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I 
I SUMMARY 

A simultaneous solution of the non-linear stability equations for the 
flat plate boundary layer with space amplification has been obtained for a single 
non-dimensional frequency parameter, at a series of Reynolds numbers, and using a 
limited number of amplitudes of the fundamental perturbation. The distortion of 
the fundamental by the generation of second harmonic is normally included in the 
solution, but some results are obtained excluding this effect. The terms 
representing the growth of boundary layer thickness are included. The results 
are compared with published work on non-linear effects in plane Poiseuille flow. 

I./ 

*Replaces A.R.C.34 273 
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1. Introduction 

When a steady laminar flow is perturbed by 3 simple harmonic disturbance 
of finite amplitude the second-order processes of mean flow distortion and 
generation of harmonics can be observed, at least in some types of flow, before 
there are any strong indications of the random processes of turbulence. In order 
to account for these second-order effects it is necessary to include in the 
equations for the motion the terms that are non-linear in the perturbation and are 
treated as negligible in first-order stability theory. During the last twenty 
years 3 considerable amount of work has been done to explore the second-order 
effects in various flows, both for two-dimensional and three-dimensional 
perturbations. Pa?ers by Stewartson and Stuart (1971) on the plane Poiseuille 
case, and by DiPrima et al (1971) on two-dimensional flows in general, are the 
latest developments of two-dimensional non-linear stability theory. These papers 
give references to much of the earlier work. 

Stuart (196Ob) has pointed out that non-linear effect3 in BQnard cell3 
(having constant Rayleigh number), cylindrical Couette flow (having constant Taylor 
number), and strictly parallel flows (having constan,t Reynolds number), are simpler 
to analyse than non-linear effect3 in boundary and free shear layer3 which have 
continuously changing Reynolds number. He has also pointed out elsewhere, however, 
that if we are interested in the process of transition to turbulence there are 
advantage3 in studying ca3e3 of changing Reynolds number, where the whole 
transition process is presented as 3 single continuous development. It is therefore 
desirable to obtain solution3 of second-order perturbation equations for flow3 with 
changing Reynolds number, and to find out by comparing theory with experiment how 
far the early stages of non-linear behaviour c3n be followed in the transition 
region. The present paper is concerned with the transition region in the Blasiu3 
boundary layer, and develop3 the non-linear theory for the special experimental 
case of purely real frequency and complex wave number. In this case the main 
difficulty does not arise from changing Reynolds number because the undistorted 
flow is of similarity type and, as will be shown below, the distortion of the,mean 
flow (within certain limits) does not invalidate the use of the aimile.rity principle. 
An accurate solution for this case requires the evaluation of a mean flow for which 
no accurate explicit expression is possible, and also the determination of 3n 
eigenvalue which occur3 in the equation in powers up to the fourth. Numerical 
methods of solution are therefore essential. 

In the Blasius boundary layer the departure3 fmm parallel mean flow are 
not great, and the non-linear effect3 are expected to be similar to those in plane 
Poiseuille flow. Work on Poiseuille flow has been directed mainly to explaining 
the occurrence of turbulence at Reynolds number3 R less than the critical Reynolds 
number R c given by first-order theory. The second-order changes of the rate Of 

amplification in both apace and time have therefore been examined - for the 
"subcritical" region in which R - Rc is negative and for the "supercritical" 

region in which R - Rc is positive. Consistent results for the space amplification 

case in poiaeuille flow have been given by Watson (1962) and by Stewartson and 
Stuart (1971). 

Interest also attaches to the second-order changes in the distribution 
of the perturbation and its harmonics. Lin (1958) concluded that "for disturbances 
in 3 parallel flow, all the harmonic component3 of the oscillation simultaneously 
become important around the criticallayer before the amplitude of the fundamental 
component is large enough to cause any significant distortion of the mean flow." 

The/ 
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The second-order results obtained for the Blasius boundary layer will be 
compared with those obtained for plane Poiseuille flow. Our analysis follows the 
method described by Barry and Ross (1970) and retains in the differential equations 
the main terms representing the growth of thickness of the layer. A detailed 
account of the numerical methods used in this work has already been published by 
Ross and Corner (1972). 

2. The Equations and the Iteration Procedure 

We use a Cartesian coordinate system having the origin in the leading edge 
of the flat plate, the y-axis coincident with the leading edge, and the z-axis normal 
to the surface of the plate. Uo represents the free-stream velocity, b the 
displacement thickness of the unperturbed boundary layer, and LJ the kinematic 
viscosity of the fluid. 
4, u, and &/Jo. 

The units of length, velocity and time are taken to be 
The equations are then non-dimensional with Reynolds number 

R = Uo6&. Also R' = K'X where K is the Blasius constant - 1.7208. 

The non-dimensional dependent variables include the vectors: 

6% o,u*r) : total velocity, 
(U, 0, WI mean velocity, 
(u, 0, w) perturbation velocity, 

The first equation governing the total flow in the boundary layer is the 
continuity equation, 

a+ aw 
- + - = 0, 
Jx a2 

which is satisfied by the introduction of a stream function *. The remaining 
equation is the vorticity equation which may be written in the form 

a oa* 
- + J($, Va$) = I@$, . ..(I) 

at R 

where V2$ is the total vorticity, and J($, V'JI) represents the operator 

a* J VaS J* a v"$ 
7 --- -. 
JZ ax Jx a 

Clearly, (I) is separable in time, and following the now well established 
procedure used for Poiseuille flow, the function $I is expanded in a purely real 
Fourier series: 

Jr(x,z;t) = *o(x,z) + Jli (x,z)e-' ‘Bt + $L;(x,e)e+iPt 

co + 1, r $nh(x,z)e -in@ + ~n;l(x,z)e+i"~ , 1 . ..(2) 

n=2 

where s indicates a complex conjugate. This expansion involves the mean flow 
stream function $I 0' and Jr + m as 0 25 -+q the expansion is valid, however, 

if/ 
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if * - *o is bounded at all times t within the range to Q t < to + 2&//3. To 

satisfy the equations of fluid flow, * itself must, of course, be ukformly 
continuous in t, and at all real points (x.2) in the region 0 6 z S m, 
0 < x < X, where the positive value X can be assumed to lie outside the region 
of interest of this representation. 

Substitution of (2) in (l), and separation in powers of e w gives an 
infinite series of equations, 

. ..(3a) 

together/ 
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together with the cbmplex conjugate equations of (3b), (3~) and (3d). The 
terms which are nonflinear in the perturbation appear on the right-hand 
side of these equatxons. In first-order stability theory it is assumed 
that all the terms khich are non-linear in the perturbation are negligible. 
When this assumptioh is made, the right-hand side in each of equations (3) 
becomes zero, and (3~) and (3d) become variants of (3b). 

The case ln which we are interested occurs when a periodic 
disturbance I&, initially of very small amplitude, is present in the 
otherwise undisturbed mean flow in the boundary layer: a situation 
oonforming initially to linearised stability theory. In consequence of 
boundary layer amplification, however, *I may increase in the amplifying 
region to such an extent that the non-linear terms in (3) become significant, 
distorting the mean flow given by (3a), producing higher harmonics of *I 
given by (3~) and (3d), and changing the function & given by (3b). We 
wish to follow the early stages of this process. 

It is evident from (3d) that the third and fourth harmonics cannot 
be excited until thk second harmonic has been generated and, in general, 
that the (2n-11th &d 2nth cannot be excited until at least the nth has been 
generated. The f&t non-linear effects will therefore appear when the 
non-linear terms inkving only Jr1 just become significant in (3a) and 
(3c). The next s&e, requiring further amplification of h, will involve 
terms containing $4 and I)~ in (3b) and (3d). It will be noted that 
(3b) will still be +near and homogeneous in *I at this second stage. 
Before deciding on the number of non-linear terms which should be included 
in the equations for a second approximation to the solution, two simplifying 
assumptions must be introduced. 

First, the Prandtl boundary layer assumption must be applied to 
the mean flow stream function Jro, and to do so we write 

a2b au a4 4b a% 
vy = - = -; vy = - = -. 

sea a, a24 d2= 
. ..(4) 

When these substitutions are made in (3a), the left-hand side reduces to 

, 

the partial differential with respect to z of the terms in the Blasius 
equation. The replacement of V $, in (3b), (3~) and (3d) retains all 
the terms containing W which are of the same order as the viscous term in 
the equation concerned. The perturbation equations then take account of 
the growth of boundary layer thickness (Barry & Ross, 1970). 
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The second assumption concerns the functions $n(x,z) for 

n ) 1, and expresses the experimental fact that a disturbance which is 
periodic in time forms a wave travelling downstream within the boundary 
layer with a complex wave number a = ar + iai. *,kz) may 
therefore be expressed in the form #nn(x,z) em-. It is known from the 

work of Schubauer and Ski-amstad (1947) and J. A. Ross, et al (1970) that -- 
a is a function of R, and that $+(x,z) is a function of R and Z. 
The dependence of +n on R may arise in two ways: 

(i) from the presence of R -1 as a coefficient of the viscous 

term6 in the equations - and this influence is certainly 

(ii) from a non-separability of x and z within en which is 

independent of (il. 

It is not possible to say a priori whether one of these is dominant or both 
are significant. The evidence from the work of Jordinson (IWO), Barry 
and Ross (1970) and J. A. Ross et al. indicates that, -- in the linearized cae, 
(i) is dominant and that the neglect of (ii) does not lead to predictions 
which are erroneous within the limits of~accuracy of observation. we shall 
therefore assume that the same conditions hold for the non-linear 
equations. Having found the solution of the equations based on this 
assumption, we may seek evidence of the existence of significant effects 
of (ii) in some suitable experiment. We therefore assume 

@II = cnqJn(z) ei-, $-= = c,;,(z) e-iGx? . ..(5) 

where Cn is a real amplitude factor, and &c(z) is normalized so that 

IbI(z = 1. The position at which k(z) reaches its norm is 

symbolized by zn, and the normalization is carried out by making the real 

and imaginary parts of &(s,) respectively 1 and 0. With this 

normalization, C, < 0.05 will amply cover the early stages of the non- 

linear processes. 

The result of substituting (4) and (5) in the terms on the left- 
hand side of (3d) may be expressed in a concise form as 
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cn e 
inax G 4, , [I 

where 

and U" and W' are second differentials with respect to e. 

Let us~ncn suppose that for the second approximation to (3) the sum of 
the suffices of @ in any one term should not exceed 3. This rule would imply 
that the third haraonic is present, 
non-linear effects! 

but with an amplitude too small to produce 
The non-linear terms which survive on the right-hand sides 

of (3) will then be those involving either *I alone or $I and $r2. The 
substitution of (4) and (5) in (3) then leads to the following finite set of 
equations for the second approximation, where dashes represent differentiation 
with respect to z. 

a 

( 

au .au i a% 
- lJ-+*--- 

> 
= q ,i(a - & ia 

t ( 
$&y-, $(I2 + (a’ - ii”)&;; 

as ax a2 B a9 > 

fl - @& + (2 - Cf’)&+j 
>I . ..(W 

- iz 4% - .$.$a - (b’ - oa)& 
>I 

. ..(6b) 

. ..(6c) 

In (60) ;snd (6d), *s in the Orr-Sommerfeld equation, x disappears from 
the differential equation by 
possible in (68) ind (6b), 

removal of a common factor, but this will not be 
and .e correct interpretation must be found for 
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exp i(o: - 2~. In first order stability theory the downztream growth of 
the amplitude A for a perturbation of constant F (= pm is expressed 
as an integral of the local rate, -ai( Taking dimensional velues 

a; = y/6,, and X = @Jo/k'v (where .k is the Blasius constant 1.7208,), 

then 

a; dX = (a;2&/k') d(Uo&/v) = (&/k') dR, 

and the total amplification between R. and R is 

A 
- = exp [- jHR (b/k') d-Q.1 . 
A 0 0 

The appearance of the factor exp in a stability equation implies 

. ..(7) 

that (7) is applicable. The real exponents in (6a) and (6b) represent 
local rates of change of the amplitude factors, C, at positions near R, 
but if the equations are to be integrated at R, then the C's must be given 
their values at R, with x = 0 in the exponents. 

It has already been mentioned in connection with (5) that the 
absolute level of the values of the function 
II4lI = 1, 

6 has been fixed by making 
and that the coefficient C1 is the required variable 

amplitude factor. Equations (6~) and (6d) show that unless CS and CS 
are fixed in relation to Cl, the numerical values'of $2. and $3 reached 
by integration of these equations are not fixed in relation to those of 
4 - (And a similar process would be reuqired for Q;, of higher order.) 

It is evident that the simplest relative normalisation for (6~) and (6d) 
is given by writing 

C 
n 

= c:. . ..(8) 

When this relation is used with (5) in the general equation (jd) and the 
coefficients of the various terms are.examined, we find that in all the 
terms on the left-hand side and the first summation on the right the co 
coefficient is 

CT exp [imrx] ew [-mix] In the second summation the typical 

coefficient is '2: + 2m exp Emrx]exp [-in + 2m) aixl where m varies 

from 1 to co. The exponent in ia,x behaves like that in i/%., and is 

always removable. The exponent in -six always occurs to the same power 

= Cl, and merely acts as a idaming that Ci varies in the downstream 
direction in accordance with (7). 
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In order to obtain from (6) a valid second approximation to the 
perturbed boundary layer flow by numerical methods, it will be necessary to use 
four equations, (6a), (6b), (6~) and the complex conjugate of (6b); (6d) need 
not be involved, although its evaluation might be of interest as regards the 
relative magnitude bf &. (6~) h s ows that the second harmonic is excited by 
the first, and the effect of this excitation on the first harmonic should be 
examined. 

The four equations which have to be solved are strongly coupled, and only 
by a process of iteration will it be possible to reach a satisfactory solution. 
The details of the Process have been described by Ross and Corner (1972), but an 
outline of the method is summarised here. We begin with the first-order solutions 
koo and ho of equations (68) and (6b); a first-order solution of +a0 is then 
!>ossible from (6~). Thereafter a second solution JIDl may be obtained from (6a) 
using Ai0 in the non-linear terms. The next stage is to recalculate & and its 
eigenvalue, including non-linear terms, and this process involves both (6b) and its 
complex conjugate. $01 *ml &a0 must be substituted to obtain hl. Thereafter 
hoa and &21 are ,directly obtained from (68) and (6~). The following diagram 
illustrates the route which must be followed ta obtain convergent second order 
values of $0, 6 and +a. 

Equation (68) 

Equation (6b) 
Complex conj. $---?$ </$& 

Equation (6~) 

The eigenvclue solution of (6b) and its boundary conditions: 
k(O) = g(O) =: 0, 4 + emas 8s e -100, was found by a special finite difference 
method developed by Osborne (1967) and described in its detailed operation by 
Ross and Corner (1972). The non-eigenvalue solutions of (6~) and (6d) and their 
boundary conditions: @s(O) = @i(O) -0, & * em2's as s -tm, and 
&, (0) = G(O) = 0, 6 -+ e-*= 85 s -a co, were found by the same finite 
difference method. 

The solution of (6a) calls for mere detailed discussion, since it is 
presented as a partial differential equation. The left-hand side may be reduced 
to a non-linear ordinary differential function of n by the method of 
Jones and Watson (1963), using the 'similarity' substitutions: 

Uobb = bmJo)4 f(l); q = (IJo/2"X)3 2, 

with X = x4, 2 = a& and 4 = k (~@J~)' the constant k 
having the Blasius value I.7268 (to five significant fig&es). Then introducing 
the homologous substitution: 

f(q) = 2+ k-l F(2* k-' q) = 2' k-l F(z) , 

(64 reduces ta 

Fiv(,) + F"'(s) F(z) + F"(s) F'(a) = - & k" B C: D(z) 

= cf.3 Cd, . ..(9) 

where/ 
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where C: D(z) represents the right-hand side of (6a) with the exponent absorbed 
into CF. 

The use of the similarity principle implies an x-dependence as well as 
a z-dependence in the whole equation, but since the integration is performed at 
constant x, and is valid only at one value of x, the im lied x-dependence in 
the right-hand side may be ignored.* The solutions of (9 P were found'by the 
Runge-Kutta method, using the boundary conditions F(0) = F'(0) = 0, 
F'(m) = I, F"(m) = 0. 

It is necessary to enquire, however, under what conditions there will 
exist a valid solution of (9). If C, is sufficiently small, a valid solution 
will exist, differing ina?ilreciably from the Blasius profile. The addition of 
the distortion term is not unacceptable unless it leads to an unacceptable 
distribution IJ = f'(q). The limitations involved appear to be similar to 
those which apply to the Pchlhausen 
lower limits. 

parameter, which is subject to upper and 
In the present case we assume that there is an upper limit to C, 

for given R and F. The first indications that a limit of this kind existed 
was found in the solution of (6a) for R = 500, F = a/R = 0.00008, 
Cl = 0.056. The calculated values of U were then found to exceed unity by 
at most 27 parts in 10' around z = 4.5. The numerical solutions were found 
for the range 0 d z < 6 divided by the net points into 80 equal intervals, and 
the boundary conditions were applied at the two ends of the range. Tests were 
performed to ensure that the net was sufficiently fine and that the cuter limit of 
z was sufficiently large. The calculations were performed on the I.C.L.4/70 
Computer at the Edinburgh Regional Computer Centre. The time required by the 
program was about 10 seconds per cycle of (6a), (6b) and (6~). Recycling was 
terminated when results became stable in the seventh sigificant figure. 

Al.1 the caloulations were performed for F = a/R = 0.00008, and for 
various values of R and C,. The components of the cycle had second order 
convergence, but the recycling iteration was first order. Application of an 
Aitken 6'-correction to both the eigenvalue and eigenveotor was found to assist 
convergence. Table 1 shows the number of cycles of iteration required under 
various conditions. 

Table 1 

Number of Cycles of Iteration e_equired for 
Various Values of R and C, at F = 80 x IO-' - 

500 
800 

1000 
1250 

1500 
1750 

------_--___________----------------------------------------------------------- 2:1-- 
a The x-dependence in the mean flow is very smell and is usually neglected in 

boundary layer stability theory. It enters here because the growth of boundary 
thickness has been included. A treatment similar to curs was used by 
Pretsch (1941) in his paper on boundary layers with a pressure gradient. 
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3. Results of the,Calculations 

In order to give a general view of the results, selected data we 
presented in three tables representing respectively the first damping region 
(R = 500) the amplifying region (R = 10001 and the second damping region 
(R = 175Oj. The data given in these table;'are all dimensionless, and tne unit 
of length involved is the Blasius value of bi corresponding to the Reynoids 
number concerned, The presence of the perturbation affects the displacement 
thickness, and the changed value is represented non-dimensionally by 6:. To 
present the complex fluctuating functions in B physically meaningful way they 
have been reduced to the form of modulus and argument for arx - Pt = 0. The 
tables show only the moduli of normalised functions. To obtain the corresponding 
non-dimensional r.m.s. values, the tabulated data for the first, second and third 1 
hermonps of the perturbation should be multiplied respectively by Z'C,, 2'e 
and 2%' 1. 

Table 2 

Computed Values with I( = 50 0, F = 80 x IO-' 

0 0.028 0.056 

I .ooo 0.987 0.945 

2.854 2.601 2.613 

0.112298 0.12299 0.12309 

.O.O167jb +0.017069 +0.017970 
0.3194 0.3191 0.3182 

0.5625 0.5568 0.5378 

0.5674 0.8676 0.@679 

2.443 2.414 2.313 

0.7498 0.7552 0.7740 

2.2740 2.2206 2.1011 

9.187 8.656 7,445 

0.6998 0.7206 0.7943 

4.044 3.996 3.899 

0.40 19.63 17.74 

-- 

non-dimensional 

2 for I@; Imax 
phase reversal of N 

near 2.5 sc 

near 1.5 sc 

near 3 
C 

The data in Table 2 show the following characteristics of the first 
damping region. 

(i) As c, is increased, changes in ai, the local rate of damping, are 
small, and the amount of energy transferred to the mean flow must increase. In 
consequence, the thickness of the boundary layer decreases es shown by both 6:, 
the non-dimensional displacement thickness, and the value of z for II = 0.99. 

(ii)/ 
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(ii) The value of a r increases slightly with increasing C, , and since the 
frequency is.constant, the wavelength and the wave velocity, cr, decrease. 

pciyi; As a result df both (i) and (ii), the value of z at the critical 
f c, decreases quite significantly. Associated with the inward movement of 

2 c there is a similar inward movement of zn, the position of phase reversal in 
the downstream component of the perturbation velocity. 

(iv) Sitice. & is normalised in such a way that 
i 

Znl&ldz z 1, the inward 

movement of z n causes the peak value of (&':I to risk It is interesting to 
note, however, that as C1 increases the peak values of ($41 and Igl decrease. 
The relatively high ratio of Ir$$lmax and l&lmax to I":/,, accounts for the 
development of a cascade of harmonics as C, increases. 

(v) For all the harmonics the modulus of vorticity has its highest value at 
the flat plate. As z increases this modulus falls steeply to a minimum and 
then rises to a secondary maximum. The table shows the peak value of the 
secondary.maxima with a.rough indication.of the z-position expressed in terms of z. 
The data show the rapid growth of the normalised functions with increasing order 
of harmonic and a slight tendency to suppression of higher harmonics as Cl increases. 

I Table 2 

Computed Values with R = 1000. F = 80 x 108 

0 

1 .ooo 

2.854 

0.23046 

-0.006605 

0.3468 
0.6120 

0.6241 

2.108 

0.7929 
0.052 

77.48 
0.7150 

12,.61 

157.4 
- 

0.014 0.028 

1.004 1.014 

2.860 2.872 

0.22883 0.22461 

-0.006083 -0.005162 

0.3494 0.3560 

0.6189 0.6371 

0.6389 0.6770 

2.123 2.172 

0.7819 0.7543 

7.511 6.196 

66.94 44.87 

0.7104 0.7007 

11.71 9.56 

137.0 95.0 
-- - 

non-dimensional 

z for Iti lmhX 
phase reversal of @ 

near 2 zc 
near z C 
near z C 

-_,----- 

The/ 
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The data ir, Table 3 show the following characteristics of the aqlifying 
region. 

(i) As c, is increased, a. I reoains negative (although diminishingly so), 
and the resulting amplification of the ?erturbation involves the removal of energy 
from the mean flow. The thickness of the boundary layer is progressively 
increased, as shown by both 6: and the value of z for U = 0.99. The 
fractional increase in 6: for C, = 0.028 is comparable with the fractional 
decrease at R = 5CXl for the same amplitude, but the total thickness of the layer 
appears less sensitive to expanding than to contracting influences. 

(ii) The value of ar decreases slightly with increasing C,, and the 
wavelength and cr increase. For C, = 0.028 the proportional increase in cr 
is much larger than the proportional decrease at R ~'500. 

(iii) As a result of both (i) and (ii), the value of z increases with 
C 

increasing CL. The fractional increase is bigger at R = loo0 than the 
corresponding decrease at R = 500 for the same amplitude. 
the outwards movement of 

Associated with 
z c there are similar movements of zn and (more 

definitely) zm. 

(iv) The outwards movement of zn causes the peak value of [&'I to fall 
slightly. The peak values of I&!) and I&l are more markedly reduced as C, 
increases. 
I&lmax 

At small amplitudes there is a large increase in the ratio of 
and b#A:l- to Iti lmx by comparison with the data for R = 500. 

(v) The secondary peaks in the vorticity distributions show a similar 
intensification in the higher harmonics at low amplitude, and similar diminution 
with increasing h. These vorticity peaks lie somewhat closer to zc than do 
those et R = 500. 

Table 4 
ComputedValues with B = 1750, F = 80 x lo-' 

I 

1 

0 

1 .oooo 

2.856 
0.38446 

+0.02631 
0.3625 

0.6403 
0.2485 

1.736 

1.0421 

5.619 

105.6 

1.6% 

42.6 

!a+ 

0.007 

0.9983 
2.846 

0.38355 
+0.01718 

0.3643 

0.6450 
0.2458 

1.735 

1.0345 

4.154 

54.02 and 59.47 
I.378 

26.3 

671.7 

non-dimensional 

2 for ItilImax 
phase reversal of &' 

near 1.2 zc 
neer 1.1 zc 

near 1.2 z 
c 

The/ 
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The data in Table 4 show the following characteristics of the second 
damping region in the initial stage of increasing C,. 

(i) The thickness of the boundary layer decreases, as in the first damping 
region. 

(ii) c 

(iii) zr 

increases as in the amplifying region. 

c moves outwards as in the amplifying region. 

(iv) Although z, seems almost constant, IGlmax decreases as in the amplifying 
region. Very large decreases occur with increasing C, in I~~lmax and ItilI,, 
but the small amplitude values have ratios similar to those at R = 1000. 

(v) The secondary peaks in the vorticity distributions show much larger 
harmonic development at low amplitude than those at R = 1000. Considering the 
small size of the finite amplitude used in Table 4, the decrease in the harmonic 
peaks is striking. All the peaks are now found close to ZC- 

Having shown in Tables 2, 3 and 4 the effects of changing CI in the 
three main regions of the field it will now be useful to show the distributions 
through the boundary layer of various functions derived from the solutions of (6) 
for F = 0.00008 in each region. Because of the rapidly varying stability of the 
numerical analysis with increasing R and C, , different values of C, are 
selected for illustration at different values of R. Graphs are shown in Fig.1 for 
R = 500, Ci = 0.028, in Fig.2 for R = 1000, C i = 0.014, and in Fig.3 for R = 1750, 
c, = 0.007. Each figure contains eight graphs showing the following functions of z: 

(a) The noxmalised functions IA ( and I$$l. 

(b) The normalised functions I$Q] and (62 1. 

(c) The normalised functions l&l and l$jl. 

(d) The fractional local distortion of the mean flow, (U - UB)/UB, 

and (W - 7/B)/WB, where U and W represent the distorted flow 

and U B and w B are the corresponding Blasius values. 

(e) The r.m.s. values of the four largest terms in (6b). For this graph we 

arrite b = 2'C, V'& 1. 
I 

The four rate-of-change of vorticity terms 
are then &, U alb,- U"l% I, and R-IQ, where wx represents the 
normal velocity component of the fundamental perturbation, and 

h;' = A: Id~(V~~)/dS~~. 

(f) The arguments of the first three terms noted in (.a). 

(g) The r.n.3. second harmonic vorticity modulus, hz = 2%: (V'&l. 

(h) The r.m.s. third harmonic vorticity modulus, hs = 2%: IV'& 1, 

To convert from normalised to r.m.s. values, the ordinates should be multiplied in 

(a) by 2% , in (b) by 2&f, and in (c) by 2'CT. 

14 
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In two-dimensional stability theory the perturbation vorticity behaves 
like a scalar quan$ity and is the simplest property which can be used to visualise 
the disturbance process. The graphs (e) and (f), 
importance in (6b), 

showing the only terms of any 
reveal this simplicity. Since the arguments represent the 

phase angles when arx - ,3t = 0, the phase angles at a~ (x.2) position rotate in 
the clockwise direction with increasing t. 

The dotted curves in the (f) graphs show that the phase angle of n, 
near the plate has a progressively increasing lag as z increases, corresponding 
to the diffusion of perturbation vorticity from the source at the plate surface, 
and the expected, almost constant phase in the outer part of the layer. It is 
known from other results (not shown in the Figures) that the fundamental u 
component lags about 90” behind the w component until the phase reversal point 
so is approached. The phase reversal in the damping region takes place in the 
clockwise directiod, and in the amplifying region nolrmally in the counterclockwise 
direction. 

The continuous curves in the (f) graphs, representing arg(@&), show 
a phase reversal of the fundamental vorticity in the region of the critical point, 
=c- In the outer part of the layer our results predict an almost constant phase 
angle. In all cases the wave front is very slightly tilted forwards towards the 
outer edge of the layer. Table 6 shows approximate values of this forward tilt in 
degrees per unit distance 4. 

Approximate Slop& of the Wave Front at the Outer Edge of the Boundary Layer in 
I Degrees per Distance 6, 

c, 0 0.007 0.014 0.028 0.040 0.056 
R 

500 17.8 - 20.9 32.6 

800 a.5 9.8 - 

1000 4.6 - 4.7 5.2 - 

1250 2.9 

1500 2.3 

f750 3.3 2.7 

4. Comparison with Other Theoretical Work --_ 

In a discussion of the "multiplicity" of the non-linear effects examined 
in earlier work, Lin (1958) applied an order of magnitude argument. to establish 
the special importance of the critical layer for the transport of vorticity. He 
used a length parameter derived from the ratio of the convection to the viscous 
terms in the dimensional Orr-Sommerfeld equation, and concluded that "the non-linear 
effect first shows up in the generation of harmonic modes in the critical layer 
even before the distortion of the mean flow is noticeable." Here we wish to 
comment on this conclusion from a theoretical standpoint. 
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It will be seen that our Equations (6a) and (6b) necessarily 
involve the amplitude factor C," in their non-linear terms, and the 
calculated distorted mean flow and fundamental perturbation are directly 
dependent on Cf. In Equations (6~) and (6d), on the other hand, the 
amplitude factors C: and C: cancel out, and normalised solutions are 
obtained which depend on C, only through $. and &. Thus & and 

63 may be ctilculated even if C, = 0, and the higher harmonics must 
therefore be regarded as inherent features of the perturbation. This 
argument is not weakened by the evidence in Tables 2 to 4 that the peak 
values of the normalised functions derived from & and &J 'decrease as 
Cl increases. As R increases, however, the distribution of the r.m.6. 
vorticities ha and hB becomes progressively more concentrated near 
z=O and z=z c (c-f. Figs-l(g), 2(g), 3(g) and l(h), 2(h), j(h)). 
The peak values of the corresponding normalised functions rise steeply as 
R increases (Tables 2 to 4). 

Lin's argument was concerned with the case when the dimensional 
equivalent of (aR)"3 was large, and we regard our results as 
consistent with his conclusions - interpreted in the sense that the harmonics 
contribute in an essential way to theperturbation processes in the viscous 
region. In discussing this question we are not concerned with.the e 
experimental detectability of the different non-linear effects; this 
naturally depends on the value of C,, but depends also on the relative 
ease of observation of a.c. and d.c. signals. 

It may also be of interest to compare our results in a general 
way with those obtained in non-linear studies of plane Poiseuille flow. 
In a series of papers initiated by Meksyn and Stuart (19511, and including 
notably Stuart (1960a), Watson (1960, 1962), Reynolds and Potter C.19671, 
Pekeris and Shkoller (1967) and Stewartson and Stuart (19711, a theory has 
been developed to express the effect of the non-linear terms on the rate 
of amplification and damping of perturbations, and the formal expressions 
have been evaluated numerically. The theory was originally developed for 
amplification in time, but Watson (1962) and Stewartson and Stuart have 
given the corresponding relation for space amplification. 

It will be sufficient here to consider the real part of the 
amplification Equation (5.1) of Stewartson and Stuart for our real amplitude 
and fixed frequency parameter: 

at(C,,R) = -ai(O,R) + $A I=, . ..(I01 

cg 

where [A)' = 4C:, cg is the local group velocity, and kr is a local 
constant expressing in magnitude and sign the contribution to ai from the 
non-linear terms. In the amplifiing region ai(o,R) is negative, and the 
instabiiity is increased when k r is positive and decreased when k is r 
negative. In the damping regions ai(O,R) is positive, and the stability 
is increased when kr is negative and decreased when kr is positive. 
Thus when cri(O,R) and kr have the sane sign of ai(C1,R) may become 

opposite/ 
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opposite to that of ai(O,R) if iA)* is sufficiently large. Table 6 shows 

the values of k/cg obtained from our values of ai, and the values of c 
g 

derived from calculations of Ja/Jp at constant FL 

Table 6 

Second Order Changes in ai at F = p/R = 80 x IO8 

R 

500 

8~0 

loo0 

1250 

1500 

1750 

A = X, 

A?- 

0 

2.8 

5.6 

11.2 

0 

2.8 

5.6 

8.4 

0 

1.4 

2.8 

5.6 

0 

1.4 

2.8 

4.2 

5.6 

0 

1.4 

2.8 

4.2 

0 

0.7 

1.4 

2.8 

cti x IO4 

+167.34 

+168.20 

+170.69 

+179.73 

+ 6.92 

+ 10.99 

+ 20.57 

+ 30.23 

- 66.05 

- 64.59 

- 60.83 

- 51.62 

- 80.58 

- 81.08 

- 81.71 

- 81.23 

- 79.31 

+ 22.22 

+ 6.62 

- 18.97 

- 36.30 

+263.15 

+232.04 

i171.79 

+ 77.35 

kl/cg 

- 0.1102 

- 0.1067 

- o.G988 

- 0.5198 

- 0.4351 

- 0.3303 

- 0.7444 

- 0.6651 

- 0.4600 

+ 0.2576 

+ 0.1433 

+ 0.0367 

- 0.0406 

+ 7.956 

+ 5.255 

+ 3.318 

+63.49 

+46.61 

+23.70 

(k, + k,)/c 63 ka/c g 

+ 0.02.5.5 -0.1322 

+ 0.0693 -0.5044 

- 0.2043 -0.4608 

- .3666 +o.5099 

+ 5.930 

+64.67 

+2.026 

-1.182 

cg 
0.4022 

0.4155 

0.4112 

0.4058 

0.4028 

0.4371 

At/ 
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At an early stage in the present work, simultaneous solutions were 
obtained for (6a) and (6b) with & treated as negligible. 'This procedure 
gives the distorted mean flow and the consequent modification of (% and its 
eigenvalue, and thus gives the combined effect of the parameters k, 
Lstuart, 1960a). 

and k, 
Column 5 in Table 6 is found by inserting the resulting 

+&ies of ui in (IO). Column 6 is'found by subtracting column 5,from 
column 4: (It should be noted that all the values of k/cg 'correspond in 
their scale to a(*) as used by Reynolds and Potter and McIntire and Lin, and 
14 + ks and k, are not given at double the a(*) scale.). 

Because of the departures from constancy of kr when two values of 

Cl were used at a given. R, the accuracy of ai was tested at R = 800. 
The calculations were performed with.80, 120 and 160 net points in the range 
0 d z .6 6, and extrapolated to an infinite number of net points using the 
fourth power of interval size. The values of kr/cg then became less 
negative, but only by about 2.3% The variations of k,/c ore therefore 

g 
considered to be reliable. 

For our value of F, branches I and II of the neutral stability 
curve lie near R = 815 and R = 1465. The values of ai in Table 6 show 
that when R is 500, 800 and 1000, and the linearised equations give 
increasing instability as R increases, the non-linear effects make the 
boundary layer more stable or less unstable. When R is 1500 and 1750, and 
the linearised equations give increasing stability as R ir,creases, the 
non-linear effects act in the opposite direction and n&e the boundary layer 
less stable. The non-linear effects thus tend to maintain a more constant 
periodic oscillation. At R = 1250 the amplitude-dependent changes are 
almost negligible. $olitatively similar results have been obtained for 
time-amplified disturbances in plane Poiseilille flow by Pekeris and 
Shkoller (1967, 1969) and by McIntire and Lin (1972) ir, their Table 1. 

If we examine the relative values of kr, & + & and klr we find 
that ka is the dominant influence in k r at the three lwiest Reynolds 
numbers and that k + lo is dominant at the two hi&hest Reynolds numbers. 
It therefore appears that the amplitude-dependent increase of damping at low 
Reynolds numbers occurs mainly because of gain of energy by the harmonics. 
Equations (3) show that the higher harmonics are generated by those of lower 
order. The omission of the higher harmonics from our calculations is 
therefore likely to lead to an underestimate of the changes in ai at low 
Reynolds numbers. 

At the two highest Reynolds numbers the situation is different; the 
predominant contribution to kr comes from 14 + k3 which represents t'ne 
mean flow distortion. idhen ai is positive in this region and the 
fundamental is losing energy, the energy is mainly transferred in the first 
instance to the mean flow, and thus only indirectly to the higher harmonics 
which are known to develop in this region. Thus, although as shown in Fig.3(d) 
the percentage changes in U and W are small, these changes must be 
significant for the breakdown of laminar flow. It has been found be Pekeris 
and Shkoller for plane Poiseuille flow that high eigenstates which are subject 
to damping in time, and are a function of the mean flow, contribute to changes 

resembling/ 
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I resembling breakdow+ This suggests that a careful study should be made of 
the higher eigensta!es in the space-amplification'conditions of the Blasius 
boundary layer. Some preliminary work has shown that such states exist in the 
Blasius layer, and that the Reynolds numbers at which they first appear is 
sensitive to the inclusion in the equations of the terms representing the 
normal. velocity component of the mean flow. 

5. Possible Extensions of the Calculations 

In addition to finding solutions of (6) of or particular sets of values 
of R, F and C1, it,is possible to find curves corresponding to those found in 
linearised theory, namely, 

(i) the neutr;ll stability curve, and 

(ii) the growth of amplitude of a perturbation in the downstream direction. 

Curves of both kinds have been found by Pekeris and Sbkoller (1969) for the 
non-linear stability of plane Poiseuille flow with time amplification. 

From the point of view of comparison with experiment in boundary 
layers, curve (ii) is of particular interest. In the small amplitude case 
where a. I is not a function of Cl, the curve is obtained by determining 

% at a series of yalues of R which are sufficiently closely spaced to 
permit accurate intkration of the area under the curve of a. versus R I. 
using (7). When larger amplitude coefficients are used and a. becomes a 

1 
function of C, ~ the integration must take account of the simultaneously changing 
values of c, and R, and the intervals AR must be chosen to limit the 
errors in the numerical integration. If c (jj 

I 1s the amplitude coefficient 
at Rj, then the simultaneous solution of (6) gives a. (j) . We then find 1 

c,(j+l) = c (j) 
i 2ARjai(j),'k") and solve (6) for the next interval with 

the new value of Cd and R. 3+1' The error in this integration is controlled 
in terms of the second order differences of a. as a function of H. 1 

I 
The procedure which must be followed in the case of space amplification 

of a wave of fixed frequency travelling through a region of changing R is 
quite different from that used in the case of time vnplification of a wave of 
fixed real wave number at constant H. The Orr-Sommerfeld equation, and the 
system of equations representing non-linear stability have a very simple time 
dependence, but a very complicated x ad R dependence. 
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Legends for Fiwes 

Fig.1 

change y the mean flow (per cent), downstream component, 
---em_ nunal component, (U,,WB) the Blasius flow. 

Fig. 1 Dtsyibutions for R = 500, C, = 0.028, F = 80 x lo-'. 

6% 
r.m.s. values (per cent) of the four 
, - ph,, ------ Ulalh, . . . . . . 

est terms in equation 
w: I, 

x x x x x It-v, b= r.m.s. vorticity of the fundamental; 
(f) arguments of the first three cu;;sp=(e); (g) ha = r.m.s. 
vorticity of the second harmonic; r.m.s. vorticity of the 
third harmonic. 

Fig.2 Distributions for B = IOOO, C, = 0.014, F = 80 x 10“. 
(a), (b), (c), (d) as in Fig.1. 

I 
Fig.2 Distributions for R = 1000, C, = 0.014, F = 80 x IO-'. 

(e), (f), (d, (h) as in Fig.1. 

Fig.3 Distributions for R = 1750, C, = 0.007, F = 80 x IO-'. 
(a), (b), (c), (d) as in Fig.1. 

Fig. 3 Distributions for R = 1750, C, = 0.007, F = 80 Y IO-'. 
(e), (f), (g), (h) as in Fig.1. 
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