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SUMMARY 

The classical problem of steady inviscid plane subsonic flow past an 

aerofoil is formulated as a variational principle, the Bateman-Dirichlet 

Principle. A finite difference method is used to calculate approximations to 

the extremals for flow past ellipses and Karman-Trefftz profiles of different 

thickness ratios. The solutions obtained for the ellipses compare well with 

other approximate solutions except near the stagnation points where differences 

of up to 5% are encountered. 
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I INTRODUCTION 

The classical problem of steady inviscid subsonic flow past an aerofoil 

can be formulated in two ways. The usual formulation is as a boundary value 

problem consisting of a set of nonlinear partial differential equations and a 

set of boundary conditions. However, it can also be formulated in terms of 

complementary variational principles, see e.g. Serrinl 2 and Arthurs . There are 

two such principles which are related in that, for the exact solution, the 

values of the variational integrals are equal. 

Usually procedures for the calculation of approximate solutions are 

based on the boundary value problem formulation, but it is also possible to use 

the variational formulation. In this paper we describe a variational method for 

obtaining numerical solutions. The method consists of replacing the infinitely 

dimensional variational problem by a finitely dimensional problem by means of 

finite differences, and an approximate maximizing function is then found by 

standard methods. A similar approach has been used by Greenspan and Jain3 for 

the plane flow past a circle. However, their results near the stagnation points 

differ greatly from other approximate solutions, so it was felt that it would be 

advantageous to reconsider the method. The method used in this study differs 

in some important aspects from that used by Greenspan and Jain3, mainly in the 

approximation of the derivatives of the potential by finite differences and in 

the treatment of the boundary conditions on the aerofoil. 

We have obtained results for non-lifting ellipses of different thickness 

ratios and for different values of the free stream Mach number Mm. The results 

are compared with those obtained by Sells'. For a circle with Mm just below 

the critical value there is almost complete agreement, the difference is less 

than 0.5%. Extensive results have also been obtained for a 10% ellipse, and 

the maximum values of the local Mach number on the surface agree well with those 

calculated by Sells for different values of Mm. However, near the stagnation 

points the difference between the two types of solutions is of the order of 5%. 

Possible reasons for this discrepancy are discussed but no satisfactory explan- 

ation has been found. Results have also been obtained for a Rarmar.-Trefftz 

profile, and representative values of the local Mach number on the surface 

are presented. 

2 FORMULATION 

We shall now formulate the boundary value problem for plane subsonic 

irrotational flow past an aerofoil. Let (x,y) be a Cartesian coordinate system 
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with velocity vector t = (up,). Far from the aerofoil, C, u has the form 

u = (U,O) where U is a given constant, see Fig.1. 

The flow is supposed to be irrotational, so a velocity potential can be 

defined by 

u = 04 0 

The pressure and density are denoted by p and ps respectively. The speed 

of sound is defined by 

We can write p and p in the form 

P = po(l--$:", 

P = PO (1 - ;I; 
2 B 

2 
0 

where 

the suffix 0 indicates stagnation values. 

It is known that the boundary value problem for 4 is equivalent to a 

variational principle (see e.g. Rasmussen5). If we let R 

B the boundary we have from Serrin' 
1 

be the flow region 

and the Bateman-Dirlchlet Principle. 

Consider the variational problem of maximising the integral 

J[$l = 1 pdV + 1 +hdA 

R1 B 

(2.1) 

(dV = area element, dA = arc length element of B = C) among all subsonic 

velocities u = 04. Then J[I$] is a maximum if V . (pu) = 0 and 

pu 0 ; = h on B. Here the normal mass-flux h is prescribed on B such that 
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outflow = hdA = 0, 
B 

It is easily seen that if the flow region R, becomes infinite the 
variational integral (2.1) becomes unbounded. Lush and Cherry6 showed how the 
integral should be formulated in order to remove this difficulty, and later 
Lush8 wrote it in the form 

J [Ol = [P-&,,+P~$~' V($ - 0,)ldxdy 
aD 

where p co = pressure at infinity, 

pm = density at infinity 

%n = potential for a uniform stream 

$0 = potential for incompressible flow past C. 

The class of admissible functions is restricted to functions for which 

(i) g = 0 on C, 

(ii) 4 = I$ co + ux 

(2.2) 

(2.3) 

where 1x1 < Kr-' , lvxl G KF2 

as r = (x2 + y ) -+ OJ 2 4 and K is a constant. 

In order to make it easier to treat a fairly general class of aerofoils, 

we shall use a conformal transformation to map the aerofoil C onto the unit 

circle. Let (r,(3) be a polar coordinate system in the transformed plane, the 

computation plane, with origin at the centre of the unit circle. Then if we 

write z=x+iy and u = r (cos 8 + i sin e), the transform modulus becomes 

2 1 (x;+Yr) . 

The Jacobian of the transformation is 
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J = a(x,Y) = 
ahe> XrYO - XBYr - 

Since the transformation is conformal 

ye = rxr and Y, = - ; x0 , 

so 

and 

T2 = x2 1 2 
r + 2 xe 

J = r(x:+-$xi) ~ 

Hence 

J = rT2 . (2.4) 

The coordinates r,8 are orthogonal so the element of length ds = ldzl 

is given by 

ds2 = h2dr2 + h2d02 1 2 l 

Also 
ds2 = I&l 2 

= T2 (dr2 + r2de2) . 

Therefore 

hl = T and h2 = rT 

so 

Since 

and 

4 = U (r cos 8 + x) , 

we have 

q2 = U2 

7 
+ 2 cos 9 x r I . (2.5) 



Also 

p = po(ygJ 
0 

and by using the relation 

PO 
Y 

PO = E PO3 ( ) 
we get after some manipulation 

L- (Y - 1)$, 
a 

P = P, I+ 
2T2 

- 2 cos 0 x + 1 sin 8 x0- XI - + xi r r I (2.6) 
r 

where the free stream Mach number Mm is defined by 

M* = wJ2 . 
aD 

24 - u* 

Now 

YPCD 2 U2 
- = co PUJ -28 ' 

so 

P, = 
2B-f p 

2Bci - u* 
OD ’ 

Thus since 

$0 
= Ur++ 

( > 
case , 

PJdJo l VC4 - 4,) = P, 
YM: r* - ] 
T2 

L- 

r* + 1 r2 cos 0 x, - r3 sin 0 x0 1 . 
. . . . (2.7) 

When the expressions (2.4), (2.6) and (2.7) are used in (2.2), we see 

that the variational integral J[I$] becomes 



(Y- 1 )Mt 21 2 a 
J[xl = P, 1 + - 

2T2 
l- 2 cos 0 xr++ sinOX-x --x )I 8 rr20 

0 1 
YMi 

- I+- 
( 

r2 - f r2 + 1 
T2 r2 ~0s 0 x, - r3 sin -9 x0 rT2 dr. 

. . . . (2.8) 

The boundary conditions on x are 

SC - cos e at r = 1, 

X = 0; 
0 

as r -t 00. (2.9) 

The local Mach number M and the local nondimensional pressure pL are given by 

M = Mm; (1 - (;y)]-4 , 

P= 
pL = p, L- 1 + f(y - 1) Mz 

(2.10) 

(2.11) 

where q is given by (2.5), 

The transform modulus T cannot, in general, be expressed analytically 

except for very special bodies such as ellipses. Thus if the flow past a 

realistic aerofoil is desired a numerical evaluation of T must be used. In 

this paper we mainly consider ellipses for which 

T2 = -$ [(r2 + l2)2 - 4x2r2 cos2 e] (2.12) 

where A 2 is the following function of T, the thickness ratio of the ellipse, 

(2.13) 
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3 NUMERICAL METHOD 

The object of the calculation is to find for given MoJ and aerofoil shape 

a function x which maximizes J M as given by (2.81, and satisfies the 

boundary conditions (2.9). If we only consider nonlifting bodies which are 

symmetric about the axis y = 0, it is only necessary to treat the interval 

o< 0Q.n. Since the derivatives in both directions are approximated by 

finite differences, it is necessary to have a finite computation region. This 

is obtained by replacing the infinite integration limit on r by a finite 

limit R and insisting that the reduced potential x satisfies an appropriate 

condition at r= R. The manner in which R is determined is described 

later. The simplest condition to impose is that x equals the reduced potential 

for incompressible flow at r = R. A more complicated procedure which involves 

an asymptotic solution that takes into account the shape of the body is 

developed in the Appendix. When R = 20 or larger the two boundary conditions 

give results which are identical to within the accuracy of the method, but for 

smaller values of R the second condition is more accurate. 

Thus the variational integral (2.8) reduces to 

J [xl = P, Fh%xr,xe)dr 
0 1 

(3.1) 

where 

(Y - I)$, a 
F = 1 + 

2T2 
T2 - I - 2 cos e x, - I 

cos e xr - r2 .; ' sin 0 x (3.2) 

The boundary conditions are now 

g=o at e=o,n 

s= - cos e at r=l, 

1 
X = iT cos e at r=R 

(3.3) 
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where the last condition can be replaced by the condition derived in the 

Appendix. 

If r and 0 are measured along Cartesian axes, we see that the 

integration domain is a rectangle, Fig.2, The domain is divided into an 

irregular mesh given by the intersections of two sets of straight lines which 

are defined by 

0 = el<e*<...<em = IT 

where h. = S 1 ii-1 - ei 

and 1 = 
rl 

< < 
r2 Ooo <r = R 

n 

where k. = 
J ':j+l - rj" 

We can now explain how a value for R is decided on. Let o = l/r so 

that the interval l<r< 03 is mapped into 1 G u G 0, and divide [O,l] into 

n equal parts. By use of r = l/a the interval 1 Gr<m is then divided 

into n unequal parts, and we set R = rn; i.e. R = n. Thus the value of R 

depends on the number of mesh points in the radial direction. This procedure is, 

of course, equivalent to mapping the outside of the unit circle onto the inside 

using the mapping r = l/c in order to get a finite computation region as was 

done by Sells4, 

The grid lines of constant 0 map into curves in the physical plane which 

are clustered around the areas of high curvature on the aerofoil, see Sells 
4 

, 

p.381, Thus the grid used ensures that there are more points in the regions 

where the flow varies rapidly than elsewhere. 

The infinitely-dimensional variational problem is now replaced by a 

finitely-dimensional problem. Consider four neighbouring points as shown in 

Fig.2. The derivatives of x in the rectangle formed of the grid lines 

1, i + i and j, j + 1 are approximated by finite differences 

g = 'i+l,j + 'i-l-1 pj+l - Xi ' - Xi j+l , 
93 9 

2hi 

+ x* 191 j+l - 'ipj - 'i+l,j 
2k. 

. 
J 



With these expressions J[Xl can be approximated for the rectangle by 

'i, j+l + x. 
- 2 cos e1 

I+1 ,j+] - 'i, j- 'i+l j 
2k. 

J 

+ + 2 sin 8 xi+l,j ';+I,, - Xi - '+* ' ,J Xi ,j+l 

5 1 2h. 1 

-( 'i, j+l l ‘;+I,;1 ‘+1 - Xi . - Xi+I ’ 2 
2-l 

2k. 
J 

‘+1 - Xi ’ - xi 2 a 
,J ?J ,j+l 
2h; 

)I 

_ 1 + $ (':.i l)us e, 'i,j+l + 'i+J,j;kj- 'i,j - 'i+J,j 

2 

5 + 1 x- + 

sin 9 

l+l,j 'i+] - J '+I xi - . 93 Xi " '+* 

3 1 2h. 

,! 

rlT2h.k. 
l-1 1 13 

. . . (3.4) 

where 8 1 = 8; + 0.5 hi, r, = r. + 0.5 k., and T is evaluated for 
J J 5 and 5' 

Before we can sum the contributions for each rectangle, it is necessary to 

consider the treatment for the boundary conditions. 

One of the four boundary conditions that X must satisfy creates no 

problems. From (3.3) we see that at the line j = n X is prescribed, so no 

modification is required to the procedure described above. However, at the 

lines i=l,i = m and j = I only the normal derivative of X is prescribed. 

Let us first consider i = m. Here xe must be zero, and in order to approxi- 

mate this we add an extra line i = m + 1 to the mesh such that h m = hm-J, and 

then set 
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Similarly at i = 1, we add an extra line i = 0 such that h, = h 0 and then 

set 

x0 = x* 0 

The boundary condition at j = 1, i.e. at r = 1, is approximated in a 

different way, Here we use an interpolation between the three points (i,l), 

(i,2) and (i,3) and find that 

k2 + 2k I kI + k2 kI 
- 'r I r=l 

= kl(kl + k2) 'i,l - klk2 'i,2 + k2(kl + k2) 'i,3 ' 

Since x, = - cos 8 at r = 1, we have that 

1 x* = - 
J-9 1 k2 + 2kl 

0 k2)2 xi 
9 2 

k2X 
1 i,3 

1 + kl (kl + k2) cos 8 1 . 

. . . (3.5) 

We can now sum the contribution (3.4) for each rectangle, and we see 

that J [xl can be approximated by 

The values of y,. 
19j 

which maximise this expression are given by the solutions 

to the equations 

a5 i = 1,0..9 n 9 
- = 0, 
ax. =A j=2 9ooo9 m - 1 . 

(3.6) 

These equations were solved by a Newton's method in the fcllowing way. For a 

given (i,j) we can write (3,6) in the form 

g(x ij) = + B x. +c> '-' 
9 s 19j S 

(2Asxi j + Bs) + Ds 
9 

Hs = 0 

s=l 

where A 9 B D C D H s9 s9 s 
are functions of x at the neighbouring points and 

of h i9 iti ,: k., k 
J j-1' Let x!" 

lpj 
be the qth approximation to the solution. 
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Then an improved estimate is given by 

x!qy) = x!q! - 
1,J 1,J 

where 8' (2) = dgjdz. This process is carried out for each point in turn 

with the calculated values being used as soon as they are available. In 

this way x can be calculated to the desired degree of accuracy. When 

equations (3.6) are solved, (3.5) is then used to evaluate x on the surface. 

Calculations were also carried out for the regions x/2 < 8 <IT, 

1 Qr <R and sr/2 < 8 <3x/2, I <r GR. The boundary conditions at 8 = x/2 

and 3x/2 are for a body symmetric about x = 0 so that x vanishes there. 

The approach used by Greenspan and Jain3 differs in some important 

aspects from the one described above. Given an interior point (i,j) they 

approximate the derivatives of x by 

= ‘i,j+l - ‘i i 
Ar , 

0 
a = 'i+lj-'ij 

a0 A8 
. 

Lj 

These expressions are then substituted into J[x] to give an approximation J. 
l,j 

for the rectangle (i,j), (i+l,j), (i+l,j+l>, (i,j+l). A summation over all 

the points gives a global approximation J' to J. The boundary conditions are 

then used to obtain approximations to x on the boundaries in terms of the 

neighbouring interior points, and these boundary values of x are substituted 

into J'. A maximizing expression is found for J' by solving the equation 

aJ’ -= 
ax. 

0 
l,j 

for all interior points. 

The main differences between the two approaches are the treatment of the 

boundary conditions on the surface of the body and the extent to which the 
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values of x at the neighbouring points appear in the equation for x. 
1X 

Greenspan and Jain approximate the condition x, = - cos 0 at r = 1 by writing 

x* 190 
= Ar cos ei -+ xi 1 (3.7) 9 

where (i,O) is on the surface, while we use a three points interpolation. Due 

to the way in which they approximate the derivatives of x, their equation for 

x- - 
19J 

depends only on x at six of the eight neighbouring points, the points 

(i+l,j+l) and (i-l,j-1) being excluded, This is in contrast to the approach in 

this paper where x at all the neighbouring points are used, It is difficult 

to know if these differences accounts for the fact that our solutions for flow 

past a circle are closer to other approximations near the stagnation points 

than those obtained by Greenspan and Jain. 

4 CONVERGENCE 

Two different convergence criteria were used. In the first one the 

iterative scheme was continued until the Mach number on the surface of the body 

changed by less than 1,O x 10B5 during one iteration. This gives a solution 

of similar accuracy to that obtained by Sells4, It was found that this criterion 

was approximately fulfilled if the reduced potential did not change by more than 

the same amount during 100 iterations, Usually about 800 iterations were 

required, but this depended, of course, on the number of mesh points and on the 

value of the free stream Mach number., For the calculation of the flow past a 

10% ellipse with Mm = 0.8 on a 17 x 21 grid on the region I Gr < 21, 

0GeGTr 1000 iterations were required, and the computing time on an IBM 360 

was about 20 minutes, 

The rate of convergence was increased by using overrelaxation at the end 

of each iteration, Thus if . pg > was obtained by solving equations (3.6) the 

new value of x9 x:431) was ,,iil,, by 
9 

xw) = w pPl) 
id Lj + (1 - w) xi’; 

, 

where w is a parameter greater than zero. If w < 1 we have underrelaxation 

and if W>l overrelaxation, It was found by trial and error that the best 

convergence for the ellipse was achieved with w = 1.4, but no extensive search 
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for an optimal value was carried out. Even when the local Mach number was close 

to unity, it was not necessary to use underrelaxation in order to obtain con- 

vergence. This is in contrast to Sells'. 

A number of calculations were carried out for a 10% ellipse with a free 

stream Mach number of 0.8 on a quarter plane in order to test the importance of 

different grid sizes. Some results are given in Table 1, and they seem to 

indicate that if the number of points in either the radial or the angular 

direction is increased, the local Mach number on the surface converges. 

Table 1 

Local Mach numbers on the surface of a 10% ellipse 

with M OD = 0.8 for different grid sizes 

e 9 x 41 9 x 31 

22.5O 0.8617 0.8615 

45.0° 0.9409 0.9413 

67.5' 0.9683 0.9689 

90.0° 0.9763 0.9769 

Grid 

9 x 21 13 x 21 17 x 21 

0.8606 0.8615 0.8621 

0.9419 0.9447 0.9457 

0.9702 0.9739 0.9752 

0.9783 0.9825 0.9839 

5 RESULTS 

The main part of the calculations were carried out for non-lifting 

ellipses of different thickness ratios, but some results were also obtained 

for Rarman-Trefftz profiles. In most of the calculations the computation 

region was 0 Ge <v, 1 G r GR, and the solutions show that when the flow 

is subsonic the potentials for non-lifting ellipses are always symmetric about 

the line 8 = ~12. A few calculations were carried out for n/2 < 8 < 3~12 in 

order to check the accuracy of the treatment of the boundary conditions at 

8=0 and e=n. Since the results were identical with those obtained for 

0 G 8 G IT it was considered sufficient to only carry out the calculations for 

the upper half-plane. The results in this section for the different ellipses 

were obtained using the reduced incompressible solutions as boundary conditions 

at r = R, while for the l&-man-Trefftz profile the boundary condition derived in 

the Appendix was used. 

One of the simplest cases to consider is that of a circle for a free stream 

Mach number just below the critical value. Table 2 shows results obtained with 
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a 21 by 21 grid and gives also for comparison similar results by the program 

developed by Sells4, Very good agreement is achieved. 

Table 2 

Local Mach numbers on the surface of a circle, Mm = 0.39 

8 Sells Our results 

o.o” 0,o 0.0 

9,0° 0.1123 0.1123 

1800' 002246 0.2245 

27.0' 0.3367 0.3366 

36.0' 0.4483 0.4482 

45.0° 005587 0.5585 

54.0° 006665 0.6661 

63.0' 0.7689 0.7682 

72.0° 0.8604 0.8591 

81.0' 0,9301 0.9276 

90.0° 0.9582 0.9544 

Table 3 

Local Mach numbers on the surface of a 10% ellipse, Mm = 0.8 

8 Sells Our results 

o.oo” 0.0 0.0 

11,25' 007640 0.7250 

22050' Oo8900 0.8606 

33,75O 0.9170 0.9132 

45.00° 0 09398 0.9419 

56.25' 0.9609 0.9590 

67.50' 0.9756 0.9702 

78075' 0.9831 0.9762 

90,00° 0.9855 0.9783 

A more exacting test of the programme is to calculate solutions for thin 

bodies at high speeds. In Table 3 results are given for a 10% ellipse with a 

free stream Mach number of 0,8 and with the calculations done on a 17 by 21 
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grid. Again results obtained by Sells'programme are presented for comparison. 

The agreement away from the neighbourhood of the stagnation points is good, but 

near these points they differ by about 5%. It is not clear what the cause is of 

this difference. Since in both procedures conformal mappings are used to trans- 

form the ellipse into the unit circle, it would seem that the treatments of the 

region of high curvature are identical. It is possible that it is the different 

treatments of the boundary condition on the surface that are the cause. In 

Sells' programme the stream function is used so the boundary condition is the 

simple one of setting it equal to zero on the surface. In our programme, 

however, it is the normal derivative of the velocity potential which is pre- 

scribed. Different ways of treating this condition were tried out, but no 

improvement over the results presented here was achieved. 

The values of the free stream Mach number were also increased until the 

numerical procedure ceased to converge. For a 10% ellipse with a 17 by 21 grid 

it converged for Ma, = 0.82 but not for 0.83. In Table 4 the values of the 

local Mach number along the surface are given for different values of Mm. 

The flow past a Barman-Trefftz profile of 10% thickness and with a 

trailing-edge angle of 6' was also calculated for different values of the free 

stream Mach number. The conformal transformation used is given by 

m 
z-mk u- 1 -= 
z+lllk a-1+2k 

where the values m = 1.9667 and k = 0.9375 were used. Some selected values 

of the local Mach number are given in Table 5, see page 18. 

6 DISCUSSION 

It has been shown in this paper that the application of finite differences 

to the modified form of the Bateman-Dirichlet Principle can produce a satis- 

factory numerical solution for the plane flow past a non-lifting ellipse and a 

Karman-Trefftz profile. For a circle the results are much better than those 

obtained by Greenspan and Jain3 and are in close agreement with the results of 

Sells4. The results for a thin non-lifting ellipse agree well with Sells' 

results except near the stagnation points where for a 10% ellipse with M = 0.8 m 
the difference between the local Mach numbers is about 5%. No satisfactory 

explanation has been found, but it may be due to the different boundary con- 

ditions on the surface since Sells worked with a streamfunction which vanishes 
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Table 4 

Local Mach numbers on the surface of a 10% ellinse 

o,o” 
11.25’ 

22.50’ 

33 0 75O 

45.00° 

56 o 25’ 

67.50’ 

78075’ 

90.00° 

101.2S” 

1 12.50° 

123,75’ 

135.00° 

146,2S” 

157.50° 

168,75’ 

180.00° 

for different values of Mm 

M = 0,70 03 Mm = 0080 M = 0.82 co 

0000 0.00 0.00 

006569 0.7250 0.7351 

007587 0.8606 0.8768 

0.7888 0.9132 0.9357 

0.8019 0.9419 0.9696 

0.8081 0.9590 0.9940 

0,8115 0.9702 1.0089 

0,8131 0.9762 1.0242 

008136 0.9783 1 .C281 

0.8131 0.9762 1 .C213 

0.8115 0,9702 l.Cl19 

0.8081 0.9590 0.9922 

0.8019 0.9419 0.9704 

0.7888 0.9132 0.9353 

007587 0.8606 0.8771 

0.6569 0.7251 0.7349 

0,oo 0.00 0.00 

Table 5 

Local Mach numbers on the surface of a 10% Karman-Trefftz 

profile with a trailing edge angle of 6O for different values of Ma 

o,o” 
2205’ 
45,oo 
67.S” 
90.0° 

112.5O 
135.0° 
157.5O 
180.0° 

Mm = 0060 

0,oo 0.00 0,oo 
0.5463 0.6291 0.6676 
0.5884 0.6833 0.7287 
006345 007452 0.8009 
0,681l 0.8122 0.8841 
0,7192 0.8715 Oe9682 
0.7327 0.8886 0.9846 
006783 0.7936 0.8453 
0.00 0.00 0.00 

Ma = 0.70 M o3 = 0.75 
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at the surface while in the present work it is the normal derivative of the 

velocity potential that is set equal to zero. 

It is planned to extend the present work to more realistic profiles. 

This will, in general, require a numerical evaluation of the transform modulus T 

as was done in Sells 4 . It will then be possible to obtain solutions for other 

thin bodies, besides the ellipse, and it will be interesting to see if these 

solutions will also be different from those calculated by Sells' programme 

near the stagnation points. Since the variational principle also holds for 

three-dimensional flows, it is also possible to change the programme so that 

the flow past axisymmetric bodies can be treated. 

So far no attempt has been made to show the convergence of the numerical 

method used. However, if we only consider the reduced problem on the finite 

region 1 <r <R for given R it should be possible to show convergence by a 

modified form of the approach used in Rasmussen 7 where the convergence of the 

Rayleigh-Ritz method in plane subsonic flow is studied. 
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Appendix 

we now derive the alternative form of the boundary conditionson x at 

r =I R for an ellipse. The basic idea is to find an asymptotic form of x 

valid for large r which takes into account the shape of the body. 

In a Cartesian coordinate system the equation for the velocity potential 

4 can be written in the form 

cc 
2 

- G+& - 2$x4y4xy + k2 - +9, = 0 

where c is the local speed of sound. If a conformal transformation is used 

to map the ellipse onto the unit circle we obtain after some manipulation the 
following equation 

- 1 (j2$ 
r4T2 e ee 

+ (4; + $) [2h2r;f$ e 0, + ) (1 - $)I = 0 

where T 2 - 1 2 = 4 (r + X2) - 4A2r2 cos2 e 1 . r 
We now suppose that 0 can be written in the form 

9 = u 
( 

r cos e + + f(e) 
) 

which is equivalent to supposing that 

X = i f(e) . 

(A-1 > 

When this is substituted into equation (A-l) and only the coefficients of 

rW3 are retained, an equation for f(e) is obtained: 



22 Appendix 

(1-M' sin' e)f" -4Mi sin 8 cos 0 fp + + (3 Sin’ e - 2)bf: 1 f = - 2x2M2 cm cos 30. 

The general solution of this equation is 

A cos 0 + B sin 0 - A2Mz sin' e cos 8 
f(e) = (A-2) 

I - Mt sin2 0 

where A and B are unknown constants. The potential 4 must be symmetric 

about 8 = 0 and IT and antisymmetric about 8 = ~rj2 and 3~/2. Hence B 

must be equal to zero. 

The constant A is found by comparing the calculated value of x at 

r=r 
n-l 

to r ii, fwo Since x is given by a set of values at 

e1 dz9 0.") en9 
the method of least squares is used to give the best fit. The 

difference between the calculated x and r,A1 f(e) at any i is 

cos ei(A - h2M2 sin' cc ei) 

r n-1(' 
- Mt sin' 8;) 

- x. l,n-1 ' 

For the best fit we must minimize 

- h2M2 sin' 0 

- Mz sin' ei) 

A necessary condition for A to give a minimum is that dD'/dA = 0, and the 

solution to this equation is 

X2M2 cos' m ei sin' ei 
r + 

n-l 1 
A = 

i rnml(l - Mt sin2 0;): 

2 . 

F cos 8. 1 

l+ (1 - Mt sin‘ 0;)' 
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This constant can then be evaluated at the end of each iteration and from (A-2) 

we see that x at r = R is given by 

cos 0 (A - A'M: sin2 f3) 
X = . 

R(l - Mt sin2 9) 
(A-3) 

For the flow past a 10% ellipse and a free stream Mach number of 0.8 the 

final value of A was 1.11450. 

It is seen from the expression for x that for large values of R this 

expression differs only little from the incompressible solution x = R-' cos 8. 

However, if only 10 grid lines are used in radial direction, as in Sells 4 , the 

corresponding value of R would be fairly small, and in this case it would be 

necessary to use (A-3) as boundary condition. The change in A between two 

consecutive iterations gives also an indication of the rate of convergence of 

the solution. 
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