C.P. No. 1289

BEDFORD.

## PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

## Study of Solid State Remote

Control Téchniques as Applied to the Redesign of the Electrical System in a Large Civil Aircraft by

L. V. C. Jones

Engineering Physics Dept., R.A.E., Farnborough

# STUDY OF SOLID STATE REMOTE CONTROL TECHNIQUES AS APPLIED TO THE REDESIGN OF THE ELECTRICAL SYSTEM IN A LARGE CIVIL AIRCRAFT 

by<br>L. V. C. Jones

SUMMARY
This Report describes how the electrical power distribution system of a large civil aircraft might be redesigned to employ remote power controllers, embodying solid state protection, in conjunction with solid state logic, to operate circuits remotely through lightweight signal wires. An assessment of the masses of a conventional and a remotely controlled system, based on a VC 10 installation in which it is assumed that the latest lightweight cables and switchgear are used indicates that the remotely controlled system would be about 90 kg lighter. Additional saving might result from equipment specifically designed to be compatible with solid state remote control techniques.

The effect on both systems of resiting the electrical compartment from the forward to a mid-aircraft position has been examined and it is concluded that a further saving of 36 kg would result with remote control.

The redesigned system lends itself to, and has been arranged for, easy conversion to multiplexed data transmission. Although a multiplexed system has not been assessed, the mass of cables and fittings that would be replaced has been evaluated as 42 kg , or 77 kg if analogue circuits were included. This indicates the allowances within which the multiplexed data transmission should be designed.

[^0]CONTENTS
Page
1 INTRODUCTION ..... 3
2 FACTORS AFFECTING THE CHOICE OF CABLE SIZE ..... 4
3 ARRANGEMENT OF CONVENTIONAL AND PROPOSED REMOTELY CONTROLLED SYSTEMS ..... 5
3.1 Conventional system ..... 5
3.2 Remotely controlled system (scheme 1) ..... 6
3.3 Alternative arrangements of power transmission (scheme 2) ..... 6
4 DESCRIPTION OF PROPOSED SYSTEM EMPLOYING REMOTE CONTROL ..... 6
4.1 General features ..... 6
4.2 Details of control and logic ..... 9
5 COMPARISON OF THE MASSES OF CONVENTIONAL AND REMOTELY CONTROLLED SYSTEMS ..... 9
5.1 Cables and connectors ..... 9
5.1.1 Scheme 1 (refer to section 3.2) ..... 9
5.1.2 Scheme 2 (refer to section 3.3) ..... 10
5.2 Protection, relays and switches ..... 10
5.3 Logic boxes and equipment panels ..... 10
5.4 Installation fittings ..... 11
6 SYSTEM INTEGRITY AND RELIABILITY ..... 11
7 CONCLUSIONS ..... 13
Appendix A The effect on installed mass of resiting the electrical bay (scheme 2) ..... 17
Appendix B Mass allowance for the introduction of multiplexed data transmission ..... 18
List of abbreviations for Tables 1 to 6 ..... 20
Tables 1-13 ..... 21
References ..... 54
Illustrations Figures 1-4
Detachable abstract cards

## INTRODUCTION

It has been shown ${ }^{1}$ that cables form a substantial proportion of the total mass of aircraft electrical installations and it appears that this area provides the greatest potential for reducing installed mass. The smaller sizes may account for some $70 \%$ of the mass of all cables installed in modern aircraft but these, of 20 gauge and lighter, are often poorly utilized in carrying currents much lower than their rated capacities and for very short periods. Typical duties are the transmission of low powered switching signals and the operation of indicators. The amount of cabling installed could be reduced in such cases by using multiplexed data transmission, and a study ${ }^{2}$ has already indicated that about 170 kg might be saved in the electrical system of a VC 10 by this means. For that study the relay logic and contactors were in existing form and position and no attempt was made to produce a system more compatible with multiplexing techniques except the use of remote bus bars for light loads.

The present study examines an alternative method of reducing the quantity of power distribution cable, based on the application of solid state devices as recently developed in the USA for the protection and remote control of circuits, known as remote power controllers (RPCs), and on experience at RAE with experimental remotely controlled devices of advanced design which it is believed could be developed readily for production (Ref.3, and later work to be reported). Study entails the redesign of the electrical system, using dispersed bus-bars, fed by sub-feeders, such that much of the present distribution wiring could be shortened and replaced by small, lightweight signal cables to operate the RPCs through solid state interlocking logic. Ultimately the number and mass of signal cables could be reduced by using multiplexing techniques, and the redesigned system has been specifically arranged to involve the minimum of modification for a change to multiplexed data transmission. The necessary components could be placed in enlarged versions of the control or logic boxes and the multiple signal wires reduced to a few screened twisted pairs. No attempt has been made to estimate the mass of a multiplexed system, but the mass of cables and fittings that would be replaced has been established in Appendix B, and forms the allowance within which the multiplexed system would have to be designed with maximum saving the aim. Analogue data could also be transmitted through the multiplexed channels, but at a cost of considerably increased complexity. The mass of existing analogue data transmission wiring has therefore been established and forms the added allowance for including this feature.

The assessment has been based on the VC 10 electrical installation, but for the datum case, the most up-to-date cables, switches, circuit breakers and relays available have been substituted for the existing items, so that a fair comparison might be made with the latest techniques employed in solid state remote control. As a result of these changes, the system mass would be reduced considerably and would no longer represent the VC 10 . For this reason there can be no direct comparison with the results of the earlier study ${ }^{2}$.

2 FACTORS AFFECTING THE CHOICE OF CABLE SIZE
The size of cables chosen for individual circuits depends on at least one of the following factors
(a) current carrying capacity,
(b) rating and performance characteristics of the circuit protection,
(c) voltage drop, limited by BS $3 G 100$ part $3^{4}$ to 2 volts for 28 volts dc and 4 volts for $115-200$ volts ac, except in special cases,
(d) mechanical strength.

These factors could be greatly affected by the introduction of solid state remote control methods.

For a conventional system, the continuous current rating of a cable when installed in a loom depends on loom size, cable position and the heat generated within the loom, and may be reduced to about one third of the value for a single cable in free air. The main fuselage looms in the proposed system would consist mainly of signal cables, carrying currents so small that their ratings would be unaffected by close packing while the power cables from the dispersed bus-bars would run, mainly locally, to wings or to engines in smaller looms, if indeed looms were necessary. In this study no benefit has been assumed from increased current carrying capacity due to these changes.

A fuse or thermal circuit breaker can carry from $150 \%$ to $200 \%$ of full rated current for several minutes before rupturing a circuit, the exact rupturing current varying considerably from fuse to fuse of given rating. The time lag of the circuit breaker is particularly affected by ambient temperature. Furthermore, in some circuits, large surge currents occur at switch-on, and the protective devices sometimes have to be uprated to cover this. For these reasons cable size must often be chosen to match the protective device rather than the nominal load current to avoid fire risk. With a solid state protective device, however, the operating envelope can be made closer to the load
characteristics and thus give better protection to both load device and cable without having to uprate the latter.

In a large proportion of circuits the allowable voltage drop governs the size of cable used. Run lengths of 30 metres and over are common in large aircraft as the VC 10, and to keep within the 2 volts drop specified for dc circuits, a 22 gauge wire of this length, for example, would be limited to carrying about 1 ampere, whereas its maximum current capacity is about 11 amperes. By adopting remote control, many run lengths could be reduced, which would not only save cable directly, but might also permit the use of smaller cables without exceeding the voltage drop limit.

The VC 10 is wired mainly with Nyvin cable, of which the smallest size is 22 gauge. Recently, very small cables have been developed with cores of copper alloy for added strength, permitting 24 gauge wire to be introduced into new aircraft, including Concorde. Wires smaller than 24 gauge, although mechanically acceptable, might be limited in their application in a conventional system, because of high resistance and the difficulty of selecting suitable protection. However, in a system designed specifically to be controlled by solid state devices which require low voltages and currents only, resistance would present no problem and fuses or circuit breakers are not the best means of protecting the signal cables. For this study, it is proposed that 26 gauge cable be used for all low powered control circuits, while 24 gauge should be used, where practicable for power circuits. The latter cable has also been substituted for 22 gauge, where suitable, in the existing VC 10 installation. The cable masses in both installations have been calculated from BICC Kapton insulated cable (KP150) data for sizes up to 12 gauge, and Nyvin cable data for larger sizes for which Kapton is not available.

3 ARRANGEMENT OF CONVENTIONAL AND PROPOSED REMOTELY CONTROLLED SYSTEMS

### 3.1 Conventional system

In the VC 10, four main, 3-phase, ac feeders of Nyvin 4 cable, transmit power from the engine mounted generators at the rear of the fuselage to the four main ac bus-bars, which are installed together with the main ac and dc electrical equipment in an electrical bay, zone F7, Fig.l. This bay also contains four main dc bus-bars and special bus-bars mainly to supply 28 volt ac power, and ground power. Sub-feeders (12 gauge for ac and 10 gange for dc) transmit power forward from the main bars to sub-bus-bars at the engineer's
position in zone Fl, Fig.1. The sub-bus-bars consist of two three phase ac bars, two single phase dc bars and four dc bars from which the majority of circuits, directly swit.hed by the crew, are supplied. All heavy power loads are indirectly switched virl contactors or relays from the main bus-bars in zone $F 7$.

### 3.2 Remotely controlled system (scheme 1)

The principal object of employing remote control is to reduce installed mass, replacing much of the under utilized distribution wiring by a few subfeeders which share both intermittent and continuous loads. It is proposed for this system to retain the main ac feeders and the position of the main equipment and bus-bars exactly as in sub-section 3.1 above, but to employ sub-feeders to carry power from the main bars in zone F7 to sub-bus-bars in zones F1, F8 and F4, Fig. 1. Loads would be supplied and controlled remotely from the nearest busbar zone, except for continuous loads larger than 10 amperes which would be fed and controlled from the main bus-bars in zone $F 7$; since it is lighter to supply such loads by individual cables rather than by a larger common feeder, due to the superior heat dissipation of the former method. This is especially true where lightweight KP 150 cables would be used rather than the heavy duty Nyvin. The proposed layout is depicted in Fig.2, which illustrates the combination of sub-bus-bars, feeders and logic boxes for controlling the remote switching.

### 3.3 Alternative arrangements of power transmission (scheme 2)

It will be seen from the descriptions in sub-sections 3.1 and 3.2 that power is transmitted forward from the rear of the aircraft, and much of it is distributed back again to the loads. In a system where circuits are directly switched by the crew, this undesirable feature is largely unavoidable, whatever bus-bar layout is adopted. But for remotely controlled circuits there are alternative positions for the main bus-bars and electrical equipment which could virtually avoid this objection. Changes to the siting of the electrical bay are discussed in Appendix $A$, where an alternative arrangement (scheme 2) is suggested in which the electrical bay would be moved from zone F7 to F8, without greatly affecting the aircraft cg position.

4 DESCRIPTION OF PROPOSED SYSTEM EMPLOYING REMOTE CONTROL
4.1 General features

Methods of using solid state techniques, with their low power requirements, to achieve reductions in installed mass have been outlined. The proposal is to operate the whole of the control system from a 5 volt, dc, power source and to
limit the actuating current of each remote power controller (RPC) to about 10 milliamperes. This would permit solid state logic to replace conventional relay logic for control and interlocking purposes, while 26 gauge would be adequate for the signal wiring indicated in Fig. 4.

Two forms of RPC have been suggested (a) all solid state and (b) electromagnetic with solid state amplifier and protective circuits. The former would be employed to switch currents up to 15 amperes in dc and single phase ac circuits or up to 6 amperes in 3 -phase ac circuits, while the latter type would switch heavier currents. The division between the two has been chosen arbitrarily, with the object of keeping losses in solid state devices low and thus avoiding the use of heavy heat sinks. This objective could also be aided where several RPCs are mounted on the same heat sink by interspersing continuously rated with intermittently rated RPCs. It might well prove that the chosen limits for these devices could be raised, since the estimated losses for each zone, see Table 9 and section 5.3, are fairly modest. The use of advanced cooling techniques such as evaporative cooling or heat pipes might have a powerful influence. Solid state remote power controllers have not yet been developed in this country; all information about these devices has been extracted from an American specification MIL-P-81653(AS) ${ }^{5}$. The electro-magnetic RPC would utilize a relay or contactor and built-in solid state protection. Should the latter prove too complex or expensive for general use in the ratings required, the existing arrangement of relay and fuse or circuit breaker protection could be retained. In either arrangement the relay or contactor would incorporate a solid state amplifier to trigger it from the 5 volt supply. An experimental electromagnetic RPC having such an amplifier has recently been explored at RAE $^{3}$.

It is intended that the control wiring should be kept separate from that of power distribution, to avoid electro-magnetic interference from this source producing spurious signals. Fig. 2 shows the intended layout and indicates the number of logic boxes, wires and connectors required.

Each box would provide a 5 volt, dc, power source for the control and logic components, obtained from internal, duplicated, transformer-rectifier units, each supplied from an adjacent ac bus-bar. The TRU outputs would be paralleled, but each would be capable of providing the full requirements of its box. In order to prevent possible spurious pulses causing inadvertent operation of the solid state RPCs, their control current would be fixed at a minimum level of, say, 10 milliamperes and anti-interference measures could be bujlt into the triggering circuit should this be found necessary.

Based on this figure, the estimated rating of the power units would be 8.5 watts for cone fl huxes and 4 wat f for other boxes.

The current level would be limited to 10 milliamperes for each individual circuit by a resistor, which could form part of a printed circuit, connected within the boxes to the power source. External wiring could not therefore become overloaded and present a fire risk, should a short circuit occur. Some signals would originate from 115 volts ac or 28 volts de sources and need similar resistors. For convenience, these are included in the logic boxes, but in practice, it would be preferable to position them within equipment or at bus-bars producing the signals.

It is proposed that all warning lights and indicators should be operated by the 5 volt control system, through transistor amplifiers built into the light or indicator body.

The system voltage would be regulated at the main bus-bars, consequently a sub-feeder becomes part of the total resistance of a circuit. For de circuits, with a sub-feeder carrying its full continuous load, the voltage drop has been divided between it and the distribution cables in the ratio of 1.3 volts to 0.7 volt respectively, while for ac circuits the ratio would be 2.5 volts to 1.5 volts. The sizes of cables used for sub-feeders and power distribution have been selected to meet these figures, subject to their current rating being adequate. In general the effect of circuit protection on cable selection has been ignored, since it is considered that in most situations voltage drop would predominate when sizing.

Some important circuits in the present system are protected by manual circuit breakers which enable the engineer to reset rapidly a tripped circuit. Where the same circuits would be protected by RPCs this facility has been retained, by installing warning lights and reset buttons at his station. To save cable in less important circuits, group resetting could be provided at accessible positions close to the various bus-bars. Should it prove possible to reset a tripped RPC by opening and closing the crew's operating switch, then the reset button and associated wiring could be deleted.

Remote control methods are neither necessary nor suitable for some circuits, for example, those operating gauges, position indicators and parts of the interior lighting. Such circuits would remain unaltered and could retain their existing protection, transferred, where necessary, to the most suitable of the new bus-bars.

### 4.2 Details of control and logic

Full details of the control system, including the appropriate Boolean logic expressions, are given in Tables 1 to 4. Each table quotes all of the components and connections for the zone. These should be divided equally between right and left hand boxes, unless an item is marked by $R$ or $L$, which denotes right or left hand only. Tables 5 and 6 contain details of the connections and solid state logic required to replace the existing relay logic for the flying control and master warning systems on panel $B$.

A control circuit is initiated when a positive voltage (or logic l signal) is applied to an RPC or to a portion of the solid state logic. If a circuit contains interlocking logic, this is represented in the appropriate table by an expression formed from discrete letters of the alphabet, where each letter represents a logic 1 signal produced by the contacts, when closed, of each switch or sensor in the circuit. Where a logic 1 signal is required from open contacts, this can be achieved by inverting the normal logic 0 signal and is represented by the symbol $\bar{A}$ or $\vec{B}$, etc.

The symbol (M) in a logic expression denotes a memory and is prefixed by a letter representing the setting signal and suffixed by a letter denoting the resetting signal. Thus $A(M) B$ indicates that contact A initiates a logic 1 signal, which would remain until reset to logic 0 by a signal from contact $B$. When a prescribed logic expression has been fulfilled, an amplified logic 1 signal is produced to actuate the appropriate RPC.

Fig. 4 illustrates a typical circuit in its conventional and remotely controlled forms, indicating the reduced cable mass associated with the latter arrangement. The additional complication arising from the use of more components in the case selected should not be overlooked.

5 COMPARISON OF THE MASSES OF CONVENTIONAL AND REMOTELY CONTROLLED SYSTEMS
The masses of those parts of the two systems which differ are compared in Tables 7 and 13 and the following observations amplify or explain details in the tables.
5.1 Cables and connectors

### 5.1.1 Scheme 1 (refer to section 3.2)

It can be seen from Table 7, that, whereas the total length of cable for the remotely controlled system is greater by 2181 metres, partly due to the extra wiring needed for warning and reset purposes, the cable mass has been reduced by 73.7 kg . The estimates for both installations are based on the modern cable data
quoted in section 2. The 26 gauge, KP150, cable is not yet available, but its specific mass has been estimated from other cables and is assumed to be $2.0 \mathrm{~g} / \mathrm{m}$.

The input connectors required at boxes and panels are assumed to be the latest high density types to an American specification MIL-C-00815110 ( $A$ av $)^{h}$. The quantities quoted are the minimum required, as indicated in fig. 2 and Table 10, but alternative combinations might be preferred in practice: lhose should not significantly increase the total mass.

### 5.1.2 Scheme 2 (refer to section 3.3)

Table 13 shows that moving the electrical bay from zone F7 to F8 gives a reduction in cable mass of 19 kg for a conventional system and 36 kg for a remotely controlled system: a clear advantage of 17 kg for the latter.

### 5.2 Protection, relays and switches

In the remotely controlled system, fuses would be retained to protect those circuits not operated by RPCs, while heavy duty, bolted type, fuses are required for sub-feeder protection only. The mass of the solid state RPC has been extracted from specification MIL-P-8163(AS). No firm information exists about solid state protection as applied to an electro-magnetic RPC; therefore the specific mass assumed in the table for a given rating comprises that of an equivalent relay or contactor, a fuse or fuses, and 4.0 g for the solid state amplifier. The latter figure represents components weighed at RAE, where samples of both ac and dc relays have been modified to contain a triggering amplifier.

The specific masses of circuit breakers, switches and relays quoted for the existing system, in Table 7 , refer to modern designs as installed in Concorde. The relatively large difference in mass between the manual switches of the two installations results from the existing switch having to be sufficiently robust to make and break inductive currents up to 10 amperes, while the lightweight type for remote control has only to switch resistive currents of 10 milliamperes. Although the lightweight switches, reset buttons and warning lights weighed at RAE were not approved aircraft types, they are considered reasonably representative of what could be achieved for these applications.

### 5.3 Logic boxes and equipment pane1s

Details of the logic boxes and the solid state logic for the central warning systems on panel $B$ are given in Table 8 . The internal masses have been calculated from standard discrete components, weighed at RAE, while the power units and box shells have been estimated from typical laboratory samples. For production equipment, large scale integrated circuits could be employed to reduce the mass of internal components, but it is doubtful whether the power units or boxes could
be made much lighter, especially as the latter would have to accommodate the connectors for incoming cables.

Because of the totally different layout required when a system employs remote control, many of the existing equipment panels would have to be modified. For example, the present fuse and bus-bar panels, $C$ (zone $F 1$ ) and $J, K, U, Z$ (zone F7) would be split bctwcen zones F1, F7, F8 and F4 to carry the revised protection detailed in Table 9. This table shows the numbers of solid state RPCs for either intermittent or continuous operation, the latter producing a total of 348 watts of heat. Table 11 gives the total mass of panels C, J, K, U and $Z$ as 74.6 kg . In the revised system, about $45 \%$ of the protective devices would be solid state RPCs mounted directly on heat sinks. If $45 \%$ ( 33 kg ) of the total panel mass be allotted for these heat sinks, then a modest continuous heat dissipation of 10.5 watts/kg would result. Typically, RAE experimental RPCs have been mounted on finned aluminium heat sinks, which under laboratory conditions, have a dissipation of about 80 watts $/ \mathrm{kg}$. Elaborate cooling methods, therefore, appear unnecessary and the 74.6 kg allowance for installation mountings has not been changed. It should be noted that little weight would be added to the near compartment (zone F4), since the total mass of protective devices and logic boxes mounted here (Tables 7 and 9 ) is $6.54+3.69=10.23 \mathrm{~kg}$ only, which would be partly offset by the elimination of relays from panels $V$ and $S$.

Table 11 lists the existing electrical panels, their masses and the estimated reduction in size and mass made possible by the elimination of relays mounted on them.

### 5.4 Installation fittings

The introduction of remote control affects the cable runs and dusting only within the fuselage. In the VC 10 this ducting, for Nyvin type cables, has a mass of 110 kg , but for smaller cables the ducting could be reduced in proportion to the square roots of the areas occupied, assuming tubular or rectangular ducting of a similar shape and length. Table 12 gives the numbers of each cable size and the areas occupied to interzone runs, from which the ratios for calculating trunking masses have been derived. Thus, by substituting KP 150 cables into the VC 10 , trunking could be reduced to $110 \times 0.72=79.2 \mathrm{~kg}$, and with remote control further reduced to $79.2 \times 0.89=70.5 \mathrm{~kg}$.

## 6 SYSTEM INTEGRITY AND RELIABILITY

In order to obtain maximum system integrity, the installations considered in this Report, whether basic VC 10 or exploiting remote control techniques, depend on the same philosophy of separate and independently operated circuits so
protected that a fault on one would not affect the correct functioning of another. Most aircraft electrical systems, including the VC 10 , eluploy some sub-feeders and a fault on one of these would cause the loss of several circuits. With the increased number of sub-feeders needed for remote control, the potential risk ut failure would be greater, but the number of circuits affected by a single fault would be roduced. In prartice, substantial cables would be used for subfeeders, and given careful installation the risk of faults occurring would be slight as is confirmed by experience in service. The provision of 5 volt control power would be an extra requirement associated with the use of RPCs and solid state logic: it would be arranged as two paralleled power units in each of eight boxes. Double failure in a single flight, causing the loss of several circuits, is regarded as unlikely. If thought advisable, however, a dc fed standby unit could be installed, for a total penalty of about 1.5 kg , to be switched manually or automatically to any box suffering a complete power failure. By careful design of equipment and installation the overall integrity should be substantially the same as for the existing system.

As remote power controllers have not yet been developed in this country, there is no statistical evidence of their reliability and at this stage, only general comments can be made on possible trends. The fuse is the simplest and potentially the most reliable form of protection, although it can be very difficult to choose a rating that will protect equipment in all circumstances. Military aircraft continue to employ fuses, but the latest trend in modern civil aircraft, such as Concorde and $A 300 B$ airbus, is towards the exclusive use of manual circuit breakers. These are also thermal devices but having mechanical movements. It therefore appears that there would be some prospect of achieving higher reliability by using solid state protection. The electromagnetic RPC, with solid state protection and control, if successfully developed for general use, would replace the existing combination of fuse and relay and should have comparable reliability.

Where solid state components replace relays in control logic, reliability should improve but the accompanying change from point-to-point wiring in VC 10 to interconnected control boxes, using multi-pin connectors might be more susceptible to faults, particularly with the proposed use of 26 gauge wire. This form of installation was chosen in the study to keep the control system self-contained and for easy conversion to multiplexed data transmission. The crew's control switches could be directly coupled to the RPCs in many circuits to reduce the number of connections, although installation breaks would still
have to be provided at the various zones. A growing application of solid state techniques to control aircraft systems would tend to increase the use of equipment boxes with multi-pin connectors, and reliability would depend increasingly on the latter's satisfactory performance.

The study has indicated that although cable mass would be considerably reduced, the lengths of small diameter cables used in the various remotely controlled systems would be greatly increased. At the same time, because of the minute currents involved - about 10 mA to actuate an RPC, cables would be reduced from the smallest size now used in the VC 10 (22 gauge) to 26 gauge. Inevitably, this would set the designer installation problems to maintain the present standard of freedom from cable mechanical failure and to provide satisfactory end connections'.

## 7 CONCLUSIONS

The comparative assessment for a VC 10 aircraft indicates that an electrical power distribution system employing remote power controllers, embodying solid state protection in conjunction with solid state logic, should be some 91 kg lighter than a conventional system modified to incorporate the latest equipment and cables. Reduced cable mass accounts for 73 kg of this saving. The total mass of the modernised system was not evaluated, only those parts directly compared in Table 7 , but BAC figures for the existing installation are given as 677 kg of cable in a total of 2256 kg , which indicates that the above savings would be in excess of $11 \%$ for cable and $4 \%$ for the total in a modernised system.

There are potential savings beyond the 91 kg quoted above, since some equipments have internal relays or sensors which could be reduced in size or even eliminated because of the very much smaller control currents used. No attempt has been made to estimate a figure for this, but some future equipment could be made lighter if designed specifically to operate in conjunction with solid state devices.

The foregoing results depend on two assumptions being substantiated. One is that 26 gauge cable, with a copper alloy core, as yet untried for general aircraft wiring, would prove sufficiently robust to cause no problems at terminations. An enforced increase in size to 24 gauge would be electrically wasteful and would reduce the saving by about 20 kg . The second is that the specified mass and reliability of solid state remote power controllers can be met in fully
developed models to production standards, that they can be mounted on efficient heat sinks with little weight penalty, and that the electro-magnetic form of RPC can be produced with a mass similar to that of a relay and fuse of equivalent rating.

The comparison between the two systems has been based on the existing power transmission layout in VC 10, but a remotely controlled system might offer a further advantage if the main electrical equipment bay were resited. A position in the rear fuselage would allow the most favourable distribution of power, involving the least amount of cable, but would be unacceptable in this aircraft because to move heavy equipment to the rear would adversely affect its cg. An alternative mid-position has therefore been assessed and the results show a saving of 19 kg for a conventional system and 36 kg for remote control, due to this modification alone. A centrally positioned electrical bay would benefit equally an aircraft with either rear or wing mounted engines, provided of course, there were no physical or mechanical penalties resulting from repositioning.

Further large reductions in the specific masses of small cables are unlikely, unless a range with aluminium alloy conductors is developed. Whether a 26 gauge cable in this material would be sufficiently strong for use in general wiring is not known, but to substitute a larger size of light alloy conductor would give little advantage over 26 gauge, copper alloy. Feeders and power distribution cables would benefit by employing aluminium alloy conductors which at present are confined to sizes of 8 gauge and larger; but beyond this, additional saving is only likely to come from introducing multiplexed data transmission.

Since insufficient information is available to make a reliable estimate of the mass of a multiplexed system, this has not been attempted, but the allowance within which a system would have to be designed has been assessed. This allowance is established as the mass of the 26 gauge signal cables and installation fittings which would be replaced by multiplexing and would amount to 42 kg approximately for a system transmitting on-off signals only, with an additional allowance of 35 kg for including analogue data in the same channels. It is quite probable that a useful proportion of these masses could be saved.

Development work has not yet started in this country on either solid state remote power controllers or multiplexed data transmission for use with aircraft electrical systems, although laboratory work at the RAE using experimental
controllers has reached a sufficiently advanced stage for equipment specifications to be written. Integrity and reliability studies would be the essential first step in any programme aimed at equipping aircraft with these controllers, particularly if multiplexed signalling were contemplated.

## Appendix A

## THE EFFECT ON INSTALLED MASS OF RESITING THE ELECTRICAL BAY (SCHEME 2)

As mentioned in sub-section 3.3, resiting the electrical bay might reduce the mass of either type of installation. The most direct power distribution would come from mounting the electrical equipment and main bus-bars in the rear fuselage, close to the generators, with feeders running forward to the centres of load concentration. However, repositioning some 340 kg of equipment in the rear fuselage would be unacceptable, because of the undesirable effect on aircraft cg, and the loss of accessibility. For these reasons this change has not been considered. An alternative, which might be more acceptable, would be to resite the electrical bay in mid-aircraft by interchanging the positions of bays 7 and 8 (see Fig.1). This could be of equal benefit to either a rear or a wing mounted engine installation and forms the basis of scheme 2.

By applying scheme 2 to cither conventional or remotely controlled installations, the main feeders, sub-feeders and cables running aft or to the wings would be shortened by 8.25 metres, while forward running cables and subfeeders would be lengthened by 8.25 metres. The longer sub-feeders would also have to be increased in size to counteract voltage drop, while a few of the shortened feeders could be made smaller. Fig. 3 shows the remotely controlled system (scheme 2), in which bus-bars and logic boxes of zones F7 and F8 could be combined to eliminate the feeders and cables linking them. However, in order to save much re-estimation of cable lengths, it has been decided for scheme 2 to retain the sub-bus-bars of zone F8 (scheme 1) and link them to the main bars, within the repositioned bay, by short feeders, 4 metres long.

Table 13 indicates how the lengths and masses of cables have been changed in both types of installation by resiting the electrical bay F7. It shows that scheme 2 is 1 ighter than scheme 1 in both cases, but that remote control has an advantage of 17.04 kg . The useful saving of 36.02 kg of cable with the latter system would depend on the possibility of re-siting the bay, without incurring direct or indirect mass penalties.

This saving is additional to the saving achieved by system redesign for remote control.

## Appendix B

MASS ALLOWANCES FOR THE INTRODUCTION OF MULTTPLEXED DATA TRANSMISSION
As stated in the introduction, the remotely controlled system has been purposely arranged, possibly with some small penalty, to enable multiplexed signal transmission to be introduced without further alteration to the basic system concept. Referring to Fig.2, the necessary components could be included in enlarged control boxes, which would be joined by transmission lines, composed of screened twisted pairs, in place of the existing control wiring. In the present lack of development, it is not possible to estimate the mass of the enlarged boxes, but tabulated below are the masses of those items which would be replaced or reduced by multiplexing the control signals. The total mass sets the limit within which a system incorporating built-in redundancy to maintain an acceptable standard of overall integrity, would have to be designed.

$$
\begin{aligned}
& \text { Control wiring, } 26 \text { gauge, length } 14180 \text { metres }=29.62 \mathrm{~kg} \\
& \text { Negative wiring, } 24 \text { gauge, length } 403 \text { metres }=1.17 \mathrm{~kg} \\
& \text { Connectors } 24 \text { off (various, as shown in Fig. } 2 \text { ) }=2.32 \mathrm{~kg} \\
& \begin{aligned}
\left.\begin{array}{l}
\text { Ducting reduction due to eliminating } 26 \text { gauge } \\
\text { wires. See estimate below (case 1) }
\end{array}\right\} & =\frac{8.74 \mathrm{~kg}}{41.85 \mathrm{~kg}}
\end{aligned} \begin{aligned}
\text { Total }
\end{aligned} \\
&
\end{aligned}
$$

To include analogue data in a multiplexed transmission system would mean introducing the extra complexity of analogue to digital conversion and subsequent reversion, as well as enlarging the address and data registers. In order to establish the mass saving against which the extra complexity must be balanced, the existing analogue data transmission wiring has been estimated as follows.

| 24 gauge cable, length 8816.3 metres  <br> 22 gauge cable, length 672.8 metres  <br> $\left.\begin{array}{l}\text { Ducting reduction due to eliminating } \\ \text { above cables. See estimate below (case 2) }\end{array}\right\}$ $=25.57 \mathrm{~kg}$ <br> Total  | $=\frac{6.49 \mathrm{~kg}}{34.91 \mathrm{~kg}}$ |
| :--- | :--- |

The estimates of reduced ducting used in the above evaluations are calculated below from information given in Table 12.

Case 1. The elimination of 26 gauge cable
(delete area of 26 gauge from Table 12)

| Zones | Total area <br> (A) $\mathrm{mm}^{2}$ | Side <br> $\sqrt{\text { A mm }}$ | Proportion of <br> total length ( $)$ | $\ell \sqrt{A}$ <br> per zone | Tota1 <br> $\ell \sqrt{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F1 to F7 | 320.4 | 17.9 | 0.208 | 3.72 |  |
| F7 to F8 | 1474.5 | 38.4 | 0.375 | 14.4 | 32.15 |
| F8 to F4 | 1132.0 | 33.8 | 0.417 | 14.03 | $\}$ |

ratio of $\frac{\text { multiplex }(1)}{\text { remote }}=\frac{32.15}{36.68}=0.876$.
Ducting mass $=70.5 \times 0.876=61.76 \mathrm{~kg}$

Case 2. The elimination of analogue data transmission wiring
(delete areas of 22,24 and 26 gauges from Table 12)

| Zones | Total area <br> (A) $\mathrm{mm}^{2}$ | Side <br> $\sqrt{A} \mathrm{~mm}$ | Proportion of <br> total length ( $\ell)$ | $\ell \sqrt{A}$ <br> per zone | Total <br> $\ell \sqrt{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F1 to F7 | 122.1 | 11.05 | 0.208 | 2.3 |  |
| F7 to F8 | 1265.4 | 35.6 | 0.375 | 13.35 | 28.74 |
| F8 to F4 | 984.1 | 31.4 | 0.417 | 13.09 |  |

ratio of $\frac{\text { multiplex (2) }}{\text { remote }}=\frac{28.74}{36.68}=0.784$.
Ducting mass $=70.5 \times 0.784=55.27 \mathrm{~kg}$

## List of abbreviations for Tables 1 to 6



IABEE 1
ZONE F1 DETALLS OF REMOTE CONTROL CIRCUITS UP To bUS-BARS

| Item No. | Equipment and location |  | No. of wires | F1 Logic boxes |  |  | No. of wires | Circuit continuation |  | $\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | timiting resistors | Connections | Boolean logic expressions | $\begin{gathered} \text { Logic } \\ \text { box } \end{gathered}$ |  | Identification |  |
| 1 | F1C 1 to 4ac bus-bars 3amp fuses | 12 off |  | 12 in |  | To T.R.U.s for | 5 volt rall for logic operation |  |  |  | 1 |
| 2 | F1B Transistor switches for oil low pressure warn/light | 4 off | 4 out |  | 4 through |  | 4 in | $F_{4}$ | Table 4, No. 2 | 2 |
| 3 | F1B Low pressure cock switches A shut, D open |  | $\left\{\begin{array}{l} 4 \text { out } \\ 8 \text { return } \end{array}\right.$ | 4(5v) | Signals A, D |  |  |  |  | 3 |
| 4 | F1D High pressure cock switches B shat, E open |  | $\left\{\begin{array}{l} 4 \text { out } \\ 88 \text { return } \end{array}\right.$ | 4(5v) | Signals B, E | $\left.\left\{\begin{array}{l} \text { open field } \\ \text { O.E } \end{array}\right\} \begin{array}{l} \text { No. } 1 \text { logic for fuel } \\ \text { close field } \end{array}\right\} \begin{aligned} & \text { (D.B.Cks (four identical) } \end{aligned}$ |  |  |  | 4 |
| 5 | F1A Fire switches $C$ shut |  | $\left\{\begin{array}{l} 4 \text { out } \\ 4 \text { return } \end{array}\right.$ | 4(5v) | Signal C |  | No 1 <br> logic <br> 8 out | F8 | Table 3, No. 4 | 5 |
| 6 | F1B Inter engine valve switches A shut, B open |  | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \text { return } \end{array}\right.$ | $2(5 \mathrm{~V})$ | 4 through |  | 4 out | F8 | Table 3, No. 5 | 6 |
| 7 | F1B Transistor switches for fuel cock indicators ( $\left.\begin{array}{c}\text { open } \\ \text { close }\end{array}\right)$ | 12 off | 12 out |  | 12 through |  | 1210 | F8 | Table 3, Ho 6 | $?$ |
| 8 | F1C reset button warning light for RPCs | $\begin{aligned} & 2 \mathrm{off} \\ & 2 \mathrm{off} \end{aligned}$ | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \text { return } \end{array}\right.$ | $2(54)$ | 4 through |  | 4 out | F8 | Table 3, No. 7 | 8 |
| 9 | F18 Transfer valve surtches A shut, B open |  | $\left\{\begin{array}{l}4 \\ \text { out } \\ 8 \\ \text { return }\end{array}\right.$ | $4(5 V)$ | 8 through A, B |  | 8 out | F8 | Table 3, No. 8 | 9 |
| 10 | F1B Jettison and cross feed switches A shut, B open |  | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \text { return } \end{array}\right.$ | 2(5v) | 4 through A, B |  | 4 out | F8 | Table ?, Mo. 9 | 10 |
| 11 | F1B $\begin{aligned} & \text { Iransistor switches for transfer valve } \\ & \text { indicators }\end{aligned} \quad\binom{$ open }{ close } | $12 \text { off }$ | 12 out |  | 12 through |  | 12 n | F8 | Table 3, No. 10 | 11 |
| 12 | $\text { FTC }\left\{\begin{array}{l} \text { reset button } \\ \text { warning light for RPCs } \end{array}\right.$ | 2 off | $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ 4\end{array}\right.$ return | $2(5 V)$ | 4 through |  | 4 out | F8 | Table 3, Ho. 11 | 12 |
| 13 | F1b Fuel puap suitches | 10 off | Fio out fio return | 10(5V) | 10 through |  | 10 out | F8 | Table 3, Mo. 12 | 13 |
| 14 | F1B Transfer valve switches A shut, B open |  | $\begin{cases}2 & \text { out } \\ 4 & \text { return }\end{cases}$ | $2(54)$ | 4 through A, B |  | 4 out | F8 | Table 3, No 12 | 14 |
| 15 | F1B Engine switches speed/temperature control |  | $\left\{\begin{array}{l} 4 \text { out } \\ 4 \text { return } \end{array}\right.$ | 4(5y) | 4 through |  | 4 out | F4 | Table 4, Mo. 4 | 15 |
| 16 | F1B Iransistor switches for low pressure indicators | 4 off | 4 out |  | 4 through |  | 4 in | $\mathrm{F}_{4}$ | Table 4, No 5 | 16 |
| 17R | F1B Iransistor suitch for low pressure indicator | 1 off | 1 out |  | 1 through |  | 1 in | F8 | Table 3, Mo. 15R | 17 R |
| 18 | F1B Tank transfer vaive switches |  | $\left\{\begin{array}{l} 4 \text { out } \\ 4 \text { return } \end{array}\right.$ | 4(5v) | 4 through |  | 4 out | F8 | Table 3, no '\% | 18 |
| 19 | F18 Iransistor switches for tank valve indicators | 4 off | 4 out |  | 4 through |  | 418 | F8 | Table 3, No. 21 | 19 |
| 20 | F18 No. 1 to 4 valve switches A sultch closed |  | $\left\{\begin{array}{l} 4 \text { out } \\ 4 \text { return } \end{array}\right.$ | 4(5Y) | 4 through A |  | 4 out | F8 | Table 3, No. 22 | 20 |
| 21 | F1. EA No. 1 to 4 power drain switches B sultch closed |  | $\left\{\begin{array}{l}4 \\ 4 \\ 4 \\ \text { retur }\end{array}\right.$ | 4(5v) | 4 through B |  | 4 out | F8 | Table 3, No. 23 | $2^{1}$ |
| 22 | F18 Centre transfer valve switches |  | $\begin{cases}2 & \text { out } \\ 2 & \text { return }\end{cases}$ | $2(5 \mathrm{~V})$ | 2 through |  | 2 out | F8 | Table ?, No. 26 | $2 ?$ |

Table 1 (continued)


Table 1 (continued)

|  | Equiprent and location | No. of wires | $F 1$ Logic boxes |  |  | No. of wires | Circuit continuation |  | ItenHo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% $\begin{aligned} & \text { Iter } \\ & \text { No. }\end{aligned}$ |  |  | Limating resistors | Connections | Booiean logic expressions |  | $\log 1 \mathrm{c}$ box | Identification |  |
| 46 | F1C Ground power 115 V supply (VZ alive)$\begin{aligned} & \left\{\begin{array}{lll} \text { F1C } & \text { No. 2, } 3 \text { and } 4 \text { ac bus-bars phase } C \quad 3 \text { aap RPC } \\ \text { FTE } & \text { High/low teaperature selector swi tches } \end{array}\right. \\ & \begin{array}{ll} \text { F5X } & \text { Windscreen controller overheat switch (B, overheat) }) \\ \text { F1B } & \text { Iransistor suitches for overheat warning light } \end{array} 3 \text { off } \end{aligned}$ | $\begin{aligned} & 2 \text { in } \\ & \begin{cases}6 & \text { out } \\ 3 & \text { return }\end{cases} \\ & \begin{cases}3 & \text { out } \\ 3 & \text { return } \\ 3 & \text { out }\end{cases} \end{aligned}$ |  | v1, v2, $\overline{v_{2}}$ <br> A from 230 <br> Fron logic 3 signal A | $\left\{\begin{array}{l}\text { No. } 3 \text { logic (three identical, two right hand, } \\ \text { one left hand) A.V1. } \overline{V 2} \text {, }\end{array}\right.$$\left\{\begin{array}{l} \text { No. } 4 \text { logic for windscreen heat control } \\ \text { A. } \bar{B} \text { operates RPC in phase B } \\ \text { C. } \bar{B} \text { operates RPC in phase C } \end{array}\right\}\binom{\text { Three }}{\text { dentical }}$ |  |  |  | 46 |
| 47 |  |  |  |  |  |  |  |  | 47 |
| 48 |  |  | $3(5 v)$ | $\left.\begin{array}{l} \text { Signal } \\ 3 \text { through } B \end{array}\right\}$ |  |  |  |  | 48 |
| 49 | F5x Windscreen controller, norm heat SW C Low temperature | 3 in | 3(115V) | Signal C |  |  |  |  | 49 |
| 50 | $\begin{array}{lllll}\text { FIC } & 2,3 \text { and } 4 \times \text { busubars } & \text { phase B } & 15 \text { amp RPC } & 3 \text { off } \\ \text { phase } C & 15 \text { amp RPC } & 3 \text { off }\end{array}$ | $\left\{\begin{array}{l}3 \text { out } \\ 3 \text { out }\end{array}\right.$ |  | From logic No. 4 |  |  |  |  | 50 |
| 51 | F1 Hindscreens 1 to 4 and $d v$ thermostats | $\left\{\begin{array}{l} 5 \text { out } \\ 5 \text { return } \end{array}\right.$ | $5(5 \mathrm{~V}), 5(115 \mathrm{~V})$ | V 1 and V 2 frön 46 , a froin 230 . <br> logic No. 5 out | $\left.\int\right\} \begin{aligned} & \text { No. } \frac{5}{l} \operatorname{logic} \\ & \text { vi. } \overline{2} . A(f i v e ~ i d e n t i c a i, ~ \end{aligned}$ |  |  |  | 51 |
| 52 | $\text { F1C }\left\{\begin{array}{lll} 1 \text { and } 4 \text { ac bus-bars phases } B \text { and } C & 5 \text { amp RPC } & 4 \text { off } \\ 2 \text { and } 4 \text { as bus-bars phase A } & 5 \mathrm{amPRC} & 2 \text { off } \\ 1 \text { ac bus-bar phase A } & 10 \text { amp RPC } & 1 \text { off } \end{array}\right\}$ | $5 \text { out }\}$ |  | 5 through |  |  |  |  | 52 |
| 531. | F1E Desist fan switch | $\left\{\begin{array}{ll}1 & \text { out } \\ 1 & \text { return }\end{array}\right\}$ | 1(5v) | 1 through |  |  |  |  | 531 |
| 541 | F1C No. 1 ac bus-bar, three phase 5 amp RPC 1 off | 1 out |  |  |  |  |  |  | 54 L |
| 55 | F1B High pressure stop valve suitches C shut | $\left\{\begin{array}{l}4 \\ 4 \\ 4 \\ 4 \\ \text { retut }\end{array}\right.$ | 4 (5V) | 4 through $C^{\circ}$ |  | 4 out | 54 | Table 4, No. 22 | 55 |
| 56 | F1A Fire suitches ( $A+B$ 酎 shut | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { return }\end{array}\right.$ | 2 (5V) | 2 through (A + B) |  | 2 out | F4 | Table 4, Ho. 23 | 56 |
| 57 | F1, EA High pressure stop valve reset switch (R, reset) | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { return }\end{array}\right.$ | 2(5v) | 2 through R |  | 2 out | F4 | Table 4, No. 25 | 57 |
| 58 | $\text { F18 }\left\{\begin{array}{l} \text { Transistor switches for high pressure stop valve } \\ \text { position monicator } \end{array}\right.$ | 4 out |  | 4 through |  | 4 in | F4 | Table 4, No. 26 | 58 |
| 59 | F7B Start master switch and pressure reducing valve switches | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \text { return } \end{array}\right.$ | 2(56) | 4 through |  | 4 out | F4 | Table 4, No. 27 | 59 |
| 60 | Fib Start aster switch and wing anti icing stop valve switches | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \\ 4 \end{array}\right. \text { return }$ | $2(5 \mathrm{~V})$ | 4 through |  | 4 out | F8 | Table 3, Nu. 31 | 60 |
| 61 | F7b Start master switch and tail anti icing stop valve syitches | 2 return |  | 2 through |  | 2 out | F4 | Table 4, Ko. 28 | 61 |
| 62 | $\text { F1B }\left\{\begin{array}{l} \text { Iransistor switches for pressure reducing valve } \\ \text { indicators } \end{array} \quad 2\right. \text { off }$ | 2 out |  | 2 through |  | 2 in | F4 | Table 4, No. 29 | 62 |
| 634 | $\text { F1B }\left\{\begin{array}{l} \text { Iransistor sultches for tall antı icing stop } \\ \text { valve indicator } \end{array} \quad 1\right. \text { off }$ | 1 out |  | 1 through |  | 1 n | F4 | Table 4, No. 30 L | 63L |
| 64 | $\text { F18 }\left\{\begin{array}{l} \text { Transistor switches for wing ant } 1 \text { cing stop } \\ \text { valve indicator } \end{array} \quad \&\right. \text { off }$ | 4 out |  | 4 through |  | 418 | F8 | Table 3, 1o. 32 | 64 |
| 65 | $\text { F1B }\left\{\begin{array}{l} \text { Transistor switches for hot air duct overheat } \\ \text { warning light } \end{array} \quad 2\right. \text { off }$ | 2 out |  | 2 through |  | 2 in | F4 | Table 4, No. 31 | 65 |
| 661 | $\text { F1B }\left\{\begin{array}{l} \text { Transistor switches for main duct interskin } \\ \text { pressure warning hight } \end{array} \quad 1\right. \text { off }$ | 1 out |  | 1 through |  | 1 in | F8 | Table 3, No. 34 f | 66 L |

Table 1 (continued)


Table 1 (continued)

| $\begin{gathered} \text { Itar } \\ \text { No. } \end{gathered}$ | Equipment and location | No. of wires | F1 Logic boxes |  |  | No. of wires | Circuit continuation |  | itenHo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Limiting resistors | Connections | Boolean logic expressions |  | $\begin{gathered} \text { Logic } \\ \text { box } \end{gathered}$ | Identification |  |
| 91 | F18 Transistor switches for overheat warning light ( $55^{\circ} \mathrm{C}$ ) 2 off | 2 out |  | 2 through |  | 2 in | F8 | Table 3, Mo. 50 | 91 |
| 92 | F1B Iransistor switches for overheat warning hight ( $\left.120^{\circ} \mathrm{C}\right) 2$ off | 2 out |  | 2 through |  | 2 וn | F8 | Table 3, No. 51 | 92 |
| 93 | F18 Temperature control switch (off, $A$ auto, B decrease, C increase) | $\left\{\begin{array}{l}2 \text { out } \\ 6 \text { return }\end{array}\right.$ | 2(5V) | 6 through A, B, C |  | 6 out | 7 | Table 2, Mo. 13 | 93 |
| 94 | F18 Selector switch (norm modulation isolation H, choke overide N) | $\left\{\begin{array}{l}2 \\ 2 \\ 4 \\ 4 \\ \text { ret } \\ \text { return }\end{array}\right.$ | 2(5V) | 4 through H, N |  | $\left\{\begin{array}{l}4 \\ 4\end{array}\right.$ | $\begin{aligned} & \mathrm{F}_{4} \\ & \mathrm{~F} \end{aligned}$ | Table 4, No. 51 Table 3, No. 53 | 94 |
| 95 | F1C Reset button and warning light 4 off each | $\left\{\begin{array}{l}4 \\ 4 \\ 8 \\ 8 \\ \text { retet } \\ \text { rern }\end{array}\right.$ | 4(5V) | 8 through |  | $\left\{\begin{array}{l}4 \\ 4 \\ 4 \\ 4 \\ \text { out }\end{array}\right.$ | $\begin{aligned} & \text { F8 } \\ & \text { F4 } \end{aligned}$ | Table 3, No. 57 <br> Table 4, Ho. 49 | 95 |
| 96 | F1B Refrigerator mastor switch (A norm, off, 6 isolate) | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \text { return } \end{array}\right.$ | 2(5V) | 4 junctions 6 , out A, G |  | $\left\{\begin{array}{l}2 \text { out } \\ 4 \text { out }\end{array}\right.$ | $\begin{aligned} & F_{4} \\ & F 8 \end{aligned}$ | Table 4, Ho. 52 <br> Table 3, Mos. 54 <br> and 60 | 96 |
| 97 | F18 Recirculating fan SU (E nors, off, F, on) | $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ \text { return }\end{array}\right.$ | 2(5V) | 4 through E, F |  | 4 nut | F7 | Table 2, No. 16 | 97 |
| 98 | F1B $\left\{\begin{array}{l}\text { Transistor sul tches for refrigeration failure } \\ \text { warning light }\end{array} \quad 2\right.$ off | 2 out |  | 2 through |  | 2 in | F6 | Table 3, No. 62 | 98 |
| 99 | F18 Reset button and warning light 2 off each | $\left\{\begin{array}{lll}2 & \text { out } \\ 4 & \text { return }\end{array}\right.$ | 2(5V) | 4 through |  | 4 out | F8 | Table 3, No. 67 | 99 |
| 100 | F18 Flying control switches (A norn, off, B isolate) 11 aff | $\left\{\begin{array}{l} 11 \text { out } \\ 22 \text { return } \end{array}\right.$ | i1(5V) | 22 through A, B |  | 4 out | F? | Table 2, Mo. 18 | 100 |
| 101 | F18 $\left\{\begin{array}{l}\text { Transistor suitches for hydraulic pressure } \\ \text { warning lights }\end{array}\right.$ | 11 out |  | 11 through |  | $\left\{\begin{array}{l}4 \mathrm{in} \\ 7 \mathrm{in}\end{array}\right.$ | $\begin{aligned} & F 8 \\ & F 4 \end{aligned}$ | Table 3, Ho. 68 <br> Table 4, Ho. 58 | 101 |
| 102 | F10 lail tris switches (A doun, Bup, X.Y autopilot) | $\left\{\begin{array}{l}2 \text { out } \\ 6 \\ 6\end{array}\right.$ | 2 (5V) | 6 through $A, B, X, Y .$ |  | 6 out | F4 | Table 4, Mo. 59 | 102 |
| 103 | F1B Re-arming push (normally closed J) | $\left\{\begin{array}{l} 2 \text { out } \\ 2 \text { return } \end{array}\right.$ | $2(5 \mathrm{~V})$ | 2 through J |  | 2 out | F4 | Table 4, No. 60 | 103 |
| 104 | F1B Transistor switches for overrun warning lights 2 off | 2 out |  | 2 through |  | 2 in | F4 | Table 4, Ho. 63 | 104 |
| 105 | F1B Artificial feel pump suitches (norn, isolate) | $\left\lvert\,\left\{\begin{array}{l} 2 \text { out } \\ 2 \text { return } \end{array}\right]\right.$ | 2(5V) |  |  |  |  |  | 105 |
| 106 | $\text { FIC }\left\{\begin{array}{lll} \text { Ho. } 4 \text { ac bus-bar } & 3 \text { phase } & 7 \text { amp RPC } \\ \text { Auxillary bus } & 3 \text { phase } & 7 \text { amp RPC } \end{array}\right.$ | 2 out $\}$ |  | 2 through |  |  |  |  | 106 |
| 107 | $\text { F6 }\left\{\begin{array}{l} \text { Hose wheel bay hydraulic pressure switches and over- } \\ \text { heat thermostat } \end{array}\right.$ | $\left\{\begin{array}{l} 4 \text { out } \\ 4 \text { return } \end{array}\right.$ | 4(5V) | 4 through to 108 |  |  | * |  | 107 |
| 108 | $\left\{\begin{array}{l} \text { F1A } \begin{cases}\text { Transistor switches for pump and motor overheat } \\ \text { warning lights }\end{cases} \\ \text { F1B off } \\ \left\{\begin{array}{l} \text { Iransistor suitches for feel failure warning } \\ \text { hights } \end{array}\right. \\ 2 \text { off } \end{array}\right.$ | $\left\{\begin{array}{l} 2 \text { out } \\ 2 \text { out } \end{array}\right\}$ |  | through. See 107 |  |  |  |  | 108 |
| 109L | F1C No. 1 non essential dc bus-bar 3 amp RPC 1 off | 1 out |  | 1 through |  | חו 1 | F8 | Table 3, Ho.69L | 109 L |
| 1102 | F1C Reset button and warning light 1 off each for 109 L | 1 out |  | 1 through |  |  |  |  | 110 L |
| 1111 | F1A u/c selector switch (down A, up B) | $\left\{\begin{array}{ll} 1 & \text { out } \\ 2 & \text { return } \end{array}\right\}$ | 1(5V) | 2 junctions and |  |  |  |  | 1115 |
| 112. | F1C Mo. 1 essential dc buswbar 3 amp RPC 2 off | 2 out |  | 2 through A, B |  | 2 nut | F8 | Table 3, No. 20 L | 112 L |

Jable 1 (continued)

| $\begin{aligned} & \text { Iten } \\ & \text { No. } \end{aligned}$ | Equipment and location | Ho, of wires | F1 Logic boxes |  |  | No. of wires | Circuit continuation |  | ItemNo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Limiting resistors | Connections | Boolean logic expressions |  | $\underset{\text { box }}{\text { Logic }}$ | Identification |  |
| 113L | F1A u/c selector SW and emergency switch (up C.D, noris E) | $\begin{aligned} & \left\{\begin{array}{l} \left\{\begin{array}{l} 1 \text { out } \\ 2 \text { return } \end{array}\right. \\ 2 \text { out } \end{array}\right\} \\ & \left\{\begin{array}{l} 2 \text { out } \\ 4 \\ \text { return } \end{array}\right. \end{aligned}$ | 1(5V) | 2 unctions C.D, E and 2 through |  | 2 out | F8 | Table 3, Ho. 711 | $113 L$ 114 L |
| 115 | F1C Reset button and warning light 2 oft each for 112L 1174 L |  | $2(5 v)$ | 4 through |  | 4 out | $\ddagger 8$ | Table 3, Ho. 72 | 115 |
| 116R | F1A u/c selector switch (down, up) | $\left.\left\lvert\, \begin{array}{l}\left\{\begin{array}{l}1 \\ \text { out } \\ 2 \\ \text { return }\end{array}\right. \\ \left\{\begin{array}{l}2 \text { out } \\ 2 \\ \text { return }\end{array}\right. \\ 1 \begin{array}{l}\text { out }\end{array}\end{array}\right.\right\}$ | 1 (5V) |  |  | 4 out | F8 | Table 3, Ho. 73 | 116R |
|  | F6 Nose wheel up lock and down lock eswitches |  |  | 2 junctions and 2 through, |  |  |  |  | 117R |
| 117R | F1A Iransistor suitch for u/c indicator 'nose unlock' 1 off |  |  | 1 diode in 'up', <br> 1 diode in 'down' |  |  |  |  | 118R |
| 119R | F6 Nose wheel doun lock surtch | $\left\{\begin{array}{l} 1 \text { out } \\ 1 \text { return } \end{array}\right\}$ | 1(5V) |  |  |  |  |  | 1198 |
| 1208 | F1A Iransistor switch for u/c indicator 'nose lock' 1 off | 1 out |  | 1 through |  |  |  |  | 120R |
| 121R | F6 Nose wheel door lock suitch | $\left\{\begin{array}{l}1 \\ 1 \\ 1 \\ \text { ret } \\ 1\end{array}\right.$ | 1(5V) |  |  |  |  |  | 121R |
| 1288 | F1A Transistor switch for nose door warning light 1 off | 1 out |  | 1 through |  |  |  |  | 12R |
| 123 | F1A $\left\{\begin{array}{l}\text { Iransistor switch for } u / \mathrm{c} \text { indicator 'main wheels } \\ \text { unlack' }\end{array} 2\right.$ off | 2 out |  | 2 through |  | 2 in | F8 | Table 3, No. 74 | 123 |
| 124 | F1A $\left\{\begin{array}{l}\text { Iransistor suitch for } \mathrm{u} / \mathrm{c} \text { indicator 'main wheels } \\ \text { lock! }\end{array}\right.$ | 2 out |  | 2 through |  | 2 in | F8 | Table 3, Mo. 75 | 124 |
| 125 | FiA $\left\{\begin{array}{l}\text { Iransistor suitch for main wheels door lock } \begin{array}{l}\text { indicator }\end{array} \quad 2 \text { off }\end{array}\right.$ | 2 out |  | 2 through |  | 2 in | F8 | Table 3, No. 76 | 125 |
| 126R | F1, EA Test switch (nora open, test shut D) | $\left\{\begin{array}{l}1 \text { out } \\ 11 \text { return }\end{array}\right.$ | 1(5V) | Signal 0 | No. 6 logic for warning horn (one only) |  |  |  | 126R |
| 127R | F6 Nose wheel doun lock switch (shut C) | $\left\{\begin{array}{l}1 \text { out } \\ 1 \\ 1 \\ \text { return }\end{array}\right.$ | 1(5V) | Signal C |  |  |  |  | 127R |
| 128R | F1B Throttle nicrooswitches (closed E.F - G.H) | $\left\{\begin{array}{l} 1 \text { out } \\ 1 \text { return } \end{array}\right.$ | 1(5v) | Sıgnal (E.F + G.H) | $(A+B+C+D) . J .(E . F+G . H)$ |  |  |  | 128R |
| 1298 |  |  |  | Signal J, J |  | 1 in | 7 | Table 2. No. 25R | 129R |
| 130R | F1C No. 2 essential de busmbar 5 amp RPC 1 off | $\begin{aligned} & \text { No. } 6 \text { logic } \\ & 1 \text { out } \end{aligned}$ |  | Signal ( $A+B$ ) |  | 1 in | F8 | Table 3, Mo.77R | 130R |
| 131R | F1C Reset button and warning light 2 off each for 130R | 1 out | 1(5v) |  |  |  |  |  | 137R |
| 132 | F10 Flap selector switches (up, $20^{\circ}, 30^{\circ}$, doun) | $\left\{\begin{array}{l}2 \text { out } \\ 8 \text { return }\end{array}\right.$ | $2(5 \mathrm{~V})$ | 8 through |  | 8 out | 98 | Table 3, Mo. 78 | 132 |
| 133 | F1C Reset button and warning light 2 off each | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \text { return } \end{array}\right.$ | $2(5 V)$ | 4 through |  | 4 out | F8 | Table 3, No.80 | 133 |
| 134 | $F 18\left\{\begin{array}{l} \text { overide suitches (norm } E, \text { overide } \bar{E} \text { ) } \\ \text { Isolate switches (norm } B, 1 \text { solate } A) \end{array}\right.$ | $\left\{\begin{array}{l} 2 \text { out } \\ 5 \text { return } \end{array}\right\}$ | $2(5 v)$ | 2 junctions 3 through |  | 5 out | F8 | Table 3, No. 81 | 134 |
| 135 | F18 Transistor suitches for flap isolate varning light 2 off | 2 out |  | (A) with 137 A, B, C |  |  |  |  | 135 |

Table 1 (Continued)

| $\begin{gathered} \text { Iter } \\ \text { No. } \end{gathered}$ | Equipment and location | No. of wires | F1 Logic boxes |  |  | No. of wires | Circuit continuation |  | ItemNo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Limiting resistors | Connections | Boolean logic expressions |  | logic box | Identification |  |
| 136 | F1B Iransistor switches for selector valve indicators (up, down) | 40 out |  | 4 through |  | 4 in | F8 | Table 3, No. 83 | 136 |
| 137 | F1B Iransistor switches for flap isolate indicators 2 off | 2 out |  | 2 Junctions with 134/135 2 through |  | 210 | F8 | Table 3, No. 86 | 137 |
| 138 | F1C Reset button and warning light 2 off each | $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ 4 \text { return }\end{array}\right.$ | $2(5 V)$ | 4 through |  | 4 out | F8 | Table 3, No. 87 | 138 |
| 139 | F10 Slat control aicro switches (in $A$, out B) | $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ 4\end{array}\right.$ | 2(5V) | 4 through |  | 4 out | F8 | Table 3, No. 89 | 139 |
| 140 | F1C Reset buttons and warning lights 20 ff sach | $\begin{cases}2 \text { out } \\ 4 & \text { return }\end{cases}$ | 2 (5V) | 4 through |  | 4 out | F8 | Iable 3, No. 91 | 140 |
| 141 | $\text { F78 }\left\{\begin{array}{l} \text { Iransistor switches for slat indicators and } \\ \text { isolate indicators } \end{array} \quad 5\right. \text { off }$ | 6 out |  | 6 through |  | חו 6 | F8 | Table 3, No. 97 | 141 |
| 142 | $\text { F18 }\left\{\begin{array}{l} \text { Iransistor switches for hydraulic fluid overheat } \\ \text { warning light } \end{array} 2\right. \text { off }$ | 2 out |  | 2 through |  | 2 in | F4 | Table 4, No. 64 | 142 |
| 143R | F18 Ferry link switch (norm A, linked B) | $\begin{cases}1 & \text { out } \\ 2 & \text { returu }\end{cases}$ | 1(54) | 2 through A, B |  | 2 out | F4 | Table 4, No.65R | 143R |
| 1442 | F18 Emergency steering suitch (norm A, emergency B) | $\left\{\left\{\begin{array}{ll} 1 & \text { out } \\ 2 & \text { return } \end{array}\right\}\right.$ | 1(5V) | 2 through A, B |  |  |  |  | 1442 |
| 145 L | F1C No. 1 essential de bus-bar 5 amp RPC 2 off | 2 out |  | 2 trough, ${ }^{\text {a }}$ |  |  |  |  | 145 L |
| 146R | F1C Reset button and warning light 2 off each | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { return }\end{array}\right.$ | $2(5 \mathrm{~V})$ | 2 through |  | 2 out | F4 | Table 4, No.66R | 146R |
| 147 | F18 Hydraulic off load suitchas Mo. 1 to 4 | $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ 4\end{array}\right.$ | 2 (5V) | 4 through |  | 4 out | F4 | Table 4. No. 67 | 147 |
| 148 | F1C Reset button and warning light 2 off each | $\begin{cases}2 & \text { out } \\ 4 & \text { return }\end{cases}$ | 2(5V) | 4 through |  | 4 out | F4 | Table 4, No.68 | 148 |
| 149 | F1B Iransistor suitches for ferry link actuator indicators/2 off | 2 out |  | 7 through |  | 217 | F4 | Table 4, No. 69 | 149 |
| 150 | $\text { F6 }\left\{\begin{array}{c} \text { Stn } 197 \text { emergency steering actuator himit switches } \\ \text { (Open, shut) } \end{array}\right.$ | $2 \text { in }\}$ | 2(28V) | 2 through |  |  |  |  | 150 |
| 151 | Fib Iransistor suitches for emergency steering indicator 2 off | 2 out |  |  |  |  |  |  | 151 |
| 152R | F1E Ground hydraulic pump switch | $\left\{\begin{array}{l}1 \text { out } \\ 1 \text { return }\end{array}\right.$ | $\begin{gathered} 1(115 \mathrm{~V}) \\ (\mathrm{V} 2 \text { from 46) } \end{gathered}$ | 1 through |  | 1 out | 7 | Table 2, No.28R | 152R |
| 153 | F18 Spoilerisolate switches, one pole earthed (norm, isolate) | $\left\{\begin{array}{l}3 \text { out } \\ 6 \text { roturn }\end{array}\right.$ | 3 (5V) | 6 through |  | 6 out | F8 | Table 3, No. 98 | 153 |
| 154 | F1C Reset buttons and warning hight 2 off each | $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ 4 \\ \text { return }\end{array}\right.$ | $2(5 v)$ | 4 through |  | 4 out | F8 | Table 3. No. 99 | 154 |
| 155 | F1B Hydraulic isolation value switches (shut A, open B) | $\left\{\begin{array}{l}4 \text { out } \\ 88 \text { return }\end{array}\right.$ | 4(5V) | Signals A, B |  |  |  |  | 155 |
| 156 | F1A Fire control suitches ( $C$ emergency, D norm) | $\left\{\begin{array}{l} 4 \text { out } \\ 8 \text { return } \end{array}\right.$ | 4(5V) | Signals C, D |  | $\left\lvert\, \begin{gathered} \text { No. } 7 \text { loge e } \\ 8 \text { out } \end{gathered}\right.$ | F4 | Table 4, No. 70 | 156 |

Table 1 (continued)


Table 1 (continued)

|  | Equipment and location | $\begin{gathered} \text { No. of } \\ \text { vires } \end{gathered}$ | $F 1$ Logic boxes |  |  | No. of wires | Circuit continuation |  | ItemNo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ho. |  |  | $\begin{aligned} & \text { Limiting } \\ & \text { resistors } \end{aligned}$ | Connections | Boolean logic expressions |  | $\underset{\text { box }}{\text { Logic }}$ | Identification |  |
| 179R | F1C Reset button and warning hight 1 off each for 177R | 1 out | 1(5V) |  |  |  |  |  | 179R |
| 180R | F1E Steward call button (closed A, B) | $\left\{\begin{array}{l}1 \text { out } \\ 2 \text { return }\end{array}\right.$ | 1(5V) | 2 through A, 8 |  | 2 out | 17 | Table 2, No.42e | 180R |
| 1818 | F1C No. 2 essential dc bus-bar 3 amp KPC 1 off | 1 out |  | 1 through 0 |  | $\int^{110}$ | F7 | Table 2, No.43R | 181R |
| 182R | FiC Reset butlon and warmig light 3 off each | $\left\{\begin{array}{l}3 \text { out } \\ 4 \\ 4 \text { return }\end{array}\right.$ | 3(5V) | 4 through |  | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { out }\end{array}\right.$ | F7 | $\left.\begin{array}{l}\text { Table 2, No.51R } \\ \text { Table 4, No.91R }\end{array}\right\}$ | 1878 |
| 183R | F1E Marning sign suitches | $\left\{\begin{array}{l}2 \text { nut } \\ 2 \text { return }\end{array}\right.$ | 2(5V) | 2 through |  | 2 out | F7 | Table 2, No. 52R | 183R |
| 1848 | F1C Reset button and warning haht 1 off each | $\left\{\begin{array}{l}1 \text { out } \\ 2 \text { return }\end{array}\right.$ | 1 (5V) | 2 through |  | 2 out | F7 | Table 2, No.53R | 184R |
| 185 | F18 Galley control switches | $\left\{\begin{array}{l}4 \text { out } \\ 4 \\ 4 \text { return }\end{array}\right.$ | 4(5V) | 4 through |  | $\left.\right\|^{4} \text { out }$ | F7 | Table 2, No. 54 | 185 |
| 186 | F1C Water heating switches | $\left\{\begin{array}{l}5 \text { out } \\ 5 \text { return }\end{array}\right.$ | $5(5 \mathrm{~V})$ | 5 through |  | $\left\{\begin{array}{l}2 \text { out } \\ 3 \text { out }\end{array}\right.$ | F7 F4 |  | 186 |
| 187 | F1C Hater pump control switches | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { return }\end{array}\right.$ | 2(5V) | 2 through |  | 2 out | F8 | Table 3, No. 115 | 187 |
| 188R | F1B Throttle switch (shut, C) | $\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right.$ return | 1(5V) | Signal C | 7 No. 13 logic for warning horn (one only) |  |  |  | 188R |
| 189R | F10 Sporlers micro suitch (shut, 6) | $\left\{\begin{array}{l}1 \text { out } \\ 1 \\ 1\end{array}\right.$ return | 1 (5V) | Signal 6 |  |  |  |  | 189R |
| 190R |  |  |  | Signal (E $+\mathrm{F}+\mathrm{H})$ | \} C.O. (A1 + B1 + E F + H - G) | 1 in | F8 | Table 3, No. 117R | 100R |
| 191R |  |  |  | Signal 0 |  | 1 in | F8 | Table 3, No. ${ }^{19} 9$ | 191R |
| 1928 | Fib Flying control central warning (warning A1 - B1) | 1 m |  | Signal ( $A 1+B 1$ ) |  |  |  |  | 192R |
| 1938 | F1C No. 2 essential dc bus-bar 5 amp RPC 1 off | 1 out |  | From logic No. 13 |  |  |  |  | 1938 |
| 194R | FiC Reset button and warning light/ 1 off each for 193R \& 196R | 1 out | 1 (5V) |  |  |  |  |  | 194R |
| 195R | F18 Flying control warning (warming A2 * B2) | 1 in , $\}$ |  |  |  |  |  |  | 195R |
| 1968 | F1C Nn. 2 essential dc bus-bar 3 amo RPC 1 off | 1 out $\}$ |  | 1 through (A2 + B2) |  |  |  |  | 196R |
| 1978 | F1A Harning systen cancel button (cancel-X) | $\left\{\begin{array}{ll}1 & \text { out } \\ 1 & \text { return }\end{array}\right\}$ | 1(5V) | 1 through X |  |  |  |  | 197R |
| 198R | Fib Flying control central warning | 1 out $\}$ |  |  |  |  |  |  | ${ }^{1988}$ |
| 199 | F1B Iransistor switches for door shut warning lights/3off | 3 out |  | 3 through |  | 3 n | $\mathrm{F}_{4}$ | Table 4. No. 94 | 199 |
| 200 | F1B Iransistor switches for door shut warning lights/3 off | 3 out |  | 3 through |  | 318 | F8 | Table 3, 10. 120 | 200 |
| 201 | F18 Iransistor sultches for door shut warning lights/3 off | 3 out |  | 3 through |  | 310 | F7 | Table 2, No. 58 | 201 |
| 2021 | F5 Nose access door switch | $\left\{\begin{array}{l}1 \begin{array}{l}1 \\ \text { out } \\ 1 \\ \text { return }\end{array} \\ 1\end{array}\right\}$ | 1(5y) | 1 through |  |  |  |  | 202 L |
| 203 L | F1B Transistor suitch for door shut warning hights 1 off | 1 out |  |  |  |  |  |  | 203 L |

Table 1 (ontinued)

| $\begin{aligned} & \text { Iten } \\ & \text { Mo. } \end{aligned}$ | Equiprent and location | No. of wires | F1 Logic boxes |  |  | No. of wires | Circuit continuation |  | ItenHo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Limiting resistors | Connections | Boolean logic expressions |  | $\begin{gathered} \text { Logic } \\ \text { box } \end{gathered}$ | Identification |  |
| 2041 | F1A Cancel button for master warning light (cancel X ) | $\left\{\begin{array}{l}1 \\ 1 \\ 1 \\ \text { rout } \\ \text { ourn }\end{array}\right\}$ | 1(5V) | \% through $x$ |  |  |  |  | 2041 |
| 2051 | F18 Master warning system | 1 out $\}$ |  |  |  |  |  |  | 2051 |
| 2061 | F1B Master warning system (warning signal) | 1 ln 17 |  |  |  |  |  |  | 2061 |
| 2072 |  | $\{1$ out $\}$ |  | I through |  |  |  |  |  |
|  | fia | $\{11$ return $\}$ |  |  |  |  |  |  | 2076 |
| 2081 | F1C No. 2 essential dc bus-bar 3 anp RPC 1 off | 1 out |  | 1 through |  |  |  |  | 2081 |
| 2092 | F1R No. 1 radio supplias switches (for ac and dc) | $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ 4 \\ \text { return }\end{array}\right.$ | 2(5V) | 4 through |  | 4 out | 7 | Table 2, No.57L | 2092 |
| 210 R | F1R Ho. 2 radio supplies suitches (for ac and de) | $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ 4\end{array}\right.$ | 2(5V) | 4 through |  | 4 out | F7 | Table 2, No. 58R | 210R |
| 211 | F1B Mo. 1 and 2 radio rack fan switches (No. 1.A, B, No. 2, C, D) | $\left\{\begin{array}{l}2 \text { out } \\ 4 \text { raturn }\end{array}\right.$ | 2(5V) | 4 through A, B, C, D |  | 4 out | $F 7$ | Table 2, No. 59 | 211 |
| 212 | F1B Transistor switches for fan failure warning light ( $\left.\begin{array}{c}\text { via } \\ \text { switch }\end{array}\right)$ | 2 out |  | 2 through |  | \% 210 | F7 | Table 2, Mo. 62 | 212 |
| 213 | F1B Disconnect switch for csd (one pole earthed) | $\left\{\begin{array}{lll}4 & \text { out } \\ 8 & \text { return }\end{array}\right.$ | 4(5V) | 8 through |  | 8 out | F4 | Table 4, \%o. 95 | 213 |
| 214 | F1B $\left\{\begin{array}{l}\text { generator trip switches } \\ \text { overheat trip suitches } \\ \text { generator close switches }\end{array}\right.$ | $\left\{\begin{array}{l} 8 \text { out } \\ 16 \text { return } \end{array}\right.$ | $\begin{aligned} & 8(28 V) \\ & \text { generator } \end{aligned}$ control bus | 16 through |  | 16 out | F7 | lable 2, Ho. 63 | 214 |
| 215 | F18 $\left\{\begin{array}{l}\text { split systen breaker trip switches } \\ \text { ground power breaker trip switches } \\ \mathrm{DC} 1 \text { and } 2 \text { systems switches (close) }\end{array}\right.$ | $\left\{\begin{array}{l}2 \text { out } \\ 3 \text { return }\end{array}\right.$ | $\begin{aligned} & 2(28 V) \\ & \text { ancillary } \\ & \text { control bus } \end{aligned}$ | 3 through |  | 3 out | F7 | Table 2. No. 65 | 215 |
| 216R | F1B Split system breaker close suitch | $\left\{\begin{array}{ll} 1 & \text { out } \\ 1 & \text { return } \end{array}\right\}$ |  |  |  | 1 in | 7 | Table 2, No.66R | 216R |
| 217R |  | \} |  | 1 through |  | 1 out | F7 | Table 2, Ho.67R | 2178 |
| 218R | F1B Transistor switches for GCB, BTB, SSB, GPB indicators $/ 10$ off | 10 out |  | 10 through |  | 10 in | F7 | Table 2, Ho. 68 | 218 |
| 219 | F1B Transistor switches for $\left\{\begin{array}{c}\mathbb{R U} \text { input isolate } \\ \text { non essential dc } \\ \text { isolate }\end{array}\right\}$ indicators $\{$ off | 4 out |  | 4 through |  | 411 | F7 | Table 2, No. 69 | 219 |
| 220 | F18 Iransistor switches for battery bus isolate indicators 2 off | 2 out |  | 2 through |  | 2 in | 7 | Table 2, No. 70 | 220 |
| 221 | $\text { F1B }\left\{\begin{array}{l} \text { Transistor switchos for } 1 \text { and } 2 \mathrm{dc} \text { system } \\ \text { failure warning light } \end{array} \quad 2\right. \text { off }$ | 2 out |  | 2 through |  | 2 in | 7 | Table 2, Na. 71 | 221 |
| 222 | F18 dc systea isolate switches | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { return }\end{array}\right.$ | $2(5 \mathrm{~V})$ |  |  | 2 out | F | Table 2, No. 72 | 222 |
| 223 | $\text { F1B }\left\{\begin{array}{l} \text { Power on/battery isolation suitch } \\ \text { Power on/battery isolation sultch } \end{array}\right. \text { (on C) }$ | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { return } \\ 2 \text { return }\end{array}\right.$ | $\begin{array}{r} 2(28 \mathrm{~V}) \\ \text { battery } \\ \text { bus-bar } \end{array}$ | Signal 6 |  | $\left\lvert\, \begin{gathered} 2 \text { out } \\ \text { Mo. } 14 \& 15 \end{gathered}\right.$ | 57 | Table ?, Ho 73 | 223 |
| 224 | F10 ELRAT icro switch (nora A, operated B) | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \\ \text { re turn } \end{array}\right.$ | $2(28 \mathrm{~V})$ <br> battery bus-bar | Signals A, B | $\left\{\begin{array}{l} \text { No. } 15 \text { logic for battery contactor } \\ \text { B (two identical) } \end{array}\right.$ | $\left\lvert\, \begin{gathered} \text { Mo. } 14 \& 15 \\ \operatorname{logic} \\ 4 \text { out } \end{gathered}\right.$ | F7 | Table 2, Ho. 74 | 224 |

Table 1 (concluded)

| $\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$ | Equipment and location | Ho. of wires | F1 Logic boxes |  |  | Ho. of wires | Circuit contınuation |  | Iten Ho. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Limiting resistors | Connections | Boolean logic expressions |  | $\begin{aligned} & \text { Logic } \\ & \text { box } \end{aligned}$ | Identification |  |
| 225 | F1B $\left\{\begin{array}{l}\text { Iransistor suitches for } 1 \text { and } 2 \text { standby relay } \\ \text { indicators }\end{array} \quad 2\right.$ off | 2 out |  | 2 through |  | 2 in | 7 | Table 2, Mo. 78 | 225 |
| 226R | $\text { F1B }\left\{\begin{array}{l} \text { Standby changeover switch and transistor switch } \\ \text { for ac input indicators } \end{array} 1\right. \text { off }$ | 1 out |  | 1 through |  | 1 in | 7 | Table 2, Mo.79R | 2268 |
| 227 | F18 Standby changeover suitch for contactor control | 2 return |  | 2 through |  | 2 out | 7 | Table 2, No. 80 | 227 |
| 228 R | F18 Standby changeover switch for ac input contactor | $\begin{cases}1 & \text { out } \\ 1 & \text { return }\end{cases}$ | $\begin{aligned} & \text { 1(115V) fron } \\ & \text { V } 4 \text { No. } 159 \end{aligned}$ | 1 through |  | 1 out | 7 | Table 2, Mo.81R | 228R |
| $229 R$ | F1B Transistor switch for auxiliary bus-bar indicator 1 off | 1 out |  | 1 through |  | 1 in | 7 | Table 2, Mo.82R | 2298 |
| 230 | F1C Ground/flight switch (ground $\bar{A}$, flight $A$ both to earth) | 2 in |  | 2 junctions $\mathrm{A}, \overline{\mathrm{A}}$ | (for use in F1 and F7 logic boxes) | 2 out | F7 | Table 2, No. 83 | 230 |
| 2318 | F1, ea elrai test switch | $\left\{\begin{array}{l}1 \\ \text { cout } \\ 1 \\ 1\end{array}\right.$ | 1(5V) | 1 through |  | 1 out | 7 | Table 2, No.85R | 231R |
| 232 | F1B $\left\{\begin{array}{l}\text { Iransistor switches for generator overheat } \\ \text { warning/lights }\end{array} \quad 4\right.$ off | 4 out |  | 4 through |  | 4 in | F4 | Table 4, No. 96 | 232 |
| 233 | $\text { F1C }\left\{\begin{array}{lll} \text { Ho. } 1 \text { and } 2 \text { essential dc bus-bar } 3 \text { amp RPC } & 3 \text { off } \\ \text { Ho. } 1 \text { and } 2 \text { non essential dc bus-bar } & 3 \text { anp RPC } & 3 \text { off } \end{array}\right.$ | 6 out | 6 (5V) |  | Supplies for transistor switches at panels A and B |  |  |  | 233 |
| 234 | $\text { FIC }\left\{\begin{array}{l} \text { No. } 1 \text { and } 2 \text { essential dc bus-bar } \\ \text { Mo. } 1 \text { and } 2 \text { non essential dc bus-bary } \end{array} \begin{array}{l} \text { reset button } 8 \\ \text { warning } \\ \text { for } 233 \end{array} \text { light } 4\right. \text { off }$ | 4 out | $4(5 \mathrm{~V})$ |  |  |  |  |  | 234 |

ZOME F DETALLS OF REMOTE CONTROL CIBCUITS UP TO BUS-BARS

** ${ }^{*}$ delayed for four other flying controls

Table 2 (continued)


Table 2 (continued)


Table 2 (concluded)


Table 3
ZONE F8. DETAILS OF REMOTE CONTROL CIRCUITS UP TO BUS-BARS


Table 3 (continued)

| $\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$ | Equipment and tocation | No. of wires | F8 logic boxes |  |  | No. of wires | Circuit continuation |  | Ite: No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Limiting resistors | Connections | Boolean logic expressions |  | $\begin{gathered} \text { Logic } \\ \text { box } \end{gathered}$ | Identification |  |
| 28 | W 4 and 5 Stn. 166 master valve limit switches (open, shut) | 417 | 4 (28V) | 4 through |  | 4 out | F1 | Table 1, Ho. 24 | 28 |
| 29 | F8 Nos. 182 essential de bus-bars reset and $\mathrm{W} / \mathrm{L}$ for 27 | 4 out |  | 4 through |  | 4 in | F1 | Table 1, Ho. 25 | 29 |
| 30 L | $\text { FB }\left\{\begin{array}{lll} \mathrm{No} .3 \text { ac bus phase B } & 3 \mathrm{amp} \mathrm{RPC} & 1 \text { off } \\ 28 \mathrm{~V} \text { ac bus single phase } & 3 \mathrm{amp} \mathrm{RPC} & 1 \text { off } \end{array}\right.$ | 2 out |  | $\left\{\begin{array}{lll} \vec{\pi} & \text { to } & \mathrm{No} .3 \text { bus } \\ \mathrm{A} 1 & \text { to } 28 \mathrm{~V} \text { ac bus } \end{array}\right.$ | $\left\{\begin{array}{l} \text { Mo. } 4 \text { logic from } 2 \text { 2 }{ }^{\text {(Total })} \\ A 1, \overline{A 1}(\text { left }), A 2, \overline{A 2}(\boldsymbol{r}, \mathrm{ght}) \end{array}\right.$ | 2 out | F4 | Table 4, \%o.21L | 30 L |
| 31 | F8 Nos. 182 non-essential de bus-bars. 5 amp RPC 4 off | 4 out |  | 4 through |  | 4 in | F1 | Table 1, No. 60 | 31 |
| 32 | UR Str. 698 Wing anti-icing stop valve switches $\begin{aligned} & \text { (open) } \\ & (\text { close })\end{aligned}$ | 4 in | 4(28V) | 4 through |  | 4 out | F1 | Table 1, Ho. 64 | 32 |
| 33 L |  |  |  | Junction with 34 |  | 1 in | ${ }_{54}$ | Table 4, No. 32L | 33 L |
| 34 L | WR Stn.836 interskin pressure switch | $\left\{\begin{array}{l}1 \\ \text { out } \\ 1 \\ \text { return }\end{array}\right.$ | 1(5V) | Junction with 33L |  | 1 out | F1 | Table 4, No.b6L | 34L |
| 35 | W188 slat Stn. 736 wing duct pressure switch | $\left\{\begin{array}{l} 2 \text { out } \\ 2 \text { return } \end{array}\right.$ | 2(5V) | 2 through |  | 2 out | F1 | Table 1, No. 6 ? | 35 |
| 36 L | F8 Ho. 1 ac bus-bar. 3 phase 10 amp RPC 1 off | 1 out |  | 1 through |  | 1 in | F9 | Table 1, No. 73 L | 36 L |
| 37 L | F8 Mo. 1 non-essential dc bus-bar 3 amp RPC 2 off | 2 out |  | 2 through <br> (with linking <br> diode) |  | 2 n | F1 | Table 1, No. 74 L | 37 L |
| 38 L | F8 Str. 659 left.UWV pressure switch (B open, B closed) | $\left\{\begin{array}{l} 1 \text { out } \\ 1 \text { return } \end{array}\right.$ | 1 (5V) | Signals B, B, A, H | $\left\{\begin{array}{l} \text { No. } 5 \text { logic from } 2(\text { Total }) \\ A 1+A 2=G \mathrm{right}, B 1+B 2=G \text { left } \end{array}\right.$ | $\begin{aligned} & 1 \text { in } \\ & \operatorname{logic} 5 \end{aligned}$ | F1 | Table 1, No.80L | 38L |
| 39 |  |  |  | Signal $G$ | (No. 6 logic for UV valve (one only) | 2 out | $F_{4}$ | Table 4, No. 42 | 39 |
|  | F8 UWV actuator limit switches (open C, J; closed $0, \mathrm{~K}$ ) | 210 | 2(28V). | Signals C, J,0,K | (H.B (open) Signals C, C | 2 out | F1 | Table 1, No. 81 L |  |
| 41L |  |  |  | Signal N |  | 1 in | F1 | Table 1, No. 82 L | 411. |
| 42 L | F8 Mo. 1 nonessential de bus-bar 5 anp RPC 2 off | 2 out |  | From logic 6 | (No. 7 logic for RRC valve (one only) | logic 7 |  |  | 42 L |
| 43 L |  |  |  |  | $\mathrm{J}_{6} \cdot$ A. 6 (shut) | 2 out | F1 | Jable 1, No.84L | 43 L |
| 44 L | F8 Mo. 1 non-essential dc bus-bar reset W/L for 42 L | 2 out |  | 2 through |  | 2 in | F1 | Table 1, Ho.85L | 44 L |
| $45 \mathrm{~L}$ | F8 No. 1 ac bus-bar phase C. 3 amp RPC $\quad 2$ off | $2 \text { out }$ |  |  |  | $\begin{aligned} & 2 \text { in } \\ & 2 \text { in } \end{aligned}$ | $\begin{aligned} & F 1 \\ & \text { F1 } \end{aligned}$ | Table 1, Mo. 89 L <br> Jable 1. No. 90 | 45 4 |
| $146$ | ( $D=$ low temperature) | [ 2 out | 2(5V) | signal A | No. 8 lngic for overheat warning (two identical) | חג_2 | F1 | Jable 1. No. 90 | 45 |
| 47 | F8 Str. 639 duct overheat thermostat $55^{\circ} \mathrm{C}$ ( $\mathrm{B}=$ high temperature) | $\left\{\begin{array}{l}4 \\ 4 \\ \text { return }\end{array}\right.$ |  | Signals B, D, E, C | ( ${ }^{\text {c }+\overline{D . E}}$ - warning hight $120^{\circ} \mathrm{C}$ | 4 in | F4 | Table 4, No. 46 | 47 |
| 48 |  |  |  |  | ) $(B+C)(M) A=$ overheat signaly signal y $\quad$, | 2 out | ${ }^{54}$ | Jable 4, No. 44 | 48 |
| 49 |  |  |  |  | ( signal ${ }^{\text {a }}$, | 2 out | F7 | Table 2, No. 9 | 49 |
| 50 |  |  |  |  | W/L $55^{\circ} \mathrm{C}$ | 2 out | 51 | Table 1, No. 91 | 50 |
| 51 |  |  |  |  | $\int$ W/L $120^{\circ} \mathrm{C}$ | 2 out | F1 | Table 1, No. 92 | 51 |
| 52 |  |  |  |  | No. 9 logic for compressor speed modulating valve (two identical) | 4 m | 7 | Table 2, No. 14 | 52 |
| 53 |  |  |  | Signals H,N,H,N | ( $\mathrm{A} . \mathrm{E}$ - C). G - Increase (open) | 4 in | F1 | Table 1, No. 94 | 53 |
| 54 |  |  |  | Sjognals GḠ <br> (2, unctions with No.60) |  | $\begin{aligned} & \text { see } \\ & \text { Ho. } 60 \end{aligned}$ | F1 | lable 1, No.96 | 54 |
| 55 |  |  |  | Signal ${ }^{\text {U }}$ | , | 2 in | ${ }^{5} 4$ | Table 4, No. 47 | 55 |
| 56 | F8 Mo. 184 ac bus-bar phase C. 5 amp RPC 40 ff | 4 out |  | Signal V |  | 2 in | $\mathrm{F}_{4}$ | Table 4, No. 48 | 56 |
| 57 | F8 No. 184 ac bus-bars phase $C$, reset and $4 / L$ for 56 | 4 out |  | 4 through |  | 4 in | F1 | Table 1, No. 95 | 57 |
| 58 | W8 inner wimg. Coupressor speed mod. sensor (open $4, \mathrm{~T}$ ) | 2 in | $\begin{gathered} 2(115 v) \\ \text { and diodes } \end{gathered}$ | 2 through J, 1 |  | 2 out | F4 | Table 4, No. 53 | 58 |

Table 3 (continued)


Table 3 (continued)

| Iten Ho. | Equipment and location | No. of vires | F8 logic boxes |  |  | Ho. of wires | Circuit continuation |  | ItenMo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Limting resistors | Connections | Boolean logic expressions |  | $\begin{array}{\|l} \text { Logic } \\ \text { box } \end{array}$ | Identification |  |
| 81 |  |  |  |  |  | 5 in | F1 | : Jable 1, Ho. 134 | 81 |
| 82 |  |  |  |  |  |  |  |  | 82 |
| 83 |  |  |  |  |  |  |  |  | F1 | Table 1. Ho. 136 | 83 |
| 84 |  |  |  |  |  |  |  |  |  |  | 84 |
| $\begin{aligned} & 85 \\ & 86 \end{aligned}$ |  |  |  |  |  |  |  |  | F1 | Table 1, Ho. 137 | 85 86 |
| 87 | F8 Nos. 182 essential de bus-bars. 5 amp RPC $?$ off F8 Nos. 182 essential dc bus-bars, reset and W/L for 86 | 2 out <br> 4 out |  | 4 through | No. 19 logic for asymmetric control (two | 4 in | F1 | Table 1, No. 138 | 87 |
| 88 |  |  |  | Signals X,Y | ) identical) $X+Y$ for 84 above | 2 in | 77 | Table 2, Mo. 26 | 88 |
| 89 | WR slat hait micro suitches (in $A$, out $B$ ) | $\left\{\begin{array}{l} 4 \text { out } \\ 4 \text { return } \\ 4 \text { out } \end{array}\right\}$ |  | 4 through $A, B$ |  | 4 in | F1 | Table 1, No. 139 | 89 |
| 90 | F8, Nos. 182 essential dc bus-bars. 5 amp RPC 4 off F8,-Nos. 482 essential dc bus-bars. Reset and W/L for $\left\{\begin{array}{l}90 \\ 91\end{array}\right.$ <br> W1 and 48 slat protection micro switches (A systen A, 8 systen 8 ) |  |  | 4 through |  |  |  |  | 90 |
| 91 |  | $\begin{aligned} & 4 \text { out } \\ & 4 \text { out } \end{aligned}$ |  | 4 through | No. 20 logic for slat control (two identical) | 4 in | F1 | Table 1, Mo. 140 | 91 |
| 92 |  | $\begin{cases}4 & \text { out } \\ 4 & \text { return }\end{cases}$ | 4(5v) | Signals A, B | $\overline{\left(A+B+E_{0} C+D_{0} F+X\right)(M) \cdot \bar{T}}$ |  |  |  | 92 |
| 93 | WR slat overtravel suitches ( $C$ in, $D$ out) <br> UR Stn. 688 slat selector valve suitches ( $E$ in, $F$ out) | $\left\{\begin{array}{l} 2 \text { out } \\ 42 \text { return } \\ 2 \text { out } \\ 4 \text { return } \end{array}\right.$ | 2(5V) | Signals C, D |  |  |  |  | 93 |
| 94 95 |  |  |  | Signal E,F | No. 21 logic for isolate indicators |  |  |  | 94 |
| 95 96 |  |  |  | Signal $X$ | $($ two 1 dentical $)$ $(A+B+E . C+D . F+X)(M) . \bar{T}$ | 2 in | F7 | Table 2, No. 27 | 95 96 |
|  |  |  |  |  | No. 22 logic for slat selected indicators (two identical) E-in; Fout | Logic 21822 |  |  |  |
| 37 | F8 Nos. 182 essential de bus-bars. 5 amp RPC 2 off | 2 out |  | from logic 20 |  | 6 out | F1 | Table 1, No. 141 | 97 |
| 98 | F8 $\begin{aligned} & \text { Nos. } 182 \text { essential dc bus-bars. } 5 \text { amp RPC } \\ & \text { Transistor switches in negative of solenolds } \\ & 3\end{aligned}$ | $\left\{\begin{array}{l}3 \text { out } \\ 3 \text { out }\end{array}\right.$ |  |  |  | 6 in | F1 | Table, Mo. 153 | 98 |
| 99 | F8 Hos. 182 essential de bus-bars, reset and W/L for 98 | 4 out |  | 4 through |  | 6 in 4 in | F1 | Table, No. 153 | 98 99 |
| 100 |  | $\left\{\begin{array}{l}2 \\ 2\end{array}\right.$ |  | 8 through |  | 8 in | F1 | Table 1, No. 165 | 100 |
| 101 | F8 $\left\{\begin{array}{l}\text { Hos. } 3 \text { and } 4 \text { ac bus-bars } \\ \text { Hos. } 182 \text { nonessential dc bus-bars }\end{array}\right\}$ reset and W/L for 100 | 4 out |  | 4 through |  | 4 in | F1 | Table 1, Ho. 170 | 101 |
| 102 | F8 $\left\{\begin{array}{lll}28 \mathrm{~V} \text { ac bus-bar No. } 2 & 3 \mathrm{amp} \mathrm{RPC} & 10 \mathrm{off} \\ \text { Mo. } 3 \text { ac bus-bsr ohase A } & 3 \text { amp RPC } & 10 \mathrm{off}\end{array}\right.$ | $\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right.$ out |  | 2 Junctions with 103 |  | 2 in | F1 | Table 1, No. 171 | 102 |
| 103 |  |  |  | 2 junctions with 102 |  | 2 out | F4 | Table 4, No. 73 | 103 |
| 104 | F8 No. 2 nomessential de bus-bar, 10 amp RPC 2 off | 2 out |  | 2 through |  | 2 in | F4 | Table 4, No. 74 | 104 |
| 105 | F8 Ground power supply (alive V2) | 2 in | diodes and 2(115V) | v 2 | No. 23 logic tor main U/C bay servicing lights V 2 (one only) |  |  |  | 105 |
| 106 R | F8 28 volt ac bus-bar No. $2 \quad 7$ amp RPC $\quad 1$ off | 1 out |  | From logic 23 |  |  |  |  | 106R |

Table 3 (concluded)


ZONE F4. DETAILS OF REMOTE CONTROL CIRCUITS UP TO BUS-BARS


| $\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$ | Equipment and location | No. of wires | F4 logtc boxes |  |  | No. of wires | Circuit continuation |  | ItemHo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Limiting resistors | Connections | Boolean logic expressions |  | Logic box | Identification |  |
| 26 | M1 to ${ }^{\text {H }}$ high pressure stop valve position sultches | $\left\{\begin{array}{l}4 \\ 4 \\ 4 \\ 4\end{array}\right.$ retut | 4(5V) | 4 through |  | 4 out | F1 | Table 1, No. 58 | 26 |
| 27 | F4 Nos. 1 and 2 non-essential de bus-bars. 3 amp RPC 40 ff | 4 out |  | 4 through |  | 4 in | F1 | Table 1, Mo. 59 | 27 |
| 28 | F4 Nos. 1 and 2 nonmessential dc bus-bars. 3 amp RPC 2 off | 2 out |  | 2 through |  | 2 in | F1 | Table 1, No. 61 | 28 |
| 29 | MS1 and MS2 pressure reducing valve switchos | $\left\{\begin{array}{l} 2 \text { out } \\ 2 \text { return } \end{array}\right.$ | $2(5 v)$ | 2 through |  | 2 out | F1 | Table 1, No. 62 | 29 |
| 30 L | I2 tarl antiotcing stop valve suitch | $\left\{\begin{array}{l}1 \\ 1 \\ 1 \\ \text { return }\end{array}\right.$ | 1(5v) | 1 through |  | 1 out | F1 | Table 1, No.63L | 30 L |
| 31 | MS1 and MS2 duct o/heat thermostats | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { return }\end{array}\right.$ | $2(5 V)$ | 2 through |  | 2 out | F1 | Table 1, No. 65 | 31 |
| 32L | F9 Stn. 1214 interskin pressure suitch | $\left\{\begin{array}{l} 1 \text { out } \\ 1 \text { return } \end{array}\right.$ | 1(5V) | 1 through |  | 1 out | F8 | Table 3, No.33L | 32 L |
| 33 L | F4 No. 1 essential de bus-bars. 5 amp RPC $20 f f$ | 2 out |  | 2 through |  | 2 in | F7 | Table 2, No. 10 L | 33 L |
| 34 L | F4 No. 1 essential dc bus-bars, roset and W/L for 33L | 2 out |  | 2 through |  | 2 in | F1 | Table 1, No. 70 L | 34 L |
| 35L | F4 Str. 1464 thrust augmenter actuator switch ( $\left.\begin{array}{l}\text { open } \\ \text { close }\end{array}\right)$ | 2 in | 2(28V) | 2 through |  | 2 out | F1 | Table 1, No.71L | 35L |
| 36L | F4 No. 1 essential dc bus-bar. $3 \text { amp RPC }$ <br> 1 off <br> [ | 1 out |  | 1 through |  | 1 in | F1 | Table 1, No. 76 L | 36 L |
| 37 | $\text { F4 }\left\{\begin{array}{l} \text { Nos. } 1 \text { and } 2 \text { non-essential dc, bus-bars. } \begin{array}{c} 3 \text { amp RPC } \\ \text { Stn. } 1300 \text { dual amplifier (auto, increase, decrease) } \end{array} \quad 4,0 \mathrm{ff} \end{array}\right.$ | $\left\{\begin{array}{c}4 \\ 4 \\ 12\end{array}\right.$ |  | 16 through |  | 16 in | F1 | Table 1, No. 77 | 37 |
| 38 | MS1 and MS2 conpressor non-return valve suitches | $\left\{\begin{array}{l}4 \\ 4 \\ 4\end{array}\right.$ | 4(5v) | 4 through |  | 4 out | F1 | Table 1, Mo. 78 | 38 |
| 39 | F4 Stn. 1300 dual amplifier auto/off warning lights | 4 in | 4(28V) | 4 through |  | 4 out | F1 | Table 1, No. 79 | 39 |
| 40R | F4 Stn. 1340 right, non-rsturn valve switch | $\left\{\begin{array}{l}2 \text { out } \\ 2 \text { return }\end{array}\right.$ | $2(5 \mathrm{~V})$ | 2 through |  | 2 out | F1 | Table 1, No.86R | 40R |
| 41 |  |  |  | signals $A, B, C$ | No. 3 logic for spill and stop valves ( $\left.\begin{array}{l}\text { two } \\ \text { identical }\end{array}\right)$ | 6 in | F1 | Table 1, No. 87 | 41 |
| 42 | F4 Mos. 1 and 2 essential de bus-bars. 5 anp RPC (a) 2 off | $\left\{\begin{array}{l}\text { logic } 3 \\ \text { 2 out }\end{array}\right.$ |  | signals $G, G$ | A.Y.G.X $\times$ A. $\bar{Y}, \bar{O}+B_{0} \bar{Y}$ for RPC (a) | 2 in | F8 | Table 3, Mo. 39 | 42 |
| 43 | F4 Nos. 1 and 2 essential de bus-bars. 5 amp RPC (b) 2 off | $\left\{\begin{array}{l}\text { logic } 3 \\ 2 \text { out }\end{array}\right.$ |  | signals $X$, $\bar{\chi}$ | A.P.G.X for RPC (b) | 2 in | F8 | Table 3, Ho. 66 | 43 |
| 44 | F4 Nos. 1 and 2 essential de bus-bars. 5 amp RPC (c) 2 off | $\left\{\begin{array}{l}\text { logic } 3 \\ 2 \text { out }\end{array}\right.$ |  | signals Y, $\bar{Y}$ | $\int \mathrm{C.F}$ for RPC (c) | 2 in | F8 | Table 3, No. 48 | 44 |
| 45 | F4 Hos. 1 and 2 essential dc bus-bars, reset and W/L for 42,43 and 44 | 4 out |  | 4 through |  | 4 in | F1 | Table 1, No. 88 | 45 |
| 46 | $\text { F4 Stn. } 1330 \text { duct o/heat thermostat } 120^{\circ} \mathrm{C}\left[\begin{array}{l} \mathrm{E}, \text { low temperature } \\ \mathrm{C}, \text { high temperature } \end{array}\right.$ | $\left\{\begin{array}{l} 2 \text { out } \\ 4 \text { return } \end{array}\right.$ | $2(5 \mathrm{~V})$ | 4 through E,C |  | 4 out | F8 | Table 3, Mo. 47 | 46 |
| 47 | F4 Stn. 1320 choke valve linit suitch (open P, k ) | 2 in | diodes and 2(115V) | 2 through V |  | 2 out | F8 | Table 3, No. 55 | 47 |
| 48 | I2 cooling modulating valve linit switch (open $\mathrm{S}, \mathrm{V}$ ) | 2 in | diodes and 2(115V) | 2 through V |  | 2 out | F8 | Table 3, No. 56 | 48 |
| 49 | F4 Nos. 1 and 4 ac bus-bars phase C, reset and W/L for 56 and 57 | 4 out |  | 4 through |  | 4 im | ${ }_{51}$ | Table 1, Mo. 95 | 49 |

Table 4 (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow[b]{2}{*}{Equipment and location} \& \multirow[b]{2}{*}{No. of wires} \& \multicolumn{3}{|r|}{F4 logic boxes} \& \multirow[b]{2}{*}{Na. of wires} \& \multicolumn{2}{|l|}{Circuit continuation} \& \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Iten } \\
\text { Ho. }
\end{gathered}
$$} <br>
\hline Item

Ho. \& \& \& Limiting resistors \& Connections \& Boolean logic expressions \& \& Logic box \& Identification \& <br>
\hline 50 \& \& \& \& signals $\left\{\begin{array}{l}\text { A. } D+B \\ A . E+C\end{array}\right.$ \& No. 4 logic for choke valve (two identical) ( $\mathrm{A} . \mathrm{D} * \mathrm{~B}$ ). $\mathbb{N}=$ decrease RPC ( a ) \& 4 in \& 7 \& Table 2, No. 14 \& 50 <br>
\hline 51 \& \& \& \& signals $\mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{N}$ \& X. $\bar{H}=$ decrease RPC (b) \& 4 in \& F1 \& Table 1, No. 94 \& 51 <br>
\hline 52 \& \& \& \& signals $G, G_{6}$ \& N $=$ decrease $R P C(c) d c$ \& 2 in \& F1 \& Table 1, No. 96 \& 52 <br>
\hline 53 \& \& \& \& signals T \& (A.E*C).G. T. T.U.U.Y.F] \& 2 in \& F8 \& Table 3, No. 58 \& 53 <br>

\hline 54 \& T2 cooling modulating valve lisit switches (shut L, U) \& $$
2 \text { in }
$$ \& diodes and 2(115V) \& signals U \& \[

\{\quad(A.E+C) . \dot{G} . T.H. Y. \mathbb{*}\} increase RPC (d)
\] \& \& \& \& <br>

\hline 55 \& F4 Str. 1335 differential pressure switches ( $H P=X, L P=Y$ ) \& $\begin{cases}2 \text { out } \\ 2 & \text { return }\end{cases}$ \& $2(5 V)$ \& \[
signals X, \bar{X}, Y, Y

\] \& \[

\} \quad\left(A_{0} E+C\right) . G_{1} \cdot A_{. U . Y . B}\right]
\] \& \& \& \& <br>

\hline 56 \& F4 $\left\{\begin{array}{lll}\text { Nos. } 1 \text { and } 2 \text { noneessentral de bus-bars, } & 5 \text { amp RPC (c) } \\ \text { Nos. } 1 \text { and } 4 \text { ac bus-bars, phase C. } & 5 \text { amp RPC }(\mathrm{arb,} \mathrm{~d}) & 2 \text { off } \\ 6 \text { off }\end{array}\right.$ \& $\left\{\begin{array}{l}2 \\ \left\{\begin{array}{l}2 \\ \text { out } \\ 6\end{array} \text { out }\right.\end{array}\right.$ \& \& from logic 4 \& | No. 5 logic far cooling modulating valve (two 1 dentical) |
| :--- |
|  | \& \& \& \& 56 <br>

\hline 57 \& F4 Hos. 1 and 4 ac bus-bars, phase C. 5 amp RPC (e, f) 4 off \& 4 out \& \& from logic 5 \& $$
\left.\int \begin{array}{l}
\left(A_{.} E+C\right) \cdot G \cdot T \cdot T \\
(A . E+C) \cdot G \cdot F
\end{array}\right\} \text { increase RPC (f) }
$$ \& \& \& \& 57 <br>

\hline 58 \& T2,3,4 and 6, hydraulic pressure fail suitch (elevators and rudders) \& $\begin{cases}7 & \text { out } \\ 7 & \text { return }\end{cases}$ \& 7(5v) \& 7 through \& \& 7 out \& F1 \& Table : No. 101 \& 58 <br>
\hline 59 \& \& \& \& signals A, B, X, Y \& \& 6 in \& F1 \& Table 1, No. 102 \& 59 <br>
\hline 60 \& \& \& \& signal J \& No. 6 logic for arning valve (two identical) \& 2 in \& F1 \& Table 1, No. 103 \& 60 <br>

\hline 61 \& $$
\text { I3 }\left\{\begin{array}{l}
\text { over run micro suitches ( } G \text {-up }+H \text { down) } \\
\text { tal l trim micro swi tches ( } C \text { up, } \mathrm{D} \text { down) }
\end{array}\right.
$$ \& $\left\{\begin{array}{l}4 \text { out } \\ 4 \text { return }\end{array}\right.$ \& 4(5V) \& \[

signals \mathrm{C}, \mathrm{D}, 6+\mathrm{H}

\] \& \[

E.\left\{\{\overline{J .(G+H)}\} \cdot\left(X_{.} Y+A_{0} C+B . D\right)\right.
\] \& \& \& \& 61 <br>

\hline 62 \& F4 Stn. 1292 hydraulic fault detector (normal E.F, fault K) \& $\left\{\begin{array}{l}2 \text { out } \\ 4 \\ \text { return }\end{array}\right.$ \& $2(5 V)$ \& signals E.F,K \& Ho. 7 logic for over run warning ( $\ddagger$ wo identical)

$$
J .(G+H)+X_{.}(A, C+X, Y * B . D)
$$ \& \& \& \& 62 <br>

\hline 63 \& F4 Nos. 1 and 2 essential dc bus-bars. 3 amp RPC 2 off \& 2 out \& \& from $\operatorname{logic} 6$ \& \& $$
\begin{aligned}
& 1 \text { logic } 7 \\
& 2 \text { out }
\end{aligned}
$$ \& F1 \& Table 1, No. 104 \& 63 <br>

\hline 64 \& F4 hytraulic compartaent flamestat \& $$
\left\{\begin{array}{l}
2 \text { out } \\
2 \text { return }
\end{array}\right.
$$ \& $2(5 \mathrm{~V})$ \& 2 through \& \& 2 out \& F1 \& Table 1, Mo. 142 \& 64 <br>

\hline $65 R$ \& F4 No. 2 essential de bus-bar. 5 amp RPC 20 ff \& 2 out \& \& 2 through A, B \& \& 2 in \& F1 \& Table 1, No. 143 R \& 65R <br>
\hline 66R \& F4 No. 2 essential dc bus-bar, reset and $4 / L$ for 65R \& 2 out \& \& 2 through \& \& 2 in \& F1 \& Table 1, Mo. 146 R \& 66R <br>
\hline 67 \& F4 Hos. 1 and 2 non-essential dc bus-bars. 5 amp RPC 40 ff \& 4 out \& \& 4 through \& \& 4 in \& ${ }^{51}$ \& Table 1, Mo. 167 \& 67 <br>
\hline 68 \& F4 Nos. 1 and 2 non-essential de bus-bars, reset and $\# / \mathrm{L}$ for 67 \& 4 out \& \& 4 through \& \& 4 in \& F1 \& Table 1, No. 148 \& 68 <br>
\hline 69 \& F4 Stn. 1271 ferry link actuator livit switches ( $\left.\begin{array}{c}\text { open, } \\ \text { shut }\end{array}\right)$ \& 2 in \& 2(28V) \& 2 through \& \& 2 out \& F1 \& Table 1, No. 149 \& 69 <br>
\hline 70 \& F4 Mos. 1 and 2 essential dc bus-bars. 5 amp RPC 8 off \& 8 out \& \& 8 through \& \& 8 in \& F1 \& Table 1, No. 956 \& 70 <br>
\hline 71 \& F4 Stn. 1271 hydraulic isolation valve limit switches $\binom{$ open, }{ shut } \& 8 in \& 8(28V) \& 8 through \& \& 8 out \& F1 \& Table 1, No. 157 \& 71 <br>
\hline 72 \& F4 Nos. 1 and 2 essential de bus-bars, reset and W/L for 70 \& 4 out \& \& 4 through \& \& 4 in \& F1 \& Table 1, No. 158 \& 72 <br>

\hline 73 \& $$
\mathrm{F}_{4}\left\{\begin{array}{lll}
\text { No. } 3 \text { ac bus-bars phase } \mathrm{A}_{0} & 3 \text { anp RPC } & 1 \text { off } \\
28 \mathrm{~V} \text { ac bus-bar, No. } 1 & 3 \text { anp RPC } & 1 \text { off }
\end{array}\right.
$$ \& 2 out \& \& 2 through \& \& 2 in \& F8 \& Table 3, No. 103 \& 73 <br>

\hline
\end{tabular}

|  | Equipment and location | Ho. of wires | F4 logic boxes |  |  | No. of wires | Circuit continuation |  | ItenNo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  |  | Lititing resistors | Connections | Bcolean logic expressions |  | Logic box | Identification |  |
| 74 | F3 Stn. 1195 engine intakes inspection light switch | $\left\{\begin{array}{l}1 \text { out } \\ 2 \text { return }\end{array}\right.$ | 1(5V) | 2 through |  | 2 out | FB | Table 3, Mo. 104 | 74 |
| 75 | F4 ground power supply (alive, V2) | 2 in | diodes and $2(115 V)$ | signal V2 | No. 8 logic for F4 bay servicing lights (one |  |  |  | 75 |
| 76R | FAV sarvicing lights switch (on, D) | $\begin{cases}1 & \text { out } \\ 1 & \text { raturn }\end{cases}$ | 1(5V) | signal D | $\left(\begin{array}{l}\text { Gu Y2 }- \text { RPC (a) }\end{array}\right.$ |  |  |  | 76R |
| 77 R | F9 Stn. 1208 servicing lights suitch (on, E) | $\begin{cases}1 & \text { out } \\ 1 & \text { return }\end{cases}$ | 1(5V) | signal E | (Mo. 9 logic for Fg aft freight bay lights $\binom{$ one }{ only } $\mathrm{E}+\mathrm{V} 2=\mathrm{RPC}(\mathrm{b})$ |  |  |  | 778 |
| 78 R |  | 2 out |  | fros logic 8 and 9 |  |  |  |  | 78 R |
| 79R |  |  | $\begin{gathered} 1(5 \mathrm{~V}) \\ 1(115 \mathrm{~V}) \end{gathered}$ | signal H <br> signal V2 from 75 | No. 10 logic for entrance and step lights ( $\binom{$ one }{ only } |  |  |  | $79 R$ |
| 80R | F4 $\begin{cases}\text { No. } 1 \text { ac bus-bar, phase B } \\ \text { ground power bus, phase B }\end{cases}$ | 2 out |  | from logic 10 |  |  |  |  | 80R |
| 81R | $\text { F4 } \begin{cases}\text { Mo. } 1 \text { ac bus-bar, phase } C & 3 \text { amp RPC (a) } \\ \text { ground power bus, phase C } C & 3 \text { amp RPC (b) } \\ 1 \text { off }\end{cases}$ | $\begin{gathered} \text { logic } 11 \\ 2 \text { out } \end{gathered}$ | $\begin{gathered} 1(5 \mathrm{~V}) \\ 1(115 \mathrm{~V}) \end{gathered}$ | signal M signal V2 from 75 | $\left\{\begin{array}{l} \text { Ho. } \left.11 \begin{array}{l} \text { logic for toilet lights (one only) } \\ V=R P C \\ V \end{array}\right) ; V 2 . \bar{F}=\operatorname{RPC}(\mathrm{b}) \end{array}\right.$ |  |  |  | 81 R |
| 82R |  |  |  | signal A | No. 12 logic for covelights (one only) | 1 in | F8 | Table 3, Mo. 113 R | 82R |
| 83R | $\text { F4 } \begin{cases}\text { Ho. } 4 \text { ac bus-bar, phase } C & 5 \text { amp RPC (a) } \\ \text { ground power bus, phase } C & 5 \text { amp RPC (b) } \\ 1 \text { off }\end{cases}$ | $\begin{gathered} \text { logic } 12 \\ 2 \text { out } \end{gathered}$ | $\begin{gathered} 1(5 V) \\ 1(115 \mathrm{~V}) \end{gathered}$ | signal $n$ signal V2 from 75 | ( M.A $=\operatorname{RPC}(\mathrm{a}) ; \mathrm{Y} 2 . \mathrm{A} . \overline{\mathrm{M}}=\operatorname{RPC}(\mathrm{b})$ |  |  |  | 83R |
| 84R | F3 LA Stn. 1173 galley call button (closed, C) | $\left\{\begin{array}{l}1 \text { out } \\ 1 \text { return }\end{array}\right.$ | 1(5V) | 1 through C |  | 1 out | F7 | Table 2, No.46R | 848 |
| 85R | F3 LA Stn. 1173 reset buttons (reset R4, R5, R6) | $\begin{cases}1 & \text { out } \\ 3 & \text { return }\end{cases}$ | $3(5 \mathrm{~V})$ | signals $\mathrm{R} 4, \mathrm{RS}, \mathrm{R6}$ | $\left(\begin{array}{l}\text { Ho. } 13 \\ \text { logic for aft right toilet call } \\ H(M) R 4\end{array}\binom{\right.$ one }{ only } |  |  |  | 85R |
| 86R | F3 rear toilets call buttons (closed $\mathrm{H}, \mathrm{J}, \mathrm{K}$ ) | $\left\{\begin{array}{l}3 \text { out } \\ 3\end{array}\right.$ | 3(5V) | signals $\mathrm{H}, \mathrm{J}, \mathrm{K}$ | No. 14 logic for aft centre toflet call $\binom{$ one }{ only } J(h)RS |  |  |  | 86R |
| 87R | F3 LA Stn. 1173 transistor switches for forward toilet call light 1 off | 1 out |  | $1 \text { through } \underset{F(M) R 3}{E(M) R 2+}$ | $\left(\begin{array}{cl} \text { No. } 15 & \begin{array}{l} \text { logic for aft left toilet call } \\ K(M) R 6 \end{array} \end{array}\binom{o n e}{\text { only } y}\right.$ | 1 in | F7 | Table 2, Mo.47R | 87R |
| 88R | $\text { F3 LA Stn. } 1173 \begin{cases}\text { transistor switches for aft toilet call lights } & 3 \text { off } \\ \text { transistor switches for galley buzzer } & 1 \text { off }\end{cases}$ | 4 out |  | frog logic 13,14, 15,16 signal G | $\int \begin{gathered}\text { Ho. } 16 \text { logic for gallay buzzer (one only) } \\ G\end{gathered}$ | 1 in | 7 | Table 2, No. 43 R | 88 R |
| 89R |  |  |  |  | No. 17 logic for rear toilet call (one only) $H(M) R 4+J(M) R 5 * K(M) R 6$ | $\text { \|logic } 17$ $1 \text { out }$ | 7 | Table 2, No. 48 R | 898 |
| 90R | F4 No. 2 essential de bus-bar. 3 amp RPC 1 off | 1 out | 1(5v) | $\left\{\begin{array}{l}\text { supply for transtr sws. } \\ \text { in F3 LA }\end{array}\right.$ |  |  |  |  | 90R |
| 91R | F4 ${ }^{\text {No. } 2} 2$ essential dc bus-bar, reset and W/L for 90R | 2 out |  | 2 through |  | 2 in | F1 | Table 1, Mo. 182 R | 91R |
| 92 | F4 Hos. 1,2 and 4 ac bus-bars, phase B. 5 amp RPC 3 off | 3 out |  | 3 through |  | 3 in | F1 | Table 9, No. 186 | 92 |
| 93R | T5 bullet tail tria aicro switch (shut H) | $\left\{\begin{array}{l}1 \text { out } \\ 1 \\ \text { return }\end{array}\right.$ | 1(5v) | 1 through H |  | 1 out | F8 | Table 3, Mo. 118R | 93R |
| 94 | $\left\{\begin{array}{l} \text { F3 LA rear galley door sultch } \\ \text { F9 rear hold door switch } \\ \text { F9 Stn. } 1480 \text { rear ventral door switch } \end{array}\right.$ | $\left\{\begin{array}{l}3 \text { out } \\ 3 \text { return }\end{array}\right.$ | 3(5v) | 3 through |  | $\{3$ out | F1 | Table 1, Mo. 199$\}$ | 94 |
| 95 | F4 Mos. 1 and 2 essential de bus-bars $\left\{\begin{array}{l}5 \text { amp RPC } \\ 5 \text { amp negative transtr sus } 4 \\ 4 \\ 4\end{array}\right.$ | 8 out |  | 8 through |  | 8 in | F1 | Table 1, No. 213 | 95 |
| 96 | n1 to ${ }^{\text {W }}$ generator o/heat suitches (in negative) |  |  | 4 through |  | 4 out | 51 | table 1, No. 232 | 96 |

Table 5

FLYING CONTROL CENTRAL WARNING ON PANEL B

\begin{tabular}{|c|c|c|}
\hline  \&  \& Panel B. Internal details \\
\hline 101 \& 11 \& In, signals for hydraulic pressure failure warning Ailerons. Right outer J, right inner K, left inner L, left outer N Elevators. Right outer 0 , right inner \(P\), left inner \(Q\), left outer \(R\) Rudders. Upper S, mid T, lower U \\
\hline 108 \& 2 \& \begin{tabular}{l}
In, signals for hydraulic pressure failure warning \\
Artificial feel No. \(1, \mathrm{~V}\) \\
Artificial feel No. 2, W \\
Each signal \(\mathrm{J}, \mathrm{K}, \mathrm{O}, \mathrm{P}, \mathrm{S}, \mathrm{U}\) is connected as follows. \\
To \(\begin{cases}1 \& \text { Transistor switch for individual warning light } \\ 2 \& \text { Harn }\end{cases}\) \\
To \(\begin{cases}2 \& \text { Horn warning signal Al via isolating diode } \\ 3 \& \text { Central warning light signal A2 via logic }\end{cases}\) \\
Each signal L, N, Q, R, T is connected as follows. \\
\(\mathrm{To} \begin{cases}1 \& \text { Transistor switch for individual warning light } \\ 2 \& \text { Horn warning signal B1 via isolating. diode } \\ 3 \& \text { Central warning }\end{cases}\) \\
Each signal \(V\) and \(W\) connected as follows. \\
To \(\begin{cases}1 \& \text { Transistor switch for individual warning light } \\ 2 \& \text { Horn warning signal } \mathrm{Al}(\mathrm{W}) \text { or } \mathrm{Bl}(\mathrm{V}) \text { via isolating diode }\end{cases}\)
\end{tabular} \\
\hline 192R \& 1 \& out, \(\mathrm{Al}+\mathrm{Bl}=\mathrm{J}+\mathrm{K}+\mathrm{L}+\mathrm{N}+\mathrm{O}+\mathrm{P}+\mathrm{Q}+\mathrm{R}+\mathrm{S}+\mathrm{T}+\mathrm{U}+\mathrm{V}+\mathrm{W}\) (warning horn) \\
\hline 198R

195R \& 1 \& | in, signal $\mathrm{X}=$ cancel signal for central warning light logic to cancel central warning light $=X(M) \bar{J}+X(M) \bar{K}+X(M) \bar{L}+X(M) \bar{N}+$ $X(M) \overline{0}+X(M) \bar{P}+X(M) \bar{Q}+X(M) \bar{R}+X(M) \bar{S}+X(M) \bar{T}+X(M) \bar{U}$. |
| :--- |
| logic for $A 2=J \cdot \overline{X(M) \bar{J}}+K \cdot \overline{X(M) \bar{K}}+0 \cdot \overline{X(M) \overline{0}}+P \cdot \overline{X(M) \bar{P}}+\frac{S \cdot \overline{X(M) \bar{S}}}{U \cdot \overline{X(M) \bar{U}}}+$ |
| logic for $B 2=L \cdot \overline{X(M) \bar{L}}+N \cdot \overline{X(M) \bar{N}}+Q \cdot \overline{X(M) \bar{Q}}+R \cdot \overline{X(M) \bar{R}}+T \cdot \overline{X(M) \bar{T}}$ |
| out, $\operatorname{logic~A} 2+\mathrm{B} 2$ (control warning light) | <br>

\hline
\end{tabular}

|  |  | Panel B. Internal details |
| :---: | :---: | :---: |
| 2 | 4 | In, signals for CSD oil low pressure No.1-A, No. ${ }^{\text {Generators }}$ - ${ }^{\text {a }}$ No.3-C, No.4-D |
| 232 | 4 | In, signals for generator over heat No.1- $\bar{E}$, No. $2-\overline{\mathrm{F}}$, No. $3-\overline{\mathrm{G}}$, No. $4-\overline{\mathrm{H}}$ (negatively switched) |
| 218 | 4 | In, signals for generator failure No.1-J, No.2-K, No.3-L, No.4-N |
| 221 | 2 | In, signals for dc system failure No.1-0, No.2-P |
| 65 | 2 | In, signals for hot air duct over heat right-Q, left-R <br> Each signal A, $B, C, D, J, K, L, N, O, P, Q, R$ is connected as follows <br> To $\begin{cases}1 & \text { Transistor switch in positive line for individual warning light } \\ 2 & \text { Central warning light signal via logic and isolating diode }\end{cases}$ <br> Each signal $\bar{E}, \bar{F}, \bar{G}, \bar{H}$ is connected as follows <br> $\mathrm{To} \begin{cases}1 & \text { Transistor switch in negative line for individual warning light } \\ 2 & \text { Central warning light signal via inverter, logic and isolating } \\ \text { diode. }\end{cases}$ |
| 205L | 1 | In, signal $\mathrm{X}=$ cancel signal for central warning light <br> Cancel logic $=X(M) \bar{A}+X(M) \bar{B}+X(M) \bar{C}+X(M) \bar{D}+X(M) E+X(M) F+X(M) G+$ $X(M) H+X(M) \bar{J}+X(M) \bar{K}+X(M) \bar{L}+X(M) \bar{N}+X(M) \bar{O}+X(M) \bar{P}+X(M) \bar{Q}+X(M) \bar{R}$ |
| 206L | 1 | Out, signal for central warning light $=A \cdot \overline{X(M) \bar{A}}+B \cdot \overline{X(M) \bar{B}}+C \cdot \overline{X(M) \bar{C}}+$ $\begin{aligned} & \text { D. } \overline{X(M) \bar{D}}+\overline{E \cdot X(M) E}+\overline{F \cdot X(M) F}+\overline{G \cdot X(M) G}+\overline{H \cdot X(M) H}+J \cdot \overline{X(M) \bar{J}}+K \cdot \overline{X(M) \bar{K}}+ \\ & L \cdot \overline{X(M) \bar{L}}+N \cdot \overline{X(M) \bar{N}}+0 \cdot \overline{X(M) \bar{O}}+P \cdot \overline{X(M) \bar{P}}+Q \cdot \overline{X(M) \bar{Q}}+R \cdot \overline{X(M) \bar{R}} \end{aligned}$ |

Table 7
COMPARISON OF MASSES OF CONVENTIONAL AND REMOTELY CONTROLLED ELECTRICAL DISTRIBUTION SYSTEMS (SCHEME 1)

| Equipment compared | Unit mass | Existing system |  | Remote control |  | Totals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Quantity | $\begin{aligned} & \text { Total } \\ & \text { mass } \\ & \mathrm{kg} \end{aligned}$ | Quantity | Total mass kg | $\begin{array}{\|c} \text { Existing } \\ \mathrm{kg} \end{array}$ | $\begin{gathered} \text { Remote } \\ \mathrm{kg} \end{gathered}$ |
| Sub-feeder cable |  |  |  |  |  |  |  |
| 10 gauge | $64.5 \mathrm{~g} / \mathrm{m}$ | 30.5 m | 1.97 | 27.4 m | 1.77 |  |  |
| 12 gauge | $29.8 \mathrm{~g} / \mathrm{m}$ | 61.0 m | 1.82 | 338.5 m | 10.09 |  |  |
| 14 gauge | $19.3 \mathrm{~g} / \mathrm{m}$ | - | - | 108.3 m | 2.09 |  |  |
| 16 gauge | $14.8 \mathrm{~g} / \mathrm{m}$ | - | - | 155.6 m | 2.3 |  |  |
| 18 gauge | $10.41 \mathrm{~g} / \mathrm{m}$ | - | - | 347.9 m | 3.62 |  |  |
| 20 gauge | $6.95 \mathrm{~g} / \mathrm{m}$ | - | - | 44.0 m | 0.31 | 3.79 | 20.18 |
| Distribution cable |  |  |  |  |  |  |  |
| 8 gauge | $99.4 \mathrm{~g} / \mathrm{m}$ | 5.2 m | 0.52 | - | - |  |  |
| 10 gauge | $64.5 \mathrm{~g} / \mathrm{m}$ | 311.4 m | 20.09 | 226.9 m | 14.64 |  |  |
| 12 gauge | $29.8 \mathrm{~g} / \mathrm{m}$ | 611.8 m | 18.23 | 124.4 m | 3.71 |  |  |
| 14 gauge | $19.3 \mathrm{~g} / \mathrm{m}$ | 1819.6 m | 35.12 | 1518.9 m | 29.31 |  |  |
| 16 gauge | $14.8 \mathrm{~g} / \mathrm{m}$ | 467.3 m | 6.92 | 197.9 m | 2.93 |  |  |
| 18 gauge | $10.41 \mathrm{~g} / \mathrm{m}$ | 2639.5 m | 27.48 | 477.3 m | 4.97 |  |  |
| 20 gauge | $6.95 \mathrm{~g} / \mathrm{m}$ | 6374.8 m | 44.31 | 1361.5 m | 9.46 |  |  |
| 22 gauge | $4.23 \mathrm{~g} / \mathrm{m}$ | 8197.2 m | 34.67 | 1026.3 m | 4.34 |  |  |
| 24 gauge | $2.9 \mathrm{~g} / \mathrm{m}$ | 7182.1 m | 20.83 | 545.3 m | 1.58 | 208.17 | 70.94 |
| Control signal cable |  |  |  |  |  |  |  |
| 26 gauge | $2.0 \mathrm{~g} / \mathrm{m}$ | - | - | 22978 m | 45.96 |  |  |
| 24 gauge (negative returns) | $2.9 \mathrm{~g} / \mathrm{m}$ | - | - | 403 m | 1.17 | - | 47.13 |
| Connectors (mated pairs) |  |  |  |  |  |  |  |
| 155 way | 200 g | - | - | 10 | 2.0 |  |  |
| 121 way | 164 g | - | - | 11 | 1.8 |  |  |
| 85 way | 98 g | - | - | 5 | 0.49 |  |  |
| 55 way | 79 g | - | - | 12 | 0.95 |  |  |
| 37 way | 64 g | - | - | 15 | 0.96 |  |  |
| 12 way | 36 g | - | - | 12 | 0.43 | - | 6.63 |
| Protection |  |  |  |  |  |  |  |
| Fuses and holders <br> 2 to 10 amps | 26 g | 544 | 14.14 | 263 | 6.84 |  |  |
| Fuses, heavy duty, bolted | 32 g | 113 | 3.62 | 32 | 1.02 |  |  |
| Circuit breakers | 42 g | 73 | 3.07 | 7 | 0.29 |  |  |
| RPC solid state | 57 g | - | - | 287 | 16.36 |  |  |
| $\text { RPC electro- } \int \text { single pole }$ | $\left\{\begin{array}{l}230 \text { to } \\ 291 \mathrm{~g}\end{array}\right.$ | - | - | 21 | 4.89 |  |  |
| magnetic $\left\{\begin{array}{l}\text { 3 pole }\end{array}\right.$ | $\left\{\begin{array}{l}276 \\ 645 \\ \text { to }\end{array}\right.$ | - | - | 43 | 15.74 |  |  |
| Reset pushes and W/L | 1645 g 12 g |  |  | 87 | 1.04 | 20.83 | 46.18 |

Table 7 (concluded)


NOTE:- 'Existing system' departs from the VC 10 installation in incorporating the most up-to-date cables and equipment available.

Table 8
ESTIMATED MASS OF LOGIC BOXES AND LOGIC IN PANEL B

| Internal components | $\begin{gathered} \text { Unit } \\ \text { mass } \mathrm{g} \end{gathered}$ | Logic boxes Fl |  | Logic boxes F7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Quantity | $\begin{array}{r} \text { Total } \\ \text { mass } g \end{array}$ | Quantity | $\begin{array}{r} \text { Total } \\ \operatorname{mass} \mathrm{g} \end{array}$ |
| Limiting resistors for 5 volts | 0.27 | 268 | 72.36 | 42 | 11.34 |
| Limiting resistors for 28 volts | 0.53 | 18 | 9.54 | 17 | 9.01 |
| Limiting resistors for 115 volts | 0.94 | 20 | 18.8 | 18 | 16.92 |
| Diodes | 0.15 | 80 | 12.0 | 72 | 10.8 |
| Through links and junctions | $1.73 \mathrm{~g} / \mathrm{m}$ | 572* | 247.0 | 121* | 103.8 |
| Integrated logic circuits | 1.96 | 38 | 74.5 | 33 | 64.7 |
| Transistors | 1.18 | 43 | 50.7 | 44 | 51.92 |
| Resistors for logic | 0.27 | 128 | 34.6 | 131 | 35.4 |
| Mounting cards | 26.8 | 12 | 321.6 | 8 | 214.4 |
| Connectors | 18.1 | 12 | 217.2 | 8 | 144.8 |
| Power supplies 8.5 W and 4 W | - | $4 \times 8.5 \mathrm{~W}$ | 1500.0 | $4 \times 4 \mathrm{~W}$ | 920.0 |
|  |  | Total | 2558.3 | Total | 1583.1 |
|  |  | 2 boxes = 2500 |  | 2 boxes $=2100$ |  |


| Internal components | $\begin{aligned} & \text { Unit } \\ & \text { mass } \mathrm{g} \end{aligned}$ | Logic boxes F8 |  | Logic boxes F4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Quantity | Total <br> mass g | Quantity | $\begin{array}{r} \text { Total } \\ \text { mass } \mathrm{g} \end{array}$ |
| Limiting resistors for 5 volts | 0.27 | 72 | 19.44 | 79 | 21.33 |
| Limiting resistors for 28 volts | 0.53 | 40 | 21.2 | 19 | 10.07 |
| Limiting resistors for 115 volts | 0.94 | 7 | 6.58 | 10 | 9.4 |
| Diodes | 0.15 | 28 | 4.2 | 40 | 6.0 |
| Through links and junctions | $1.73 \mathrm{~g} / \mathrm{m}$ | 211* | 91.7 | 160* | 69.2 |
| Integrated logic circuits | 1.96 | 58 | 113.7 | 50 | 98.0 |
| Transistors | 1.18 | 62 | 73.16 | 44 | 51.92 |
| Resistors for logic | 0.27 | 181 | 49.0 | 154 | 41.6 |
| Mounting cards | 26.8 | 8 | 214.4 | 8 | 214.4 |
| Connectors | 18.1 | 8 | 144.8 | 8 | 144.8 |
| Power supplies 4 watt | 230.0 | $4 \times 4 \mathrm{~W}$ | 920.0 | $4 \times 4 \mathrm{~W}$ | 920.0 |
|  |  | Total | 1658.2 | Total | 1586.7 |
|  |  | 2 boxes = 2100 |  | 2 boxes $=2100$ |  |


| Components to be added | Pane1 B, zone F1 |  |  |
| :--- | ---: | ---: | ---: |
|  | Unit <br> mass $g$ | Quantity | Total <br> mass g |
| Integrated logic circuits | 1.96 | 28 | 54.9 |
| Transistors | 1.18 | 5 | 5.9 |
| Diodes | 0.15 | 40 | 6.0 |
| Resistors for logic | 0.27 | 37 | 10.0 |
| Mounting cards | 26.8 | 3 | 80.4 |
| Connectors | 18.1 | 3 | 54.3 |
| Total |  |  | 211.5 |

Note *. Wire allowance 250 mm per through link.

Table 9

## DETAILS OF PROTECTION AT ZONES F1, F7, F8, F4

| Protective device | Zone Fl |  | Zone F7 |  | Zone F8 |  | Zone F4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | dc | ac | dc | ac | dc | ac | dc | ac |
| Solid state RPC |  |  |  |  |  |  |  |  |
| Intermittent rating, qty. | 17 | - | 3 | - | 76 | 6 | 54 | 10 |
| Continuous rating, qty. | 10 | 19 | 2 | 20 | 17 | 16 | 18 | 19 |
| Losses, watts | 30 | 92 | 14 | 43 | 35 | 63 | 18 | 53 |
| Mass, kg | 1.54 | 1.08 | 0.29 | 1.14 | 5.3 | 1.25 | 4.1 | 1.65 |
| Electro-magnetic RPC |  |  |  |  |  |  |  |  |
| Quantity | 3 | 6 | 6 | 34 | - | 15 | - | - |
| Mass, kg | 0.69 | 1.38 | 1.44 | 13.07 | - | 4.05 | - | - |
| Fuses and circuit breakers |  |  |  |  |  |  |  |  |
| Quantity, CB | 7 | - | - | - | - | - | - | - |
| Quantity, fuses, 2-10 amp | 79 | 39 | 33 | 64 | 2 | 16 | 6 | 24 |
| Quantity, fuses, bolted | - | - | 8 | 24 | - | - | - | - |
| Mass, kg | 2.35 | 1.01 | 1.11 | 2.43 | 0.05 | 0.42 | 0.16 | 0.62 |
| Total mass kg |  |  | 19. | 48 | 11. |  |  | 54 |

## Table 10

## CONNECTORS REQUIRED FOR PANELS

|  | Pane1 A | Panel B | Panel D | Panel E | Panel EA | Panel FIR |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of connections | 55 | 602 | 37 | 44 | 19 | 12 |
| No. and type of connector | $1 \times 55$ way | $4 \times 155$ way | $1 \times 37$ way | $1 \times 55 \mathrm{way}$ | $1 \times 37$ way | $1 \times 12$ way |
| Mass | 0.079 kg | 0.8 kg | 0.064 kg | 0.079 kg | 0.064 kg | 0.036 kg |

Total 1.12 kg

Table 11
ESTIMATED REDUCTION IN PANEL MASS BY ELIMINATING RELAYS

|  | $\begin{gathered} \text { Pane } 1 \\ \text { B } \end{gathered}$ | Panel <br> C | Panel X | $\begin{aligned} & \text { Panels } \\ & \mathrm{G} \text { and } \mathrm{H} \end{aligned}$ | $\begin{gathered} \text { Pane1s } \\ \mathrm{P} \text { and } \mathrm{PA} \end{gathered}$ | Panels <br> $U$ and $Z$ | $\begin{aligned} & \text { Panels } \\ & J \text { and } K \end{aligned}$ | $\begin{aligned} & \text { Panels } \\ & R R \text { and } R L \end{aligned}$ | Pane1 L | Panel LA | Panels <br> V and S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Relays deleted | 57 | - | 14 | 45 | 13 | 11* | 37* | 2 | 3 | 3 | 13 |
| Estimated panel space \% | 15\% | - | 50\% | 85\% | 20\% | - | - | - | 15\% | 15\% | 85\% |
| Panel mass | 15 kg | 10.0 kg | 5.0 kg | 13.2 kg | 7.7 kg | 17.3 kg | 47.3 kg | - | 2.3 kg | 1.8 kg | 5.9 kg |
| Mass reduction | 2.25 kg | - | 2.5 kg | 11.22 kg | 1.54 kg | - | - | - | 0.35 kg | 0.27 kg | 5.0 kg |

Total mass of conventional panels $=125.5 \mathrm{~kg}$
Estimated mass reduction
$=23.1 \mathrm{~kg}$

* These relays would be replaced by electro-magnetic RPCs.

Table 12

## COMPARISON OF CABLE AREAS TO DETERMINE TRUNKING PROPORTIONS

Cable areas

|  |  |  | $\begin{gathered} 26 \\ \text { gauge } \end{gathered}$ | $\begin{gathered} 24 \\ \text { gauge } \end{gathered}$ | $\begin{gathered} 22 \\ \text { gauge } \end{gathered}$ | $\begin{gathered} 20 \\ \text { gauge } \end{gathered}$ | $\begin{gathered} 18 \\ \text { gauge } \end{gathered}$ | $\begin{gathered} 16 \\ \text { gauge } \end{gathered}$ | 14 gauge | $\begin{gathered} 12 \\ \text { gauge } \end{gathered}$ | $\begin{gathered} 10 \\ \text { gauge } \end{gathered}$ | $\begin{gathered} 4 \\ \text { gauge } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { N } \\ & \text { O } \\ & \boldsymbol{\sim} \end{aligned}$ | Existing VC 10 Nyvin cables | Number off area $\mathrm{mm}^{2}$ | - | - | $\begin{gathered} 578 \\ 1815.8 \end{gathered}$ | $\begin{gathered} 156 \\ 648.1 \end{gathered}$ | $\begin{gathered} 59 \\ 289.6 \end{gathered}$ | $\begin{gathered} 26 \\ 160.1 \end{gathered}$ | $\begin{gathered} 12 \\ 108.9 \end{gathered}$ | $\begin{gathered} 20 \\ 215.5 \end{gathered}$ | $\begin{gathered} 15 \\ 294.5 \end{gathered}$ | - |
|  | Modified VC 10 KP150 cables | Number off area man ${ }^{2}$ | - | $\begin{gathered} 336 \\ 302.1 \end{gathered}$ | $\begin{gathered} 242 \\ 287.6 \end{gathered}$ | $\left\lvert\, \begin{gathered} 156 \\ 268.4 \end{gathered}\right.$ | $\begin{gathered} 59 \\ 138.7 \end{gathered}$ | $\begin{gathered} 26 \\ 80.0 \end{gathered}$ | $\begin{aligned} & 12 \\ & 46.8 \end{aligned}$ | $\begin{gathered} 20 \\ 108.0 \end{gathered}$ | $\begin{gathered} 15 \\ 294.5 \end{gathered}$ | - |
|  | Remote control KP150 cables | Number off area $\mathrm{mm}^{2}$ | $\begin{gathered} 586 \\ 415.4 \\ \hline \end{gathered}$ | $\begin{gathered} 165 \\ 148.4 \end{gathered}$ | $\begin{gathered} 42 \\ 49.9 \end{gathered}$ | ${ }^{4} .9$ | ${ }_{4.7}^{2}$ | $\begin{gathered} 21 \\ 64.7 \end{gathered}$ | $\stackrel{3}{11.7}$ | $\begin{gathered} 6 \\ 34.1 \end{gathered}$ | - | - |
|  | Existing VC 10 Nyvin cables | Number off $\text { area mm }{ }^{2}$ | - | - | $\begin{gathered} 511 \\ 1605.4 \end{gathered}$ | $\begin{array}{\|c\|} 144 \\ 598.3 \end{array}$ | $\begin{gathered} 54 \\ 265.1 \end{gathered}$ | $\begin{gathered} 12 \\ 73.9 \end{gathered}$ | $\begin{gathered} 39 \\ 354.1 \end{gathered}$ | $\begin{gathered} 13 \\ 147.4 \end{gathered}$ | $\begin{gathered} 6 \\ 117.8 \end{gathered}$ | $\begin{gathered} 12 \\ 815.2 \end{gathered}$ |
|  | Modified VC 10 KPI50 cables | Number off area $\mathrm{mm}^{2}$ | - | $\begin{gathered} 314 \\ 282.4 \end{gathered}$ | $\begin{gathered} 197 \\ 234.1 \end{gathered}$ | $\begin{gathered} 144 \\ 247.7 \end{gathered}$ | $\begin{gathered} 54 \\ 126.9 \end{gathered}$ | $\begin{gathered} 12 \\ 36.9 \end{gathered}$ | $\begin{gathered} 39 \\ 152.3 \end{gathered}$ | $\begin{gathered} 13 \\ 73.9 \end{gathered}$ | $\begin{gathered} 6 \\ 117.8 \end{gathered}$ | $\begin{gathered} 12 \\ 815.2 \end{gathered}$ |
|  | Remote control <br> KP150 cables | Number off area $\mathrm{mm}^{2}$ | $\begin{gathered} 477 \\ 338.1 \end{gathered}$ | $\begin{gathered} 177 \\ 159.2 \end{gathered}$ | $\begin{gathered} 42 \\ 49.9 \end{gathered}$ | $\begin{gathered} 1 \\ 1.7 \end{gathered}$ | $\stackrel{2}{4.7}$ | $\begin{gathered} 8 \\ 24.6 \end{gathered}$ | $\begin{gathered} 38 \\ 148.4 \end{gathered}$ | $\begin{gathered} 20 \\ 113.7 \end{gathered}$ | $\begin{gathered} 8 \\ 157.1 \end{gathered}$ | $\begin{gathered} 12 \\ 815.2 \end{gathered}$ |
| $\begin{gathered} \text { \& } \\ \text { on } \\ \infty \\ \infty \\ \infty \end{gathered}$ | Existing VC10 Nyvin cables | Number off area $\mathrm{mm}^{2}$ | - | - | $\begin{gathered} 353 \\ 1109.0 \end{gathered}$ | $\begin{gathered} 29 \\ 120.5 \end{gathered}$ | $\begin{gathered} 23 \\ 112.9 \end{gathered}$ | $\begin{gathered} 9 \\ 55.4 \end{gathered}$ | $\begin{gathered} 21 \\ 190.7 \end{gathered}$ | $\begin{array}{r} 13 \\ 147.4 \end{array}$ | - | $\begin{gathered} 12 \\ 815.2 \end{gathered}$ |
|  | Modified VC 10 KP150 cables | Number off area $\mathrm{mm}^{2}$ | - | $\begin{gathered} 225 \\ 202.3 \end{gathered}$ | $\begin{gathered} 128 \\ 152.1 \end{gathered}$ | $\begin{gathered} 29 \\ 49.9 \end{gathered}$ | $\begin{gathered} 23 \\ 54.1 \end{gathered}$ | $\begin{gathered} 9 \\ 27.7 \end{gathered}$ | $\begin{aligned} & 21 \\ & 82.0 \end{aligned}$ | $\begin{gathered} 13 \\ 73.9 \end{gathered}$ | - | $\begin{gathered} 12 \\ 815.2 \end{gathered}$ |
|  | Remote control KP150 cables | Number off area $\mathrm{mm}^{2}$ | $\begin{gathered} 248 \\ 175.8 \end{gathered}$ | $\begin{aligned} & 109 \\ & 98.0 \end{aligned}$ | $\begin{gathered} 42 \\ 49.9 \end{gathered}$ | $\stackrel{9}{15.5}$ | ${ }_{7.0}^{3}$ | $\begin{gathered} 11 \\ 33.9 \end{gathered}$ | $\begin{aligned} & 23 \\ & 89.8 \end{aligned}$ | $\begin{gathered} 4 \\ 22.7 \end{gathered}$ | - | $\begin{gathered} 12 \\ 815.2 \end{gathered}$ |

Trunking proportions

| 迷 |  | Total area <br> (A) $\mathrm{mm}^{2}$ | $\begin{aligned} & \text { Side } \\ & \sqrt{\mathrm{A} \mathrm{~mm}} \end{aligned}$ | Proportion of total length ( $\ell$ ) | $\begin{aligned} & \text { Zone } \\ & \& \sqrt{A} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | Existing vc 10 Nyvin cables | 3532.5 | 59.43 | 0.208 | 12.36 |
| 9 | Modified VC 10 KP 50 cables | 1526.4 | 39.07 | 0.208 | 8.13 |
| [ | Remote control KPl50 cables | 735.8 | 27.13 | 0.208 | 5.64 |
| - | Existing VC 10 Nyvin cables | 3977.2 | 63.07 | 0.375 | 23.65 |
| 4 | Modified VC 10 KPl 50 cables | 2087.2 | 45.68 | 0.375 | 17.13 |
| N | Remote control KPl50 cables | 1812.6 | 42.57 | 0.375 | 15.96 |
| 吕 | Existing VC 10 Nyvin cables | 2551.1 | 50.51 | 0.417 | 21.06 |
| 9 | Modified VC $10 \mathrm{KP150}$ cables | 1457.2 | 38.17 | 0.417 | 15.92 |
| - | Remote control KP150 cables | 1307.8 | 36.16 | 0.417 | 15.08 |

(a) Existing VCIIO Nyvin cables.
(b) Modified VC 10 KP 150 cables.
(c) Remote control KPl50 cables.

Total $e \sqrt{A}=57.07$. Ratio $\frac{(b)}{(a)}=0.72$
Total $\ell \sqrt{\mathbb{A}}=41.18$.
Total $\ell \sqrt{A}=36.68$. Ratio $\frac{(c)}{(b)}=0.89$

Table 13
EFFECT ON CABLES OF MOVING ELECTRICAL BAY FROM ZONE F7 TO ZONE F8 (SCHEME 2)

| Cables | Unit mass | Conventional system |  | Remote control |  | Totals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Quantity | $\begin{array}{r} \text { Tota1 } \\ \text { mass } \end{array}$ | Quantity | $\begin{array}{r} \text { Total } \\ \text { mass } \end{array}$ | Conventional | Remote |
| Main bus-bars shifted to rear by 8.25 m |  | m | kg | m | kg | kg | kg |
| $\frac{\text { Main feeder }}{4 \text { gauge }}$ | $251.9 \mathrm{~g} / \mathrm{m}$ | -99.0 | -24.94 | -99.0 | -24.94 | -24.94 | -24.94 |
| New sub-feeders to F1 8 gauge 10 gauge 12 gauge 14 gauge 20 gauge | $\begin{gathered} 99.4 \mathrm{~g} / \mathrm{m} \\ 64.5 \mathrm{~g} / \mathrm{m} \\ 29.8 \mathrm{~g} / \mathrm{m} \\ 19.3 \mathrm{~g} / \mathrm{m} \\ 6.95 \mathrm{~g} / \mathrm{m} \end{gathered}$ | $\begin{array}{r} +63.5 \\ +127.9 \\ - \\ - \end{array}$ | +6.31 <br> +8.19 <br> - | $\begin{array}{r} - \\ +63.5 \\ +47.6 \\ +142.7 \\ +47.6 \end{array}$ | $\begin{aligned} & +4.09 \\ & +1.42 \\ & +2.75 \\ & +0.33 \end{aligned}$ | $+14.5$ | $\begin{gathered} - \\ - \\ - \\ +8.59 \end{gathered}$ |
| New sub-feeders to F8 <br> 14 gauge <br> 18 gauge <br> 20 gauge | $\begin{array}{r} 19.3 \mathrm{~g} / \mathrm{m} \\ 10.41 \mathrm{~g} / \mathrm{m} \\ 6.95 \mathrm{~g} / \mathrm{m} \end{array}$ | - | - | $\begin{array}{r} +8 \\ +64 \\ +4 \end{array}$ | $\begin{aligned} & +0.154 \\ & +0.666 \\ & +0.028 \end{aligned}$ | $\overline{\overline{0}}$ | $+0.848$ |
| New sub-feeders to F4 <br> 12 gauge <br> 14 gauge <br> 18 gauge <br> 20 gauge | $\begin{gathered} 29.8 \mathrm{~g} / \mathrm{m} \\ 19.3 \mathrm{~g} / \mathrm{m} \\ 10.41 \mathrm{~g} / \mathrm{m} \\ 6.95 \mathrm{~g} / \mathrm{m} \end{gathered}$ | - | - | $\begin{array}{r} +82.8 \\ +41.4 \\ +62.1 \\ +248.4 \end{array}$ | $\begin{aligned} & +2.47 \\ & +0.799 \\ & +0.65 \\ & +1.73 \end{aligned}$ | $\bar{\square}$ | $+5 . \overline{6} 5$ |
| Sub-feeders scheme 1 |  |  |  |  |  | -3.79 | $-20.18$ |
| Distribution cable <br> 10 gauge <br> 12 gauge <br> 14 gauge <br> 16 gauge <br> 18 gauge <br> 20 gauge <br> 22 gauge <br> 24 gauge | $\begin{aligned} & 64.5 \mathrm{~g} / \mathrm{m} \\ & 29.8 \mathrm{~g} / \mathrm{m} \\ & 19.3 \mathrm{~g} / \mathrm{m} \\ & 14.8 \mathrm{~g} / \mathrm{m} \\ & 10.41 \mathrm{~g} / \mathrm{m} \\ & 6.95 \mathrm{~g} / \mathrm{m} \\ & 4.23 \mathrm{~g} / \mathrm{m} \\ & 2.9 \mathrm{~g} / \mathrm{m} \end{aligned}$ | $\begin{array}{r} +41.2 \\ -98.8 \\ -271.8 \\ -16.5 \\ +8.2 \\ -74.1 \\ +214.1 \\ +189.0 \end{array}$ | $\begin{aligned} & +2.657 \\ & -2.944 \\ & -5.246 \\ & -0.244 \\ & +0.086 \\ & -0.515 \\ & +0.906 \\ & +0.548 \end{aligned}$ | $\begin{array}{r} -33.0 \\ -321.2 \\ -66.0 \\ +57.6 \\ +6.1 \\ -156.5 \\ -173.3 \end{array}$ | $\begin{aligned} & -0.98 \\ & -6.2 \\ & -0.98 \\ & +0.6 \\ & +0.04 \\ & -0.66 \\ & -0.50 \end{aligned}$ | $\begin{gathered} - \\ - \\ -4.75 \end{gathered}$ | $\begin{gathered} - \\ - \\ - \\ - \\ - \\ -8.68 \end{gathered}$ |
| Control signal cable 26 gauge 24 gauge less $4 \times 12$ way connectors | $\begin{aligned} & 2.0 \mathrm{~g} / \mathrm{m} \\ & 2.9 \mathrm{~g} / \mathrm{m} \\ & 36 \mathrm{~g} \end{aligned}$ | - | - | $\begin{array}{r} +1578.4 \\ -110.0 \\ -4 \text { off } \end{array}$ | $\begin{aligned} & +3.157 \\ & -0.319 \\ & -0.144 \end{aligned}$ | 0 | $+2.69$ |
|  |  |  |  |  |  | -18.98 | -36.02 |

Reduction in mass of 18.98 kg and 36.02 kg respectively for conventional system and remotely controlled system.

## REFERENCES

| No. | Author | Title, etc. |
| :---: | :---: | :---: |
| 1 | L.V.C. Jones | Review of the distribution of mass in aircraft electrical systems and comments on development trends. |
|  |  | Unpublished MOD (PE) material |
| 2 | L.V.C. Jones | How multiplexed data transmission might be applied to a VC 10 electrical installation in order to reduce weight. |
|  |  | Unpublished MOD (PE) material |
| 3 | R.J.K. Splatt | An experimental programmed contactor for use in electrical power systems. |
|  |  | RAE Technical Report 71144 (ARC 33452) (1971) |
| 4 | British Standards | General requirements for equipment in aircraft. |
|  | Institution | BS 3G100, part 3 (1972) |
| 5 | Naval Air Systems | General specification for power controller, solid |
|  | Command, Department | state. |
|  | of the Navy (USA) | MIL-P-81653(AS) (November 1969) |
| 6 | Naval air systems | General specification for connectors, electrical, |
|  | Command, | circular, high density, quick disconnect, environ- |
|  | Department of the | ment resisting and accessories. |
|  | Navy (USA) | MIL-C-0081511D (Navy) (October 1971) |



 $E=$ essential Number of wires
 Zon JONBZ

 58 58x $\stackrel{0}{0}$
 $\stackrel{\overline{0}}{\bar{\circ}}$

$$
\begin{array}{lll}
\hline 981 & \\
\hline 502
\end{array}
$$

ODTON $T_{-}^{2}$
 2u0z
$\frac{\text { Noin bus }}{\substack{\circ \\ \text { Made }}}$ Lع×2 s7ndu ${ }_{\square}^{2020} L_{L}^{2}$ Noz NE dC
bors Still 840201 $\underbrace{21 \times 1]}_{21 \times 1}$
 $\xrightarrow{20 \mathrm{ZON}} \xrightarrow{\text { 20カON }}$ $\xrightarrow{20 \mathrm{ZON}} \stackrel{20 \mathrm{TON}}{\square}$


$\qquad$ LO14 832002 OL
$\prod^{\text {ZON } 20 \text { n } 88}$ $\square$ $\left.\begin{array}{r|r|}\hline 9 \times 2 \\ 21 \times 1\end{array}\right]$ 8-1 $\quad \begin{aligned} & 121 \times 1 \\ & \square \\ & 901 \\ & \text { s7ndu! }\end{aligned}$

 SJoq Sna is auoz Ol


$$
501
$$ $591^{\prime \prime \prime}$ 502 10 N フ0 182

Fig. 3 Layout of proposed remotely controlled system (scheme 2)

7!nכנ!
wazshs pallojzuor hiz30was pasodojd $q$


## Jones, L. V. C

```
STUDY OF SOLID STATE REMOTE CONTROL TECHNHOUES AS APPLIED TO THE REDESIGN OF THE ELECTRICAL
SYSTEM IN A LARGE CIVIL AIRCRAFT
```

This Report describes how the electrical power distribution system of a large civil aircraft might be redesigned to employ remote power controllers, embodying solid state protection, in conjunction with solid state logic, to operate circuits remotely through lightweight signal wires. An assessment of the masses of a conventional and a remotely controlled system, based on a VC 10 instaliation in which it is assumed that the latest lightweight cables and switchgear are used indicates that the remotely controlled sy stem would be about 90 kg lighter. Additional saving migint result from equipment specifically designed
to be compatible with solid state remote control techniques.

The effect on both systems of resiting the electrical compartment from the forward to a mid-aircraft position has been examined and it is concluded that a further saving of 36 kg would result with remote control.

ARC CP No. 1289
December 1972
629.13 .066

Jones, L. V. C.
TUDY OF SOLID STATE REMOTE CONTROL TECHNIQUES AS APPLIED TO THE REDESIGN OF THE ELECTRICAL SYSTEM IN A LARGE CIVIL AIRCRAFT

This Report describes how the electrical power distribution system of a large civil aurcraft might be redesigned to employ remote power controllers, embodying solid state protection, in conjunction with solid state logic, to operate circuits remotely through lightweight signal wires. An assessment of the masses of a conventional and a remotely con trolled system, based on a VC 10 installation in which it is assumed that the latest lightweight cables and switchgear are used indicates that the remotely controlled system would be about 90 kg lighter. Additional saving might result from equipment specifically designed to be compatible with solid state remote control techniques.

The effect on both systems of resiting the electrical compartment from the forward to a mid-aircraft position has been examined and it is concluded that a further saving of 36 kg would result with remote control.

## (Over)

## (Over)

629.13 .066 :

ARC CP No. 1289
December 1972
Jones, L. V. C.
STUDY OF SOLID STATE REMOTE CONTROL TECHNIQUES AS APPLIED TO THE REDESIGN OF THE ELECTRICAL AS APPLIED TO THE REDESIGN OF THE

This Report describes how the electrical power distribution system of a large civil aircraft might be redesigned to employ remote power controllers, embodying solid state protec night be redesigned to employ remote power controllers, embodying solid state prot weight cignal wires. An assessment of the masers of a conventional and a remotely trolled system, based on a VC 10 installation in which it is assumed that the latest light weight cables and switchgear are used indicates that the remotely controlled system woun be about 90 kg lighter. Additional saving might result from equipment specifically designed to be compatible with solid state remote control techniques.

The effect on both systems of resiting the electrical compartment from the forward to a mid-aircraf position has been examined and it is concluded that a further saving of 36 kg would result with remote control.

The redesigned system lends itself to, and has been arranged for, easy conversion to multiplexed data transmission. Although a multiplexed system has not been assessed, the mass of cables and fittings that would be replaced has been evaluated as 42 kg , or 77 kg if analogue circuits were included. This indicates the allowances within which the multiplexed data transmission should be designed.

The redesigned system lends itself to, and has been arranged for, easy conversion to multiplexed data transmission. Although a multiplexed system has not been assessed, the mass of cables and fittings that would be replaced has been evaluated as 42 kg , or 77 kg if analogue circuits were included. This indicates the allowances within which the multiplexed data transmission should be designed.

The redesigned system lends itself to, and has been arranged for, easy conversion to multiplexed data transmission. Although a multiplexed system has not been assessed, the mass of cables and fittings that would be replaced has been evaluated as 42 kg , or 77 kg if analogue circuits were included. This indicates the allowances within which the multiplexed data transmission should be designed.

## © Crown copyright

## Published by

HER MAJESTY'S STATIONERY OFFICE

## Government Bookshops

49 High Holborn, London WCIV 6HB
13a Castle Street, Edinburgh EH2 3AR
41 The Hayes, Cardiff CF1 IJW
Brazennose Street, Manchester M60 8AS
Southey House, Wine Street, Bristol BSI 2BQ
258 Broad Street, Birmingham B1 2HE
80 Chichester Street, Belfast BTI 4JY
Government Publications are also available
through booksellers
C.P. No. 1309


[^0]:    * Replaces RAE Technical Report 72238 - ARC 34764

