converged successfully from any starting value of a_{1} for a variety of shapes, such as $f l a t$ wings, caret wings, biconcave wings and thin biconvex wings and also a wavy type of cross-section(sketch a), some difficulties were experienced on more extreme shapes. In particular it was very difficult to get converged solutions for the shape shown in sketch (b) and for very thick biconvex wings. The difficulties appeared to be caused by the fact that if the initial value of a_{1} was too far from the correct value then the computed cross-flow, $W(\xi)$, was completely unrealistic and the iterative procedure did not converge. To overcome these difficulties it was necessary to do a preliminary series of computations using the basic programme (i.e. without iteration) for a range of values of a_{1}.

By plotting these results, it was usually possible to find values of a_{1} which appeared to be in the correct range. The iterative procedure could then be used to complete the solution. However, it should be pointed out that on caret wings a_{1} is usually small particularly near design, whereas for thick wings a_{1} can be large. On complicated shapes such as that shown in sketch (b) it was found that possible values of a_{1} lay in a very narrow range and that with
values of a_{1} outside this range the computed curves of $W(\xi)$ were completely unrealistic. Thus it may require a few preliminary runs to find appropriate range of a_{1}.

The author would like to thank Dr. L.C. Squire for suggesting the problem and useful discussions.

References

No.	Author (s)	Title, etc.
1	A. F. Messiter	```Lift of slender delta wings according to Newtonian theory. AIAA J.3, pp.427-433. 1965.```
2	L. C. Squire	Calculated pressure distributions and shock shapes on thick conical wings. Aeronautical Quarterly, Vol.18, p. 185. May, 1967.
3	L. C. Squire	Calculation of pressure distribution on lifting conical wings with application to off design behaviour of wave-riders. AGARD Conference Proceedings, 30. 1968.
4	R. Hillier	Some application of thin shock layer theory to hypersonic wings. Ph.D. Thesis. Engineering Department, Cambridge University. 1970.
5	L. C. Squire	```Pressure distributions and flow patterns on some conical shapes with sharp edges and symmetrical cross-sections at M = 4.0. ARC R & M 3340. 1963.```

TABLE Ia

$\frac{Z}{\Omega}$	$P^{*} 0$		distribulions		flat	lta	Wings	$\Omega=$		0.51
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
0.00	- 0.1081	0.0257	0.1095	0.1733	0.2275	0.322:	0.3389	0.3512	0.3669	3140
0.05	-0.1085	0.0255	0.1094	0.1734	0.2278	0.3226	0.3303	0.3516	0.3674	0.3141
0.10	- 0.1096	0.0248	0.1031	0.1735	0.2283	0.3234	0.3404	0.3530	0.3711	0.3148
0.15	- 0.1114	0.0237	0.1087	0.1736	0.2271	0.3249	0.3423	0.3553	0.3739	0.3143
0.20	- 0.1139	0.0221	0.1080	0.1738	0.2282	0.3271	0.3451	0.3586	0.3779	0.3100
0.25	- 0.1171	0.0200	0.1072	0.1740	0.2302	0.3293	0.3486	0.3629	$0.3 ¢ 31$	0.3203
0.30	-0.1213	0.0173	0.1060	$0.17^{1 / 4}$	0.2327	0.3332	0.3530	0.3602	0.3877	0.3233
0.35	-0.1265	0.0142	0.1045	0.1747	0.2350	0.3376	0.3532	0.3747	0.3 .75	0.3253
0.40	-0.1328	0.0099	0.1026	0.1750	0.2391	0.3421	0.3642	0.3023	0.14070	0.3306
0.45	- 0.1403	0.0048	0.1000	0.1749	0.2426	0.3477	0.3716	0.3713	0.4180	0.3350
0.50	-0.1495	- 0.0012	0.0966	0.1748	0.2466	0.3533	0.3796	0.4017	$0.430 ?$	0.3400
0:55	- 0.1603	-0.0091	0.0223	0.1739	0.2508	0.3508	0.3890	0.4137	0.4459	0.3456
0.60	-0.1735	- 0.0185	0.0867	0.1725	0.2554	0.3689	0.3997	0.4274	0.4632	c. 3518
0.65	- 0.1898	-0.0309	0.0797	0.1700	0.2600	0.3776	0.4113	0.4431	0.4832	$0.35 \sim 6$
0.70	-0.2102	-0.0404	0.0631	0.1656	0.2637	c. 3873	0.4255	0.14611	0.5064	0.3557
0.75	- 0.2361	- 0.0669	0.0540	0.1589	0.2669	0.3004	0.4409	0.4817	0.5334	$0.37{ }^{1} \cdot{ }^{4}$
0.80	-0.2702	-0.0952	0.0330	$0.11 / 61$	0.2672	0.4111	0.4505	0.5054	0.5651	0.3833
0.85	-0.3172	- 0.1363	-0.0004	0.1256	0.2606	0.426 .4	0.4702	0.5323	0.6026	0.3235
0.0	-0.3877	-0.2008	- 0.0501	0.0848	0.2305	0.14324	0.5004	0.5046	0.6474	0.4043
0.95	- 0.5140	-0.3287	- 0.1852	-0.0135	0.1663	0.4564	0.5261	0.6002	0.6991	0.4163
1.00	- $1.558{ }^{1}$	- 1.1435	- 1.3181	- 1.2360	1.11.02	0.80440	-0.7739	0.7263	- 0.6288	-0.8756
	Inl	ral	F	$\bar{e} t .$	$\int_{0}^{2} F$	$\lambda z=$				
	-0.2181	- 0.0650	0.0396	0.1293	0.2160	$0.3{ }^{12} 62$	0.3706	0.4083	0.4480	0.3244

'PABLEII

r* , Cp , and Hon-dimensional Shock shape for Caret-Ving.
Vach Irumber $=3.97$; Inciderce $=23.8$ degrees ; $b=0.1918, \quad h=-0.10023, \quad \Omega=0.62039, \quad c=-0.745537$
Z/ת P* CD Shock Share

0.00	0.6041	0.2743	0.2859
0.05	0.6075	0.2749	0.2868
0.10	0.6116	0.2755	0.2865
0.15	0.6163	0.2763	0.2859
0.20	0.6214	0.2771	0.2852
0.25	0.6275	0.2781	0.2842
0.30	0.6345	0.2792	0.2828
0.35	0.6427	0.2805	0.2812
0.40	0.6517	0.2820	0.2792
0.45	0.6632	0.2838	0.2769
0.50	0.6753	0.2857	0.2714
0.55	0.6897	0.2880	0.2707
0.60	0.7079	0.2909	0.2669
0.65	0.7281	$0.29+2$	0.2623
0.70	0.7536	0.2383	0.2570
0.75	0.7846	0.3032	0.2508
0.80	0.8227	0.3023	0.2434
0.85	0.8716	0.3171	0.2347
0.00	0.9365	0.3275	0.2240
0.35	1.0210	0.3410	0.2106
1.00	- 0.0993	0.1286	0.1916

TABIM III

Comparision of 1^{*} distributions and Cp distribu'ions on a Biconvex wing when the profile is given in the analytic form as well as in the form of a table at 51 descrete points. Equation of the cross-sectional profile :-

Mach-llumber $=3.97$; Incidence $=23.8$; Aspect-ratio $=2 / 3$
Onega $=0.53 \times 96 ; \mathrm{C}=0.409697$
Iterated value of omega in the calculations is,
Case I Analytic cross-section $\quad=0.5339587$
Case II Tabular cross-section $=0.5337565$

$\frac{Z}{\Omega}$	P*	distribution	Cp distribution	
	Case I	Case II	CAse I	Case II
0.00	0.118011	0.118757	0.415261	0.415381
0.05	0.116998	0.117773	0.415099	0.415223
0.10	0.113987	0.114793	0.414617	0.414746
0.15	0.108964	0.109857	0.413814	0.413956
0.20	0.101867	0.102897	0.412678	0.412843
0.25	0.032665	0.033889	0.411205	0.411401
0.30	0.081210	0.082648	0.409373	0.403502
0.35	0.067303	0.068312	0.407159	c. 407404
0.40	0.051077	0.052653	0.404550	0.404834
0.45	c. 031861	0.033727	0.401475	C.4n1785
0.50	0.009804	0.012035	0.397945	0.379302
0.55	-0.016041	- 0.013311	0.393803	0. $32+166$
0.60	- 0.045683	- 0.043045	0.380063	0.380457
0.65	- 0.08022	- $0.07720+$	0. 383538	0.30300
0.70	- 0.120895	- 0.118479	0.317029	$0.377+16$
0.75	-0.169039	-0.165721	0.369317	c. 36956
0.80	- 0.228076	- 0.2224650	0.352877	0.360425
0.85	- 0.303636	-0.300503	0.347785	0.432926
0.90	- 0.42806	- 0.405275	0.331051	0.331408
0.95	-0.583507	-0.083765	0.303.397	0.302024
1.00	- 1.460570	-1.45030	0.162641	0.163839

APPENDIX

Computer Programme (FORTRAN)

CALCULATIUN OF PRESSURE DISTRIBUTION ON DELTA WING OF GENERAL GROSS-SECTIUV AI HYPERSONIC SPEEDS

RTAL M\&CH, INCRT
DIMENSIGM ZBAR(105), YBAR (105), I(105), Y(105), DERFU(1),STOREE(2)
DIMENSIOV AK(4), STUKFA(2),hAPZYI(2),AKZ(2),CUFP(4)
UIMENSICV PSTARL(21),PSTARD(21)
GIMENSIDN WT(405), SUMWT(405),EITA(405), DERI(405)
LOURLE PRECISION ZBAR,YBAR,L,Y,WT,EITA,SUMWT,DERI,AK,DERFD
DUUBLE PKECISIUN RHS, EUMEGA,APPWII,APPWIZ,CC,CCD,BB2,BBI, BBO
UOUBLE FRECISIUN WZYII,WZYI, WWZBII,WZBI, DABS, OSQRT, EFG
DOURLE PRECISION AL,A3,A4,A5, BL, BL,B3, $54, B 5, D E L I A$
DUUBLE PRECISION WAPZYI,AKZ,AINCKT,AA,AB,AC,OMX, OMXI,PSTARL,PSTARD
DUUBLE PRECISIDI, PRESUR, SHOCKS, UYGYOZ,RHSI,CL,CO,CLBYCD
COMMUN WT,EITA,SUMWT,II, INCRT,T,TT,ZBP,ZYIP
EXTERNAL FCTZB,FCTZYI,SINT,F
10 CANTINUE
READ 13,20, END $=1000$) ANALTC
二O RURMAT(F15.7)

IF ONE IS INTERESTED IN CALCULATION OF COEFFICIENT OF LIFT COEFFICIENT OF DRAG,CL/CD THEN GIVE FOR NOCLCD AVALUE OTHER THAN 2 AND INCLUDE CURRECT EXPRESSION FOR DY/DX

READ $(5,30)$ NUCLCD
READ $(5,30) N S C$
20 FOKMAT (13)

ABOVE NSC REPRESENTS NUMBER UF POINTS LP-TO WHICH POWER SIRIES SOLUTION IS USED FOR W(T) NEAK ORIGIN

IF (ANALIC.EQ.L.) GO 1040
wo TU 60
$40 \operatorname{REA}(5,20) \operatorname{COFP}(4), \operatorname{COFP}(3), \operatorname{COFP}(2), \operatorname{COFP}(1)$
WRIIE $(6,50) \operatorname{COFP}(4), \operatorname{COFP}(3), \operatorname{COFP}(2), \operatorname{CCFP}(1)$
SO FORMAI ('1',' CUEFFICIENTS, $A=1, F 15.7,1 \quad B=1, F 15.7,1, C=1, F 15.7$, 1 - $J=0,+15.7)$

COFP(4), COFP(3), COFP(2), COFP(1) REPRESENT COEFFICIENTS A, B, C, D RESPECTIVELY OF ThE EQUATION OF THE CROSS SECTIGNAL PROFILE YBAR = A*ZBAR**4 + 8*2BAR**3 + C*ZBAR**2 + D*2BAR + F

GOTH 100
60 KEAD $(5,3 \cup) N P$
hRITE $(6,70)$ NP
70 FORMAT ('1',' NUMBER OF POINTS IN CROSS-SECTIONAL PROFILE=',I4) $\operatorname{KEAD}(5, \mathrm{~K}())(Z \operatorname{EAR}(\mathrm{I}), I=1, \mathrm{NP})$ KLAD $(5,80)(Y E A K(I), I=1, N P)$
80 FURMAT (4015.0)
WRITE $(6,90)(\angle B A R(1), I=1, N P)$
WRITE $(6, y 0)($ YBAR (I), $I=1, N P)$
90 FORMAT (4F20.7)
100 READ $(5,20)$ MACH, ALPHA,GAMA
WRITE $(6,110) \mathrm{MACH}, A L P H A, G A M A$
110 FULMAT(' MACH NUMBER=',F10.4, ' INCIDENCE=',F10.4, ' GAMA=',F10.4)

KEAD (5,20) XBAR, HSPAN,HMOR
KEAD (5,20$)$ XBAR, BSPAN,HMOR
120 FORMAT (' XBAR=',F15.6,' SEMI-SPAN=',F15.6,' MAXIMUM ORDINATE = ', 1 F15.6)
ALP1 $=(A L P H A / 180) * 3.141593$
$E P S=((G A M A-1.0) /(G A M A+1.0))+2 /((G A M A+1.0) *((M A C H * S I N(A L D 1)) * * 2))$ SQEPS = SQRT(EPS
WKITE $(6,130)$ EPS, SQEPS
130 HORMAT ('EPSYLON=', E16.7,'SQURE ROOT EPSYLON=', E16.7) $T A L P=T A N(A L P 1)$
SNALPH=SIN(ALPI)
IF (ANALTC.EQ.1.) GO TO 150
OO $140 \quad \mathrm{l}=\mathrm{l}$,NP
$Z(I)=Z B A R(I) /(S Q E P S * T A L P * X B A R)$
$Y(I)=Y B A R(I) /(E P S * T A L P * X B A R)$
140 CONTINUE
150 UMEGA $=\triangle S P A N$ /(SQEPS*TALP $1 *$ XBAR) CONIC=HMOR (XBAR*BSPAN*SQEPS)
TOUO=HMOR / (XBAR*EPS*TALP)
READ $(5,30)$ inive
INCRT = UMEGA/NNXU
READ $(5,20)$ GOLA 1
ILIMIT=OMEGA/INCRT
WRITE $(6,160)$ INCRT, COEAI;NSC, OMEGA, ILIMIT, CONIC

1' OMEGA=',F12.6,' ILIMIT=', [6,' PARAMETER C=',F12.6)
$I L=I+I L I M I T$
$00190 \quad I M=1, I L$
$T=(I M-1) * I N C K T$
IF (IM.EQ.IL)T=OMEGA
IF (ANALTC.EQ.1.) GO TO 170
CALL LGR (Z,Y,Y,NP,AK,DERFD)
GU TU 180
170 CALL ANSLUP (T,AK,DERFD,COFP,SQEPS,TALP,XBAR)
180 DERI(IM)=DERFD(1)
190 CONTINUE
$K K K K K=0$
$K K K K=1$
$K K K K K=1$
$K K K I=1$
$K K K I=1$
COEA2 $=0.0$
CALL SCLOCK
READ (b, 20) ACONTY
IF (ACONTY.EG.2.) GU TO 200
KEAD (5,20) STOREA(1),STOREE(1),STOREA(2),STGREE(2)
KKKK=2
$K K K I=2$
$K K I K=2$

IF (COEAZ.EQ.COEAl) GG TO 710
COEAZ=CUEAL
CALL RCLUCK (ITIME)
IF (ITIME.GT.1000) GO TO 730
WRITE $(6,210) C O E A 1$, DELTA
210 fORMAT ('VALUE OF Al = ', E20.7, ' DELTA=', EL8.7) I $I=1$
$W T(1)=0.0$
ialculation of coefficients of power siries solution neak origin $T=0.0$
If (LNALTC.EQ.l.) GO iv 220
CALL LGR ($L, Y, T, N P, A K, U E R F D)$
0 TU 230
22) CALL AVSLOP (T,AK,DEKFD,COFP,SQEPS, TALP,XBAR)

232 CUNTINUE
240 Al $=$ COL $A 1$
$A Z=+A K(1) /((A 1+1.0) /(A 1 *(A l-1) * * 2)-((2 * A L O G(A 1)) /(A l-1.0) * * 3))$
$A 3=(A K(2) * A 1 * * 2)+A 1 * * 3+(A 2 * * 2 / A 1)$
$A 4=A<*(A 1 * * 4-A 1 * A 3+A C * * 2) /(A 1 *(1+A 1))+(A 1 * * 3) *(A K(3)) /(1+A 1)$
$-(\angle * A 2 * * 3) /(A 1 * * \angle)+(s * A L * A 3) / A 1$
$A 5=3 *((A 1 * * 4) *(A K(4)+A 3)+(A 1 * * 2+2 * A 1+2.0) *(A 3 * * 2+2 * A 2 * A 4) / A 1-(A 3$
$1 * A<* * 2) *(3 * A 1 * * 2+8 * A 1+10.0) / A 1 * * 2+(A 2 * * 4) *(3 * A l * * 2+10 * A 1+1 b) /(3 *$
$2 A 1 * * 3)) /(3 * A 1 * * 2+4 * A 1+3)$
El=1.0/A!
E2=-A2/(A1**3)
-3 $=2 *(A 2 * * 2) /(A 1 * * 5)-A 3 /(A 1 * * 4)$
$04=-5 *(A 2 * * 3) /(A 1 * * 7)+5 * A 2 * A 3 /(A 1 * * 6)-A 4 /(A 1 * * 5)$
LS=14*(A2** 4$) /(A 1 * * y)-21 *(A 2 * * 2) * A 3 /(A 1 * * 8)+3 *(A 3 * * 2) /(A 1 * * 7)$
$1+0 * A 2 * A 4 /(A 1 * * 7)-A b /(A 1 * * 6)$
250 IF (II.UE.NSC) 6O TU 270
$I I=1 I+1$
$I=(1(-1) \div I N C R T$
$T(11)=A 1 * T+A 2 * T * * 2+A 3 * T * * 3+A 4 * T * * 4+\Delta 5 * T * * 5$
SUMW- (II) $=\operatorname{SUMhT}(1 I-1)+\operatorname{INCRT} *((W T(I I)+W T(I I-1)) / 2)$
$\pm!T A(I I)=B I * T+B 2 *(T * * 2)+B 3 *(T * * 3)+B 4 *(T * * 4)+B b *(T * * 2)$
IF OHE IS INTERESTED IN THE PRINT OUT OF ALL THE W(T) PRINI OUT, KEMOVE THE C FKCM FIKST COLUMN IN THE FGLLCWING TWO CARES WRIT. (6, 26U)T, WTIII), SUMWT(II), EITA(II), LEKI(II)
260 FURMAT (F10.6,4E15.6)

```
            Gu TO 250
270 1 I= II +1
    r =(II-2)*INCRT
    TT :=(II-1)*INCRT
    It (ivT(II-1).GT.(1.0+0.75*T)) GO TO 630
    IF (II.GT.(I+ILIMIT)) GU TU 660
    IF (:NT(II-1).LT.T) GU TO }35
    It (WT(II-1).EQ.T)GO TO 430
    JJ=0
28` jJ=JJ +1
    [F (JJ.GI.(II-1)) GO 10 430
    It (nI(JJ).tQ.TT) GO TO 290
    IF (nT(JJ).GT.TT) GO TO 300
    OTS 28C
2*0FITA(II)=(JJ-1)*INCRT
    gu 10 310
300 EITA(II)=(JJ-2)*INCRT+INCKT*(TT-WT(JJ-1))/(WT(JJ)-WT(JJ-1))
310 \alphaHS=CLRI(II)-DERI(II-1)-WTIII-1)-1.0/(WT(II-1)-T)-(0.5*INCRT)
    1*(1.0/(WT(II-1)-T)**2)+0.5*(EITA(II)-EITA(II-I))*((I.0/(TT
    2 -EITA(II))**2)+(1.0/(T-EITA(II-1))**2))
```

$F B 2=-2 \cdot * 15+2 H S$
BB! = 1 r** $\langle+1.0-2 . * T T * R H S$
$B B O=(T T * 2) * R H S-T T-(I N C R T / 2)$
ADPWII=2.*WT(II-1)-WT(II-2)
IF (APPWII.GE.(1.0+0.75*TT)) GU TO 630
$J K=1$
$\triangle P P W I 2=1.0+$ OMEGA
$320 \mathrm{JK}=\mathrm{JK}+1$
IF (JK.GT.20) GO TU 430
$C C=A P P W I 1 * * 3+B B 2 * A P P W I 1 * * 2+B B 1 * A P P W I 1+8 B 0$
CCD=3*APPWII**2+2.*BB2*APPWII+BBI
IF (UABS(APPWI2-APPWI1).LE.0.000001) GU TO 520
$A P P W 12=A P P W I 1$
$A P P W I 1=A P P W I 2-(C C / C C D)$
IF (APPWI1.GE.(1.0+TI)) GO TO 330
IF (APPWII.LE.WT(II-1)) GO YU 430
$G 0$ TU 320
330 IF (WT(II-I).GT.(1.0+0.5*(TT-INCRT))) GU TO 630 IF (ABS((TT-OMEGA)/OMEGA).LE.0.05) GO TC 630 GOMEGA $=1$
WRITE $(6,340)$ COEAI, EOMECA
340 FURMAT(' COEFFICIENT AI=',F15.7,' CLRVE KISES STEEPLY,CASEB,E JMEG
$1 A=T I=1, F(6.7)$
$K K K K=K K K K+$
G0 10650
350 WZEI=WT(II-1)
$I K=I I-1$
CALL NEVIL (6,WZBI, O.U,INCRT,IK,WT,IER)
EITA(II)=TT
$w L Y I I=w T(I I-1)$
AINCKT $=(W T(I I-1)-W T(I I-2)) / 2$.
$J K=0$
RHSI=OERI(II-I)-DERI(II)+WZBI+1.0/(WZBI-WT(II-I))-0.b*INCKT*
1 (1.0/(WT(II-1)-T)**Z)
IF ((WT(II-1)-WT(II-2)).LT.O.0) AINCRT=CABS(AINCRT)
$360 \mathrm{JK}=\mathrm{JK}+1$
$K Z=1$
AKZ(1)=WT(11-1)
WAPZYI(1)=(0.5*INCKT)*((1.0/(WT(II-1)-TT)**2)+(1.0/(WI(II-1)-T**
1 2))-DEKI(II-I)+DERI(II)
$1 P P=2$
$K I Q=1$
370 WZYII=WZYII+AINCRT
If (wLYII.tQ.TT) GO ro 420
If (hLYII.GT.TY) GO TO 490
ww 2 Bll=waYII
CALL NEVIL (6,WWZBII, 0.0, INCRT,IK,WT,IEK)
KhS=KHS1-WWZBII-1.0/(WWZBII-WZYII) +0.5*(WZY11-WT(II-1) *(1.0)
$1($ WWZBII-WLYII)**2+1,0/(WLBI-WT(II-1))**2)
V:APZYI $(I P P)=(0.5 * I N C R T) /((W Z Y I I-T T) * * 2)-$ RHS
380 I $P P=2$
IF (WAPZYI(1)*WAPZYI(2).LT.0.0) GO TO 390
WAPZYI(1)=WAPZYI(2)
AKZ(1) $=W \angle Y I 1$
IF (KIG.EQ. 21 GO TO 400
GU TO 370
$390 \mathrm{KZ}=\mathrm{KZ} 2+1$
AKZ $(K Z)=W Z Y I 1$

```
    IF(UABS(AKZ(2)-AKZ(1)).LE.0.000001) GO TO 410
    K2=1
    KIO=2
400 AINCRT=AINCRT/2.
    WZYII=AKZ(1)
    GU TO 370
410 WZYII=WZYII-(AINCRT/2.)
4:0 WT(II)=WZYII
    GU TO 530
430 JK=0
    EFG=TT
    EFG=IT
    IK=II-1 
    CALL NEVIL
    WT(II)=EFG
    IF (TT.GT.WT(II)) GO TO 450
    JKK=0
440
            JKK=JKKK+1
        IF (WT(JKK).GT.TT) GO TO 460
        IF (WT(JKK).EQ.TT) GO TO 470
    GO TO 440
    O EITA(II)= T
    go TO b 30
460 EITA(II)=(JKK-2)*INCRT+INCRT*(TT-WT(JKK-1))/(WT(JKK)-WT(JKK-1)
    IF (WT(II).LT.(TT+INCRT)) GO TO 480
    GO TO 530
470
    IF (WT(II).LT.(TT+INCRT)) GO TO 480
    IF (WTIII
    FO II =II+I
        T=(11-2)*INCRT
        TT=(11-1)*1NCRT
    IF (WTIII-1).GT.(1.0+0.75*T)) GO TO 630
        IF(II.GT.!I+ILIMIT))6010660
4:0
    EFG=T
    IK=1 I-1
    CALL NEVIL (O,EFG,O.0,INCRT,IK,WT,IER)
    WT(II)=EFG
    SUYWT(II)=SUMWT(II-1)+INCRT*(WT(II)+WT(III-1))/2.0
    IF (EFG.GT.IT) GO TO 510
    WT(II)=(SQRT(2.0)*WT(II-1)-WT(II-2))/(SORT(2.0)-1.0)
    SUMWT(II)=SUMWT(II-I)+INCRT*(WT(II)+WT(II-I))/2.0
    WRITE (6,500) Tr,WT(II)
    500. FOKMAT (" PARABULIC EXTRAPOLATIUN IN INTERVAL AT WT=T,=',F12.6.
    1E15.f)
            EUMEGA=TT
            WKITE (6,640) COEAL,EOMEGA
            KKKKK=KKKKK+1
            GOTO 650
510
        Jkk=0
        GO TU 440
    SEO CONIIINUE
    WTIII!=APPWII
c
If bivt IS : ,TEISTEO IN all thl calGulated SLOPES at each uF
    PUINTS FOR REFEKANCE REMIIVE THE C FROM FIRST COLUMN
    IN THE FCILIIWING GARUS
```

650 CUNTINIE
wT（II）＝1．U Llumega
SUMWI（II）＝SUWWT（II－1）＋（E（JMEGA－（II－2）＊INCRT）＊（WT（II）＋WT（I！－1））／2 IF（DABS（（ECMEGA－OMEGA）／UMEGA）．LE．O．OL）GO TU 7bO
STJREA（1）＝COtal
STUREE（1）＝rUMLGA
IF（KKKI．UE．2）GU TO 690
IF（KKKI．UE．2）GU TO 690
IF（KKIK．EQ．2）GU TO 690
COEAL＝COLA1／2．
CoEAL＝COEA
Gí IU 200
060 CLNTINLE
OMX1－nT（11－1）
$\operatorname{STIDREA}(2)=$ COEA
STUREE $(2)=1 \cdot 0+$ OMEGA－UMX1
KKIK＝z
WRITE $(6,670)$ STUREA（2），OMXI
670 HLRMA：（！
CUEFFICIENT Al＝1，F15．7，EXTKAPOLATED WTIOMEGA
$11=1,-15.7)$
If（IDAES（（LMXI－（1．0＋UMEGA））／（1．0＋OMEGA））．LE．0．01）GO TO 750
If（KKKI．GE．2）GU TO 690
If（KKKK．UE．2）GU TO 680
CCEAL＝2＊しUEAI
GO 10200
680 KKKI＝KKKI +1
IF（KKKKK．GT．6）GO TU 700
HKKKK＝KKKKK＋1
COEA1＝STUREA（2）＋（STUREA（1）－STOREA（2））＊（STUREE（2））／（STOKEE（2）＋
1（OMESA－STHREE（I）） gu tu zuu
690 IF（KKKKK．GT．も）GU TU 700
$K K K K K=K K K K K+1$
COEA1－STCREA（2）＋（STORLA（1）－STORLA（2））＊（STOREE（2））／（STOREE（2）＋
1（门MEGA－STUREE（1）） GU IU 200
$700 \operatorname{COEAL}=(\mathrm{STOREA}(1)+\operatorname{STOREA}(2)) / 2$. co To 200
710 WKITE（6，720）CUTAI
720 fGRMAT（＂Al CONVERGes to same value but omega not satisfied al＝ 1 ＇，F15．71
730 WRITE $(6,740)$
740 fURMAT（＇ITERATIUN DID NOT CONVERGE，NEXT DATA（AKEN＇）
GU TU 10
$750 \mathrm{WT}(1+1 L I M I T)=1.0+$ UMECA
SUMnT（I＋ILIMIT）＝SUMWT（II－1）＋（1＋ILIMIT－（II－1））＊INCRT＊（1．0＋OMEGA－
1 wT（II－1）
ISTEP＝ILIMIT／20
$J K=1$
$K K<=1$
WRITE（6，760）
160 FQRMAT（： 2 W（L）
INTEGKAL 0 －$Z W(S)$ US
1 CP（Z）SHGCK SHAPE DY／UZ（CAL）DY／DZ（BODY）＇）
$\angle B P=0.0$
XKB $=1.0 /($ COEA -1.0$)$
PRESUR $=-((13.0 * X K B+4.5) * X K B+3.0) * X K B+0.5)+(((3.0 * X K B+6.0) \neq X K B$
$1+5.0) * X K B+2.0) * X K B) *(A L C G(C O E A 1))+2 . * T O O O-2 . * O M E G A * C O N I C$ $\mathrm{ILLL}=1$

SHOCKS＝DELTA + TOOO
CPPP $=2 *($ SNALPH＊＊2）＊（1．0＊（EPS＊（2．＊CONIC＊CMEGA＋iRRESUK）））
IF（NUCLCD．EQ．2）GO TO 785
IF（ANALTC．EQ．I．）GO TU 770
$A Z L=2 B P$
CALL LGR（ $Z, Y, A Z L, N P, A K, D E R F D)$
DYBYUX $=(H M O R / X B A R)-(E P S * T A L P) *(3 . * A K(4) * Z B P+2 . * A K(3)) * Z B P+A K(.:))$
1 ＊ $2 B P$＊$\angle B P$
GO TG 780
$770 \quad A Z B A R=2 B P * S O E P S * T A L P$
DYBYOX＝HMOR－（（ $3 . * \operatorname{COFP}(4) * A Z B A R)+2 . * \operatorname{COFP}(3)) * A Z B A R+\operatorname{COFP}(2)) * A Z \| A R$ 1 ＊AZBAR
780 HT＝ATAN（OYBYOX）
BTI＝ALPI＋BT
PSTARL（1）$=\operatorname{CPPP*CUS(BTI)}$
PSTARD（1）$=C P P H * S I N(B T I)$
785 WRITE（6， 890 ）$\angle 8 P$ ，WT（1），SUMWTI 1 ），PRESUR，CPPP，SHECKS
$790 \mathrm{JK}=\mathrm{JK}+$ ISTEP
$I L L L=I L L L+1$
IF（JK．GT．（1＋ILIMIT）） 60 TO 910
$Z B P=(J K-1) * I N C R T$
$\underset{M=1}{I F}(J K . G E . I L I M I T) \quad Z B P=O M E G A$
60 TO 800
$800 \mathrm{M}=\mathrm{M}+1$
IF（WT（M）．GT．LBP）GU TO 810
IF（WT（M）．EO．LBP）GO TO 820
GO TO 800
810 2YIP＝（M－2）＊INCKT＋INCRI＊（（2BP－WT（M－1））／（WT（M）－hT（M－1））） GU TO 830
820 ／YIP $=(M-1)$＊ 1 NCRT
830 IF （ZYIP．GT．ZBP）GU TO 840
IF（ZYIP．RQ．ZBP） 10 O TO 790
CALL OGO（ LYIP，ZBP，FCTZB，YINT） GALL GG6（ ZYIP，ZBP，SINT，SLGPE） －O TO 850
840 CALL OGO（ZBP，KYIP，FCTZYI，YINT） CALL WGS（ZBP，ZYIP，SINT，SLOPE） SLOPL $=-$ SLOPE
850 PRESUR $=-1.0-W T(J K) * * 2-2 * S U M W T(J K)+2 * 2 B P * W T(J K)+2 *$ DELTA + YINT＊
1 （ $(W I(J K)-W T(J K-1)) / I N C R T) *(-1.0+1.0 /(W T(J K)-2 B P) * * 2)+2 . * T O U C$
$2-2 . * C O N I C * O M E G A$
CPPP $=2 *($ SNALPH＊＊2）＊（1．O＋（EPS＊（2．＊CONIC＊CMEGA＋PRESUR）））
OYBYUL $=-W T(J K)-1.0 /(W T(J K)-2 B P)+S L C P E$
SHOCKS＝UCLTA＋TUOU－SUMWT（JK）
IF（NOCLCD．EQ． 21 GO TU 880
It（ANALTC．EU．1．）GO TO 860
$A Z L=\angle B P$
CALL LGR（Z，Y，AZL，NP，AK，DERFD）
CYOYDX $=($ HMOR $/ X B A R)-(E P S * T A L P) *(13 . * A K(4) * 28 P+2 . * A K(3)) * 2 B P+A K(2))$
＊ZBP＊ZBP
860 ALHAR $=2 B P * S Q E P S * T A L P$
DYBYDX＝HMOR－1（ $(3 . * \operatorname{COFP}(4) * A \angle B A R)+2 . * \operatorname{COFP}(3)) * A Z B A R+\operatorname{COFP}(2)!\# A \angle B A R^{\prime}$ 1 ＊AZBAR
870 UT＝ATAN（OYBYDX）
$B T I=A L P 1+B T$
$\operatorname{PSTARL}(I L L L)=\operatorname{CPPP*COS}(8 T 1)$

PSTARO(ILLL) $=$ CPPP*SIN(HT1)
840 WRITE $(6, B \rightarrow 0) Z B P, W T(J K)$, SUMWT(JK), PRESUR,CPPP,SHCCKS, DYBYDZ, DERI (JK 1)
$8: 10$ FURMAT (F10.5.7E15.6)
IF (VUCLCO.tO.2) GO TC 790
WRITE 16,900 IOYBYDX, BT
900 FORMAT(' UYBYDX=',E16.7,' SLOPE IN RADIANS=1,E15.6) 60 TU 190
910 IF (NOCLCD.EC.2) GO TO 10
$C L=P S T A R L(1)-P S T A R L(21)$
CD=PSTARO(1)-PSTARD(21)
DU 920 IMM $=2,20,2$
$C L=C L+4 . U * P S T A R L(I M M)+2.0 * P S T A R L(1+I M M)$
$C D=C D+4.0 * P S T A R D(I M M)+2.0 * P S T A R D(1+I M M)$
$\rightarrow 20$ CONTINUE
$C L=C L / 60.0$
$C D=C D / O O$.
CLBYCD=CL/CD
WRITE $(6,930) C L, C D, C L B Y C D$
$\rightarrow 30$ FORMAT('LIFT COEFF. CL=',E15.6,' DRAG COEFF. CD=',E15.7, LIFT/D IRAG KAJIOL/D=',E15.7)
GO Tu 10
1000 CONTINUE
RETURN
END

FUNCIION FCTZB(X)
NEAL INCRT
OIMENSIG: WT(405), SUMWT (405),EITA(405)
CGUBLE PRECISIUN WT, SUMWT, EITA
CLUBLE PRECISIUN WTS
COUBLE PRECISION WS
COUBLE PRECISION SUS CUMMON WT,EITA,SUMWT, II, INCRT,T,TT,ZBP,ZYIP
XIST = INCRT
$\mathrm{w} S=\mathrm{X}$
CALL NEVIL (G,WS,O.O,XINT,II,WT,IER)
FCTZB=(WS-ZBP)**3/(WS-X)**2
RETURN
END

FUNCTIUN FCTZYI(X)
REAL INCKT
REAMENSIUN WT (405), SUNWT(405), EITA(403)
UGU日LE PRELISIUN WT, SUMWT, EITA
UUUELE PRECISIUN WS
COMMUN WT,EITA, SUNWT,II, INCRT,T,TT, ZBP, ZYIP
\times INT = INCRT
$W S=x$
CALL NEVIL (6,WS,0.0, XINT,II,WT,IER)
CALL NEVIL
FCTZYI $=-(W S-2 B P) * * 3 /(W S-X) * * 2$
KETURN
END

SUERUUTINE NEVIL ($N, x, x 1, R I N T, M, W, I E R)$ DIMENSION F(18).W(M)
dOUbLE PRECISION W,X
$I E R=0$
10 IF (iv-2)20,40,40
20 WRITE 16,30$)$
30 FOKMAT ('NEVIL ERROR N 2 OR $18{ }^{1}$
$I E R=1$
GO TU 180
40 IF $(N-18) 50,50,20$
$50 \mathrm{U}=(\mathrm{X}-\mathrm{XI}) /$ RINT
$J=I F I X(U+0.00001)$
$\mathrm{I}=\mathrm{J}+\mathrm{N} / 2 .+0.1$
$K=0$
IF $(M-N) 160,60,60$
60 IF (I-M+1)80,80,70
$70 \mathrm{~K}=\mathrm{M}-\mathrm{N}$
GO TO 100
80. $K K=J-N / 2 .+1.1$

IF (KK)100,90,90
$90 K=K K$
100 UU=U-K
DO $110 \quad L=1, N$
$L I=K+L$
$F(L)=W(L \perp)$
110 LUNTINUE
$L L=1$
$J=N-1-L L$
$120 \mathrm{JJ=J}+1$
$U=U U$
DO $130 \mathrm{~L}=1$, J
$\mathrm{L} 2=\mathrm{L}+1$
$F(L)=((U+1-L) * F(L 2)-(U+1-L-L L) * F(L)) / L L$
130 CONTINUE
$L L=L L+1$
If (J) 150,150,140
$140 \mathrm{~J}=\mathrm{J}-1$ GO ro 120
$150 X=F(1)$
GU TO 180
160 WRITE $(6,170) \mathrm{M}$
170 FURMAT 1 'NEVIL ERROR.M N.CONTINUE WITH N=M=1,I2) $N=M$
$I E R=2$
GO TO 10
80 CONT INUE
RETURN
END

SUGRUUTINE LGR (A,B,C,IP,D,E)
DIMENSIUN A(IP), B(IP),D(4), E(1),AZ(6),AY(?)
UOUBLE PRECISION A, B, D, E, AL, AY, DIM,DIMI, ANUMI, ANUMZ, ANUM3
$0(1)=0.0$
$0(2)=0.0$
$\dot{L}(s)=0.0$
$0(4)=0.0$
$\mathrm{UO}_{\mathrm{k}=\mathrm{I}} 10 \quad \mathrm{I}=1, \mathrm{I} P$
$k=1$
IF (C -A(K) $120,100,10$
o cuntinue
20 IF $((K+2) . G T . I P)$ GO IL 80
IF (K.LE.3)GO TO 60
UII=A(K)-C
UI2 $=C \quad-A(K-1)$
IF (DIZ.GT.DII) GO TO 40
[0) $30 \mathrm{~L}=1,5$
$m=K+L-4$
$A L(L)=A(M)$
30 AY(L) $=B(M)$ GO Tu 120
$+00050 \quad L=1,5$ $M=K+L-3$
$A Z(L)=A(M)$
$0 \quad A Y(L)=b(M)$ 60 TO 120
60 UO $70 \quad \mathrm{~L}=1,5$ $A Z(L)=A(L)$
$0 A Y(L)=B(L)$ טU TU 120
10 DU $90 \mathrm{~L}=1,5$ $N_{i}=I P+L-5$ $A L(L)=A(N)$
SO AY(L) $=B(M$ GO Tu 120
100 IF (K.LE.3) GŨ TU 60 IF ($(K+2) . G E . I P)$ GO TO 80
UO $110 L=1,5$
$M=K+L-3$
$\Delta Z(L)=A(N)$
$110 \mathrm{AY}(\mathrm{L})=\dot{G}(\mathrm{M})$
$120 \mathrm{~A} 2(8)=A Z(1)$ 0) $130 \quad 1=1,5$

I $M=(A Z(1)-A Z(2)) *(A Z(1)-A Z(3)) *(A Z(1)-A Z(4)) *(A Z(1)-A Z(5))$ LIMI =AY(I) /DIM
AiNUMI $=A Z(2)+A Z(3)+A Z(4)+A Z(5)$
ANUM\& $=(A Z(2) * A \angle(5)) r(A Z(2) * A Z(4))+(A Z(2) * A Z(5))+(A Z(3) * A Z(4))$
$1+(A Z(3) * A Z(5))+(A Z(4) * A Z(5))$
$A N \cup M 3=(A Z(2) * A Z(3) * A Z(4))+(A Z(2) * A Z(3) * A Z(5))+(A Z(2) * A Z(4) * A Z(5))+$ 1(AZ(3)*AZ(4)*AZ(5))
U(1) =D (1)-(ANUM3*DIM1)
$D(2)=D(2)+(A N L M 2 * D 1 M 1)$
$D(3)=D(3)-($ ANUM $1 * D I M 1)$
$D(4)=D(4)+D I M I$
$A L(1)=A Z(2)$
$A L(2)=A Z(1)$
$A L(3)=A Z(4)$
$A Z(4)=A Z(b)$
$A Z(5)=A Z(6)$
$A Z(6)=A Z(1)$
130 CONTINUE
$t(1)=((4.0 * D(4) * C+3.0 * D(3)) * C+2.0 * U(2)) * C+D(1)$
$D(2)=2.0 * 0(2)$
$0(3)=3.0 * D(3)$
$0(4)=4.0 * D(4)$
RETURN
tND

```
SUBROUTINE QGG ( XL,XU,FCTT,Y)
    A=0.b*(XL +XU)
    B=XU-XL
    C=.4662348*B
    Y=.08566225*(FCTT(A+C) +FCTT(A-C))
    =.3306047*B
    Y=Y+.1803808*(FCTT(A+Cl+FCTT(A-C))
    =.1193096*B
    Y=B*(Y+.2339570*(FCTT(A+C)+FCTT(A-C)))
    RETURN
    END
EUNCIION SINT (X)
RFAL INCRT
DIMENSION WT(405), SUMWT(405), EITA(405)
UHUBLE PRECISION WT, SUMWT, EITA
UOUBLE PKECISIUN WK
COMMON WT,EITA, SUMWT,II,INCKT,T,TT, ZBP, ZYIP XINT = INCRT
\(w K=x\)
CALL NEVIL (6,WK,0.0,XINT,II,WT,IER)
SINT \(=1.0 /((W K-X) * * 2)\)
RETURN
END
```

SUBRÜUTINE ANSLUP (A,B,C,D,E,F,G)
DIMENSIUN B(4),C(1),D(4)
DUUBLE PRECISIUN B,C
El=1.0/E
$E 2=E * F * G$
B(1)=E1*D(1)
$B(2)=2.0 * E 1 * O(2) * E 2$
$B(3)=3.0 * E 1 * D(3) * E 2 * E 2$
$B(4)=4.0 * E 1 * D(4) * E 2 * E 2 * E 2$
$C(1)=((B(4) * A+B(3)) * A+B(2)) * A+B(1)$ RETURN
END

FIG.I Notation

FIG.2. Variation of $w(t)$ Vs t (not to scale)

FIG.3. Streamline Patterns

FIG. 4 Parameter a_{i} Vs Ω for flat delta wing
—— Present calculation

- Experiment (Ref.5)

$$
\begin{aligned}
& M=3.97 \\
& \alpha=23.8
\end{aligned}
$$

FIG.5 Spanwise pressure distribution on circular-arc cross-section delta wing $A R=2 / 3$

FIG. 6 Spanwise P^{*} distribution on flat-delta wing

FIG. 7 Theoritical non-dimensional shock shapes on flat delta wings

ARC CP No. 1277

June, 1973
Shanbhag, V. V.

NUMERICAL STUDIES ON HYPERSONIC DELTA WINGS WITH DETACHED SHOCK WAVES

In this report a numerical procedure is described for calculating the inviscid hypersonic flow about the lower surface of a conical wing of general cross-section. The method is based on thin-shock-layer theory and the cross-section of the wing may be either described by a polynomial (up to fourth degree) or given as tabulated data. The actual numerical scheme is an improvement on that used by earlier workers and the computation time is much shorter. This reduction in computation time has blen/

ARC CP No. 1277

June, 1973
Shanbhag, V. V.

NUMERICAL STUDIES ON HYPERSONIC DELTA WINGS WITH DETACHED SHOCK WAVES

In this report a numerical procedure is described for calculating the inviscid hypersonic flow about the lower surface of a conical wing of general cross-section. The method is based on thin-shock-layer theory and the cross-section of the wing may be either described by a polynomial (up to fourth degree) or given as tabulated data. The actual numerical scheme is an improvement on that used by earller workers and the computation time is much shorter. This reduction in computation time has been/

ARC CP No. 1277

June, 1973
Shanbhag, V. V.
NUMeRICAL STUDIES ON HYPERSONIC DELTA WINGS WITH DETACHED SHOCK WAVES

In this report a numerical procedure is described for calculating the inviscid hypersonic flow about the lower surface of a conical wing of general cross-section. The method is based on thin-shock-layer theory and the cross-section of the wing may be either described by a polynomial (up to fourth degree) or given as tabulated data. The actual numerical scheme is an improvement on that used by earlier workers and the computation time is much shorter. This reduction in computation time has been/
beer exploited to produce a complete iterative procedure for the calculation of the pressurc distribution and shock shape on a given wing at given flught condrtions. (In earlier work Eraphical interpolation was used.)

The report includes a complete set of tabulated not-dimensional pressures and shock shapes for flat vings With detached shocks for reduced aspect ratios from 0.1 to 1.99 , and some sample results for wings with caret and bi-convex cross-sections.
been exploited to produce a complete iterative procedure for the calculation of the pressure distribution and shock shape on a given wing at given flight conditions. (In earlier work graphical interpolation was used.)

The report includes a complete set of tabulated non-dimensional pressures and shock shapes for flat wings with detached shocks for reduced aspect ratios from 0.1 to 1.99 , and some sample results for wings with caret and bi-convex cross-sections.
been exploited to produce a complete iterative procedure for the calculation of the pressure distribution and shock shape on a glven wing at glven flight conditions. (In earlier work gruphical interpolation was used.)

The report includes a complete set of tabulated non-dimensional pressures and shock shapes for flat wings With detached shocks for reduced aspect ratios from
0.1 to 1.99 , and some sample results for wings with caret and bi-convex cross-sections.

© Crown copyright 1974

HER MAJESTY'S STATIONERY OFFICE

Government Bookshops

49 Hıgh Holborn, London WCIV 6HB
13a Castle Street, Edınburgh EH2 3AR 41 The Hayes, Cardiff CF1 ISW
Brazennose Street, Manchester M60 8AS
Southey House, Wine Street, Bristol BSI 2BQ
258 Broad Street, Birmingham B1 2 HE
80 Chichester Street, Belfast BT1 4JY
Government publications are also avalable
through booksellers

[^0]: *Replaces A.R.C. 34617

[^1]: * This method was originally suggested by Dr. R. Hillier, but he only applied the method to the case $W(t)>t$,

