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1. Introduction 

It is generally agreed that the problem of the annulus wall boundary layer 
growth in an axial compressor is at the same time a problem in the correct 
representation of the variation of blade forces through the layer. As hlellor and 
Wood (1970) point out, force defect cannot be neglected in a meaningful compressor 
theory. In that work a useful advance was made by them with the consideration 
that the force defect could not be described at the outset but could be eliminated 
by the statement that the force defect was normal to the blade surface together 
with the assumption that the relative flow at any row exit was "collateral", i.e. 
it had a variation across the layer such that the flow angle stays constant and 
equal to the mainstream value. Departures from this condition were considered, 
for example, as being due to the influence of tip clearance in the case of flow 
past blade tips. 

In deriving their equations, Mellor and Wood used pitchwise averaging of 
the equations of motion (along the tangential, z direction, x being the axial 
and y the spanwise direction, normal to the annulus wall). In deducing 
these equations a number of terms made their appearance in both the x- and 
z-direction momentum equations which they subsequently neglected. These terms 
which represent the contribution to mean momentum due to the pitchwise variation 
oflocal velocity components combined in product form may, for short, be called 
(with sign reversed) apparent stresses. The neglect of these terms in the 
context of the annulus wall boundary layer, even in the case of closely-pitched 
blades is questionable. 

An attempt to assess the influence of these apparent stresses in the simplest 
possible situation, (that of two-dimensional blade-to-blade flow) in the hope of 
gaining some insight to the overall influence of some of these terms, was made by 
Railly (1973). In that treatment the averaging process was applied to both the 
momentum and the energy equation and it was shown that the condition of normality 
of blade force vector to mean relative velocity in the context of an averaged 
treatment of the blade row had to be relaxed. In an earlier discussion Horlock 
and Marsh (1971) had shown, for the three-dimensional flow in a blade row, that 
if the apparent stresses were not negligible then there was no mean force flow 
that could simultaneously satisfy both momentum continuity and normality. 

An application of the averaged energy equation to the annulus wall boundary 
layer to predict the departure from the collateral condition at blade row exit was 
made by Railly (1974); however there were too many simplifications in that 
treatment for accurate conclusions to be drawn. Measurerrents of the apparent 
stresses at exit from a single rotor row were made, using hot-wire anemometry, by 
Ball and Roy (1973) and the magnitudes of the apparent stresses across the hub wall 
boundary layer were shown to be appreciable implying a considerable departure from 
the collateral condition there. Although the blade row in question was rather 
highly loaded there is enough support for the view that a proper treatment of the 
2nnulus wall boundary layer should include the influence of the apparent stresses. 

In the absence of the apparent stresses, the flow ought to be collateral, 
not only at exit, but throughout the blade row, since closely-pitched blading 
could permit no other. For this reason it is proposed to dispense, formally, 
with the condition of collateral flotv at exit and to alloa the mean velocity 
vector some 'latitude'. This, of course, is the secondary flow situation where 
initial departure from the collateral condition is equivalent to the presence of 
upstream streamwise vorticity. 

The object of the following treatment, therefore, is to develop an equation 
for the departure from collateral flow in terms only of the unknown 'apparent 
stresses' which also make their appearance in the equations of motion. These 

stresses/ 



stresses may then be evaluated in terms of secondary flow theory and the system 
may be solved in terms of two boundary-layer parameters. This second equation 
will be deduced from a statement of the averaged energy. 

2. The Energy-Dissipation Equation 

The use of the term 'dissipative' is to some extent misleading since 
genuine energy dissipation into heat is not being considered but rather a 
conversion of the directed energy of an undisturbed flow into the energy of the 
disturbance velocities defined by quantities such as u', v', w' given by 

u' = u - ii 

v’ = v - v’ . ..(A) 
w’ = w - ii 

where u, a, G are pitchwise averages and u, v, w are time-steady local 
velocities. 

In fact it is proposed that the actual dissipative mechanism of fluid 
friction can be dismissed by virtue of the following statement: That the work 
of the average of the viscous and turbulent shear forces on the mean velocity 
field (u' ?, @ is about equal to the work of these forces on the actual field 
( 5 u, v, w . If then we derive an equation for the balance of mechanical energy 
for the actual flow field and subtract from it the equation for mechanical 
energy of the mean velocity field (as described by the averaged equations of 
motion) we obtain an equation for the dissipation of energy attached to the 
disturbance field, u', v', WI'. 

The energy for the actual flow field is simply 

(J+V) E = 0 . ..(2) 

where E = p/p + $(lP + va + we) in incompressible flow. By virtue of the 
equation of continuity, 

au av aw 
-*-+-=(I 
ax ay az 

. ..(3) 

then 
ap ap ap 

u- + v- + w- = . ..(4) 
ax as az 

; (PU) +; (PV) + ; (PV) 

Pitch-averaging the B.H.S. of equation (4) it follows that the only 
non-zero terms are 

provided it is assumed that the variation of blade angle with y is zero. 
Referring to the k.e. terms appearing in equation (2), then 
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u; (q 92) + ve ay (9 */*I + w -f& (q 72) = : f 

aX ( > 

+LJ%) + &<f> + i-(f+ $<f) + iL<f, 

+i(T) + g(T)+ g(;)-q*,2(; + ; + ;, 
. ..(5) 

making the substitutions from equations (1) and carrying out the pitchwise, 
s, averaging then, considering the first three terms on the R.H.S. of 
equation (5), they become, 

u(q */2) dz - (uq */*)a tan j3 + (uq 2/2)1 tan /3 . ..(6) 

with tan j3 = db/dx = da/dx, 
(thin) blade surfaces. 

where a,b are successive z-co-ordinates of the 
Treating the integral, it follows that the average is 

-( 
ui 7 7 

\ ( 
ii" 7 2 

U -+-+- + E -+-+- \ +uu -(72+ 

12 

-- 
v u’v’ * 

(dropping two terms of 
the second three terms 

/ 
';;a 

v '- + 
\ 2 

2 2 / \2 2 2/ 

-- 
w u’w’ . ..(7) 

3rd order in the disturbance velocities), Similarly, 
of (5) become 
7 2 
-+- \ + vk+5:u(v(+;v'a+wv'w' -- . ..(8) 
2 2) 

using k for disturbance energy, (7 + '3*i*' + w'2)/2. 

Averaging 
exactly the last 

The final 

the last three terms of equation (5) these are seen to cancel 
two terms of expression (6). 

energy equation is then 

k+;;U'V(+hi-+;mv'w' = 0 . ..(9) 

Turning/ 
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Turning now to the averaged equations of motion, it may be shown 
(cf. Mellor and Wood, (lot. cit.)) that these are 

Ki 3 6 p< - + pv- = -- + ax 
pF 

w X 
-e,,, 

ax ax 

. ..(lOa> 

PZ -e(T)+ p3 “(T)= -2 - p+q-p 
ax ay aY 

; (7) 

-g a; 
pu - + p;;-=p - 

aX a & fp;i;i)- ; (p’v’w’) 

. ..(I@ 

. ..(m) 

in which, for the reasons stated above, the viscous and turbulent stresses have 
been left out. 

Multiplying equation (lOa) by F, (lob) by y and (10~) by G and 
adding then 

au’ 
-1 - 

iiu’ ai aTi _ 8’;; 
PU 

ax 
+ p33 - + p’;; - + pvr - = -u - 

e ax ity ax 

+ TiF + FFz - &i x k(P)- fiii $(‘)-ii t(p7F) 

-G t (pr’v’) . ..(n) 

Subtracting equation (9) f rom equation (11) eliminates the terms containing 
mean pressure and transposing it follows that: 

a ak 
-%x - ;Fz = +;; -k+s - + (F-i-)? +u’v( 

ax ity ax 

Ki iiv' a?i aTi a 
-+- + UtWt-+ v’w’-+- 
a ax 

(p’u’/p) + 
ax ay ax 

. ..(Q) 

in which use has been made of the averaged equation of continuity, 

aiI a? 
-+- = 0 
ax e 

. ..(13) 
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3. Boundary Layer Approximation 

In the context of the permissible approximations in the annulus wall 
boundary layer, equation (12) may be simplified. Consideration may first be 
given to the pressure-velocity product terms on the right. In general we 
expect Sp across the bounda&y-layer thickness, h, to be O(h) hence it is 
reasonable approximation to assume that throughout the layer 

'b - 'a 2' (pb - pa), = -$= 
S 

. ..(14) 

This assumption cannot be allowed throughout the analysis for it would 
reduce to the earlier assum tions of constant blade force; 

7 
in the evaluation 

of one term of equation (12 it may be permitted on the grounds that the variation 
is small, Thus, assuming a linear variation of pressure between blades, 

giving 

P' = (Pb - Pa> 2z/s 

p1u' = -2pFxe7 . ..(15) 

The second term involving p' will not be considered as later it will be seen 
not to be needed. 

Turning to the momentum equations equations (IO), these may be treated in 
the conventional manner except that equation (lob) must be examined as to the order 
of magnitude of the second and third terms on the right. If v' is of the same 
order as u1 it follows that the third term is O(lu' 1.1~' I/h) while the second 
is 0( jut I. Iu' I) so that the latter may be neglected. Equation (lob) then 
reduces to 

P . ..(16) 

It is not proposed to attempt a solution of the system of differential 
equations but to develop integral relationships by integrating equations (loa), 
(IOc), (12) and (16) across the boundary layer. 

Starting with equation (i6), if it be true that 7 is zero at the edge 
of the layer, y = h, since it is also zero at the wall then 

‘e = p(h) = p(o) . ..(17) 

ad, in addition, integrating to a point y, 

i2= 
PV -P(Y) + P(O) 

which after differentiation w.r.t. X, gives 

. ..(I@ 

Substituting/ 



Substituting equation (18) into equation (IOa) and carrying out the 
integration of equation (lOa) in the usual manner 
it follows that (cf. N3llor and Wood (10~. cit.)), 

(also of equation (10~)) 

f b," ex) 
due 

h a 
+ 6: ue - = 

dx (Fxe - Fx> dy + - 
ax 

h 

I 
(F -7) dy 

0 
. ..OY) 

dwe 
h t a 

u,w,e,> + 6* u -=-+ 
x e dx (Fze - Fz) aY +- 

ax 

h 

i 
zGb3.y 

0 

. ..(20) 

again making use of the condition that UIO etc. are zero at y = h. 

Referring now to equation (12) it is necessary that this be integrated 
over the boundary-layer thickness also and the presence of the blade force terms, 
Fx and Fz, would seem to present a difficulty. However, once again the 
assumption is made that the departures of these from the values F F are xe' ze 
slight. Waking, now, use of the condition 
the blade surface, this is simply 

Fx + Fs tan p = 

that blade force must be normal to 

0 

Hence the term on the left of equation (12) 

Fs(L tan p - G) 

reduces to 

N Fs,(;; tan 

. ..(21) 

P - 3 

= F,,~~[(l-&t-~) - (l-+,)1 

. ..(22) 

Integration of this result over the thickness, h, gives 

so that the R.H.S. of equation (12), after integration, is proportional to the 
difference in displacement thicknesses of the tangential and axial profiles, 
i.e., to the departure from the collateral condition. Applying the condition 
of normality, equation (21), to equations (19) and (20) allows the c lete 
elimination of the force deficit integrals by multiplying equation (20 by ""p 
tan 8 and adding this to equation (19). The result is the first of the integral 
equations of the annulus boundary layer as follows: 

d 
- 
dx 



au 
t (u," ex) + tan p & (ue we es) + 5: ke --$ awe + uetanjt?- 

ax > 

. ..(23) 

The second boundary-layer equation comes by integrating equation (72) 
and this may be carried out since the stress terms may all be assumed to be Bero 
at the edge. The last term on the right may be seen to disappear on integration 
and the last but one, from equation (15), is simply 

-2[;(v(z))W . ..(24) 
e 

where P& is a non-dimensionalised form of Fxe and Q is axial solidity, L/S. 
Evaluation of the integral in suitable form is important for similar integrals will 
emerge in the treatment of the other terms. Ye assume that the function in 
brackets inside the above integral on the right after being normalised by division 
of s and u e is a similar function dependent only on a parameter, a, as follows: 

!zu’ 

(3 
= F(a, d . ..(25) 

su e 

where a is some property of the mean profile, as yet unspecified, and '1 is 
y/h. Hence the integral in equation (24), after carrying out the differentiation 
w.r.t. x, noting that 

2IF aF da r, dh 3F 
-=- v--m- 
ax aa d.x h dx WI 

may be shown to be given by 

da a 3 
FdlJ- kF’ - - . ..(26) 

integrating by parts to obtain the last term; the variation of ue with x 

has been ignored for convenience. This has been assumed in the later development 
but no problems are involved if 
in the number of terms. 

ue has a vsriation with x, merely an increase 

Turning to the remaining terms of equation (12), the first two, by virtue 
of equation (13) may be replaced by 

fh 
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h h h 

I 
a c&) ay + 

0 ax I 2 (;k) dy = ;; k dy 
0 by 

since the secoxxd integral is zero. The remaining integral of these two may be 
written 

= us8 (h: $(G(a,q) dq + z\G(a,d dn) 
0 0 

The third integral from the integration of equation (12) may be written 

the subsoripts a and q in the above imply differentiation. The function 

H is (u(" - m/u,' and U =-due. Again, variation of ue with x has 

ignored. 

The fifth integral is similar to the above and becomes 

Phi> W&,?> d? = hu,' - P(=,?) Wb,d drl 

dh 4 
-uaw - 

e e I 
dxO 

P? Wq drl 

where P = m/u: and W =%/we. 

Turning to the fourth integral from equation (12), the second term in the 
brackets is to be regarded as negligible compared with the first and this may be 
written 

h 

I 
m - = us Q(=,d U,.,b,i) drl 

0 

where the subscript implies differentiation w.r.t. q and the meaning of (z and 
U is clear. 

Finally/ 



Finally the sixth integral is 
h 

i 

a; 
x7- ay 

0 ay 

1 
= u; w e Rb,d Wn( a,d drl 

and the meaning of functions R and W is clear. 

Applying this procedure to the terms of the momentum integral equation, 
equation (23), the equation is transformed into a first-order differential 
equation in h and a. The functions ex, Ba, 6 *, S * may all be written 
in terms of the functions U and W. Thus from th8i.r dgfinitions, 

ex = /;L;)dy, 0s = !"j+)dy, 

0 e e 0 e W 
e 

tix* = jyl -i)w, 
0 e 

y = jy2) ay 
0 e 

it may be shown that 

da ' 
= u; h- 

i &O 
u,o - 2U) dri - u; ? U,,(l - 2U) drl 

~II. we 0s) = uz tan/J k$ [ (I -k(UW)) dq +:68(1--) dT] 

+ ut h d (tan a) [U(1 - Y) d$ 
.z 

dx J 
0 

We also have the results 

e f(7v)dy = 
ax jo 

a h 
- 

i 
u'w' dy z 

a0 

(where the functions P and H 
into equation (23)). 

da a 4 
Hdrj+u;h- - r H dr, 

dx aa$ 

dh 

[ 

da a 4 
il 2, 

e &o 

Pdq+u;h- - 
i 

P dr, 
dx aa0 

were introduced above) which may be substituted 

All of the above transformations of the integral quantities may be 
substituted into equations (12) and (23) and the resulting equations rearran{:ed 50 
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yield the following pair of first-order ordinary differential equations in h and 
a, the independent variable being x: 

A&l) ; + A(1,2) a" = C(1) ***(23&L) 

A(2,l) !i + A(2,2) (t = C(2) . ..(12a) 

where 
1 1 4 

A(1 ,I) = 
I 

(u * u" - H) dq + tan'@ 
i 

U(l-W) dq - tan /3 P dq 
s 

0 0 0 

1 4 
A(1 2) = h Ua(l-2U) dq + h tan2p 

i i( 
q -2 (UiV) dq - h f- ;H + P tan p) d? 

0 0 
aa > 8a i 

0 

c(1) = -c h tan p 
i 

'(l-UW) dq + (fix +%z)/p u; 
0 

1 2 4 
A(2,l) = 

i 

(G - HqUq- tan /3 P? Wd dq + - Fke 
i 

F dr/ 
u 

0 0 

4 

HUad~+ htan/3 
i 

2 
PWa drj +-Fie h- Fdq 

0 
u 

4 1 4 

c(2) = ch tan /3 I '(U-;v) dq - i 
Qv,dq - hc PW dr) - tan @ l"/$ dtl 

i i 
0 0 0 0 

2 dF' I xe +-h- 
i 

Fd? 
u dx 

0 

I  

where c = 5 (tan a) which may be regarded as a constant for the particular 
dx 

row; in that case the blade force variation may be equated to a constant. 

These equations could be solved quite easily if all the functions could be 
written as analytic functions of q with parameter, a. It remains however to 
establish the way in which the various quantities depend upon '1 and a. 
Thus it is necessary to establish a causal link between a particular profile of 
one of the components of mean velocity on the one hand and, on the other hand, 
the remaining component of mean velocity and the disturbance components which 
give rise to the various terms involving 7, 77 etc, 

For/ 
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For this purpose we have no alternative than to introduce a secondary 
flow hypothesis into the discussion. In addition it is necessary to make 
allowance for the fact that near the wall the flow is influenced by viscous and 
turbuL3nt shear. . . . . 

With regard to the introduction of the secondary flow hypothesis into the 
problem, considerable help may be obtained from the structure proposed by &llor 
and Wood (loc.cit.) for the secondary flow pattern and used by HorJock (1973) to 
form the basis of an approximate solution for the cross-flow. 

4. Use of the Horlock Cross-Flow Profile 

By starting with the Mellor and Wood secondary flow structure, which 
assumed v to depend linearly upon n (the co-ordinate normal to the channel 
flow direction, see Fig. I, which is also the direction for collateral flow) and 
W to depend upon a quadratic function of n, Horlock showed that the cross-flow 
c&d be derived from streamwise vorticity provided the latter could be written in 
the form 

% = B( dTc/aY> entry . ..@7) 

here ?f Stands for 'collateral' component of mean velocity (i.e. main streamwise 
component) . 

Now it may be shown, considering any row, for example a stator row, that 
provided the flow leaving the previous rotor exit is approximately collateral, 
then a form of equation (27) always obtains. Thus if, at rotor exit, 

are axial and tangential components of vorticity of the mean flow then the 
streamwise vorticity along the absolute free-stream direction is 

fzs = 5 (tan p) cos fl - sin j?> 

while the normal vorticity is 

%= 
- t (tan /3(r) sin p + cos p). . . .(283) 

Using the simplified form of Hawthorne's vorticit;y express'on (Horlock loc.cit 
it follows, at a later station "2", provided pa - @I is smnlZ, 7i3t 
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and since 7 
C 

= G set @, that equation (29) is a form of equation (27). 

If equation (29) and subsequently the Horlock profile were used, then the 
system of (29), (23a) and (12 a would be solved in terms of a parameter, a, which ) 
could relate to the profile of VC. 

Assuming for the inviscid region of the flow that Horlock's approximate 
cross-flow profile is valid then, in the present nomenclature, equations (58) of 
his paper become 

6* 
W 

n 
= B(V -VC)-26 BV - eSW, y<6 e e S' 

. ..m 
6* ; = 

n -2 fi B Ve - e -@y y > 6 
S' 

6 
where 6* relates to the collateral profile and k6 = m - . At this 

S' 
point we meet with a slight difficulty in that the outer limit of intmtion 
of the integrals of equations (23) and (12) is h where terms like u'v' etc. 
are sensibly zero, whereas 6 is the edge of the profile of mean main streamwise 
velocity. It is essential that h be chosen in some simple manner that will 
correctly meet the above condition. For y > 6 equation (30) may be written 

. ..(31) 

The attenuation factor in this equation should have a (numerical) 
exponent in excess of 3 for in(y) to be small enough. This means that 

3 
y(outer) = 6 + - 

JTF lT 
fi6+S' 

where the attenuation is now 4F. Thus the outer limit is effectively large 
enough for a distance, S', greater than 6. Thus if we ignore the variation 
of S' with x, then d&/dx equals dh/dx. 

This result is strictly applicable to- k6 small, but Horlock shows that 
it is quite good to values at least up to 43. 

Utilising more of the secondary flow relationships: 

V = V' = v,(y)(n-n,>/S' 

~JY) 24'" 
W = n S'" 

- - (n - nm)' 
4 1 

and 

dvS 
12in 

-=- 

W S’ 

. ..(32) 

. ..(33) 

. ..(34> 

The local axial velocity may be obtained from equation (33) provided it 
is assumed that the collateral velocity component of the total local velocity 
has no variation ?:ith z. Indeed siqle secondary flov theory has nothing 
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5. Choice of the a Parameter 

All the functions appearing in equations (23a) and (12a) are dependent 
on q and contain a as a parameter. Ye are still at liberty to decide the 
role to be played by the latter. So far no mention has been made of the 
influence of friction upon either the streamwise profile or the cross-flow 
profile. Reference to the 'cross-flow' equation (equations (12) and (12a)) 
shows that no friction terms are involved. From inspection of thz 'combined' 
momentum equation (equation (23)) it may be seen that the only friction 
component involves the linear combination of the two components of wall shear. 
Resolving the total shear stress in terms of the collateral and normal components: 

T 
OX 

+t oz tan /3 = (foe cos p- ran sin j3) + tan p(foc sin /3 + 

r on cos a> = rot set PO . ..(38) 

Thus the friction term appearing in equation (23) is only related to the wall 
angle, 6, inasmuch as 

t = f co9 E oc 0 

so that if c is not too large the influence of wall angle is not very important, 
In the case when blade tips are immersed in the annulus layer, the rotor (or 
stator) surface is moving relative to the blades. Then neglecting again the 
wall angle influence, it msy be assumed that the shear stres:~ is directed along 
the direction of the appropriate free-stream velocity vector relative to that 
surface e 

There would seem to be no value in adapting something like the Johnson 
cross-flow profile in this situation. It would seem more logical that the 
a-parameter should be linked to the shape of the collateral velocity profile, 
which in turn must reflect the influence of wall shear. A proposal for a 
suitable profile is that the entire extent of the profile should be regarded as 
being influenced by secondary flow but at the wall the velocity may have a 
non-zero value and indeed the wall shear stress can be made to depend upon this 
slip velocity (or the equivalent). 

Choosing, for example, a quadratic form for the collateral profile as 
follows: 

"/I, = 1 - a(1 - ?J')" e..(39> 

where a is the ratio I - ye(O) :', and TJ' is y/6, not y/h. 
I 

The shear 

stress must be made to depend on this ratio, so that a complete solution may 
be obtained to the system, equations (2ja) and (12a). The parameter, a, can 
be easily related to form factor, H; thus when a = 1 the highest value of H 
occurs (2.5) while for a = 0 or less than zero we obtain the lowest form 
factors. However, if a formula for skin friction of the type 

cf = f(H)/R; .&i-d 

is used, then a = 0 would produce an infinite skin friction; a is thus 
restricted to the range 0 to 1, 

The/ 



The profile of equation (39) gives therefore no possibility of reverse 
flow at the wall. Alternative single parameter profiles could be proposed. 

The main reason for choosing a profile of the type given in equation (39) 
is because the velocity in the laminar sub-layer rises very steeply up to values 
in the region of half the free-stream value; there is therefore a case for 
ignoring the thickness of this region in relation to the remainder of the annulus 
wall boundary layer. 

6, Numerical Solution Procedure 

It is unlikely that it will be convenient to preserve analytical functions 
for all of the mean and disturbance velocity components and their products for 
subsequent integration and differentiation with respect to the parameter, a, 
which is now a profile shape parameter defined by equation (39)* 

Referring to equations (23a) and (12a), many integrals occur in which 
derivatives withres ect to a are involved. 
H(a,?) =p - flpuz 

Thus, for example, the function 
gives rise to integrals 

If H(a,d is given as an array of numbers corresponding to a given a value 
over the range 0 G ? d 1 then the second integral may be found from the first 
from the formula 

1 2 -' 1 

H'(a,ddq = - 1 I ( Y a + &a,T)dT - I H(a - Aa,$drl 1 . ..(41) 

provided Aa 
derivative is 

Aa c J J J 
0 0 

is small enough so that the product, 5 ha' times th? 3rd 

negliginly small. In some cases integrals of the type 

-4 

i 
H(a,$ Ua(a,ddr, 

0 

occur and in these cases the differentiation must be performed before integration 
but no numerical difficulties are foreseen in this procedure. 

The solution of equations (23a) and (12a) :vould proceed stel>-by-stei. from 
given initial conditions of the variables h and a using one of the simpler 
predictor-corrector methods. At each iteration the values of all the integrals 
in those equations would be calculated for the current values of the two 
dependent variables. 

7. Conclusion 

A method 

(i) does 
row 

(ii) uses 

is presented for the solution of the annulus wall boundary that 

not depend upon any assumption regarding the flow at blade 
exit 

secondary flow theory to determine the momentum terms arising 
from flow distortion 

(iii) uses a new equation arising from ths dissipation of mean flow 
energy into secondary flow energy 
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(iv) eliminates the blade forces between the axial and tangential 
momentum equations 

(v) from the resulting two simultaneous equations determines the 
values of boundary-layer thickness and velocity profile 
parameter. 
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SY?dBOLs 

a& tangential co-ordinates of blade surfaces across the channel 

B function controlling streamwise vorticity, equation (27) 

F,G,H,P,Q,U -W 

Fx 
Fz 
H 

h 

k 

L 

n 

P 

9 

S 

S' 

V 

UPV,W 

X 

Y 

2, 

a 

s integrals of Qpe described in equation (25) 

axial blade force per unit mass 

tangential blade force ' ' 

form factor of collateral velocity profile 

outer limit of true boundary layer 

disturbance kinetic energy 

axial row length 

co-ordinate normal to channel direction 

pressure 

total local velocity 

blade pitch 

normal blade pitch 

total velocity 

Cartesian velocity components 

axial co-ordinate 

co-ordinate normal to annulus wall 

tangential co-ordinate 

parameter controlling functions in equations (23a), (12a) 
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B flow angle (absolute) to axial direction in mainstream 

pb) flow angle (relative) to axial direction in mains?ream 

6 thickness of collateral profile 

p; displacement thicknesses of axial and tangential mean 
velocities 

E wall angle of shear relative to mainstream 

t: vorticity 

ex'ez momentum thicknesses of axial and tangential mean velocities 

P density 

u axial solidity, L/s 

f shear stress 

rO 
wall shear stress 

Suffixes 

tangential average 

local disturbance from average value 

row inlet 

row outlet 

collateral direction (main streamwise) 

e edge of boundary layer 

S streamwise direction 

m centre of channel 

n along co-ordinate n 

XPEZNCES/ 



20 

RJVERENCES 

&* 

1 

2 

3 

Author(s). Title, etc. 

G.L. Idellor An axial compressor end-wall boundary layer 
G.M. Wood theory. J. of Eng. Power, ASME, July 1970. 

J.W. Railly An equivalent axi-symmetric through-flow for 
a turbomachine, University of Birmingham, 
Research Report No. 131, 1973. 

K. Ball 
S. Roy 

J .‘V. Railly 

J.H. Horlock Flow models for turbomachines, J. Mech. Engrg. Sci. 
H. Marsh I 971, I 3 $0.5) 358-368. 

J.H. Horlock Cross flows in bounded three-dimensiorzl turbulent 
boundary layers, J. Mech. Engrg. Sci. 1973, 15 
(No.41, 274-284. 

- 

Measurement of apparent shear stresses downstream 
from a rotor row in an axial compressor. 
M.Sc. theses, Cept. of Mech. Eng., University of 
Birmingham, 1973. 

Contribution to discussion of paper by !Z,F. Balsa 
and G.L. Mellor, ASME paper No. 74-GT-56, 1974. 

Produced in England by Her Majesty’s Stationery Office, Reprographic Centre, Basildon 

R 22037/R% 425 7/75 pa 



Y 

---- ---- 

Y- 



A.R.C. c.P.1322 
January 1975 

J.W. Railly 

A.R.c. C.P,I 322 
January 1975 

I 
J.W. Railly 1 

A NON-AXISYMMETRIC END-WALL FKXJNDARY-LAYER THEORY 
FOR AXIAL COMPRESSOR ROWS 

A second equation is deduced for the growth of the 
end-wall boundary layer which connects the work of the 
mean blade force along the mean velocity with the 
energy of the secondary disturbances in the boundary 
layer. Secondary flow theory is used to obtain two 
equations for two boundary-layer parameters. The 
method is regarded as an addition and modification to 
the Mellor and Vfood treatment. 

A NON-AXISYMMKl!RIC ENB-WALL BOUNDARY-LAYER THEORY 
FOR AXIAL COMPRESSOR ROWS 

A second equation is deduced for the growth of the 
end-wall boundary layer which connects the work of the 
mean blade force along the mean velocity with the 
energy of the secondary disturbances in the boundary 
layer. Secondary flow theory is used to obtain two 
equations for two boundary-layer parameters. The 
method is regarded as an addition and modification to 
the Mellor and Wood treatment. 

A.R.C. c.p.1322 A.R.C. c.w 322 
January 1975 January 1975 
J.:'J. Railly J.W. Railly 

h NON-AXISY&D!ETRIC ENB-</ALL BOUNB>%RY-LAYER !L'HEORY 
FOR AXIAL COB!l'RE:XOR ROYlS 

A second equation is deduced for the groxth of the 
end-w&11 boundary layer which connects the work of the 
rx1e;i.n blade force along the mean velocity with the 
energy of the secondary disturbances in the boundary 
12JW. Secondary flow theory is used to obtain two 
k:q;:.t;ions for t;;ro boundary-layer psi*xqeters. The 
method is regarded as an addition and modification to 
tlie Xeflor and :'lood treatment. 

A NON-AXISYKhZ3TRIC END-XALL BOUNDARY-LAYER THEORY 
FOR AX1.G COMPRESSOR ROWS 

A second equation is deduced for the growth of the 
end-wall boundary layer which connects the work of the 
mean blade force along the mean velocity with the 
energy of' the secondary disturbances in the boundary 
layer. Secondary flow theory is used to obtain two 
equation:; for two boundary-layer parameters. The 
m.tthod is regarded as an addition an3 modification to 
the Mellor and 'iiood treatment. 



C.P. No. I322 

(7 Crown copyright 19 75 

Published by 
HER MAJESTY’S STATIONERY OFFICE 

To be purchased from 
49 High Holborn, London WC1 V 6HB 
13a Castle Street, Edmburgh EH2 3AR 

41 The Hayes, Cardiff CFl 1JW 
Brazennose Street, Manchester M60 8AS 

Southey House, Wine Street, Bristol BSl 2BQ 
258 Broad Street, Birmmgham Bl 2HE 
80 Chichester Street, Belfast BT1 4JY 

or through booksellers 

C.P. No. I322 
ISBN 011 470932 7 


