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SUMMARY 

The integral equation method for the prediction of the pressure 

distribution around aerofoils in transonic flows is examined with a view 

to developing a uniform approach to the solution of more general problems 

in transonic flow, steady or unsteady. In this paper the detailed 

investigation is restricted to the flow around two-dimensional aerofolls 

in steady high subsonic flow. Both lifting and nonrlifting aerofoils 

are considered. 

A simple first approximation to the flow, expressed by 

-2 
ii - ; = t, ( 

where E is the perturbation velocity and E L is a modified linearised 

value, gives a fair degree of accuracy except in the immediate 

neighbourhood of the leading edge. An iterated second approximation 

gives good results for a NACA 0012 aerofoil. 

*Replaces A.R.C.34 260 



NOTATION 

cpow Pressure coefficient 

EC(x) Function given by Eq.(30) 

ET(X) Function given by Eq.(27) 

ET, ('1 Function given by Eq.(31) 

I,(x,~(x,*O)) Integral defined by Eq.(29) 

I,(x,u(x,*O)) Integral defined by Eq. (26) 
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w(w) 

G(i,f) = 

X 

Z 4 

x = 

z = 

Integral defined by Eq.(34) 

(v+l) Mz 

The local Mach number 

The freestream Mach number 

The total resultant velocity of the fluid 

$T WJ) 

The domain in which the Green's theorem is valid 

Perturbation velocity in the x direction 

k 
72 U(XJ) 

Incompressible limit of u (x,*0) 

The standard solution for u(x,'O) obtained from 
linearised theory 

i2u (x,*0) 

Perturbation velocity defined by Eq.(46) 

The modified linearised solution for ;(x,kO) 
given by Eq.(43) 

The frees tream vel oci ty 

Perturbation velocity in the z direction 

;3 w(w) 

Cartesian co-ordinate system 

X 

BZ 
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9&i) = 
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jq = 

B = 
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U‘i) 

ax) 

‘;(i,Z) = 

The ordinate of the upper surface of the aerofoil 

The ordinate of the lower surface of the aerofoil 

Camber distribution of the aerofoil 

Thickness distribution of the aerofoil 

~z,,04 

fiz, 1 (xl 

;3 zTOO 
$3 z,(x) 
Aerofoil profile distributions defined by Eq.(lZ) 

Angle of incidence 

k 
753 a 

(1-M2)+ 02 

Ratio of specific heats taken to be 1.4 

Cartesian co-ordinate system corresponding to (x,5) 

Function defined by Eq.(52) 

Perturbation velocity potential defined by Eq.(l) 
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1. INTRODUCTION 

The inviscid flow around a given wing can be determined to 

an acceptable accuracy in many practical cases by using a linearised 

form of the fundamental equations. Linearisation separates the 

general problem of the uniform flow past an arbitrary wing which is 

either steady or oscillating in simple harmonic motion into two 

independent problems, the solutions of which can be superimposed. 

One is the steady symmetric problem which represents the displacement 

field due to wing thickness. The other is the antisymmetric problem 

which represents the lifting field due to camber and incidence, either 

steady or oscillatory. Considerable expertise is available for the 

solution of many practical problems for which linearisation of the 

fundamental equations is valid. If linearisation is not valid then 

the separation of lifting and non-lifting effects is not possible and 

alternative means of solution must be used. 

One general area for which the application of linearised theory 

is inadequate is in the transonic regime which covers three distinct 

sub-regimes; high subsonic shock free flow, mixed flow with supersonic 

regions embedded in an overall subsonic flow and the low supersonic 

freestream regime. 

One simplification that is valid at transonic speeds is the 

assumption of isentropic and hence irrotational flow even if shock waves 

are present since the entropy changes are small compared to changes in 

the other variables of state if the local Mach number remains close to 

unity. Thus the flow may be adequately described by the complete, non- 

linear potential equation. Some further simplification of the potential 

equation is usually possible but any approximation must retain at least 

some of the non-linear terms in order to incorporate the essential 

features of transonic flows. 
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One of the earliest attempts to find the pressure distribution 

around wings in transonic flow was the integral equation method of 

Spreiter and Alksne (1) which followed work by Ostwatitsch (2) and 

Gullstrand(3); the application of the method was restricted to the 

flow around two-dimensional sharp nosed symmetric aerofoils at zero 

incidence, starting with the transonic form of the two-dimensional 

potential differential equation in which all but one of the non-linear 

terms are neglected. The application of Green's theorem inverts the 

differential equation into integral form and gives the perturbation 

velocity potential at a general point in the flow field in terms of a 

line integral of a linear function of the velocity potential around the 

aerofoil surface and a double (surface) integral of a non-linear 

function of the velocity potential over the entire flow field. In 

linear theory this double integral is neglected as a second order term; 

in transonic flow it must be retained. The double integral is 

evaluated using suitable approximations for the non-linear term. The 

results of Spreiter and Alksne (1) are fairly good for the subcritical 

flow around circular arc aerofoils at zero incidence. 

In recent years the advent of high speed computers has greatly 

facilitated the numerical solution of many problems arising in transonic 

aerodynamics. Sells(4) has developed a numerical programme for the 

calculation of the pressure distribution on an arbitrary two-dimensional 

aerofoil at subcritical speeds. By means of conformal transformations 

the exterior flow field about the aerofoil is mapped on to the interior 

of a circle. The governing equations for isentropic irrotational flow 

are reduced to two coupled non-linear equations for the stream function 

and the density, and an iterative solution is obtained by using finite 

difference techniques. Results from the application of Sells '(4) method 

are very useful as a standard for comparison of results derived by other 
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methods. Conformal transformations cannot be used for three- 

dimensional or time dependent flows. 

A direct numerical solution for steady transonic flow problems 

has been developed by Murman and Cole (5) who use relaxation methods 

to determine the flow about a circular arc aerofoil at zero incidence 

at transonic speeds; the transonic potential equation is used in this 

method. Subsequent extensions to two-dimensional round-nosed lifting 

aerofoils have been made by Murman and Krupp (6) and Steger and Lomax (7)) 

who use the exact set of equations for isentropic flow. An important 

feature of these methods is that a separate difference scheme is used 

for the subsonic and supersonic regions of the flow, a centred difference 

scheme being used for the subsonic region and a one-sided difference 

scheme being used for the supersonic region. Shock waves appear 

naturally in the solution without any a priori assumptions. The method 

has recently been extended (8) to include the flow around finite wings. 

No attempt has yet been made to include time-dependent effects. 

Because of the need to develop theoretical methods to predict 

transonic flow characteristics for a range of wing problems in two and 

three dimensions and in steady and unsteady conditions, the integral 

equation method is returned to with the aim of presenting a unified 

approach which gives approximate results of acceptable accuracy. 

In this paper only the shock free two-dimensional flows around 

lifting and non-lifting aerofoils are considered. Applying Green's 

theorem to the transonic potential equation and then applying the 

boundary conditions, two simultaneous integral equations are derived 

in which the usual symmetric (thickness) and antisymmetric (camber, 

incidence) effects are coupled in double (surface) integrals involving 

the second order terms. By a consideration of these second order terms 

the double integrals are reduced to single integrals over the chord in 



-4- 

which coupling between thickness and incidence effects are still 

retained. Extending the standard linearised techniques, which 

involves some additional numerical integration procedures, the 

simultaneous integral equations are solved approximately. An 

extremely simple formula is obtained for the perturbation surface 

velocity in terms of the linearised value gives a good first 

approximation. Results from a second approximation for two test 

cases show close agreement with results from the more exact high 

subsonic theory of Sells (4). 

2. BASIC EQUATIONS 

A two-dimensional Cartesian co-ordinate system is chosen with 

the origin at the wing leading edge with the x axis in the free stream 

direction and z axis normal to free stream, as shown in Fig. 1. The 

co-ordinates x and z are scaled with respect to the aerofoil chord. 

The free stream velocity is denoted by U-. A non-dimensional perturbation 

velocity potential, 0, may be defined as 

?L, 
ax , LL, 

az 3 (1) 

where u and w are the non-dimensional perturbation velocities, in the 

x and z directions respectively, relative to U,,. 

The steady transonic potential equation for inviscid, non-conducting, 

isentropic, irrotational flow around a two-dimensional aerofoil is 

(1-M:) ox, + o,, = (v+l)M$ 4, ox, 

The boundary conditions are: 

(i) the resultant flow direction at the aerofoil surface is 

tangential to the surface. 

(ii) the perturbation potential and its derivatives vanish at 

an infinite distance upstream of the aerofoil. 

(2) 
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The Kutta condition, that the pressure is finite and continuous at 

the trailing edge, is necessary to ensure a unique solution. 

The upper and lower surfaces of the aerofoil may be written to 

a first order 

z&) = - aX + Z,(X) + Zt(X) 

Zs~(X) = - aX + Z,(X) - Z*(X) (3) 

where z = zsu(x), and z = z,,(x), are the equations of the upper and 

lower aerofoil surfaces respectively, non-dimensionalised with respect 

to the chord; u is the aerofoil angle of incidence, zc(x) is the equation 

for the camber surface and z,(x) represents the wing thickness distribution. 

It is assumed that zsu(x) and zs,(x) are small compared with unity. 

The tangency boundary condition becomes 

w (x9 zsu) 
1 t u (x, 'zsu) = Z;&X) 

w oh zs, 1 
1 t u (x, zs,) = z;l(x) (4) 

where the dash denotes differentiation with respect to x. 

By means of a Taylor series expansion Eqs. (4) may be expressed 

as 

w (x, t 0) = z;,(x) t u(x, t 0) ziu(x) - az aw(x,) zsu(x) . . . . 

(5) 

w (x, - 0) = z;,(x) t u(x, - 0) z;,(x) - az -- zs,(x) . . . . 

A first order approximation to the tangency boundary condition, 

Eqs. (4), is 

w (L + 0) = $$Jz=+o = z& (X) = - a t Zl ,y + z;(x) 

(6) 
w (x, - 0) = ($z=-o = z;,(x) = - a t z;(x) - z;(x) 

The boundary conditions are therefore applied on the plane z = 0 rather 

than on the aerofoil surface. 
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The pressure coefficient, cp(x,z) can be found by using 

Bernoulli's equation; thus 

cp(x’z) = g {(I + -v [l - qZ(x,zjJ I* - 13 
0) (7) 

where 

q(w) = [(l t u(x,z))Z + .2(x,z,1$ 

which is the resultant velocity non-dimensionalised with respect to 

the freestream velocity. 

A first order approximation to the pressure coefficient is 

given by 

Cp(X’Z) = - 2 u(x,z) (8) 

Eq. (2) can be transformed, introducing the parameters ~~ = 1-M: 

k = (ytl) Mi and the variables 

With this transformation it is noted that 

;i=a6, Il;-aJ 
aii ai 

On substitution of the variables defined in Eq. (9), Eq. (2) 

becomes 

while the boundary conditions in Eq. (6) become 

(i;,; to = 
= W(X, t 0) = ;- (-&z;(x) t z;(x))= f;(x) 

($1; o = 6 - 0) = $ (-at,;(x) - z;(x))= P(X) =- 

(10) 

(11) 

The functions f,(x), z-(x) are introduced for convenience and imply the 

upper and lower surfaces of a modified profile. Following the previous 
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convention 

Z+(i) = - &i + Z,(X) + Z$) 

f-(i) = - A; + Q(i) - FT(i) 

where, from Eqs. (11) 

A =$3 $(a = b z,(x) , q(X)= $ z,(x) 

(12) 

Since 

1 - M2(x,z) = 1 - M; - ku(x,z) = (1-Mt)(l - i;(j;,,)), 

where M(x,z) is the local Mach number, then 

1 - M2(:,$ = , 

1 - Mi 
- ii(i,f) 

so the sign of (l-6) indicates whether the local flow is subsonic 

or supersonic; Eq. (10) is elliptic for u < 1 and hyperbolic for ; > 1. 

Eq. (10) can be inverted to an integral form by using Green's 

theorem. 

Thus, as shown in the Appendix, 

5(i,i) = k, jl[dki;i,O)~ i$:) - $$i,k:,O)ai(i)] dg 
b 

- & 
ii 

j$i.i;i,F) ii2(i,5) dS 
S 

where 

,(cG 2) = 
and 

A i(i) = i(i, + 0) - ;(i, - 0) 

A $5) = ;,(i, + 0) - +(k - O> 

and S is the domain of integration shown in Fig. 2. 

(14) 

(15) 
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The surface integral in Eq. (14) is defined for i > 0 as The surface integral in Eq. (14) is defined for i > 0 as 

FdS = lim ( FdS = lim ( 
E+o E+o 

+ 

while for i < 0 

JJ 
+QJ 03 GE 

FdS = lim 1 ( Fd;)di + 

S 
J J E-4 -0Jo J -Co 

0 

Fd;)di + 
-Co 

+ 

.01 

J 0 
Fdf)l 

X+E -m 

W) 

Eq. (14) is very similar to the equation obtained by Spreiter 

and Alksne(') in their integral equation method. In their work the 

acceleration potential, U (X,i), is used instead of the velocity potential, 

$(i,?), and the surface integral is defined as 

JJ FdS = lim 1 
c 1 J 7 

i-E 
E-4 '0 -= 

Fdg)df + m( cD Fdi)d; + J J 0 XtE J J O( +m Fdi)dil 
-w -co 

3 

for ? > 0, and 

JJ FdS = lim { 

S E-4 

for i < 0. 

i J 7 + 
Fdg)df t 

0 -W 

The difference between the definitions of Eq. (16) and Eq. (17) is in 

(17b) 

the manner of exclusion of the singularity at (x, i) from the domain S; 

Eq. (16) excludes (i, ;) by a circle of small radius whereas Eq. (17) 

excludes it by an infinite strip of small width. As seen later this 

difference leads to some significant results. 
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The usual linearisation approximation implies that the 

non-linear double integral in Eq. (14) is neglected. On 

differentiating this linear form first with respect to i and then 

with respect to z, and applying the tangency flow boundary condition, 

the two usual independent equations are formulated for the symmetric 

and antisymmetric components. A similar procedure is now followed 

for the non-linear form in Eq. (14). 

On differentiation with respect to i, Eq. (14) gives 

The term arises from the differentiation of the limits around 

the singular point (x,5) in the double integral. 

On differentiation with respect to ;, Eq. (14) gives 

J 
1 

;Ji,i, = i& { 
z o 

(‘9) 

Both the limit as 2-t 0 and the limit as ?+ - 0 of Eq. (18) 

are now taken, and on addition of these limiting forms 

G(i,tO) t ii(X-0) [ iP(X,tO) ; iF(X,-0) ] 

= 1 ’ TI J Aw(s) _ lim $ 0 (GE) Z-HO IT JJ ~i~(~,~;~,i)[;2(i,~)+;2(~,-~)]dS 
S 

As ? + * 0 the limiting procedure with the appropriate formula 

Eq. (16a) or Eq. (16b) must be used. 
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The double integral in Eq. (20) arises because on changing 

the sign of 5 and 5 

If 

- - - - - - 
95~(x,E;z,s)u2(~,5)dS = ;p+, 

-- - - - - 
lim 
t+ -0 

~S,(x,s;-z,-s)u2(E,-~)dS 

S S 

= lim 
z++o JJ 

~+$i,~;;,;) ii2(t,-i)dS 

S 

because $g.(",t;;,;) is a function of (;-s)2. 

A similar operation can be performed on Eq. (19) which, after 

integrating the single integral by parts, gives 

$X,+0) + W&-O) = _ ; J’[+&- i&-o) 1 dg 

0 

- lim & 
z++o f f 

$&i,~;z,;) [c2(L;)-u2(L-t)l dS 

Eqs. (20, 21) express two fundamental exact relationships for 

two-dimensional high subsonic flows. If the non-linear terms are 

negligible these equations reduce to the standard linearised integral 

equations, replacing \;j(,,+O) and w(x,-0) by the usual boundary 

conditions from Eqs. (11, 12). 

The non-linear terms in Eqs. (20, 21) can be regarded as correction 

terms to the standard linearised equations which are valid for 

U<,'r) < < 1 

At high subsonic Mach numbers u(c,f) is not small compared to unity 

and it is known that the pressure distribution derived from the linearised 

theory is of the order of 25% in error. If the correction terms can be 

found to the same order of accuracy as the linearised solution then the 

ultimate solution should be accurate to within at least 5% which is a 

significant improvement on the linearised theory; optimistically one may 

hope for even better accuracy. 
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2.1 Approximating Functions 

In the double integral in Eq. (20) the kernel function 

tends to zero as lfjm2 as Iii--. This result suggests that if the 

variation of i(i,;) is approximated in the double integral by a function 

that is exact for small 5 then the total integral may be reasonably 

accurate since any error in the approximation away from the surface is 

offset by the rapidly vanishing kernel function. 

The approximating functions are chosen so that the variation of 

i(i,f) with 5 is expressed by a known function of f, the value of 

u(E,t) on the aerofoil surface and the aerofoil geometry. The functions 

are assumed to give an exact representation of ;(';,t) for small i if after 

expansion as a power series in f to a specified number of terms this 

expansion is identical to the McLaurin's series expansion of u(i,i) itself 

in powers of i. The choice of approximating function is further 

restricted by imposing the condition that the qualitative behaviour of 

$Lt) as 141 - must be adequately represented. For a non-lifting aerofoil 
-2 

u(i,s) is assumed to approach zero as ]tj-- like /;I ; for a lifting 
-1 

aerofoil i(<,s) is assumed to approach zero as ItI-- like ItI . 

It is possible to devise quite elaborate approximation functions 

that give a fairly good representation of the variation of u(i,;) with ;, 

see for example that of Gullstrand (91, but in the present analysis simple 

(and less accurate) functions are used since it is shown later that because 

of the arrangement of the fundamental equations used the final solution is 

not significantly affected by a moderate decrease in the accuracy of 

the integrals. 
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The McLaurin's expansion for ;(s,i) for f 3 o is 

u(G) = u<g, + 0) + 5 i&S, t 0) t . . . . . ww 
Since 

$5, + 0) = W$, t 0) 

for irrotational flow, then on using the boundary condition Eq. (11), 

Eq. (22a) can be written for 0 4 i 4 1 as 

zG> = ii& + 0) + 5 7;' (i) + . . . W) 

Since interest is to be concerned with conditions at the wing 

surface it is argued that it is necessary to represent ;(g,f) with 

more accuracy in the neighbourhood of the wing surface than in front 

or aft of the wing where in any case ;(i,t) will be small. Thus the 

variation in front or aft of the wing is neglected; it is not anticipated 

that this assumption 

For a lifting 

be, for f 30, 

will lead to any serious error. 

aerofoil the approximating function is chosen to 

This function has the correct qualitative behaviour as II- and 

if expanded in powers of f for small i is identical to Eq. (22b) to 

first order in i. For i 4 0 

(23b) 

For a non-lifting aerofoil the approximating function is, 

for ; 10, 

(24a) 
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while for i 4 0 

;(tri) = 
ii(5, - 0 

[-f,;;~~~o)]2 

2.2 Derivation of the Integral Equations 

If the approximation for i(c,f) given by Eq. (23) is substituted 

into the double integrals of Eq. (20) and then integrated with respect 

to f using Eq. (16) then Eq. (20) can be written as 

& [: i;(i, + 0) “I- ii& - o)] - [ i2(i, + 0) t uqx, - 
8 

011 

d? t IT(x,i(x,+o)) (25) 

where 

Ip,U(X, 0)) = [ 
uqi, + 0) t ?(X - O)] 

8 ’ 

and 

4 1 

0 
fi(i,+O) ?;' (i) El 

- $5, - 0) z:'(i) ET 1 ldi 
3x2-l)lnlxj t (1+x2)(x2-3)-(x2-3)jxl,) (27) 

(26) 

On applying a similar procedure to Eq.(21) 

+ ii(i, [ + 0) t i(;;, - O)]= 2 I 
‘[ii(5,+0) - G(., -O)] df 

0 ( x - E) 

1 '[ t- 
HIT i 

U2(i,tO) - U2(&0) ] 

0 0 - 3 
dg t Ic(++o)) 

(28) 
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where 

+ ii(<,-0) ?;(i) Ec 

and 

(29) 

E,(x) = ' 
(1+x2)3 

{(l-3x2)wn(i-ii) + x(1+x2)(5+x2) + 2x(3-x2) lnjxj } (30) 

It is shown later that the effect of the integrals I,(x,;(x,*O)) 

and Ic(x,;(;,*O)) is small compared to the effect of the remaining non- 

linear terms and thus the integrals can be regarded as correction terms. 

For a non-lifting aerofoil the approximation function of Eq.(24) 

should be used, and I,(x,u(x,*O) is given by Eq.(26) but with ET (x) 

replaced by ET1 (;) where 

ET1 (x> = + {u;x2)( x6+x4+71 x2-25) 

(1+x2)5 

t (5-10x2+x4)~x~7r - 2(5x4-10x2tl)lnlxl 1 

Also, since for a non-lifting aerofoil 

1,(x,u(x,‘0)) = 0 ) 

both sides of Eq. (28) are then identically zero. 

The functions ET (x) and ET,($) are shown in Fig. 3 and it can be 

seen that ET (x) does not differ much from ET,($), thus strengthening 

the assumption that only the variation of u(t,;) for small ; is irportant. 
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If I&~(x,+O)) is assumed known then Eq.(28) can be inverted 

by the standard formula to gi ve 

[i&+0) + ii(i,-o)]( i 
(i-i) - l-5 

)$ di 

(i,: di 
7-g (32) 

Eqs. (25, 32) can be combined to give 

where 

1(X,&O) = 

The f’+fI and ‘f-1’ signs denote values on the upper and lower surfaces 

respectively. 

The linearised solution can be obtained from Eq.(34) by neglecting 

all second order terms and applying the linearised boundary conditions 

Eq. (11, 12). If the linearised solution for $x,*0) is denoted by 

$x,*0) then 

Using Eq.(35), Eq.(33) can be written in the alternative form 

$;(,*O) - iL!pL = i&(i,*O) + 1(X,+0) (36) 



- 16 - 

2.3 Some Second Order Corrections 

One of the features of linearised theory is that the solution 

;,(i,*O) given by Eq.(35), is singular at the leading edge; the 

inversion integral used in the derivation of 1(:,&O) in Eq.(34) is 

also singular and thus the solution ;(x,*O) obtained from Eq.(36) 

will be singular at the aerofoil nose. But u(x,*O) will no longer 

: contain the conventional leading edge singularity (i.e. - OJX--)) 

for it will be changed to something more like (J(i-+) 

The fact that the fundamental equations for this study are non- 

linear implies that a more accurate solution to that given by linearised 

theory should be sought in the region of the leading edge, preferably 

without any singular behaviour. 

Attention is therefore turned temporarily to the linearised form 

of the basic differential equation, Eq.(lO), namely 

; +; =o 
xi ;z 

(37) 

The exact boundary conditions given by Eq.(4) can be expressed in 

the transformed variables of Eq.(9) as 

+,~Jx)) = ‘;J3 
$ + ~(X.i,,(X)) B2 

4kZ,,(Q = % -’ (X) 

$ t i(X,isl(X)) B2 

(38) 

where 

on the 

;sum = fizsu(x) and is,(x) = Bzsl(x) 

On using Eq.(38) the total resultant velocity q(x,isu(")) 

upper surface of the wing is given by 
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The exact flow remains finite everywhere so that at the nose 

ii(X,isu(X)) + - b as ?su(X) +QI 

Eq.(39) can be written in the form 

q(G,,(x)) = I $ + i(L;su(x)) _ I[ gum 1 + ( p ) I 
I 1 t (2 ’ (x))2]: (40) 

where both the numerator and the denominator tend to infinity at the 

nose. Although ssu(i) is made up from contributions from thickness, 

camber and incidence, only thickness contributes to the infinity at 

the nose. 

If the standard linearised solution i,(x,tO) given by Eq.(35) 

is to be used as an approximation to ;(x,;,,(x)) and since this 

linearised solution already incorporates an infinity at the leading 

edge then an approximation to q(x,?,,(x)) is taken to be 

(41) 4(LZsu(~)) = [ + + $X,+0) ] 
r fPZ’(X) 1-k (,-j+, 2 3 1 

Eq.(41) ensures that q(x,isu(")) becomes finite in the leading edge 

region; although it is not expected that the accuracy will be good it 

will at least be an improvement on the linearised infinity. 

It is noted that only the thickness term is retained in the above 

correction term; this is done for two reasons. First it is only the 

thickness term which gives the necessary infinity at the leading edge; 

second it is necessary to preserve the same denominator for both the 

upper and lower surfaces to ensure that the Kutta trailing edge condition 

is satisfied, since i&(x,&O) already satisfies the Kutta condition. 
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An approximation to the resultant velocity may be written in 

the form 

q(x,is”(“)) = J& + i$L+O) 

4(x+)) = !& + qx,-0) (42) 

where i (x,*0) L can be regarded as the linearised solution modified for 

leading edge corrections; i,(i,*O) is given by Eq.(35). 

Combining Eqs.(41,42) 

i‘(x”0) = (43) 

(45) 

If Eq.(43) is written in terms of the original variables then 

lQX,'O) = 
[ 1 + U,(xY-tO)] _ , 

1 

I 1 + (zTB lx))2 1s 
(44) 

where 

and 

fPi& ($0) 
l&(X,~O) = k 

Qx,*O) = 
B2UL(X,'O) 

k 

The first order term up(x,*O) given by Eqs.(35,45) is identical 

to the perturbation velocity found by using the Gothert rule. According 

to this rule the perturbation velocity u,(x,'O) in compressible flow is 

related to the incompressible perturbation velocit;l uga(x,*O) on an 

analogous aerofoil, obtained from the original by shrinking all dimensions 

normal to the freestream by the factor (1 - Mi):, by 

(46) 
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Some estimate of the accuracy of the modified linearised 

velocity given by Eq.(43) can be made by examining the incompressible 

limit as M,+ 0 since exact solutions are available for many 

incompressible flow problems. 

The incompressible limit of Eq.(44) is 

lim u&x,*0) = 
[' + ui(x.tO)] 

Mm4 [ 1 t (z;(x))q$ 
(47) 

(48) 

For aerofoils with camber and incidence the incompressible 

solution given by Eq.(48,48) is found to be inaccurate near the leading 

edge. The accuracy can be improved however by retaining some of the 

second order terms in the boundary conditon eq.(4). For incompressible 

flow the tangency boundary condition can be written to second order by 

using Eq.(5); thus 

w(x, 0) = &(x) + g [u(x,+O)zsu(x) ] t ---- 

w(x,-0) = z&(x) + & [ u(x,- O)z,, (x) ] t ---- (49) 

using the condition that in incompressible flow 

It is found(")(") that only the symmetric components of the 

second order terms in Eq.(49) significantly affect the overall solution; 

a good approximation to the exact incompressible flow is given by 

i [ 
’ ‘i (S3+“)zsu(E)+ui (S9-“)zsl (50 

{ltui(x,*O)$--(+)~ o& x-s 
1 

lim uL(x,*O) = 
(15p~L, 

Mco4 [' + (z:(x))2]s 
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In Refs. (10, 11) it is assumed that in addition the second order 

terms due to camber can be neglected. 

In order to improve the accuracy of the compressible solution 

the Gothert rule is now applied to the numerator in the expression for 

the incompressible 1.$x,*0), Eq.(50). Although strictly the Gothert 

rule should only be applied to the first order term it is assumed that 

the application to the second order term will improve the linearised 

subsonic solution since in the incompressible limit the revised subsonic 

solution at least gives an accurate representation of the flow. Thus, 

reverting to the transformed variables, 

where 

h(S) = :“[ dc 
iii (i,+O) i,,(i) + u (Sd)~,l(s) 1 

2.4 Summary of Basic Equations 

Returning to the basic equation, Eq. (36), incorporating now 

the various modifications 

;(;g+O) - ~2(x,+o) 
4 = upo) t I(X,*O) 

where u&*0) is given by Eqs.(35,51,52) and 1(x,*0) is given by 

- 1 
2 -- 

I(X,"o) = 

('('xxi-i 
1 I,(L$f,'O)) 

IT(x,i(x,*o)) * Tr ‘* (i-i) 
& &) 

1-e 

f@(X) 2 3 
'+( k )I 

(52) 

(53) 

(54) 

where I&$x,*0)) and Ic(i,i(x,*O)) are given by Eqs.(26,29) 

respectively. 
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The various components of uL(x,+O) can be evaluated either 

analytically or by using numerical techniques such as that of 

Weber(lo~ll > . I?(x,;(x,*O)) and Ic(x,;(?,*O)) can be evaluated 

using straightforward numerical methods. The integral in Eq.(54) 

can be evaluated using the method of Weber (11) regarding 

f 

i 
Ic($i(~‘,+O)) dg' 

0 

as an effective camber distribution. After performing the necessary 

integration it may be shown that 

where 

E,(x) = 
(llX2) 

2 (x2(3+x2) lnjxl - (ltx2) t 71 x sqn(x-il} 

3. APPLICATIONS 

The final equation for the perturbation velocity is Eq.(53). 

When u(x,*O) is small then, neglecting the second *order terms, 

i(X,*O) = U,(X,~O)) 

so that linearised theory is adequate. 6ut at higher values of ;(x,fO) 

the second order terms are important. 

A formal solution to Eq.(53) is 

i(X, 0) = 211 - b - "L(",ko) - I(x,+o)]Bl (56) 

The negative sign is taken since ;(x,*O) must equal i,(x,?O) when 

u(x,*O) is small. 
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First it is of interest to study the order of magnitude of 

the second order term I(i,*O). The values of 1(x,*0) have been 

computed for two cases, the NACA 0012 aerofoil at zero incidence and 

MoD = 0.72 and the NACA 0012 aerofoil at 2' incidence at Mco = 0.63. 

The results are shown in Table (1) and Table (2) respectively. 

Considering first the zero incidence case, it can be seen 

from Table 1 that over the front half of the wing, apart from the 

leading edge region, 1(x,+0) is small compared to w; over the 

rear half of the wing 1(x,+0) is large compared with -v) but 

w itself is small compared to ;(x,+O) so all second order 

terms are negligible in any case. 

It can be seen from Table 2 that in the case of the aerofoil at 

incidence similar conclusions as those reached for the non-lifting case 

apply to the upper surface of the wing. On the lower surface of the 

( wing I(i,-0) is not small compared to '2(it-O) but i2(i>-O) is itself 

small compared with i(,,-0) and the second order effects are then negligible. 

Thus to a first approximation a simple relation between the 

perturbation velocity and the linearised solution is 

i(i,*O) - 3I.p = u,(+) 

The solution to this equation is 

To proceed to a second approximation, if the solution given by Eq.(57) 

is denoted by u,(x,*O) then a second approximation is given by 

- (1 - ;‘(j;'*o) - I,(;c,to)+ 1 (58) 
where 
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The pressure distribution can then be calculated using 

Eqs.(7,9,42) and either Eq.(57) or Eq.(58). 

The pressure distributions from the first and second 

approximations have been calculated for the NACA 0012 aerofoil at 

zero incidence and !A03 = 0.72 and for the NACA 0012 aerofoil at 2' 

incidence and Ma3 = 0.63; these are shown in Fig. 4 and Fig. 5 

respectively. 

It is seen that in both cases the first approximation leads to 

an improvement on modified linearised theory except in the immediate 

neighbourhood of the leading edge. The results from the second 

approximation are in good agreement with the exact results of Sells (12) . 

The lift coefficient, CL, and the pitching moment coefficient CM 

and the about the leading edge have been calculated from both the first 

second approximations; these are compared in Table 3 to the va 

shown are the coeff 

lues 

obtained by the method of Sells (12) . Also icients 

obtained from the linearised velocity distr ibution i&(x,*0) (Gothert) 

and from the modified linearised velocity d istribution $,(x,*0) (modif 

Gothert). The aerodynamic centre has also been determined. In the 

calculation of the linearised (Gothert) coefficients the first 

approximation to the pressure coefficient given by Eq.(8) is used. 

ied 

The second approximation gives values that are in good agreement 

with those of Sells(12). The first approximation does not give a 

significant improvement over the results using the modified linear theory; 

this is almost completely due to the errors in the pressure distribution 

in the neighbourhood of the leading edge. 
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5. CONCLUDING REMARKS 

An integral method has been developed which extends and uses the 

results of linearised wing theory for the calculation of the pressure 

distribution on lifting and non-lifting aerofoils at high subsonic 

speeds in shock free flow. The reduction of the fundamental equation to 

integral equation form requires some assumptions on the behaviour of the 

perturbation field away from the aerofoil surface but it is shown that 

the resulting equations are rather insensitive to the form of the 

assumptions. Because the problem is non-linear, two integral equations 

are derived in which the usual symmetric and antisymmetric perturbation 

velocity distributions are coupled. 

Simple first approximation solutions are derived, which merely 

involve the linearised thickness and camber velocity distribution, and 

which seem to give reasonable accuracy. Improved accuracy can be 

obtained from a second approximation. 

The basic idea is not new, Spreiter and Alksne (1) developed a 

similar approach for the non-lifting case. However, the method 

presented here seems to have certain advantages over this previous work 

in that a fairly accurate first approximation has been found. The reason 

arises essentially from the method of dealing with a singularity; in the 

method presented here a singular point is excluded from a space by a 

small circle of radius r, which is allowed to go to zero, whereas Spreiter 

et al excluded the same singularity by an infinite strip whose width is 

allowed to go to zero. Consequently the different expressions which 

subsequently appear in the analysis allow a convenient simplified formula 

to be developed. 

The basic approach presented in this paper is capable of extension 

of finite wings and unsteady flow problems and the results presented give 

some confidence that any extension will produce equally satisfactory 

results. 

. 
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APPENDIX 

If n&i) and J/J&;) are two continuous functions with 

continuous first and second derivatives in some domain S bounded 

by a curve C, then Green's Theorem states 

gv261 - Qv2+]ds = - 
Ir 

$ E - 1;2 $$ ]dC (Al > 
s C 

a2 where v2 is the Laplacian operator (= + $$, and where n is the 

inward normal to the curve C, around which the integration must be 

taken in an anticlockwise direction. 

In Eq.(Al) fi is to be identified with the perturbation velocity 

potential 5. And JI is chosen as the elementary source solution of 

Laplace's equation 

V2$ = 0 

that is 

*(ii,i;isi) = ln[(h~)2 + (%i)2]3 w 

where (i,i) are running co-ordinates in the i and z direction respectively. 

Now $(i,i;;,i) is singular at the point (i,;). And, to the present 

order of approximation, i(c,i) and its derivatives can be discontinuous 

across the slit (0 4 E 4 1, F = + 0) on the 5 axis where the boundary 

conditions are to be applied. Since $(x,i;;,i) and G&i) and their 

derivatives must be continuous throughout the domain S, the point (x,?) 

and the slit (0 4 i 4 1, t = + 0) must be excluded from S. This domain 

S is shown in Fig.2. 

On substitution of Eq.(lO) and Eq.(AZ), Eq.(Al) becomes 

= - 
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where 

C, is that part of the boundary C surrounding the point 

(x,5) and is taken to be a small circle of radius E, 

Cw is that part of the boundary C surrounding the i axis, and 

CaD completes the boundary C thus denoting the outer limiting 

boundary of S, taken to be a large circle, centre at the 

. . 
origin, of radius R. 

These boundaries, Cl, C,, COD, together with the sense of integration, 

are shown in Fig. 2. 

The limiting operations as E -f 0 and R -f QO are determined next. 

The radius of the circle surrounding the point (x,z) is E and so 

SC = sc58, 

taking e to increase in the clockwise direction. The radius of this 

circle is now made infinitely small. Since J, = l&)it follows that as 

E -+ 0 all the terms in the line integral over Cl vanish except those 

involving derivatives of $. As E + 0, a(i,i) and its derivatives take 

their value at 6,;). Thus, since the inward normal k is equivalent to 

a 
as’ 

v -  -  

lim { #(i,E;Z,i) w - ;(i,f) $(ki;ki)]dCl = - z&x,:) 
E-4 

VW 

For the integral over Co3, the velocity potential i(.,i) will be 

of the form 

for a lifting aerofoil (for a non-lifting aerofoil the e term should be 

omitted) where (R, 8) are the polar co-ordinates on Coo. Thus the line 

integral over Cal is a constant for a lifting aerofoil and zero for a 

non-lifting aerofoil; the exact value of this constant is immaterial 

since it will disappear in the application of a differential operator 

later on. 
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Since Cw lies around the i axis as shown in Fig.2, Eq.(A3) 

then becomes, on substitution of Eq.(A4), 

S(G) = & 
1 

Ic 
$(k,;:,o) Ai-(i) - 

0 5 
$&i;i,O) Ai( di 

5 

6 il 
$(i,i;;,f) i,(i,t) i,,(i,i) dS + constant, 

S 5 55 
where 

VW 3 

. 

Ai = i(L+O, - S(L-0) 

Ai- 
5 

= ip+O) - ip0) 

The surface integral in Eq.(A5) is therefore defined, for 5 >O, as 

[&(n-q2] f 
Fdf t 

while, for ; < 0, 

S 

Fdf = 22 { j’)j)t)di + jXiEj;+)di + [iA;Fdi)di 

GE 
t 

I [i 

i;$2-(G)2;i 10 FdE J dS) 

;;-E: -a) kt[E2-(i-~)2]~ VW 

The double integral in Eq.(A5) can be integrated by parts with 

respect to 6; by reference to Eq.(A6,A7) Eq.(A5) becomes 

1 -- 
4ll $-(x,i;?,i) u2(i,t) dS t constant 

(A8) 
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,  

x 1 IL+O) 

i?(i,+O) 

4 

.- 

i 

I 
0.381 i - 3.192 0.0341 0.3694 

0.0844 0.501 0.1261 0.7101 

0.1465 0.1532 0.1704 0.8256 I 
0.2223 

I - 
0.1052 0.1525 0.7809 

1 
0.3087 0.169 0.1096 0.6621 1 

0.4025 0.33 0.069 0.5261 ] 

0.500 0.641 0.0393 0.3967 

0.691 3.04 0.0078 0.1762 

i 

j 

0.853 - 146.8 0.0001 - 0.019 1 

0.99 1.222 0.0438 - 0.4188 j 

is(i,+O) i(i,+O) 
4 

Results from NACA 0012 at Zero Incidence, MoD = 0.72 

0.038 - 0.456 0.153 0.7834 

0.084 - 0.176 0.154 0.785 

0.1465 - 0.115 0.121 0.695 

0.222 - 0.113 0.087 0.589 

0.309 - 0.175 0.058 0.482 

0.403 - 0.283 0.037 0.384 

0.3 - 0.485 0.021 0.295 

0.691 - 1.615 0.0055 0.148 

0.853 -35.4 0.0001 0.0185 

0.99 1.036 0.0148 -0.243 

Table 1 

Upper Surface 

$X,+0) 

Lower Surface 

I (X,-O) 

ii+,-0) 
4 

11.14 

- 0.824 

- 0.324 

- 0.269 

- 0.262 

- 0.412 

- 0.699 

- 4.25 

- 9.5 

0.942 

;(jI,-O) iyo) 

I  

0.0028 -0.106 

0.0020 0.090 

0.0080 0.1785 

0.0106 0.206 

0.0099 0.199 

0.0074 0.172 

0.0046 0.136 

0.0008 0.057 

0.00021 -0.029 

0.016 -0.253 

Results from NACA 0012 at 2' Incidence, MoD = 0.63 

Table 2 
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! 

Sells Modified 
1st Approx. 2nd Approx. Gothert Gothert 

cL 0.335 0.355 0.335 0.282 0.299 

CM about the -0.0826 -0.0890 -0.0840 -0.0705 -0.0777 
leading edge 

a/c aft of the 0.246 0.251 0.251 0.25 0.26 
leading edge , 

f 

P 

Table 3 

c 
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A simple first approximation to the flow, can be 
eXpreSSed in the form 

ii - ii2 
'4 = ii L' 

where G is the perturbation velocity and GL is a 
modified linearised value, gives a fair degree of accuracy 
except XI the immediate neighbourhood of the leading edge. 
An Iterated second step approximation gives good results 
for a IU'ACA 0012 aerofoil. 

A simple first approximation to the flow, can be 
eXpreSSed in the form 

ii - g2 
4 = ii L' 

where i is the perturbation velocity and CL is a 
modified linearised value, give6 a fair degree of accuracy 
except in the immediate neighbourhood of the leading edge. 
An iterated second step approximation gives good results 
for a NACA 0012 aerofoil. 

A simple first approximation to the flow, can be 
expressed in the form 

E * iI 
'4 = UL 9 

where t is the perturbation velocity and ;L is a 

modified linearised value , gives a fair degree of accuracy 
except in the immediate neighbourhood of the leading edge. 
An iterated second step approximation gives good results 
for a NACA 0012 aerofoil. 
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