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SOME REMARKS ON THE INDUCED VELOCITY FIELD OF A 
LIFTING ROTOR AND ON GLAUERT'S FORMULA 

A. R. S. BRAMWELL 
The City University, London 

The induced velocity field of a lifting rotor is discussed in 
relation to the pressure field rather than the vortex wake in an 
attempt to obtain a clearer understanding of the relationship between 
the induced velocity and rotor forces. A number of results are 

derived and, where appropriate, are compared with those obtained from 

the theory of the vortex wake. 

An investigation into the validity of Glauert's formula indicates 
that it appears to be true for all rotor loadings for the linearised, 
"high speed", case. 

Calculations of the induced power show that for typical rotor 

loadings the power in hovering flight is about 10 per cent greater 
than the "ideal" induced power, rising to about 15 to 20 per cent 

greater in forward flight. 

*Replaces A-R-C.34 822 
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1. INTRODUCTION 

A knowledge of the induced velocity at a helicopter rotor is essential 

for the calculation of rotor blade forces and moments. For many appli- 
cations a detailed knowledge of the complicated induced velocity field is 

unnecessary and Glauert's formula9 for the mean induced velocity often 
gives acceptable accuracy. Glauert's formula has sometimes been misinter- 
preted, however, and used wrongly as a basis for detailed calculations of 
the induced velocity field. 

This note considers the pressure field of the lifting rotor, rather 

than the vortex wake, in an attempt to obtain a clearer understanding of 
the relationship between the induced velocity and the rotor forces. 
Certain symmetry relations, obtained from the theory of the vortex wake, 
are used to investigate the validity of Glauert's formula. The discussion 

throughout is based on a linearized analysis. 

The work of this note has probably no practical application but it is 
hoped that it leads to a better insight into the development of the induced 

velocity field. 

2. EQUATIONS OF MOTION 

Euler's equation of motion for a fluid is 

If the motion is regarded as being that of a small disturbance 7 
superimposed on a uniform ilow of velocity v , i.e. 91 = VtG such 

that squares and products of the components of V are negligible, Euler's 
equation becomes 

3. + 5.Q; = -$V~I 
8t 

Taking the divergence of both sides of (2), and remembering that 
V.ij = VS = 0 by continuity, we have, if p is constant, 

- $ V'p = V (7. PV ) = 0 since V is a constant vector 

i.e. v2p = 0 

Thus, for thelinearized problem, the pressure field satisfies Laplace's 
equation, even when the flow is unsteady. For incompressible flow, (2) 
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can also be written _ 

giving 

@ is known as the "acceleration potential" since, as can be seen from (3) 

the gradient of @ g ives the fluid acceleration. 
The "acceleration potential", first introduced by Frandtl in 1936, has 

been used by Krienes' and tinner2 to find the loading of elliptic wings of 

arbitrary aspect ratio and circular wings respectively. The latter formed 

the basis of Mangler's work3 in which he calculated the induced velocity 
distribution of a disc carrying a load similar to that of a helicopter rotor. 

We illustrate the calculation of the velocity components by considering 

the particular case in which 3 q VT. Then, if V = bz t vd + uk 
(2) becomes, for the steady case, 

Assuming the disturbance velocity to be zero at a great distance ahead 

of the disturbing load, the velocity components anywhere in the flow field 
can be obtained by integration. For example, equation (6) gives 

(7) 

The problem, briefly, is to construct solutions to Laplace's equation 
satisfying the appropriate boundary conditions and then to obtain the dist- 

urbance velocities from integrations such as (7). In Mangler's work 

Laplace's equation was found to be satisfied by a sequence of associated 
Legendre functions which, in addition,gave the required pressure jump across 
the disc. These could be regarded as a series of pressure "mode shapes" 
and it was found that the first two, in a suitable combination, gave an 
acceptable representation of a helicopter rotor loading. 

3. THE UNIFORMLY LAODED DISC 

The uniformly loaded disc is one which leads to comparatively simple 

solutions and gives a useful insight into the mechanism of the development 
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of the induced velocity field. 

It is well-known from potential theory that a function which satisfies 
Laplace's equation and gives a discontinuity acnxs a surface element 
is 

where n ' is the unit normal to the surface andvf) is, in the terms of 
our problem, the pressure difference across the rotor disc. Equation (8) is 

the field due to a three dimensional doublet or dipole4. 

For a uniform pressure distribution 

where the integration is taken over the whole surface, which need not be 
necessarily plane or closed. 

Now the solid angle (p which the surface subtends at any point 
can be expressed' as 

so that (9) can be written as 

Q,= -npq 
w 

OI- 
p = afq/4r . . . . py 

that is, the pressure at any point in the field can be expressed very simply 
in terms of the solid angle subtended by the surface. A sketch of the 

pressure field in a dimetral plane is shown in Fig.1. 

Further, the acceleration field a can be obtained from ( 3 ) as 

ii= -V@ 

= -2-&t! vSg&v($)dS . . (II) 

= -$$‘j$.vv (+)ds 
By an extension of,Stoke's theorem4. 

where th& suffix C denotes the boundary of the surface s and di is 

an element of the boundary. Hence, (11) becomes 
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i *AJl 

s 0 &VP c 
OS xdi 

The integral on the right hand side of (12) gives the acceleration 

"actor field due to a surface carrying a uniform pressure distribution and 

we note that it is identical in form to the velocity field Of a vortex ring 

coinciding with the bounding edge c , fig.2. Katzoff and others' obtained 

this result by arguing that, since the pressure field has to satisfy Laplace's 

equation and the same boundary conditions as the velocity potential of a 

vortex ring, the two fields can be regarded as equivalent. The result was 

used by them to determine camber lines of wings designed to carry a uniform 

load. 

4. CALCULATION OF THE NORMAL INDUCED VELOCITY 

Since the pressure field satisfies Laplace's equation it is completely 

determined once the pressure distribution is prescribed. It is also inde- 

pendent of the disc incidence. To find the "induced velocity", i.e. the 

velocity components normal to the rotor disc, we note that the appropriate 

velocity components, found by integrating equations (4), (5), (6), will be 

those along and perpendicular to the flight direction. Thus, if Lt.' and W' 

are the velocity components along and perpendicular to the flight direction, 

fig.3, the velocity normal to the disc is given by 

w- &Qs x f w'strl x 

where x is the angle between the flight direction and the normal to the 

rotor disc. Then, from equations (4) and (6) 

The pressure gradient normal to the plane of the disc can be found from 

the tables given by Kuchemann and Weber6. The values along a diameter and 

along the axis perpendicular to the disc are shown in fig.4. 
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From equation (12) and fig.4 we easily find that this component is 

In particular, along the axis of the disc, f = 0 we have 

Integrating, we get 

13-p” = -+p 
1 

It(+) 
I 

) @ j’0 . 

. (‘4) 

(‘5) 

. (‘6) 

(‘7) 

This variation is shown in fig.5 

The induced velocity for the axial (propeller) case is found by putting 

x= 0 in (Xi), giving,for any f, 

w i 
s 

a_F!d: = 
= - PV ~ ad 

(‘8) 

Then, integrating (15) and ensuring that u = 0 as 
& 

*aI 
i.e. upstream of the disc,we have 

The axial variation of induced velocity is shown in fig.6 and we see 

that the slipstream velocity has reached nearly 90 per cent of its ulti- 

mate value within a diakter's distance of the disc. 

The integration of (4), which corresponds to the linearized form of 
Bernoulli's equation, shows that the axial velocity component depends only 
on the local pressure, i.e. & = - f PJ' + constant. 

Thus justifies, for 
the linear theory at any rate, the idea of the"independence of blade ele- 

ments" of elementary propeller theory. 

For points downstream of the disc, and for all points for which r>!? 

the constant in the above expression for u is zero and the axial velocity 
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component is simply proportional to minus the local pressure. Now, we saw 

earlier that the local pressure is proportional to the solid angle subtended 

by the disc, so that upstream of the disc the axial velocity must be contin- 

uous everywhere. It also follows from the sketch of the pressure field, 

fig.1, that the axial velocity is zero in the plane of the disc ( 1"> R 1, 

and that it actually becomes negative as we proceed downstream. However, 

since we know that the velocity downstream of the disc continually increases, 

there must be a discontinuity of velocity, i.e. a definite wake, at f =R 

for points behind the disc, as is assumed, of course, in the vortex theory 

of propellers. 

Koning7 has also investigated the radial component of velocity for a 

uniformly loaded disc, but the impression given in the work that a discon- 

tinuity extends ahead of the disc is false and is a consequence of the assump- 

tions made to simplify the analysis. 

5. FORWARD FLIGHT, x= 90° 

Another case of interest is the "high speed" case, x = 90°. From (18) 

the induced velocity is 

In the method used by Katzoff and others' to calculate the camber of 

wings, the integration was first performed on an element of the contour 

bounding the lifting surface (equation 12). 

the components of the element dL' at point 

Thus, with dx’, dy'denoting 

X' , 3' and X, 7 the point 

in the field, integration gave 

Expressing these quantities in terms of polar rotor coordinates and 

integrating over the circular contour of the Potor disc, we find after a 

little manipulation that 

where jJ, q T/R 
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Along the longitudinal axis of symmetry, and ahead of the centre of the 

rotor, y = T , and (21) becomes 

where k(b) 
I for p > 1 bE(bj 

is the complete integral of the first kind. 

Similarly, along the rear longitudinal axis y) : 0 , we have 

The induced velocity along the longitudinal axis is shown in fig.7. 

Along the lateral axis of the rotor, +I$ = r/z,we have 

Now 

= *&/&!ord the lateral axis Hence & has the constant value 

within the disc, and -%{I- 61 outside the disc. 

6. MOMENTUM CONSIDERATIONS 

At this stage it is useful to consider the relationship between the 

pressure jump at a position on the disc in forward flight and the induced 

velocity there. In axial flight, assuming the rotation of the slipstream 

to be negligible, we have the well-known relationship between the thrust and 

the induced velocity U;: in the form 

-I- = qd(vtu;)v; . . . . (w 
and, for an arbitrary loading, the differential form 

df = zp (vtv;)v,hl . w 
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is assumed to hold. The validity of this relation, as stated by Glauert7, 

has necer?been established and in a recent paper8it is shown to be untrue in 

general. It is true for the linear case as has been shown earlier. 

The simplicity of this result arises from the fact that the induced 

velocity increment is in the same direction as the general flow, and that 

the flow behind the disc is confined to a well-defined slipstream. FOP 

these reasons it is easy to apply momentum principles and arrive at (26). 

Now, in order to obtain a mean induced velocity for calculating rotor 

performance, Glauert', in 1926, proposed the formula 

T= 2pAh . (27) 

where v' = da 

Although no proof of (27) has been given, the justification claimed 

for this formula is that it reduces to (25) in the hovering case, V = 0 

and assumes the correct form for the induced velocity of an elliptically 
loaded wing when V is large. 

An interpretation of the formula (28) is to imagine a cylindrical slip- 

stream, havjng the s3me diameter as the rotor, impinging upon the rotor at 

speed v and being deflected downwards by it so that it ultimately acquires 

a downwash component of 2U; . By applying momentum principles (27) is 

readily obtained. The only virtue of such a fictitious representation is 

that it leads easily to (27) but the impression has often been gained that 

it is"obvious" from momentum considerations and, indeed, that a differential 

form, 
C/J- = 2p v ‘v; dA . . (26) 

analogous to (26), is also applicable. 

Now, although the lift of the rotor must be accountable in terms of 

rate of change of momentum of the air, momentum considerations are by no 

means simple when the rotor is inclined to the flight path and the induced 

velocity can no longer be expressed simply in terms of the local loading, 

as in (26). To see this we refer back to the case, x= 90° which we 

solved analytically, (22) and (231,and consider a physical interpretation 

of this integration. The function being integrated is the pressure gradient 

QPlag shown in fig.4, which we have seen to be proportional to the 

local vertical acceleration. As the air approaches the rotor it comes under 

the influence of the pressure field which imparts an upwards velocity, i.e. 

an upwash, in front of the disc. As the air moves downstream of the rotor's 

leading edge the pressure gradient reverses and a downwash develops some 

distance behind the leading edge. At the trailing edge the pressure gradient 

again reverses and the downwash gradually decreases finally becoming twice 
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the value at the centre of the rotor. In this special case the slipstream 

boundary, or vortex wake, degenerates into a flat strip; there is no "flow" 
through it, the momentum changes which occur being associated with changes 
of the direction of the air in the neighbourhood of the rotor, that is, in 
the conversion of an upwash into a downwash. In the case of inclined flow 
it can be seen physically, and also from (X3), that the induced velocity 
at a particular point of the rotor depends on the variation of the pressure 
gradient along the path of integration and not simply on the local discon- 
tinuity, as happens to be true in the axial case. Thus (28) cannot be valid 
in general and attempts to use such a relationship to connect the local rotor 

loading with the induced velocity are fallacious. Such attempts, in any 

case, usually require a special imterpretation of the increment of mass flow 
pV’dA. 

Another point worth noiing is that, although there is a pressure discon- 
tinuity at the disc, the gradient, and hence, the flow acceleration, is con- 
tinuous< as is also the flow velocity. There is no sudden deflection of the 
flow field as is sometimes thought to be the case in supposing (28) to be true. 

Further, since any axially symmetrical loading can be build up of an 
assembly of elementary concentric circular loadings, the centre of the rotor 
occupies the same geometric position in every such elementary loading. 

Hence, the induced velocity at the rotor centre depends only on the total 
local loading; if it is zero, as would be expected, the induced velocity must 

be zero there also. This does not hold for any other point on the rotor, 
i.e. the local induced velocity, generally, will depend on the shape of the 

loading distribution as well as the magnitude. 

7. GENERAL FORWARD FLIGHT CASE 

In the general case the flow will be inclined at an angle x to the 
rotor disc and we have the relationships 

x' - I&X + psx 

(13) then becomes I 

But along the path of integration, i.e. 
I along a path parallel to the k-axis 

dz = - da t&Xand so' 

s 
Y~~~d~ . . @9) 

-0 3 
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where, in the integrand, X and 
% 

are related by the path of integration. 
Now (14) can be written 

and along the path of integration 

x = rwsl+ - p-in = rtbsrY - -h*o 

where w= f.hE, 

and 
"4 

= rs,; 'y = contint. 

Hence for a point on the disc 

Apart from a slight difference of notation and definition of the a&e 
. 

corresponding to l/J' the above integral is identical to that of ref.10 in 
which the induced velocity of a uniformly loaded rotor had been calculated 
by integrating the effect of an inclined cylindrical vortex wake. Another 
difference is that the induced velocity given here is expressed directly in 

terms of the pressure jump instead of the circulation of a unit slice of the 
vortex wake. Unfortunately, the integral cannot be evaluated analytically 
for a general point on the rotor disc except for points on the longitudinal 

axis of symmetry, but even then, as shown in ref.10, the result can only 
be expressed of elliptic integrals of the first and third kinds. The special 
case, F = 900, agrees with the results given in (2'2) and (23). 

8. THE SYMMETRY RELATIONS 

A circular disc carrying a uniform load generates an elliptical vortex 

wake. By superimposing a skew-symmetric wake on the original one, a two- 

dimensional elliptic wake is created by means of which Katzoff 11 obtained 
certain relationships between the induced velocity components. They are 
(i) If P and Q are two points on the rotor disc syrmnetrically located 
about the lateral axis, the sum of the induced velocity components UG), 
and ti, is equal to the vertical component of the induced velocity field 
within the two-dimensional wake. Since this is constant, it follows that 

up+ wa is also constant and the induced velocity distributjon 
is skew-symmetrical with respect to the lateral axis. 

(ii) If f' and Q are symmetrically located about the lateral axis of the 
disc and lie outside it we have 
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I 
where v is the longitudinal<: component of velocity in the ellipse 

plane at the point corresponding to P (or Q ), fig.8. Now, the flow about 

the elliptical wake is due to the motion it induces upon itself relative to 

the surrounding air. The component of this motion which gives rise to the 

flow about the elliptical wake is the velocity normal to the wake axis, u say. 

By considering the circulation round a circuit threaded into and out of the 

wake, it has been shown in ref.10 that 0 is L&q p/L? times the velocity 

within, and parallel to, the ultimate wake and that this latter component 

is twice the value v; at the rotor centre; that is 

Ref.ll gives the complex potential of the ellipse flow as 

where t = <++ are elliptical coordinates related to the cartesian 

coordinates by n't;y' * 8' ;~SC.O~~~~S 

major axes of theellipse and - . 

,,," 1;: E,aeT=th; semi- 

3 
Ir = RCQSF giving C q Rsiq X so that, with (33), equation 

terms of a' becomes 

Q,ticy = - 24 CGdtx x [ 1' - /pi& ] 

(34) in 

. (35) 

Differentiating (35) with respect to gives the velocity components as 

Now, on the lateral axis w, = a, = &? say and i' = %' . Then, 

from (32) and writing 5’ q ,b& and si?x= ii , we finally have 

Equation (361, shown plotted in fig.(q), gives the distribution of 

induced velocity along the lateral axis as a fraction of the value at the 

rotor centre. These values'have also been given in ref.12, together with 

* Here, as in ref.11, we adopt the conventional axes system for the ellipse, 

i.e. the d axis corresponds to the major axis and the 
I 

axis to the 

minor axis. Thus, we have < = 1 and '8' = 
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other values in the lateral plane, but the calculations were obtained by 
a numerical evaluation of an integral derived from (31) with I// q “/z 

However, for the special case of the lateral axis, it has been found poss- 
ible to rearrange the integral and solve it exactly, giving the .same result 

as (36). 

9. VERIFICATION OF GLALERT'S FORMULA 

Let x 
4 

be coordinates in the rotor plane and n ',I' coordinates 
in the plane perpendicular to wake axis, fig.(lO). The cross-section of 
the wake parallel to the rotor plane is, of course, a circle with radius e 

Consider now an annulus concentric with the rotor and lying outside it, 

fig.(lla). The mean induced velocity & over the annulus is 

where as in the previous section, 0~ and ti, are the induced velocities 
at points equally spared about the lateral axis and A is the area of the 
annulus. From (32) equation (37) can be written as 

If g and w are the velocity and stream functions of the flow about 
elliptical wake, 

v' * 

The coordinates in the-rotor and ellipse plane are related by 

so that 

and 4 can be written as 

CJ z 
&lx 

SJ ( 

w 0w 

A(wFC) 
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so that, from (39), 

where the suffix C denotes the contour of the annulus, fig.Cl1.a). 

Now, from the previous section, we have 

The contour consists of two circles of radius R and /+R say, where ,& > 1. 
Although the function in the integrand has branch points, they both lie 

within the inner circle so that no discontinuity of the function occws 
between the straight portions AD and 8c . Hence, the integrals along 
these portions cancel and we need only consider integration round the circular 
arcs T q R and 7" = ,& . If "d : r&"' we have 

Jc (GV)~~ - I s”c ‘P, - ;y, )&$dq - “p s 

* 

(cp,- h’$iydy 
0 0 

where the suffixes 1 and 2 denote the values on the inner and outer circles 
respectively. Gn the inner circle x' = R&svand 1' =e.?l~(uWsXand, 
therefore, 

q-4, = 2; uu; coscc;( 

On the circle of radius 



Considering the first term, the contribution to the total integral is 

of which the real part is easily found to be 

The second integral can be evaluated by reverting back (in terms of 

unit radius) to Cartesian coordinates in complex form by 

that 

where the contour is the unit circle about the origin. On rearranging 

we find 

The only pole is a simple pole at 8 q o . Expanding the term under the 

root sign we easily find the residue of the integrated to be unity. Hence 

r = np (ffCoS%) 
and the contribution due to the ten in I is found to be 27rp2 Q2u; cd @I 
This term cancels with the first one so that, on the outer circle, the real 

part of S((P-4dj is zero; in other words, the mean value of the 

induced velocity over any annulus concentric with a circular disc carrying 

a uniform load is zero. 

The implication of this result is, as follows:- We saw in section 8 

that the induced velocity distribution on the rotor is skew-symmetric with 
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respect to the lateral axis. Hence, the mean value of the induced velocity 
over the rotor must be the same as the (constant) value 'V,' on the lateral 
axis. To find this value we put v = 0 in (31) and, by means of standard 
tables, we perform the integration with respect to 

i* 
This is easily found 

ButA P is the thrust loading T/4 so 

u; I 
J 

ZpA\/ . . . 
I411 

This is Glauert's formula for Vi when v is large; that is, Glauert's 
formula is true for a uniformly loaded disc. This result has also been 
obtained by Shaidako:3who related the thrust and induced velocity to the 
impulse and circulation of the vortex rings shed by the disc. 

Now suppose we have a uniformly loaded rotor of radius R carrying 
a thrust T,,say. Then, by (41) the mean induced velocity is 

If a concentric uniform loading is added over a circular disc of radius 

the mean induced velocity Viz over the disc is 

But the mean induced velocity over the annulus between? = R, and 
f = R has b een found to be zero;therefore, over the whole rotor, 

= J/i 
w 

i.e. the mean induced velocity vi for the combined loading, is given by 

where J is the total thrust. 
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Thus, for two concentric circular loadings the mean induced velocity, 
taken over the larger radius, depends only on the total thrust and not on 
the radius of the smaller loading. And since any axially symmetrical loading 
can be built up from an arrangement of such concentric loadings, Glauert's 
formula holds for axially symmetric loadings also. 

Another case which can be examined fairly easily is the one for which 
the area outside the load is a circle which just touches the circular load, 

fig.(llb). Taking the origin as the point of contact of the circles, let pR 
be the distance of the centre of the larger circle from the origin and the 
distance of a point on this circle. Then, as is well known from coordinate 
geometry, ? is given by 

I-= 2pRcos (0-d) 

where 8 and a are defined in fig.(llb 

As before, let p q PR , so that (42 

). 

') can be written 

h= 2pc0s (e-d) (43) 
Ignoring the constant in front of the integral (40), we wish to calcu- 

late 

where the integration is taken round the ccntour made up of the rotor circum- 

ference, as before, and the circle (43). On the outer circle 
longer constant but a function of the angular coordinate of the point on 
the outer circle. 

me value of J ak t en round the rotor circumference has already been 
found to be zero. 

Then, if . 

"a 
a de l p.f~?c’~ , da - 

and 

With these values we easily find that 
and, by the same means as for the previous case, we find that 

em J,/m = 2sQ’(itwrF) ,als0. 
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Hence, since these quantities cancel, the mean induced velocity taken over 
the lune (lib) is also zero and Glauert's formula holds for any rotor load 
distribution made up of such basic loadings. 

For the more general case, represented by fig.(llc), it was found that 

the algebra became prohibitively complicated and an analytical solution was 
not attempted. But, 

. (38,’ 

by Green's theorem, 

Equation (34) gives 

(Pa- (40) 

and, in terms of elliptic coordinates, 

Using (40) and (41), the numerical computation of (39) was found to be 
quite simple for the regions lla, b, c and confirmed the results obtained 

analytically for .regions lla and lib. The computation also showed that, 

within the numerical accuracy of the calculations, the mean value of the 
induced velocity OV~P the region llc was also zero. 

Thus, we-have the rather remarkable result that if a circle is drawn 

round a circular area carrying a uniform load, the mean induced velocity u 
taken over the region between these two circles is zero. 

It can easili be verified that w does not vanish for every region 
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taken outside the circular load. For example, if we take a" ellipse which 

is confocal with the elliptical wake boundary and project it onto the rotor 

plane, we obtain another ellipse which can be regarded as the outer contour. 

Since this ellipse, and the boundary of the rotor itself, correspond to two 

constant values of 5 in the elliptical coordinates, the integration of 

for this case, can be performed quite easily and is found to be non-zero. 

It would appear, then, that the result for the general circle, fig.(llc), 

means that the mea" induced velocity over the rotor is independent of the 

loading since any loading can be constructed from a" arrangement of circular 

loadings of varying radii. 

Thus, Glauert's formula for the linearized "high speed" case appears 

to be true whatever the rotor load distribution. Whether it is still true 

for low speeds, when the forward speed is of the same order as the induced 

velocity, cannot be checked by linear theory. 

10. THE INDUCED POWER IN FORWARD FLIGHT 

The fact that the slipstream of a uniformly loaded rotor in hovering 

and vertical flight is a distinct cylinder of moving air enables the kinetic 

energy of the slipstream to be calculated easily. This leads to the well 

know" result that the induced power is simply the thrust multiplied by the 

induced velocity. For a" axially symmetric rotor loading the symmetry of 

the slipslream in vertical flight enables the induced power to be calculated 

quite easily by evaluating SVi dT over the whole rotor. It can be shown 

by means of the calculus of variations that the induced power for a given 

thrust is least when the induced velocity distribution, and therefore the 

rotor loading, is uniform. This is called the "ideal" induced power. It 

can easily be show" that when the radial induced velocity distribution is 

triangular the induced power is about 13% higher than the "ideal"value. The 

induced power in vertical and forward flight is often estimated by calculating 

the "ideal" power and increasing it by about 15% to take the non-uniformities 

of loading and induced velocity into account. 

The question is; bearing in mind that the induced velocity distri- 

butions for a given loading are very different in vertical and forward flight, 

is a factor of about 1.15 valid for all flight cases? To answer this we 

consider a uniformly loaded rotor in forward flight and calculate the rate 

at which kinetic energy is being supplied to the slipstream. In the ulti- 

mate slipstream the energy consists of two contributions 

(i) the energy E, of the uniform flow within a unit length of the 

inclined vortex wake. 

(ii) the energy E, of the air outside the wake due to the movement 

of the wake through it. 
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In unit time the length of the ultimate wake increases by v units so 

that the power expended is V(E,+ E,), 
Now the cross-sectional area of the wake is r Q2c8sX and 

therefore the mass of air in a unit length is prR2cos x . Also if 

Vi Ls the value of the induced velocity on the lateral axis of the rotor 

the velocity within and relative to the wake is 2V;. But, as discussed in 

section 8, the wake is itself moving with velocity 2v; tan, z/2 normal 

to its axis so that the absoulte velocity of the air in the wake is 

2q set 7Llz. Th e energy in the wake is therefore 

E, = 2p1r3rQ~cos;Csu~11/2 

To calculate the kinetic energy o f the flow outside the elliptic wake 

we use the formula 14 

E2 = -;fjhy, 

where 9 and v, are the potential and stream functions of equation 34 

evaluated on the wake boundary. On the boundary E has the constant value 

E. given by e 
- L 

- tih T-f2 , hence 

9' -2u, R ta& S&I-/ 

Y = 2u;R tn.&i ~0s 7 

giving 

The induced power is therefore 

= 2pre2q2v 

= TV; 

where u; is the induced velocity on the lateral axis. 

Thus for a uniformly loaded rotor the formula for induced power is the same 

as in hovering and vertical flight. 

It would be useful to be able to calculate the induced power for ?~a=- 

tical rotor loadings. Unfortunately the induced velocity distributions 

corresponding to arbitrary loadings cannot be found in general but Mangler3 

has calculated the induced velocity field for an axially symmetric loading 

whose radial distribution closely' resembles those occuring in practice. If 
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X = "/R . h 1s t e non-dimensional radial coordinate of the disc Mangler's 

where T is the total thrust. The shape of this loading distribution is shown 

in fig.12. It should be noted that equation (42) implies that the blade 

loading is proportional to X 

The induced velocity at the rotor corresponding to (42) can be expressed 

Where ~iv;, is the mean "momentum" induced velocity. The coefficients (2, 
are given by 

where $ = I- 2 and J = 
I- CosF 

lfCbS~ 
For even values of fl3 2 

Mangler also gives the induced velocity field far downstream of the 

rotor but the expressions are much too complicated for calculating the 

induced power in the same way for the uniform loading considered above. 

However the special case of "high speed" flight, p = 90deg, can be cal- 
culated quite easily by making use of the formula 15 

which expresses the 
induced drag in terms of the spanwise circulation and the normal velocity 

component in the far wake i.e. in the so-called Trefftz plane. If D; 
is the induced drag the formula is 

te 

D; - $p 
s rwdr 
-e 

giving the induced power c - 
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where r is the local circulation and &' the induced velocity. In the 
case of the uniformly loaded rotor the "circulation" is simply proportional 
to the "chord" and the distribution is therefore elliptic. It can easily 
be 'verified that the circulation corresponding to Mangler's loading is 

Although Mangler gave a fomula.for the induced velocity in the far wake 
the integral (45) becomes too complicated to be evaluated analytically. 

16 However, the table of values given in his original paper , together with 

equation (461, enables the integral to be.evaluated numerically quite 
easily. The induced power can be expressed as 

where 

@w/v. 

1 - $$G (vzz)(it3;t2)dn 
* 

and W = ,. are the values given by Mangler. Numericalintegration 
of 1 gives 

= r.r7+ i$* 
where 6, = TV;, is the induced power of a uniformly loaded rotor. 

One should also be able to calculate the induced power by considering 
the backward tilt of the local blade thrust vector due to the induced vel- 
ocity , as in classical blade element theory. The thrust carried on an 
annulus of width df is 

dT - ,%rApdr 
and this thrust, of coume, is shared by the b blades of the rotor. The 

elementary induced torque is therefore 

where v; is the local induced velocity at the blade. 
The induced power contribution is 

= 2crrdp J; dr 

since A/J is a function of X only and v; is periodic with respect 

to azimuth the mean value of q depends only on the first term of (43). 
Hence from (42) and (43) we find that 

P; = 7 TV;, f$(,- x2)dx 
. 
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c !fr 
@ vi, = 1. 172 TV;, 

which, apart from a negligible numerical difference, is the same answer as 
before. 

Now for axial flight at velocity b, the momentum theory gives 

dT = 2wApdr = 2pvv;kdf 

or v; = -4 
W 

Using Mangler's loading, equation (42) gives 

v. = T 
* 

2p we2 . 
$t/z 

and this is identical to the first term of the series (43). Since similar 
results are true of the other (elliptical) loading considered by Mangler 
and for the uniformly loaded rotor, it is reasonable to assume that x 
axially symmetric loading leads to a series of the form (43) of which the 
first term gives the induced velocity for the same loading in axial flight. 
Hence, the induced power of a symmetrically loaded rotor in forward flight 

is the same as that in axial flight fast enough for linearization to be 
valid. For the non-linear relationship of hovering flight it can easily be 
shown that the induced power for Mangler's loading is about 1.11 times that 
of a uniform load. Thus the induced power factor for Mangler's load rises 
from 1.11 in hovering flight to 1.17 in forward flight. 

If the radial loading of the disc is of the form 

= I9 

the induced power factor f+k can be shown to be given by 

f+ k = (f+p 

Itin 

for hovering flight, and 

J+k= w 
ftrr 

for forward flight. 

Numerical values of these factors are given in fig.12. It should be 

remarked again that if the disc loading is proportional to X', the corres- 
ponding blade loading is proportional to n Ifi . 

For a given loading it appears, therefore, that the induced power fac- 

tor in forward flight is somewhat higher than in hovering flight. 





SYMBOLS 

fluid acceleration vector 
pressure 
induced power 
ideal induced power 
fluid velocity vector 
rotor radius 
disturbance velocity components in rotor plane 
disturbance velocity vector 
induced velocity in plane of rotor 

longitudinal velocity in plane perpendicular to vortex wake 
flight speed of helicopter 
coordinates in rotor plane 
rotor disc incidence 
elliptic coordinates in plane perpendicular to vortex wake 

air density 

potential function 
acceleration potential 
wake angle 
azimuth angle in rotor plane; stream function 
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Fig.1 Sketch of pressure field for uniform load 

Fig. 2 Sketch of vortex ring flow 
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Fig.3 Rotor Coordinates 
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Fig.4 Pressure gradient normal to rotor 
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Fig.5 Pressure variation along rotor axis 
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Fig.6 Velocity variation along rotor axis 
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Fig.7 Induced Velocity along longitudinal axis 

Fig.8 Symmetrical points in wake 
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Fig.9 Induced Velocity along lateral axis 
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Fig.10 Wake Coordinates 
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Fig.11 Regions of Integration 
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