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SUMMARY 

The integral equation formulation developed in Ref.(l) for the 

analysis of the high subsonic shock free flow past a steady two-dimensional 

aerofoil is extended to the problem of an aerofoil oscillating in simple 

harmonic motion. The essential non-linearities in the transonic potential 

equations are retained in the analysis. Results are obtained for the in 

and out of phase force and moment derivatives at the fundamental frequency 

for a NACA 0012 aerofoil oscillating in pitch at a low reduced frequency in 

subcritical conditions. It is found that both the aerodynamic stiffness 

and damping derivatives are significantly affected by the transonic 

non-linearities. Unfortunately, because of uncertainties of wind tunnel 

interference effects at the present time, it does not seem possible to 

compare these theoretical results with experimental results. Neither are 

there any other theoretical results for comparison. 
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NOTATION 

ao(5) 
b,(S) 
C 

cn 

C(k) 

C 

cp(w’t) 

cpn(kZ) 

EC1 (4 

EC, (4 

k 

i,G) 

= Scaling functions defined in Eq.(lOl) 

= Scaling functions defined in Eq.(107) 

= Boundary of the domain S and shown in Fig.2 

= Coefficients defined in Eq.(67) 

H(2)(k) 
= 

Hi2h) + i H;2)P4 

= Aerofoil chord 

= Pressure coefficient 

= Reduced pressure coefficient defined in Eq.(18) 

= Function defined by Eq.(108) 

= Function defined by Eq.(108) 

= Function defined by Eq.(108) 

= Function defined by Eq.(13) 

= Approximating function defined by Eq.(lOl) 

= Approximating function defined by Eq.(103) 

= Integral defined by Eq.(59) 

= Integral defined by Eq.(83) 

= Integral defined by Eq. (85) 

= MWfi 

= (y+l) Mt 

= Loading defined by Eq.(63) 

= Derivatives defined by Eq.(74) 



M(x,z ,t) 

MC0 
m 

a 

m. 
a 1 

N(i,z) 

n 

R 

r 

S 

t 

u(x,z,t) 

i7,(w) 

“m 
w(x,z,t) 

Wn(X,5) 

X 

Z I 

X 
0 

i 

z 

z,(x) 
ZJX) I 

= Local Mach number 

= Freestream Mach number 

= Derivatives defined by Eq.(75) 

= Inward drawn normal to the curve C 

= Number of harmonic 

= The radius of the outer boundary of S 

= ps,2 + (i-i)']: 

= The domain in which Green's theorem is valid and 
shown in Fig. 2. 

= Time variable 

= Perturbation velocity in the freestream direction 

= % 7,&Z) 

= Freestream velocity 

= Perturbation velocity normal to the freestream 

= 
a&~,z) 

a? 

= Cartesian co-ordinate system 

= Location of pitching axis 

=x . 

= $Z 

= Mean ordinate of the upper surface of the aerofoil 

= Mean ordinate of the lower surface of the aerofoil 

= Components of zou(x), zoi(x) 

= k z (x) 
B3 r 

= k z (x) 
B3 c 

P 



Time dependent ordinate of the aerofoil surfaces 

Mean angle of incidence 

sa 

Amplitude of pitching oscillation 

k 
83 Oo 

(l-M2)$ QJ 

Functions defined in Eq.(69) and Eq.(llO) 

Ratio of specific heats 

McaJ 2 $ 
In(F) + (l-M=) In 

Cartesian co-ordinate system corresponding to (x,z) 

cos-1(1-2X) , 

cos-'(l-2S) 

i In 
I 

'-if + (,-~2)3(,-,2)3 

l-Xi - (l-12)1(1.?)~] 

: the frequency parameter 

Perturbation velocity potential 

Function defined by Eq.(7) 

f 4$w) e 
-iMznnx 

$,-(x,?) + in M:Q&(~,?) 
X 

Function defined in Eq.(B) 

= Frequency of oscillation of the aerofoil 
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1. INTRODUCTION 

At the present time many problems within the overall field of 

inviscid wing theory rely for their solution on linearisation of the 

fundamental equations. Although two-dimensional steady aerofoil 

theory is a major area where significant progress has been made 

beyond linearised theory, two-dimensional oscillatory aerofoil theory 

still remains primarily a linearised theory throughout the Mach 

number range, from subsonic through transonic to supersonic speeds. 

The range and combination of parameters for which linearisation is 

valid have been classified by Landahl (2) and by Miles (3); linearised 

oscillatory wing theory is described in the AGARD 'Manual of 

Aeroelasticity ' (4) and surveyed more recently by Landahl and Stark PI* 

The aim of this paper is to improve the standard linearised 

solution for the two-dimensional oscillating aerofoil in the high 

subsonic flow regime , where linearised theory is suspect, by extending 

the ideas developed in Ref.(l) for the solution of the steady two- 

dimensional aerofoil problem. 

At the present time linearised theory is the standard approach 

for the determination of oscillating aerofoil characteristics at high 

subsonic speed, so a few brief introductory remarks on linearised theory 

are appropriate. 

The linearised differential equation representing the flow 

characteristics about an aerofoil oscillating in a high subsonic stream 

can be formulated either in terms of a perturbation velocity potential (6) 

or in terms of a reduced acceleration potential (7). Application of 

Green's theorem satisfying the appropriate boundary conditions reduces 

both of these formulations to singular integral form; the problem then 

is to invert the integral equation in order to evaluate (numerically) 

the pressure distribution, the overall lift and moment. Formulation of 

the problem using the velocity potential is fairly straightforward but 
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difficulties arise because both the wing and wake have to be considered. 

When the reduced acceleration potential is used the wake does not appear 

explicitly but then the application of the boundary condition on the 

wing becomes more complicated. Jones (6) solved the problem of the 

oscillating aerofoil at subsonic speeds for low values of the frequency 

parameter using the velocity potential; an iterative procedure was 

employed to solve the integral equation starting from the incompressible 

flow solution. Dietze('), on the other hand, developed a similar 

iterative approach, also starting with the incompressible solution, but 

using the reduced acceleration potential. Direct collocation methods 

for the solution of the integral equation mainly using the reduced 

acceleration potential have been developed; Possio(8) and Frazer(') 

were the forerunners of this type of approach; a more recent 

development is by Zwaan (10). Analytic solutions can be found in terms 

of an infinite series of Mathieu functions (11) but the convergence of 

the series is slow for high freestream Mach numbers. 

Non-linearities become important at transonic speeds and although 

the potential equations can be linearised for high values of the frequency 

parameter at Mach numbers close to unity there is a practical range of 

conditions involving Mach number and frequency parameter where the non- 

linear potential equation must be used in order to obtain meaningful 

results. 

As mentioned earlier, significant advances have been made on the 

solution of the non-linear equations for the flow about steady two- 

dimensional aerofoils at transonic speeds. Virtually all of the 

current methods and techniques being investigated for the steady problem 

are reviewed in Ref.(l) where they are assessed from the point of view 

of their capability for extension not only to oscillatory aerofoil 

problems but also to finite wings. The conclusion of that evaluation 
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is that although several accurate numerical techniques ('2) (13) ('4) 

exist, these techniques are restricted to the steady problem either 

by their analysis or by their computational complexity; the most 

promising steady theory which offers hope for extension to oscillatory 

motions is the integral equation formulation ('5). One main advantage 

is that this approach essentially extends standard linearised theory 

and so the considerable expertise built up over the years in solving 

the linearised equation can be utilised. 

As already stated this paper is an extension of the earlier 

work(') to an oscillatory motion of an aerofoil at high subcritical 

Mach numbers. The aerofoil is assumed to be oscillating in simple 

harmonic motion about a mean incidence at a particular fundamental 

frequency. As a consequence of the non-linear nature of the potential 

differential equation the solution for the perturbation velocity and 

pressure must take the form of a series in multiples of the fundamental 

frequency. An infinite sequence of potential differential equations 

is formed; each differential equation consists of the harmonic under 

consideration and a non-linear combination of all preceding harmonics. 

Steady flow about the aerofoil at its mean incidence appears as the 

first term in the series. It is shown that the magnitude of the 

response in successive harmonics decreases. 

Application of Green's theorem, satisfying the appropriate 

boundary conditions, reduces each of the differential equations to two 

simultaneous integral equations in which the symmetric and anti-symmetric 

effects are coupled through double (surface) integrals involving non- 

linear quadratic terms. By approximating the variation of the flow 

field normal to the aerofoil surface the double integrals are reduced 

to single integrals over the wing chord and downstream wake; the coupling 

between the symmetric 'thickness' and the antisymmetric 'lifting' effect 

is still retained. A particular result for the case of a symmetric wing 
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oscillating about a zero mean incidence is that even and odd numbered 

harmonics of the velocity potential are antisymmetric and symmetric 

respectively. 

For simplicity at this stage the problem is limited to that of 

a symmetric wing oscillating about a zero mean incidence. First the 

steady flow past the aerofoil at zero incidence is obtained by the 

application of the method of Ref.(l). Then the technique used by 

Jones t6) is applied to obtain the characteristics at the fundamental 

frequency. Since the latter method is restricted to low values of 

the frequency parameter the non-linear theory presented here is 

similarly restricted. 

Following the technique used by Jones (6) the integral equation 

is solved by assuming the conventional Fourier series to represent the 

wing loading. Although the series is slowly convergent in respect of 

the pressure loading at any one point on the aerofoil surface, a 

combination of the first four terms in the series gives the overall 

lift and moment. Only overall lift and moment are derived in this 

paper; the calculation of the pressure loading distribution is not 

attempted. To estimate the pressure loading collocation techniques 

are required; this alternative approach will be investigated in a 

later report. 

Results for the stiffness derivatives 2 c1, mcl and the damping 

derivatives Z., 
a 

mk are presented. With the pitching axis at the 

leading edge the non-linear derivatives differ by a significant 

amount from the corresponding linear values. Variation of Z., m 
a a’ 

rn& with changes in the pitching axis is also obtained. 

Harmonics depend solely on the non-linearities and difficulties 

arise in the approximation of the variations in those terms throughout 

the flow field which are needed if useful results are to be derived. 



-5- 

No solutions for the harmonic terms are given in this paper. 

Unfortunately no reliable experimental results seem to be 

available for two-dimensional aerofoils oscillating in an infinite 

uniform stream; although wind tunnel measurements have been made 

the uncertainties due to the large wind tunnel wall interference 

effects are sufficient to cause considerable doubt on the interpretation 

of the measurements. There is furthermore an absence of any 

comparable theoretical results. Thus no comparisons are possible 

at the present time with either other theories or with experimental 

results. 
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2. MATHEMATICAL FORMULATION 

2.1 Basic Equations 

To study the problem of a two-dimensional aerofoil oscillating 

in a uniform stream, a Cartesian co-ordinate system is set up as 

shown in Fig. 1; the origin is taken at the mean position of the 

wing leading edge; the x-axis is in the freestream direction with 

the z-axis normal to the freestream; the co-ordinates x and z are 

non-dimensionalised with respect to the wing chord c. 

A non-dimensional perturbation velocity potential $(x,z,t) 

may be defined by 

- = u(x,z,t) , p = qx,z t> ax , , (1) 

where u(x,z,t) and w(x,z,t) are the non-dimensional perturbation 

velocities in the x and z directions respectively normalised with 

respect to the freestream velocity UoD. 

The unsteady transonic potential equation for inviscid non- 

conducting, isentropic, irrotational flow around a two-dimensional 

aerofoil as derived by several authors (e.g. Guderly (16)) is 

2 M; c M2 c2 
(1-M: - (v+l)M: cp,) +xx + @zz - u +xt - -+-- & = 0 (2) 

00 m 

In the derivation of Eq.(Z) it is assumed that cp and its derivatives 

are small compared to unity; the second order term (y+l) M; $x @,, 

is retained at transonic speeds because it is of comparable order of 

magnitude to the term (1-M:) $xx. 

The boundary conditions are: 

(i) the flow at the aerofoil surface remains tangential 

to the moving aerofoil surface; 

(ii) the pressure is continuous off the wing, particularly 

across the wake; 
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(iii) the perturbation velocity potential $(x,z,t) vanishes 

at large distances upstream of the aerofoil; 

(iv) the Kutta trailing edge condition must be satisfied, 

namely the velocities at the trailing edge must 

remain finite. 

For small amplitude oscillations the upper and lower surfaces 

of the wing at any time, t, may be denoted by the non-dimensional 

functions z,(x,t) and z,(x,t) respectively. It is now assumed 

that the wing oscillates in simple harmonic motion with frequency w 

and that the upper and lower surfaces of the wing at any time can 

be expressed as 

. 

zu(x,t) = zou(x) t zl(x)elwt, 
. 

z,(x,t) = zoL(x) t zl(x)elwt, 

where it is assumed that zou(x) and zoc(x) represent the mean 

profile and zl(x) is the mode shape of the oscillation, The mean 

surface ordinates zou(x) and zoL(x) can be expressed as 

zou(x) = - ax + Z,(X) t z,(x) , 

zO‘OO = - ax + z,(x) - z,(x) ; 

where a is the mean angle of incidence, z,(x) and z,(x) are the 

mean camber and thickness distributions. 

The tangency boundary conditions are 

w(wu,t) azuW-) azuow . c 
m= ax + at uJl+u(x,z 

llstJf 

az,,(x) 

[ 

az 0) ivz,(x) 

= ax + x+---y1 1 +u(wu,t)) 
,if& 

3 

W(W‘ a> az, (x ,t) az,(x,t) 
+ltu(x,z‘,t) = ax + ax l :_(ltu(x,z,,t)) 

azO‘ 0) ivz,(x) 

= ax t t (l+u(x,z ,t)) I 

,i& 
, 

(3) 

(4) 
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where v is the frequency parameter (WC/U,). 

By means of a Taylors series expansion Eq.(4) can be 

expanded as 

[ 
azou(x) az (xl 

W(X,+O,t) = ax + -+ eiwt I[ 1 + u(x,tO,t) 1 
t ivzl(x)e iwt 

- [pl tJzou(x) 
= 

t zl(x)ei"'] +. 

w(x,-0,t) = 

t 

[ 
az, (4 
ax 

t 

ivzl(x)e iwt 

az, (xl ,i& I[ 1 
-‘&ii ,[ 

+ u( 
z. ( =- 

x,-W) 1 J 

x) t z,(x)elwt * 1 +.. 

(5) 
As discussed later, to ensure that second order accuracy is introduced 

around the nose it is necessary to include some second order terms in 

the boundary conditions, Eqs.(5). However, at this stage to the order 

of approximation of the transonic potential equation, Eq.(Z), the 

tangency boundary condition in Eq.(5) reduces to the linearised form 

on the plane z = 0, thus 

a&w d) 
w(x,+O,t) = az 

1 I 

azou (4 

I 

az, (xl 

= ax + ax 
t ivzl(x) 1 e iwt 

z=to 

ag(w,t) w(x,-Od) = az r I 
azo,( xl az, 04 

= ax + ax [ + ivz,(x) 
I 

e iwt 

z=-0 (6) 

Because of the non-linear terms in the basic differential equation 

it is necessary to express the perturbation velocity potential, $(x,z,t) 

in terms of a series in the fundamental frequency, thus 

. 
cp(x,z,t) =,yo f+(x,z)e’wnt (7) 

On substitution of the series expressed in Eq.(7) into Eq.(Z), 

then equating coefficients of e 
iwnt , the following set of equations 

is obtained: 
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(1-M:) $nxx t $nzz - 2i Minv 3,x t Yz n2v2 $,, 

= (v+l) r!t k i$ .I, ('@r) 'j" ) 1 
x x 

On substitution of Eq.(7) the boundary conditions expressed 

in Eq.(6) become 

( 
a 90(x9z) 

> = - 
az z=+o 

CY, + z;(x) + z'(x), 

( 
a 4+-4 

az 1 
z=-to 

= z:(x) t ivz, (x), 

(8) 

( 
a I, 
az ) = 0 for n+Z, 

ZZ'O 

where the dash denotes differentiation with respect to x. 

Eq.(8) can be transformed by introducinq the parameters 

and the variables 

x=x , 5 = $Z ) qi,z; = k 4)p~z)e 
-il,li ni 2 

B2 

(10) 

Substitution of the variables dcfiiied in Eq.(lO) into Eq.(8) 

leads to 

T nxT' t $-;s t n2K2 in = g,,x , (11) 

where 

-iPl~nG 
gn,(X,Z) = e 

n 
1 (i,JZ)e 

iYz(n-r)Qx- 
qae 

iM:rQx 
)- ( L 1 - 

r=O X 
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In the subsequent analysis it is gn(x,?) which is required; 

integration of Eq.(lZ) gives 

where 

g* 
"i 

(X,5) = in 
R 

(ii,?) t iM:nQ in(X,f) 

On application of the transformed variables- of Eq.(lO) the 

tangency boundary conditions expressed in Eq.(9) become 

( 
G,(G) 

1 = - 
ati ;=q 

A t r;(i) * i(X) ) 

(14) 

(1W 

( 
ai, (X2) 

ai! 
1 = W,(;C,*O) = 
;=*o 

+ ivZ,(X) e 3 
-iM$ 

, (15b) 

( ai, 
a? 

> = W,(X,'O) = 0 for n s 2 , 
&) 

where 

ifi+ a, Q(ro = $y z,(x) t q(i) = $ z,(x), Z,(X) = 5 z,(x) - 

The first equation from Eq.(ll), when n = 0, is 

which, together with boundary conditions Eq.(l5a), represents the 

steady flow. 

The second equation from Eq.(ll), when n = 1 is 

(W 

which, together with boundary condition Eq.(l5b), represents the 

fundamental response. It is noted that Eq.(lGb) is linear in sl. 
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On putting n = 2 in Eq.(ll) 

which, together with boundary condition Eq.(l5c), represents the first 

harmonic. 

The pressure coefficient, cp(x,z,t) can be found from the 

unsteady Bernoulli equation; to the order of approximation of Eq.(2) 

Expanding cp(x,z,t) in a series in the frequency parameter in a 

similar manner as the velocity potential. 

cp(x,z,t) = ? cp (x,z) elwnt . 
n=O n 

And from Eqs. (7), (12), (17), (18) 

(‘8) 

cpn(x,z) = - 2 g [ 
2 

ij,i(X,I) t inn TJi,Z) 1 e 
iMmnnx 

('9) 

The boundary condition of continuous pressure off the wing across 

the wing wake can, by reference to Eq.(l9), be expressed as 

A 5,,,(i) t inn A 5,(i) = 0 , x 3 1 

where 

A $,,(i, = [in,(k+O) - &,(i,-0)] , 

A zn (i) = [$n (x,+0) - 0, (X,-O)] - 

The ordinary differential equation, Eq.(20), can be solved to give 

A i,(x, = A 7,-(l) elnn(lmx), '; 3 1 . 

(20) 

(2’) 

Eqs. (20, 21) automatically satisfy the Kutta trailing edge condition. 
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2.2 Application of Green's Theorem 

A particular form of Green's theorem is used in the following 

analysis; further details are given by Lanczos (17). 

b> If % (f) is the linear differential operator acting on the 

function f and defined by 

jn)(f) = a2f + a2f + n2K2f , 
ai aii2 

(22) 

then Green's theorem states 

that 

JI a'"'($,, n - ij, $")($,,)] dS = - $I [q, 2 - $., $]dC , (23) 

C 

where C is a closed circuit, S is the domain enclosed by C, N is the 

inward drawn normal to the curve C and% -(")(f) is the adjoint operator 

related to d")(f); in this case the operator is self-adjoint, thus 

X(")(f) = h")(f) . 

It is necessary that $,.,(x,?) and i,(z,?) are two functions that are 

continuous and have continuous first and second derivatives in the 

domain S. 

In Eq.(23) the function i,(x,?) is taken to be the transformed 

perturbation velocity potential as defined in Eq.(lO) and JI,., is chosen 

to be an elementary solution of 

$$J > = s(r) , n 

where 6(r) is the delta function at r = 0 and 

3 
r = 

E 
(i-i)' t (Z - t)2 1 

Since ;n(x,?) satisfies the equation 

fo ti,) = gn’; 

(24) 

(25) 

and since JI 
n 

satisfies Eq.(24), then Eq.(23) becomes 
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For n = 0 the fundamental solution for Eq.(24) is 

~,(X&Z,S) = 5 in(r) . Wa) 

For n 3 1 the fundamental solution to Eq.(24) is 

q~,,(x,~;?,~) = i Ho (2)(nKr) n&l; (27b) 

Ho(2)( n r is the Hankel function of the second kind and of zero order. K ) 

The asymptotic behaviour of HU (2)(nKr), where P is the order of the 

Hankel function, which in this analysis is always an integer, for large 

and small values of the argument is (18) 

Hi2)(nKr) - (A)$ exp[- i(nKr - $ IJ - +)I+ 0 ($2) 

1 

HL2)(nKr) .. g In (A) 

HL2)(nKr) -i (6)' P! 

as nKr -f 0 

as nKr + 0 . 

Differentiation of the Hankel function of orderp is given (18) by 

= _ x-1-I Ht2) 
jl+l(X) (29) 

By noting the asymptotic behaviour of the Hankel functions as defined 

by Eq.W), $,(x,i;k~) (n + 1) is logarithmically singular at the point 

(x,2) and tends to zero as {e-inKr/(nKr)'I'at infinity. From Eq.(27a) 

it can be seen that $~,(x,i;z,i) is also logarithmically singular at the 

point (X,Z). 

To the present order of approximation T,(i,i) and its derivatives 

are discontinuous across the wing planform and the wake, that is across 

the slit (i > 0 ; f = f 0). Since $.,(x,i;z,;), $,(x,2) and their 



surrounding the positive i-axis and Ca, completes the boun 

denoting the outer limiting boundary of S, taken to be a 

centre at the origin and of radius R. These boundaries, 

together with the sense of integration, are also shown in 

where C, is that part of the boundary C surrounding the point (i,;) and is 

taken to be a small circle of radius E, C, is that part of the boundary 

dary C, thus 

large circle, 

c,, CWS cm, 

Fig. 2. 

The surface integral on the left-hand side of Eq.(30) is defined 

for 5 > 0 by 

f f 

X-E m 
F dS = 12 I 

f f 
( F df)d: + 1; 1; d;)d: + fm( I;'di)di 

S -03 +o X+E +o -m -(D 

X+E 'i- [E2-(i-5)2]~ m 
+ 

f [f 
F d; + F d: 

1 
di 1 

X-E 
f 

;+ p (G--Q 2-j 4 (W 
while for 2 < 0 
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derivatives must be continuous in the domain S the point (x,z) 

and the slit (5 > 0 ; - 5 = * 0) must be excluded from S. The curve 

C and the enclosed domain S are shown in Fig. 2. 

Eq.(26) can be written as 

f f $,(~,&~)s,~~,~) dS = - 
fr 

a (Gt) w,(x,E;f,F) 

S 5 
4Jn(~,~;~,~+--- - i,(i,5, apj I dC 

c,+cw+cm 
(30) 

if i-E -0 +m 
F dS = lim ( ( F d;)d: + ( 

S E-4 J J J f ;‘dF)d + Jm( Jrn~ &)& 
-0 -co i+, -cm -00 to 

t J [I i&E y;E-(;-i,2]3 -0 _ _ 
+ J 1 X-E -co ;t;2+$$ } 

(31b) 

It has been found that for the present purposes it is simpler to work 

in Cartesian rather than in polar co-ordinates. As ; + f 0 the limiting 

process is found using the appropriate formula of Eq.(3la) or Eq.(3lb). 
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The integrals around COD and C, in the limit as R -f ~0 

and E + 0 are determined next. 

For steady flow the velocity potential ~,(~,~) on Coo 

when R is large can be assumed to be of the form {ae + b/R1 

where a and b are constants and R,e are the polar co-ordinates 

on Coo (a is zero for the non-lifting case). And since on Cm 

+o(~,~;?,~) = O-(in(R)) 

the line integral on the right hand side of Eq.(30) around Cm is 

then a constant which is zero for the non-lifting problem; the 

constant is immaterial since it disappears when the whole equation 

is later differentiated. 

In unsteady flows the disturbances are small on Cc0 so the 

linearised form of the differential equations is valid and all 

solutions $.,(~,~) (n > 1) behave like 

"n 
_ const. 

RB 
exp I 

-i(nKR -$Jn91 , (32) 

on the argument that at large distances from the aerofoil in has the 

behaviour of an elementary solution of Eq.(ll) as given by Eqs.(26,27). 

Physically Eq.(32) implies that waves are propagated outward as pure 

radiation waves towards infinity. Since the behaviour of $, and $., 

at infinity are similar it can be seen from Eq.(28, 32) that as R + 05 

and since 

then 

% = Rse 

ai G,5> w&~,E,F) 
q%;kS) +---- - 5&F) aN 1 dC=O . (33) 
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For the line integral around C, in Eq.(26) the radius of the 

circle surrounding (x,;) is E and so 

SC, = E&e 

taking e to increase in a clockwise sense. For small E 

hence it follows that as E + 0, ;Ji,t) and its derivatives take 

their value at (i,'i) and all the terms in the integral over C, 

vanish except those involving radial derivatives of $,; thus, 

remembering that $ z k , 

6 (S,f> 
lim 

w,(i,k~ ,F) 
E+o 

YJ,(X,E;Z,F) +-- - q$,;, a 1 dC = 4 ;,(i,:) . 

C, (34) 

Finally for the line integral around C, in Eq.(30); the curve 

lies around the positive t-axis, as shown in Fig. 2, thus 

ai (LF) w,(LS;LF) #,(~lt;~,t) + - i,(i,t) aN I dC 

cW 

= 
Jr 

O” $.,(~,i;~,o)Ain~i) - $,,_(x,i;%o) A;,.,(i) 1 di , 

0 
c 

where 

A$ (f) = [7,$,+0) - i$ek-o)j 
f 5 

A+) = [$,(k+o) - q&-O) ] 

On substitution of Eq.(33, 34, 35), Eq.(30) becomes 

4 $,(i,:) = ~m[$n(i,i;i,O) A;,-(i) - +,$,i;:,O) A$.$)] d-i 
0 5 

+ JJ 
S 

+,(:.F;%t) g,$i,f) dS 
(36) 
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The double integral in Eq.(36) can be integrated by parts with 

respect to 5, using Eq.(31); thus 

4 q#LZ) = Jr O3 $,,(kkko) Pni(i) - $,,-(ki;i,o) A$$)] & 5 
- JJ J, (%;kt) s&t) dS 

S “E 
where gn(;,?) is defined in Eqs.(13,14). 

The standard procedure is now followed: Eq.(37) is first 

differentiated with respect to % and the limiting conditions found 

as '; + f 0; secondly Eq.(37) is differentiated with respect to ; 

and again the limiting condition as z -f * 0 is found. This leads 

to the two fundamental integral equations for the coupled symmetric 

and asymmetric problems. 

On differentiation with respect to x Eq.(37) gives 

4 in&~, = J m[$nhi;:,o) Ai@) - $.,-- (kt;;,O) A$$)] di 
X 0 x CX 

+ 2 g,(G) 

(37) 

dS. 
(38) 

The term 2 gn(x,z) in Eq.(38) arises from the differentiation of the 

limit of integration around the singular point (g,;) in the surface 

integral. 

Differentiation of Eq.(37) with respect to 'i gives 00 
4 ; 

"Z 
(ii,?) = I[ 0 

$nz(%O) A?,,$) - 
5 

+&,i;ko) A$$) ] dz 

- JJ s $,Ei(x.i;;,i) g&i) dS . 
The various derivatives of I+, in Eqs.(38,39) can be listed by 

reference to Eqs.(27,29): 

(39) 
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while in the limit as 5 + - 0 

It can be seen from the form of $ ntz(i,!;;,t) in Eq.(40) that 

+ 2 g,(X,-0) - lim 
240 

$, (k&t) g,(i,t) dS . 

S 
1: 

;imo lQX,~;Z,O) = - ;Gno qJn (ji.,E;&b) . 
C.X tn 

(43) 

Because $nE-(;,i;i,i) involves only (%s)2 and noting the definition 

of the surfice integral given by Eq.(31), then it follows that 

lim 
SO 

‘JJncx(‘,i;i,F) S,(~,~) dS = lim ff $n-_(~,~;~,c) g,(i,-f) dS . 
z-+0 s gx 

(44) 

Thus on addition of Eqs.(41,42), substituting Eqs.(43,44) 

•t [g,(X.+O) + s,h-O)] 

- lim i 
il z*o s 

j,iE(ki;%i) [g&ii) + g&k-i)] dS 

(45) 

Following similar arguments Eq.(39) becomes 

+p.+o) + ~,-(L-o)]= - ;zo J=in ii(ki;i,o) A$.,(<) d-i 
Z 

0 

- lim $ 
Z-HO 

S 

$,$,ii%i) [s,(E,F) - g&-t) 1 dS 

(46) 

Eqs.(45,46) express the two fundamental relationships for each harmonic 

contribution in a two-dimensional aerofoil oscillating in a high 

subsonic flow. 



- 20 - 

3. PROPERTIES OF THE NON-LINEAR EQUATIONS 

Before discussing their solution it is helpful to establish 

some of the characteristics of the non-linear equations. 

3.1 Magnitude of the Higher Harmonics 

The fundamental assumption in all perturbation methods is 

that the terms retained in an equation and its boundary conditions 

are of comparable order of magnitude. The order of magnitude of 

the higher harmonic terms may be estimated by reference to the 

fundamental equation. 

From Eq.(8) it can be implied that 

h+l Pf 1 n 
(1-M:) l ' l r=O 

c ($&x,z) l 0, <w>) 

x X 

or in terms of 4:x,?), using Eq.(14), 

(47) 
Eq.(47) may be rewritten as 

s;-(G) - 
n 

X 
0 Eo(G) $x,z) +; !: (o;-&;) 4p,i)) 

r 
. 

X r=l 3' X 

(48) 
Now 

1-M: - (ytl) M: $,(x,z,t) 
1 

= 1 - M*(x,z,t) 

where M(x,z,t) is the local Mach number given in the transformed 

variables of Eqs.(7, 10, 14) by 

l-M*(x,;,t) = (1-M:) 1 - E (+z;(X,Z) ei(Minnxtwt) 
)1 

. 
n=O x 

For a flow which remains subsonic throughout then 

1-M*(x,;,t) > 0 

for all (i,z,t), which implies that 

Jo 1 4&Z)I < 1 l 

= 
X  

(49) 
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Thus 

I@;-(G)1 = Iio(X,Z)I < 1 
X 

and 

l$;-(x,z)l < 1 - Ii, 
X 

The convergence of the higher harmonics is established by Eq.(49); 

the order of magnitude of the first few harmonics can be found on 

using Eq.(48,50). 

From Eq.(48) 

Thus it would be expected that from Eq.(50) 

I&G) I < I+;-(=) I 
X X 

Similarly it can be argued that 

Thus it is seen that the first two harmonics decrease in magnitude 

as the number of the harmonic increases. Since the order of magnitude 

of #t 
ii 

(2,:) depends on amplitude of the oscillation it can be deduced 

from Eqs. (48, 50) that the smaller the amplitude the faster the 

magnitude of the harmonics approaches zero. Provided the amplitude 

of oscillation is small, then it is expected that the flow is adequately 

described by the first few terms in the series expansion for the 

velocity potential. If the amplitude is sufficiently small it is 

expected that the first term alone will suffice. 



- 22 - 

3.2 Oscillation of a Rigid Symmetric Aerofoil 
about Zero Incidence 

For a symmetric aerofoil at zero incidence the antisymmetric 

boundary condition for io-(x,*O), given by Eq.(l5a), implies that 

T,(x,?) is symmetric withZrespect to f. On consideration of the 

symmetric boundary condition for zl-(x,*O), given by Eq.(l5b), 

together with the differential equafion for z,(x,?), it follows that 

since i,(x,z) is symmetric with respect to 5, i,(x,?) is antisymmetric 

with respect to 'z. Furthermore the symmetry or otherwise of the 

higher harmonics can be deduced directly from Eqs.(ll, 12), together 

with the boundary condition 

;n-(x,‘o) = 0 n ~2. 
L 

Since i,(x,?) is symmetric and i,(x,?) is antisymmetric it follows 

from Eq.(ll, 12) that &(x,?) is symmetric with respect to ?. 

Similar reasoning indicates that i,(i,?) is antisymmetric. 

For the symmetric wing oscillating about zero incidence i,(i,?) 

is symmetric with respect to ; for n even but antisymmetric for n odd. 

For the general problem of a wing, oscillating about a mean non- 

zero incidence, all i,(i,?) have symmetric and antisymmetric components. 

3.3 Limiting Case of Zero Frequency 

If the problem of a symmetric aerofoil oscillating about a mean 

non-zero incidence is considered then as the frequency, W, tends to zero 

the problem tends to the steady problem of the symmetric aerofoil at the 

higher steady incidence equal to the initial mean incidence plus the 

l 

oscillation amplitude incidence. It is instructive to appreciate what 

happens in the series solution presented here as the frequency, W, tends 

to zero; the steady solution for an aerofoil at any steady incidence is 

given in Ref.(l) and is therefore available for comparison. 
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In the limit as w tends to zero, Eq.(ll) becomes 

n 
inem + in-- = 

xx zz 
ii I; c 
ai r=O 

Tnvr 
x 

and the tangency boundary condition given by Eq.(15) becomes 

zo- (GO) = 
Z 

-A + Z,(i) + 2)X) 

cp,-(X,*0) = t$i, 
Z 

cpJi,*O) = 0 n&2 
Z 

On summation over all n, using Eqs. (7, lo), 

Eq.(52) gives 

&x + i;; = a ; (Q2 
ax 

where 

the set of equations, 

&ii,?) = 

(52) 

(53) 

(54) 

After a similar summation the tangency boundary condition of 

Eq.(53) becomes 

&(E,tD) = -A t Y(X) f Y(i) t q'(X) . 

The Kutta condition of finite velocity at the trailing edge is still 

valid as is the condition of zero load off the wing; the latter 

condition is now given by 

A ;,_(i) = 0 , X>,l . 
X 

In the limit as w tends to zero the equivalent steady problem 

of the aerofoil at an initial mean incidence plus the oscillation 

amplitude incidence is obtained as the sum of an infinite series. 

It is shown in Section 3.1 that for small amplitudes of pitch 

the magnitude of the higher harmonics is small. A good test of the 

accuracy of any solution procedure used in the unsteady analysis 
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therefore can be obtained by comparing the limiting solution for zero 

frequency at small amplitudes found by summing only the first few 

terms in the series with the more accurate result derived directly 

from the method outlined in Ref.(l). 

4. THE LINEAR PROBLEM 

The set of equations Eqs.(45, 46) which, together with their 

boundary conditions Eq.(15) formulate the non-linear problem, are 

extensions to the much simpler set of equations that formulate the 

linear problem. The standard linear set of equations are obtained 

by neglecting all second order terms, i.e. the g, terms in Eqs.(45, 46). 

Substituting the boundary conditions given by Eq.(15) the linear 

equations can be reduced to 

- A + i;(x) 

qi,z, = 0 n>l WC) 

The first pair of equations, Eq.(55a) is recognised as the linear 

integral equations for the steady thickness and camber problems in 

subsonic flow; the second pair, Eq.(55b) are linear equations for the 

additional terms induced by the aerofoil oscillation which are independent 

of the steady field 5,; the third equation Eq.(55c) states that the 

higher harmonic terms are a consequence only of the non-linearities. 
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In order to discuss the solution of the non-linear Eqs.(45, 46) 

with some degree of confidence, it is helpful to start with the 

solution procedure of the linear problems as defined by Eqs. (55). 

The pair of equations, Eq.(55a), govern the steady flow about 

an aerofoil whose ordinates are given by the mean profile of the aerofoil, 

that is (A, IT(i), z,(i)) : these equations may be solved by one of 

the several methods currently available, the method of Weber (") has 

been used here. 

The solution of the equation for the fundamental oscillatory 

potential ~i,(x,?), Eq.(55b), is more difficult. 

As described in the Introduction there are various methods of 

solving Eq.(55b) for A~~(X,Z). Rewriting Eq.(55b) in a form similar 

to that for the incompressible unsteady problem, a solution can be 

obtained for low frequencies (6). The integral equation may also be 

solved directly by collocation. Because of its relative simplicity 

the low frequency solution is derived in this paper. It is hoped to 

investigate the application of a more direct collocation solution in 

a later paper. 

The kernel function $,--(x,~;z,~) which appears in Eq.(55b) 
25 

can by reference to Eq.(40) be expressed in the form 

dJ,--(~,~;z,~) = -w HL')(Kr) + K Hi')(Kr) -r 

= $,--(X,S;Z,~) + iK2 [ 
2 

-(Z-G -)'I Hb')(Kr) 
EX 

Thus Eq.(55b) becomes in the limit as ; ++O after integration by parts 

of the term involving +,--(x,i;?,t) 
6X 

(57) 



A function x(K /%I) is introduced, where 

x(KI% I) = 1 + + Kl&il iHi')(KIx-i 
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hence Eq.(57) can be written as 

Pn(wJx,O) + I(X)) = - 
I o (G) 

& 

where 

&qji) = - 
I m-La - - o (- 

X- 
5) ai[b)lw xu+Gl)) d.6 

Using Eq.(Zl), Eq.(59) gives 

(58) 

(59) 

2*(W1(X,0) t I(i)) = - 
I 

1 A&-(3 

5 
o (';-5) 

di +in&(l) 
I 

co ,-ia(SIl) 
- & 

1 (2) 
(61) 

If I(x) is assumed known on the left hand wide of Eq.(61) then 

the problem can be regarded as the incompressible unsteady problem for 

which a formal solution is known wL21> , namely 

7,(X) = -$ (‘-j;)3 ((1 - 
X 

C($ i’ (iA&(5,0) 
o 1-c 

+ I(i))&) 

-4 l 
-I ‘II + I(i)) di 

0 

where z(x) is the load distribution defined by 

T,(X) = -; [cp (i,tO) - c p (;i,-0) ] eeiMZnx 

c(f) = Theodorsen's Function = 

(62) 
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In terms of transformed variables 8, 81 defined by 

i = + (1 - case) 

i = + (1 - case') 

Eq.(62) becomes 

1, (e) = -+ -t i yij (e’) + I(i)){ [C($(l-cod) + COSB’ I co@ 
0 

+ in s n(e,e') sine' + -1 de' 1 
sine 

cos e- cos 8 

(64) 

(65) 

where 

*(e,e’) = i ln c #&I 
1-cos(e-e ) 

It is shown in the Appendix that to a first order in frequency 

ZITI(X) = i R 6 4 i,(l) ww 

where 

6 = ln(>) + (l-Mi)1 Wb > 

Thus to a first order in frequency I(x) is independent of x although 

it depends on A71 (1) which is unknown at this stage. 

If the known downwash distribution function w (x,0) can be 

expanded as a cosine series 

WI (LO) = co + c, 
1 (H + case) + ? cncosne 

n=2 

it follows from Eqs.(64, 66) that to a first order in frequency 

i,(e) = 
iiXA;,(l) 

- 2 co + 2Tr I row - 2 ni, cn r,(e) 

where 

r,(e) = 2 [C(i) cot; + 'i sine] 

r,(e) = -2 sine + cot; + 'i (sine + *) 

r,(e) = -2 sin(ne) + 'i (sin n+l e 
,-+A 

(67) 

(68) 

(69) 
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Eq.(68) expresses l,(e) in terms of AT,(l) so a linear 

algebraic equation for AT1 (1) can be found by application of the 

condition 

A;,(i) =; e -iM2sak m 
I 

x- .2- 
Z,(i) e'"mng di , '; 6 1 (70) 

0 
which gives when ;( = 1 

A;,(l) = -IT Co t g(Q) 

The final result is for low frequencies 

Z,(e) = - 2 co(+) ro(e) - 'nE1 'nrnte) (71) 

where the coefficients c , cn 
0 

are obtained from Eq.(67), 6 from 

Eq.(66b) and m(e) from Eq.(69). 

The total lift, L, and the pitching moment M, about the mid-chord 

point are defined by 2 

B2 L = + . k P, Ui 1 
I 

IT 
?Je) sine e 

i>t de 1-case) iwt 
le 

0 

M: 
M+'g 'P, ui i 

i 

IT 
T,(e) case sine e 

ie(l-case) 
de 1 eiwt 

0 
nose up pitching moments are positive. 

(7W 

(72b) 

If Eqs.(69,71) are used then the integrals in Eq.(72) may be 

evaluated. To a first order in frequency the total lift and moment 

are given by 

+ 0.577 t 1 

M: (2-M:) Mz . 
t&t 7-J co + ~7 cl - B c2] ] e' ut 

+ 6) co + 

(W 

where Euler's constant 0.577 arises in the low frequency expansion of c(i) 
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It can be seen that the total force and moment depend only on 

the first four coefficients of the cosine series, Eq.(67). 

Although Eq.(73b) gives the moment about the mid-chord point, 

the moment about any point can be found by a linear combination of 

Eqs.(73a, 73b). 

The stiffness and damping derivatives for an aerofoil oscillating 

in pitch about the mid-chord point are defined as 

L - = ao(Za + ivZ&) e iwt 

p, t 

M 
= ao(ma + ivtn&) e 

ikit 

PC0 uf 

where ~1~ is the amplitude of the pitching motion. 

The flutter derivatives can then be found to first order in 

frequency by using Eq.(74, 75). 

4.1 Linearised Theory for an Aerofoil Pitching 
at Low treauencv. 

(74) 

If an aerofoil is oscillating in pitch about a given pitching 

axis, X o, with low frequency W, then, with reference to Eq.(3), 

z#) = - ~ob-xo) 

where a0 is the amplitude of the oscillation. 

(76) 

Hence, using Eq.(15) 
2 - 

W,(X,O) = - Ao(l + iv(ii-X0)) eSiMmax 

where 

After transformation to the variables defined in Eq.(64) wl(x,O) 

can then be expanded in the cosine series Eq.(67) with 
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C o = AoIl + i[(l-M%) cos 8 o - 2Mz + 0. 5];1 (78) 

5 = A,i(2Mz - I)$ 

c 0 = 
n n 2. 2 

where 

x 
0 

=; (1 - coseo) 

To first order in frequency, l,(e) can be found from 

Eqs.(68, 69, 71, 78) as 

i,(e) = 21\o12(1-$)cot $ + iar[(l-Mt) coseo + 0.577 

- of + 6 + ln $]cot $ + 2(1-M:) sine 11 
(79) 

The flutter derivatives can be obtained by substitution of 

. . 
the coefflclents c , cl, 

0 
cn from Eqs.(78) into Eqs.(73, 74, 75). 

These values are shown as functions of frequency parameter as the 

linearised curves in Figs. 3, 4, 5, 6. 

A function which is required later in the subsequent non-linear 

analysis is $ti ,,*O which is given by 
I ) 0 

(80) 

Using Eqs.(70, 79) and Eq.(63) +:,(x,0) is found to first order 

in frequency for the case of an aerofoil oscillating in pitch about its 

mid-point, as 

+:-,-(x,0) = a,{(l-$$ ($)' t ig{[(l-Mi) (1-2x0) 

t 0.577 - Mi+atln$ - 1 (l-X)$ 
x 

- (1-M:) arcos(l-Pi)]/ 

(81) 
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5. THE NON-LINEAR PROBLEM 

The linear problem discussed in the previous section is valid 

if the local Mach number does not differ much from the freestream 

Mach number, an assumption that becomes less accurate as the latter 

approaches unity. At high subsonic speeds linearisation is 

inadequate and the linear potential equation must be replaced by 

the corresponding non-linear equation. As shown in Eqs.(45, 46) 

a double integral involving the non-linear terms over the entire flow 

field is now introduced. If the freestream Mach number is not too 

high, the flow remains subcritical so the additional non-linear terms 

may be regarded as correction terms in the linear equations. For 

example, if linear theory is 25% in error as regards the pressure, 

say, and if the non-linear terms can be approximated to a similar 

order of accuracy, then the overall error in the pressure will become 

of the order of 5% which is a considerable improvement over linear theory. 

The technique described in Section 4 for low frequencies is 

now extended to the non-linear problem. 

The problem considered here is concerned with a rigid symmetric 

aerofoil oscillating about zero mean incidence. For this problem it 

has already been shown in Section 3.2 that the solutions for successive 

harmonics are alternately symmetric and antisymmetric with respect to z. 

Also it has been shown in Section 3.1 that if the amplitude of the 

oscillation is sufficiently small then the magnitude of successive 

harmonic terms in the series expansion for $(x,z,t) decreases rapidly. 

For small amplitude oscillations it is thought that only the first term 

;,(x,?) need be determined. 
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Eq.(45) may be written as 

$i+h’) + i$k-o)]= jw~n-(~,i;o,o)A~n_(i)di + [gn(",+O)+gn(",-0)] 
X 

0 x 5 

- ITn(X) 

where 

1 I (i) = lim T 
Tn f-W0 

[q$,i, + g&-s,] dS 

and g,(t,i) is defined in Eqs.(l3, 14). 

Eq.(46) may be written as 

+,,-(+O) + $,&o,]= - ;zo j~~n--(x.i;i,o~A~n(i) di 
2 z 

0 25 

where 
- I+) 

(82) 

(83) 

(84) 

Ic (X) = lim $- ~n~~(;.S;i,i)[s,ti.i) - s,(k-;)]dS (85) 
n z+to s 

5.1 Casewhenn=O 

The case when n = 0 in Eq.(82, 84), together with the appropriate 

boundary conditions of Eq.(15) represents the flow about the steady 

aerofoil at the mean incidence: this problem is solved approximately 

in Ref.(l). For a symmetric aerofoil at zero mean incidence Eq.(84) 

is identically zero while Eq.(82) becomes 

ii2 (X) 
UOT(X) - +- = iiT‘ (X) t I, (X) (86) 

0 

since 

UoT(X) = symmetric velocity on upper surface 

= Uo(X,tO) = $X,-O) 

= ;[uo(x,to) + U,(Tc,-O)] (87) 
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i&) = 1 inearised solution modified at leading edge 

The formula for u,(x) given by Eq.(88) contains appropriate second 

order terms in order to remove the leading edge singularities that 

are a feature of linearised solutions: the nature of these singularities 

is discussed further in Section 6. 

As mentioned previously, the non-linearities may be regarded as 

correction terms to the linear problem, at least for subcritical flows, 

and it has been suggested that adequate results can be obtained even 

if the non-linearities in Eq.(86), expressed by the double integral 

I,,(~,~,,(~)), are approximated to only a fair degree of accuracy. 

In Ref.(l) the double integral is evaluated by approximating the 

variation of the perturbation velocity ;,(i,i) in the f direction by 

a suitable interpolation function involving only the ordinate, ;, the 

value of io(i,;) on the aerofoil surface and the aerofoil geometry. 

The integration with respect to f is then performed and the double 

integral is reduced to a single integral over the chord. 

It is shown in Ref.(l) that 

ii2 (ii) 
I I,o(k~oT(x) > I << .-+--- (89) 

for values of ior close to unity; this result is less accurate as 

;oT(i) d ecreases but then the importance of the non-linear terms 

decreases and linearised theory becomes more valid. A useful approximate 

solution to the steady problem is therefore 



- 34 - 

ii2 (X) 
i,,(X) - ~-q--- = U,(X) (90) 

On the basis of Eq.(90) a first approximation for the non-linear 

q-J 1 j; could be quickly evaluated from the linearised solution. 

An improved solution for ioT( 'i is obtained by substituting the ) 

first approximation into I,,(~,~,,(~)) and then solving the 

quadratic Eq.(86) for iOT(X); thus an iterative procedure is 

established. 

5.2 Case when n = 1 

The case when n = 1 in Eqs.(82 - 85), together with the 

boundary condition, Eq.(l5b), represents the fundamental response. 

Since the aerofoil is symmetric and is oscillating about a 

zero mean incidence, Eq.(82) is identically zero by virtue of the 

argument presented in Section 3.2 that 5,(x,?) is an antisymmetric 

function of 'z. 

Using Eq.(15), Eq.(84) becomes for n = 1, noting the argument 

leading to Eq.(56) 

- $ ICl(3 (91) 

where 

o:_(,F) = & (&s> + i M: QF,(&i) 
5 i 

To a first order in frequency Eq.(92) is 

ICI(X) = lim 
ii St0 s 

p g,(i,li, dS (94) 
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The double integral for Icl(") given by Eq.(94) can be 

evaluated assuming suitable interpolation functions to approximate 

the variation of io(i,i) $:-(i,i) normal to the aerofoil surface 
5 

in a similar way to that used for the steady problem (1). In this 

manner the double integral I (x) is reduced to a single integral 
Cl 

involving the values of io(i,*O), $T- 5 (hi% the a erofoil surface 

and the aerofoil geometry. 

5.3 Approximating Functions 

In general the kernels in the doub le integrals &(X), I,,(X) 

represented by $ ni.(,,i;i.i) and ~l,,~~ (x,i;;,i) respectively, decrease 

rapidly away from the surface (like Iflm2 and ItI -3 respectively). 

Except in the case of the steady flow and the low frequency expansion, 

Eq.(94), this initially rapid decrease slows down for larger values of 

IFI because of the asymptotic nature of the Hankel functions. It is 

suggested that if the variation of uo(i,i) and g,(i,t) with 5 is 

approximated by a function that is exact for small 5 then the double 

integrals may be reasonably accurate since any error in the approximating 

functions away from the surface is offset by the rapidly diminishing 

kernel function. Only the steady flow (n = 0) and the fundamental 

response are considered in detail here. 

The potential @I; 
i 

(i,:) is complex and needs to be divided into 

its real and imaginary parts in this analysis: thus 

*vq *(I) > = ~,-(Sd + i 4+(G) (95 E E 
*M ;(I) 

where $,-(E,f) and +,,(E,t) are both real functions. 
5 5 
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Approximating functions are chosen to be of the form for 5 > 0 

;,(,) = io(i,+O) ho (f) 
so(S) 

*(R) 
o,-(L~) 

*(RL (R) 4 

5 
= 4,- (L+O) h, (-1 

5 a,() 

*(I) *(IL 
0’ (3 = #j- 

(1) f 
5 Es+O) h, (-1 

b, 6) 

(96) 

where so(i) , a,() and b,(i) are real functions of t chosen so that 

Eq.(99) are exact for small values of 5. It should be remembered 

that in the present case ~o(~,~) is a symmetric function of f whereas 

$T_(,t) is an antisymmetric function of f; thus the relations 
5 

corresponding to Eq.(96) for t < 0 are straightforward. 

The value of uo(i,F) and +I- (i,;) close to the surface can be 
5 

found in terms of the surface conditions by means of McLaurin's series 

expansion; the second term in the McLaurin's series can be expressed 

in terms of surface values and the aerofoil geometry by using the 

boundary conditions in Eq.(l5b) and the condition of irrotationality. 

A necessary condition for any approximation is then that for 151 close 

f to zero ho(- ) , hiR)(+ , hiI+ i 

so(E) a,(., 
-) should have identical 
b,(S) 

series expansions in i to the NcLaurin series expansion for ;,(i,;) , 
*(I - - 

Y o,, 1 s,z;) to first order in i. It is also desirable that 
5 

the approximating functions should represent at least the qualitative 

behaviour of ;,(i,i) , 4 
*(R _ - 

2 
1 c;,r;> and Q :i'ki) as ItI + 0~ in that these 

functions then tend to zero. It is shown in Ref.(l) however that for 

steady flows the total integral is not critically dependent on the 

behaviour of the approximating functions at large values of ItI 

and although it is helpful to represent the far field behaviour correctly 

. 
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it is suggested that in the light of experience in the steady 

problem(') this is a secondary consideration compared to that 

of accurately representing the behaviour close to the aerofoil 

surface. 

The derivation of the function h ( F 
OW 

) is discussed fully 

in Ref.(l); it is sufficient to note that for a symmetric aerofoil 

where 

a,() = 
-2 Uo(i,*O) 

z:o 

(97) 

(98) 

*(R _ - 
The McLaurin series expansion for 0, t 5,s) in the neighbourhood 

5 
of the aerofoil surface is 

*(RL - *(RL *(RL 
$lE (LS) = 4QE ( S , f O )  + F eptk~*~~ + l l l * 

From Eqs.(l3, 14, 15) Eq.(99) becomes for (0 Q t < 1) 

*(R) *(RL 
91E (FA = +I5 (L’O) + gP2) 

(99) 

UOO) 
since t';(x) = 0 for an oscillating rigid aerofoil. Thus to first order 

*(R _ _ 
in frequency the variation of @1- t 6,s) with 5 for small i is zero. 

5 
Thus it is assumed that 

h,tR) ( s -)= 1 
a, (5) 

('0' 1 

*(IL - 
The McLaurin series expansion for $I~- 5 (5,~) can be expressed for 

(0 5 5 < 1), using Eqs.(l3, 14, 15), as 
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It is therefore'assumed that 

hi(I) ( ' -= 
bl (';I 

) 
1 

( 
f 

'+b,o 1 

where 

b, (5) 

VW 

(104) 

*(I - 
Since it is to be expected that 41- t c,*O) will be of the same order 

5 
in frequency as the linear solution, it can be seen on using Eq.(lEib, 78) 

that 

The approximations for (Ts(i,i) given above in Eqs.(lOl, 104) 

have only been deduced over the wing chord (0 ,< 5 6 1). It is argued 

that the contribution from the wake to the double integral is negligible 

since it is implied in the wake boundary condition, Eq.(Zl) that the 

velocity in the wake is equal to the freestream velocity Urn and hence 

i. (5) = 0 , 5 3 1 ('06) 

Substituting Eqs.(96, 101, 104) into the integral ICI(x) given 

by Eq.(94) the integration with respect to 5 can be performed,leading to 

In, = I~~(G~,(~~, o;-(x,~o)) = -$J i l 2~o~i,[~:!"~i,0)+i~~~1~~,0jl 

X 
0 Fi> 
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where 

ECl(X) = $TjT {2x(3-x* )lnjxl + x(1+x2)(5+x2) 

+(1-3x2)nsgn(aox) 1 

1 
EC,(x) = -2 (Zxlnlxj + x(1+x2)+ v asgn(aox) 1 ww 

EC3(;) = +qT {/xl nsgn(ao) - (1+x2) - (1-x2)lnlxl 1 

In Eq.(107), by reference to Eq.(93), it is seen the first integral 

arises from the term i,(E,f) +:-(E,;) whereas the second integral 
5 

arises from the term involving 

I 

E 
ioCi:;, t$:F, 6 ; 

-00 5 

it is necessary to change the order of integration in order to obtain 

the second integral in Eq.(107). 

To evaluate Eq.(107) it is necessary to modify the behaviour 

of $r-(i,O) in the neighbourhood of the wing leading edge. A modification 
5 

has already been implied since it is necessary for the determination of 

;,,(i) as discussed in Ref.(l). These leading edge modifications are 

described in the following section. 

No attempt is made here to determine the higher harmonics since 

there are difficulties associated with the formulation of suitable 

approximating functions. It is shown in Section 3.2 that in the 

present example the pressure distribution for the first harmonic is 

symmetric, in which case the flutter derivatives are unaffected by 

the first harmonic and since the higher harmonics are small in 

comparison to the fundamental, it is expected that their effects 

will be negligible. 
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6. SOME SECOND ORDER CORRECTIONS 

One consequence of linearised theory is the appearance of 

leading edge singularities. The assumption of small perturbations 

breaks down near the leading edge of an aerofoil, both at a stagnation 

point and in regions of local high velocity. Singular terms appear 

at the leading edge in both 'lifting' and 'thickness' linearised 

solutions. For example the integral in Eq.(62) for the loading 

distribution shows a leading edge singularity of the order of (x-j). 

In the present analysis, since account is being taken of second order 

terms it is necessary to modify accordingly the linearised singularities 

in the nose region. As already stated the integrals for ICI(x) 

involve second order terms which can only be evaluated if the linearised 

singularities are removed. 

The nature of the leading edge singularities in steady flow is 

fully discussed in Ref.(l) where suitable correction terms are derived. 

It is shown that correction terms involving only the thickness 

distribution near the nose, even for lifting aerofoils, are sufficient. 

An example of the leading edge correction for steady flow past a symmetric 

aerofoil is given in Eq.(88) where if 

is the standard linearised velocity then a non-singular approximation 

to the linearised solution is given by i&‘(x) where 

In the present unsteady analysis similar correction terms involving 

only the steady thickness distribution are introduced; no undue 

complications arise since the thickness distribution, and hence the 

corrections, are independent of time. 
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In the series solution in the transformed variable 0, given 

by Eq.(64), outlined in Section 4, the singularities in Z,(a) appear 

only in the functions r,(e), given by Eq.(69), as cot; . On further 

examination of Eq.(69) it is seen that cot; , the leading edge 

singularity, appears only in the ro(e) and r,(e) terms. The chordwise 

loading distribution l,(e) consists in general of an infinite series 

in r,(e) but it is argued that no significant error will result if the 

leading edge correction is applied only to ro(e) and rJe), the first 

two terms of the series. Proceeding in a similar manner to the steady 

problem outlined in Ref.(l), a non-singular approximation to ?Je) for 

rO ,(e> = W$) 
cot t 

t i2 sine 

1 
B2t$(e)) 2 3 

+ (-1 1 
' 

the linear problem is given by Eq.(68) with 

-l 

cot $ 0 
r,(e) = -2 sine t L 

[ 
82~~(Qe)) 2 8 

t if (sine + %j@j 

1+ b-1 1 
r,(e) = - 2 sin(ne) t i 

s#P 
(110) 

Associated with this modified form of the loading is a modified 

form of the function $* (x,0), given by Eq.(81), which is denoted by 

':x!x'O) d 
' i& 

an can be found by using Eqs.(68, 70, 80, 110). 

Another separate issue concerns the form of the linearised 

boundary conditions in the neighbourhood of the leading edge. 

The extended boundary conditions of Eq.(5) include second order 

terms like 

azou(x) iwt az,(x) aw(x,tO,t) 
1 ax te ax ~u(wO,t) - az bou(x) + eiwtz,(x)l 
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In linearised theory it has been noted that the loading 

distribution, and hence the perturbation velocity u(x,+O,t) has a 

leading edge singularity and it is possible that at least some of 

the non-linear terms in Eq.(5) become significant in the region of 

the leading edge. In order to evolve a more accurate solution the 

magnitude of the second order terms in the boundary conditions should 

be investigated. Considering only the case of a symmetric aerofoil 

at zero incidence the boundary condition for the fundamental response 

can be separated from Eq.(5) and expressed in the transformed variables 

of Eq.(lO); thus 

W,(X,*O) = &(X,*0 

+ i,(x)ioi(i,*o)] + g {j& (i)i,;(X,*O)]+ & [f,(i)io(i,*Ojj 1 

using the conditions that in linearised flow 

(112) 

a2;0 a2io 
+- = 0 

ax2 a3 

a2& a2& 
+ - + K2;, = 0 

a2 ai 

The corresponding second order boundary condition for steady flow can 

be found by taking the zero frequency limit of Eq.(lll): thus 

B2 lim W,(X,O) = Z;(i) + k lim {a 
u-4 

~ aii. [ I,(9 LW)] + k [L(x)~o(x,o)] 
X 

+ (1 - $11. Q3il-- 
xx 

(k0) + I,(X)S,~(X,O)] I 
X 

Eq.(113) corresponds to the second order antisymmetric or 'lifting' 

boundary condition in steady flow. 

(113) 
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For the case of a symmetric aerofoil at incidence it was 

found in Ref.(l) that if in Eq.(l13) the term 

is retained, the accuracy of the overall solution is greatly 

improved: thus 

lim ijl(,,O) = 2:(X) t k 
u-4 

B2 lim {a [Z,(X) Yj,-(i,O)]l 
w-to ai X 

(114) 

In unsteady theory, as has been stated earlier, there is a 

leading edge singularity in the loading distribution of the order 

(R -3 ). In linear theory ;l-(k,O) can be found for a pitching aerofoil 

on using Eqs.(68, 69): thut 

TJLO) = 1-j; 3 

X 
ii01 (1 - F)(T) t ii [[(l-Mt)(l-Z;o) 

t 0.577 - Mz + 6 + in(g)]($)' + 2(1-Mi)[x(l-x)]'l) 

The non-singular terms in Eq.(ll5) can be neglected for the 

present purpose and since Eq.(ll4) yields good results in the steady 

case it is argued that a more accurate boundary condition than Eq.(l5b) 

is 

W,(i,O) = ;Iz(i,O) = [l:(X) t ivi, (i) ]eDiMg"" 

t 8, r B2 ( (1 - e) t i$ [(1-Mi)(l-2x0) 

+ 0.577 - Mt + 6 + ln(i)]$ [TJ;)(~)'] 1 

(116) 
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7. APPLICATIONS 

Calculations have been performed for a NACA aerofoil 

oscillating in pitch about a point x0 on the aerofoil chord at a 

freestream Mach number, Moo = 0.63; only the response at the 

fundamental mode is considered. 

The method of calculation is to rewrite Eq.(91) in the form 

2lT W,(X,O) + 4 
= htA$i)$ K/&~liH~2)(Kjx-~l)}d~ 

(117) 

where the left hand side is taken for small W. The function 

Ic (i,i (x), $t-(i,O) expressed by Eq.(107) is evaluated with the 

no:-line:; function GOT(x) already determined from the steady case, 

and assuming 

&kO) = $“l_(j;,O) 
X XL 

that is by assuming that $:_(x,O) is given by the linearised value in 
X 

Eq.(81) modified for the leading edge singularity as described in 

Section (6). 

Thus Itl(x,uoT(k), o;- (i,O) is regarded as a known function 
Xl 

which modifies the downwash function w,(x,O); the overall problem 

then reduces to the linearised form discussed in Section (4). 

The solution in Section (4) is obtained by expressing the left-hand 

side of Eq.(117) as a cosine series; once the coefficients of the series 

are established the derivatives Za, Zh, ma, rn& can be obtained from 

Eqs.(73, 74, 75). 

The variation of the flutter derivatives with reduced frequency 

for the pitching axis at the leading-edge is shown in Figs. 3, 4, 5, 6. 

The effect of the non-linearity is to increase considerably the magnitude 

of all the derivatives over the corresponding linear values. The 
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variation of Z&, ma, rn& with change in pitching axis is shown in 

Figs. 7, 8, 9. 

The conclusion reached in Section 3.3 states that in the limit 

of zero frequency the unsteady flow approaches the equivalent steady 

flow at an increased angle of incidence equal to the pitching amplitude 

aO’ 
and by the argument in Section 3.1 it is expected that no great error 

will result if only the steady solution and the fundamental response are 

used to estimate the exact flow. Therefore a test of the accuracy of 

the present method is to calculate, in the limit of zero frequency, only 

the fundamental solution and compare the values obtained to the more 

exact steady flow calculation of Ref.(l) for the NACA 0012 aerofoil 

at Mm = 0.7 and a0 = 0.01 rads. The respective values are shown in 

Table 1: the moments are about the leading edge. 

Derivative I (abou;Iih;ding t '0 
A/c aft of 

leading edge 

Non-linear steady 
values (Ref.1) 
5 = 0.01 rads. 

- 1.29 5.13 0.252 

Zero frequency 
limit (present 
iwer) 

- 1.29 4.94 0.262 

Standard linear 
values 

Table 1 
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The agreement between the results of Ref.(l) and the zero 

frequency limit of the present method is excellent for ma and fairly 

good for z 
a' 

This good agreement between the two values of m is 
cl 

partly due to taking the moments about the leading edge and hence 

minimising the effect of errors in the pressure distribution near 

the nose. If moments are taken about the mid-chord, say, there is a 

discrepancy between the result of Ref.(l) and the zero frequency limit 

of the present method. A probable source of error is in computing 

the coefficientsof the cosine series Eq.(96). These require considerable 

accuracy near the extremities of the aerofoil since in this region 

cos(n9) * O-(l) : 

errors in the calculation of Icl(x,~,,(x), +T,(i,O) are likely to be 

large in this region because of the somewhat arbitrary nature of the 

nose correction terms, Eq.(115). 

It is possible that a more accurate solution may be obtained 

using a collocation technique but this procedure is not discussed further 

in this paper; it is intended to direct further effort into this type 

of solution. 
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8. CONCLUDING REMARKS 

An integral equation method previously developed for steady 

high subsonic flows (1) has been extended to include oscillatory flows. 

The non-linearity of the problem gives rise to higher harmonic terms 

and the solution is formulated by two infinite sets of equations, 

each pair giving the syrrnnetric and antisymmetric components of one 

harmonic. Each of this pair of equations involves not only the 

harmonic in question but a non-linear combination of all preceding 

harmonics. It is indicated that the higher harmonics are small for 

small amplitudes of oscillation. A solution is obtained for low 

values of the reduced frequency by means of a cosine expansion and 

although this procedure is probably less accurate than a collocation 

technique the results obtained give the non-linear effects to a 

reasonable degree of accuracy. 
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APPENDIX 

The integral I(x) defined in Eq .(60) can be expressed in 

the form 

2lTI(i;) = &  l “[Ail(i) XV+‘sl) ldi 

X -  xi 

since Ai, = A;,(l) e-iQ(s-l) in the wake. 

When K -+ 0 

x(Klx-'sl) = g (;i-i)2 ln $1 + 0 W2) 

and so the first integral on the right hand side of Eq.(l.l) is 

CJK2 In K) and can thus be neglected in the present analysis. 

The second integral, I,(x) say,can be written as 

1.1 

1.2 

-  12(i) = _ AQ’) ,-Q-w’) Q -  1: 4zi~’ l f.[~(Kl&i/) e-iQc5-')]d~ 

1.3 

where 

or 

Q = Jm f 5 x(Mooy) 8' dy 

and 
0 

By virtue of Eq.(l.2) the second term in Eq.(l.3) is OJK2 In K) 

and can be neglected in the present approximation. 

Consider now the limiting form of Q(E) where 

1.5 

QO j E = Os2.a 
Y 

~[x(My) emiY] dy 

E 

1.6 



(ii) 

The function x is defined by Eq.(57) and may be expressed as 

x(My) = 1 + $ My C Y#(,Y) + i J1(MY)] 1.7 

On using Eq.(1.7) it may be shown that 

Q(E) = n m~ $ i $-[esiY(Y 
0 

(Mo~y) + i J (Amy))] 
0 

E 
-iy 

- s (l-M:)& (Yo(M~) + i Jo(Mg)) emiy - i $ 1 dy 

Now 

i 

O" ,-b dy = - 0.577 - 1nE - i 
7 

$ + g4 

E 
where 0.577 is Eulers constant, and 

+ i C [Yo(My) + i Jo(Q) ] eeiYlm 
E 

. * 

= - 4 e-‘E[ YO(M,d + i Jo(M,4] 

= - i [ 0.577 t In y + g]t C(E) 

It is proved in Ref.(22) that 

1-(1-M:)' 
O" Yo(M~y) + i Jo(M,Y)] 8’ dy = -h ‘nlr’ 

0 co 

Hence as E + 0 

and it follows from Eqs.(l.l, 1.3) that 

2711(i) = iL%A~,(l) t c(K21nK) 

where 
l-(l-M2$ 

6 = In(>) t (1-M:)$ lnlqe[ 

1.8 

1.9 

1.10 

1.11 

1.12 
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