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SUMMARY 

An approximation to the flow on the compression surfaces of delta wings 

and conical bodies is made by a new simple method. Surface pressure distribu- 

tions are obtained by an interpolation procedure between circularly conical 

flow and two-dimensional flow. The technique is applicable to a wide variety 

of body geometries and flow conditions including cases with either attached 

or detached shock waves at the leading edges. 

* Replaces RAE Technical Memorandum Aero 1457 - ARC 34849 
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1 INTRODUCTION 

Many methods for calculating the flow over delta wings and conical bodies 

have been proposed but few are capable of producing accurate quick estimates of, 

for example, the surface pressure distribution either because of the complexity 

of the calculation or because of the limited range of conditions for which the 

methods are applicable. Frequently the well-established Newtonian or tangent- 

cone theories have been used in situations where their accuracy is seriously 

limited. Many modifications to these theories have been made to improve their 

range of applicability and accuracy in view of their simplicity. 

The introduction of thin shock layer theory by Messiter' and its develop- 

ment by Squire 2,3 has provided an alternative which gives a relatively 

straightforward method of calculating pressure distributions over a variety of 

bodies. Although the method uses a hypersonic approximation it has been shown 

also to have an adequate accuracy at lower supersonic Mach numbers. However, 

for certain types of body at low incidence8 the accuracy diminishes rapidly, 

and in some cases a solution cannot be found. 

More recently Woods4 and Roe' have further developed the thin shock 

layer theory to study the problem of flows with attached shock waves at the 

leading edges, 

The method presented here relies on established experimental data to 

determine the general characteristics of the flow field and hence determine its 

affinity to other known flow fields, in contrast to the more usual practice of 

proposing a completed mathematical model of the flow field. The method is 

based on a technique that was originally developed for correlating and predict- 
6 

ing the pressures along the ridge lines of conical bodies , 

2 DEVELOPMENT OF THE METHOD 

For a body with triangular or diamond cross-section the pressures over 

the compression surface , particularly near the ridge line, could not be 

predicted with any accuracy using existing simple methods such as tangent-cone 

or Newtonian theory. The experimental data obtained 7,11 at a Mach number of 

4.0 which are presented in Fig.1 show that for such bodies the included angle 

of the ridge (2~~) is a dominant parameter, the pressure at the ridge line 

increasing with the value of CC. Only local conditions at the ridge line are 

required in order to obtain the value of C . 
P 

Following Ref.6, it is demon- 

strated in Fig.2 that the separate experimental results for all ridge angles 



in Fig.1 can be correlated with sufficient accuracy by the parameter 
1 6r (sin r,) 9 where 6 r is the inclination of the ridge line to the free- 

stream direction. 

The data in Figs.1 and 2 have been restricted to bodies which have 

aspect ratios less than 4/3 because the effect of increasing aspect ratio 

above this limit is to increase the pressure at the ridge line for a fixed 

ridge angle and ridge inclination. This effect is only noticeable on the 

flatter wings (250 + 180') which have aspect ratios greater than unity along 

with large ridge inclinations so that the flow becomes locally more two- 

dimensional in character. Therefore, for the majority of applications, the 

pressure coefficient at the ridge line can be correlated with sufficient 

accuracy using the equation 

C = f 6r (sin CO) . 
i 

1 
P 1 

(1) 

A prediction of the pressure coefficient at the ridge line can be 

achieved by assuming that the flow in the neighbourhood of the ridge line is 

similar to that over an equivalent circular cone at zero incidence where the 

cone semi-vertex angle is given by 

u 1 = 6r (sin Go) 0 

Pressure coefficients calculated using this principle are also plotted in 

Fig,2 for a Mach number of 4.0. The effects of free stream Mach number on the 

pressure coefficient, although small for circularly conical flow, are 

automatically included. A comparison with experimental data6 demonstrates 

that the computed values of the pressure coefficient at the ridge line follow 

the same variation with Mach number as the experimental results. 

The pressure distributions over complete compression surfaces of conical 

bodies can be approximated by representing a generator in the surface of the 

body by an equivalent circular cone at zero incidence. The semi-vertex angle 

of the equivalent cone ((5) can be found by application of equation (1) and is 

given by 

(3 = 6 (sin <)' (2) 

where 6 is the angle between a generator in the surface and the free-stream 

direction and 5 is the local inclination of the surface with respect to the 

free-stream plane passing through the generator. The angies 6 and 5 are 
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shown diagrammatically in Fig.3 and a derivation of the equations for computing 

these angles is given in the Appendix. 

The method outlined above isprincipally suitable for bodies with detached 

shock waves that can be considered as a perturbation from circularly conical 

flow. For example, calculated pressure distributions over a conical body with a 

cross-section consisting of an equilateral triangle are compared with experiment 
11 

in Fig.4. These show particularly good agreement with experimental values and 

also indicate the deficiencies of tangent-cone and Newtonian theories which 

would predict a constant pressure across the span. The success is related to 

the fact that even when the body cross-section is far-removed from circular, 

the shape of the enveloping shock wave represents only a small perturbation from 

a circular cross-section. The shape of the shock wave obtained experimentally 12 

for the same model and flow conditions as for the surface pressure data is 

shown in Fig.5. 

The perturbations from circularly conical flow produced by caret wings, 

even at the off-design condition with detached shock waves at the leading edges, 

are too large for the above method to be of sufficient accuracy. A perturba- 

tion from two-dimensional flow should provide a more realistic flow pattern and 

hence an improved accuracy. Also, as mentioned previously, the effect of 

increasing aspect ratio for flatter wings is to increase the pressure near the 

centre-line. This pressure approaches the value predicted from two-dimensional 

oblique shock wave theory when applied in the axial direction so that an 

improvement could be expected for high aspect ratio flat wings. 

Thus, there are a number of applications for which perturbations from 

two-dimensional theory would be a better approximation. To deal with these 

situations the present method has been developed to allow for perturbations 

from both circularly conical flow and two-dimensional flow by an interpolation 

between these two exact flow processes. 

The cross-section shape of the body, its aspect ratio and also its 

incidence, determine the proximity of the flow to either two-dimensional or 

circularly conical. Therefore an effective cross-section area A of the body 

and flow (Fig.6a) which takes into account the above parameters is proposed as 

the variable for interpolation. The cross-section defining the area for the 

limiting case of circularly conical flow AC is the sector of the circle 

passing through the leading edges with centre on the free-stream axis (Fig.Gb), 
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thus representing a section of a circular cone at zero incidence. At all 

incidences the limiting flow is considered to be equivalent to that around a 

cone of semi-angle equal to the angle Y between the leading edge and the 

free-stream direction. The area A o for the limit of two-dimensional flow is 

obtained from an effective cross-section of the body on the assumption that a 

plane oblique shock wave exists between the leading edges (Fig.6c) and can be 

produced by a particular caret wing at the design condition. 

The pressure coefficient can then be approximated by simple linear inter- 

polation as 

C ( J 
P = cpc+ /G) (Cpo - Cpc) 

where 
% 

is the pressure on a circular cone of semi-angle u given by 

equation (2) and, for bodies with flat facets, is variable across the span. 

cpo 
is the pressure on a two-dimensional wedge whose inclination is equal to 

the inclination of the ridge line 6 r' 

kc- Ar(Ac- Ao) should 

inity of the body with e 

The value of vary between zero and unity and 

determines the aff ither a circular cone or a caret 

wing at the design condition. For a given body cross-section the value 

increases towards the two-dimensional limit (unity) with increasing aspect 

ratio. This trend towards a more two-dimensional flow is in accordance with 

the experimental results of Ref.7. Also, as incidence is increased the value 

decreases such that the flow tends towards circularly conical. These effects 

are illustrated in Fig.7 in which values of kc- A)/45 - %I are plotted for 

two types of body cross-section and two aspect ratios. 

The free-stream Mach number has a significant influence on the value of 

kc- #Yo) owing to variations of AO' However, when the angle between the 

free-stream direction and the plane containing the leading edges is less than 

the Mach angle a value for A0 cannot be found because, with reference to 

Fig.6c, a shock wave cannot lie between the leading edges at angles below the 

Mach angle. It is therefore assumed for these conditions that the value of 

is zero and correspondingly there is no effect of Mach number on the value 

> (AC- A)/($- Ao) for angles less than the Mach angle corresponding to the 

highest Mach number considered. This effect is illustrated in Fig.7 where, for 

a fixed body geometry, the values collapse onto a single curve independent of 

Mach number for incidences less than the Mach angle whereas for incidences in 

excess of this value increases with Mach number. 
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It is also possible, depending on the body cross-section, for the value 

of A to be either less than AO or greater than A 
C’ 

Father than use 

extrapolation under these circumstances the following assumptions are made. 

If A>A then A is put equal to A andif A<A 
C C’ 0 then A is put 

equal to Ao. These assumptions have the effect of restricting the approxima- 

tion to the flow process within the two-dimensional and circularly conical 

limits. 

It should be noted that the value of Cl+., in equation (3) generally is 

not the same as the pressure coefficient that would be obtained on the assump- 

tion of an oblique shock-wave lying between the leading edges. The latter 

condition is used solely for determining a body cross-section area for the two- 

dimensional limit. However, when dealing with a caret wing at the design 

condition the two values of C are identical, 
P 

Similar reasoning also applies 

when considering the value of C PC' The basic values of cP, and Cpo are 

shown in Fig.8 together with calculated surface pressure distributions for a 

flat delta wing. 

Further calculations of surface pressure distributions using the method 

outlined above are presented in Ref.8 for four delta wings. These wings were 

proposed by Roe' in order to provide a basis for comparing various prediction 

methods. 

3 REFINEMENTS TO THE GENERAL METHOD 

The existing method uses a two-dimensional flow as one of the limits of 

an interpolation procedure principally to improve the solution for flows with 

detached shock waves. However the method is not expected to be particularly 

accurate for large aspect ratio delta wings with the shock waves attached to the 

leading edges. 10 A more accurate method by Pike , which is only capable of 

dealing with attached shock configurations , predicts a region of constant 

pressure near the leading edge which is obtained from oblique shock wave 

theory. For such conditions however, the present method does give an indica- 

tion of the occurrence of an attached shock condition, since the distributions 

of % and (+o across the span are found to intersect, An example is shown 

in Fig.9 for a wing of aspect ratio 3.36 at a Mach number of 4.0. From a 

comparison with the results of Pike it appears that an improvement to the 

approximation of the pressure distribution can be made by taking only the two- 

dimensional solution, Cpo, outboard of the point of intersection of the 

pressure distributions. This implies the need for a spanwise variation of the 
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interpolation variable whereas so far it has been assumed constant. It should 

also be possible to allow for spanwise variations for more complex body shapes 

provided sufficient experimental data becomes available to confirm the validity 

of the technique. 

A two-dimensional solution based on conditions along the centre-line 

produces a shock wave appropriate to an infinite unswept wedge (Fig.lOb) and 

does not provide a realistic shock-wave shape near the leading edges. However, 

a two-dimensional swept wedge solution near the leading edges, with a 

consequently higher value of C 
P9 

appears a more appropriate solution, giving 

an attached shock wave at the leading edges as shown in Fig.lOa. The various 

shock-wave shapes are illustrated in cross-section in Fig.11 for the same delta 

wing as in Fig.9. Although a realistic shock-wave shape is obtained near the 

leading edges it is not possible to match the conical and oblique shock 

solutions with such a simple approach. Similar difficulties in matching 

solutions and shock wave shapes are also encountered in the more complex 

solutions39495 to the problem of delta wings with attached shock waves. It is 

clear that a significant improvement to the method, and to the results of 

Ref,8, can be made by adopting the oblique shock solution appropriate to a swept 

wedge without any loss of generality. In Fig.12 a comparison with the results 

of Squire, Pike and Roe is made showing the improvement that can be achieved. 

4 CONCLUSIONS 

A new simple approach to the problem of determining pressure distributions 

on delta wings and conical bodies is proposed, The flow existing over the 

compression surface of the body is approximated by an interpolation procedure 

between circularly conical flow and two-dimensional flow. The method is 

particularly suitable for bodies with detached shock waves but is capable of 

being applied to a wide range of conical bodies over a large range of Mach 

number and incidence. Further improvements allow flows with attached shock 

waves to be calculated with reasonable accuracy. 
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Appendix 

DERIVATION OF EQUATIONS FOR COMPUTING THE ANGLES 6 AND r; 

The angles are shown in Fig.3 together with the axis system and 
nomenclature for the coordinates of various points in the free-stream direction 

and on a simplified body consisting of flat facets. In order to allow for 
variation of body geometry and attitude the coordinates of these points are 
used as data. 

In this case the axis system OXYZ is fixed in the base of the body which 
has unit chord such that the vertex (point 1) has coordinates (1, 0, 0) and 
the free-stream vector also passes through this point. A facet of the model 

is then completely defined by points 5 and 6 in the Y-Z plane of the base. 
Point 2 is variable across the facet and the coordinates of point 3 define 
the free-stream direction and hence the attitude of the body. 

The following table shows the fixed and variable data. 

Coordinates of points along axis directions 

Point X Y Z 

0 0 

f (2,) =6 - 7k6 - z5) 
0 tan a 

Coordinates of leading edge in Y-Z plane 
Coordinate; of lower ridge in Y-Z plane 

I 

The value of 7 = y/b can vary from zero to unity across the span 
for this simplified model. 

The angle 6 between the free-stream direction, specified by the line 
joining points 1 and 3,and the generator in the surface specified by the line 
joining points I and 2,is given by 

CO8 6 * lAf + mmf + nnf (4) 

where R f' mf* nf 
are the direction cosines of the free-stream and II, m, n 

are the direction cosines of the generator. The direction cosines can be 
obtained from the coordinates aa:- 
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(X 
Rf = 

3 - x,) 

(x - x1) 
2 

3 + (Y3 - Y,) 
2 

+ (2 
-T 

3 - 2,) 

(Y3 - Y,) 

mf = = 

- x1> 
2 

+ (Y, - Y,) 
2 

+ (2 - 2,) 
2 

3 

(2 - 3 zl) 
nf = - 

(x 
x1) 

2 
(Y3 Y,) 

2 - + - 
3 

+ 
(z 

- 
z*) 

2 
3 

k - x,> 
R 

L I = - 

(x - x1) 
2 

+ (Y2 - Y ,> 
2 

+ (z - z$ 
2 

2 2 

(Y2 - Y,) 
m = 

(x - x1) 
2 

2 + (Y, - Y,) 
2 

+ (z 
2 

2 - z+ 

(z - 
2 zl> 

n = 
(x 2 2 2 - 

2 
x1) + (Y, - Y,) + (z - 

2 
Z]) 

and substituted into equation (4) to obtain 6. 

I 
I 

(5) 

(6) 

The angle < is the angle between the plane of the tring, containing 

points I, 2, 5 and 6, and the free-stream plane passing through the generator 

in the surface, containing points 1, 2 and 3. 

If the equation of the plane of the wing is 

Alx + Bly + Clz + D1 = 0 

and the equation of the free-stream plane is 

(7) 

A2x+B2y+C2z+D2 = 0 (8) 

then the angle 5 between them is given by 
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CO85 = 
AlA + BIB2 + ClC2 

The coefficients in equation (7) in terms of the coordinates 

6, are 

Y' Y l 

A, - y5 z5 ' - Bl - 

‘6 ‘6 ' 

x’ =I ’ 

x5 =5 ’ 

x6 ‘6 ’ 

c, = 

(9) 

of points 1, 5 and 

x’ Y’ ’ 

x5 y5 ’ 

x6 ‘6 ’ 

(‘0) 

and the coefficients in equation (8) in terms of the coordinates of points I, 2 

and 3 are 

A2 - 

Y’ 7 l 

y2 r2 ' 

y3 =3 1 

-B - 2 

x’ =I ’ 

x2 =2 l 

x3 =3 ' 

c2 = 

x1 y1 l 

x2 y2 l 

x3 y3 l 

(I’) . 

The value of 5 can then be calculated after evaluation of the determinants 

and substitution into equation (9). 

The angles for more complex body shapes consisting of curved cross- 

sections can be computed using a similar technique if the body is defined by 

separate tangent planes with the generator in the surface fixed at each point 

of tangency. In this situation it is convenient to define each tangent plane 

in terms of its intercepts with the coordinate axes as for the simple body 

shown in Fig.3. 

The effects of yaw can also be incorporated by inserting the value 

- tan 8 for the y coordinate of point 3, where B is the angle of sideslip and 

the tangent definition for both incidence and sideslip have been adopted, 
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SYMBOLS 

effective cross-section area of body, see Fig.Ga 

cross-section area of equivalent body for circularly conical flow, see 
Fig.6b 

cross-section area of equivalent body for two-dimensional flow, see 
Fig.6~ 

pressure coefficient 

A 

A 
C 

AO 

C 
P 

C 
PC 

C 
PO 

Y 

6 

'r 

5 

pressure coefficient on a circular cone of semi-angle a 

pressure coefficient on a two-dimensional wedge inclined at angle 6r 

angle between the leading edge and the free-stream direction defining the 
semi-angle of an equivalent circular cone, Fig.6b 

angle between a generator in the surface of the body and the free-stream 
direction 

angle between the ridge line of a body and the free-stream direction 

local inclination of the surface with respect to the free-stream plane 
passing through the generator, Fig.3 

inclination of the surface with respect to the free-stream plane passing 
through the ridge line, which is equivalent to half the included angle 
of the ridge, Fig.1 
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