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SUMMARY 

An attempt has been made to develop a subsonic lifting surface theory 
method capable of calculating convergent loading solutions for symmetric 
planforms with a leading edge crank. This document traces the time 
history of thought and method development at B.A.C. (Military Aircraft 
Division) which connects the successful treatments of regular and cropped 
delta type planforms that are reported in References 1 and 13, respectively. 
Finally, some mention is made of possible future generalisations of the 
basic cranked planform method. 
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. 

Three-dimensional linearised theory contributes significantly in the 
subsonic design of lifting vings. Within the linearised theory 
framework, one of the main problems is the accurate evaluation of the 
improper double-integral associated with subsonic lifting surface 
theory. Reference 1 (1967) presented a critical survey of the then 
existing methods fcr solving th? classical lifting surface problem 
and a brief account of the lnethod developed at B.A.C. (M.A.D.). 

The B.A.C. method, which is described in detail in Reference 2, has 
been shown to produce solutions to the classical lifting surface 
problem that exhibit excellent convergence characteristics. However, 
in common with the other methods described in Reference 1, the B.A.C. 
method is only applicable to "regular planforms"; i.e. planforms 
without slope discontinuities of leading and/or trailing edges. There 
was a definite requirement for a proper treatment of irregular, or 
cranked, planforms since they are of the type usually considered in 
practical wing design procedures. 

This long standing practical requirement prompted B.A.C. to concentrate 
some thought ard effort into an attempt to develop a lifting surface 
theory mthod capable of evaluating convergent loading solutions for 
cranked planforms. This document is intended to record the train of 
events which eventually led to the development of such a method, for 
a restricted class of planforms. 

The work was carried out at B.A.C. (M0A.D) under research contract 
KD/3D/24 for the Aircraft Research Branch of the Finistry af Aviation 
Suppiy. 

2. THE BASIC F'ROBLH?v! AND !@THOD OF SOLUTION FOR RECUL\R PLANFORMS 

The basic integral equation of subsonic lifting surface theory may be 
written in the form 

w b,,Y,) = - 1 EP(X,Y) 1 - 
iT 3% 

(x-x,> 
& Y-YJ 

I 

ad s 
T-y 

(1 

S ~(x-X,)2+B2(Y-Ys)'12 

where 1 is the local dmnwash or incidence distribution, 
U 

ACp is the unknown load distribution, and S is the planform area. 

2.1 Regular Planform Methods 

For planforms without cranks, termed regular planforms, several 
methods exist for the solution of (I), a few of which are outlined 
in Refereme 1. The various methods may be segregated into groups 
such that each group contains methods having a number of common 
features. In general though all the methods embody the use of 
similar integration coordinates and loading representations. 
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Normdised variables are introduced such that 

. 

80 that the planform is transformed into the rectangle 
i-1 6 q c 1, 0 6 f d I], 

n.b. it is assumed here that the planform is symmetric about 
0 although asymmetric configurations 

for. 

The loading distribution is approtimated 
of the type 

can easily be catered 

by means of an expression 

bcp(x,y) = 4-q J$Z 2 E aij Pi(f)Pj(V) 9 

i=O j=O 

where Pi(f), Qj(d are usually chosen from known sets of orthogonal 
polynomials and the coefficients aij are unknown. 

The problem is thus reduced to evaluating the mn unknowns aij by 
satisfying equation (1) at mn suitably chosen collocation 
Points (Xr,Ys)* The main numerical difficulties arise in 
evaluating the double integral in (1) for each of the terms in (3). 

The essential difference between the B.A.C. method and all the other 
methods is that in the B.A.C. method the finite-part integration with 
respect to r] along lines of constant < is performed first. Thus (1) 
is written in the form 

n-l m-l 
I (frsQ = 
U 

-&I 1 aij wij (frSt7,) 9 

i=O j=O 

(3) 

(4) 

and 

x = (x-xr) , R = [X"+/Ta(y-y,)+. 
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The advantages of this procedure over those used in other known 
methods are described in Reference I. The essential achievemsnts 
are that calculation accuracy is unimpaired as collocation points 
approach edges of the planform and that no restrictions are 
imposed on positioning the points. In general, excellent convergence 
characteristics are obtained as the number of loading terms in (3) 
is increased. 

At this point it is worth mentioning that the following general 
procedure has been advantageously followed at B.A.C. with respect 
to choosing and using integration coordinates in lifting surface 
theory problems. 

(A) Use matched asymptotic expansion techniques to determine bcp 
singularity orders and locations compatible with the required 
boundary conditions. 

(B) Choose a pair of basic integration coordinates such that the 
ACp singularity locations are exactly described within the 
families of coordinate lines. In general, the lines in a 
coordinate family should be smooth and regular although special 
points may be present at which derivative singularities need 
to be accommodated. 

(C) Initial integrations should, if possible, be carried out with 
respect to a coordinate whose liss do not pass through the 
location of an infinite ACp singularity. 

In the present section, emphasis has been placed on the treatment 
of lifting surface theory problems related to smoothly distorted 
surfaces with regular planforms. For such problem, the e,U 
coordinates defined in (2) have already been extensively used by 
other workers in the field an3 they are also seen to satisfy the 
requirements made in (B). However, nearly all methods for evaluating 
the double integral of lifting surface theory involve an initial 
integration with respect to e, and this gives rise to severe 
numerical inaccuracy when evaluating the daRnwash at points close 
to the leading edge. The root cause of this trouble is located in 
the fact that the infinite ACp singularity along the planform's 
leading edge is included in the first integration. This produces 
singular effects in the final integrand which become more and more 
difficult to handle as downwash points approach the leading edge. 
Incidentally, the same type of problem appears when use is made of 
any other initial integration coordinate whose lines cross the 
leading edge (see eg, Reference 3). All such methods are seen to 
violate the requirement in (C). 

Less obvious examples of the value of using (A), (B) and (C) are to 
be found in the successful treatments of wings with control surfaces 
reported in Reference 4, and wings with a leading edge crank as 
reported in this document. 
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3. THE TREATMENT OF PLANFORKS \7ITH EDGE CRANKS 

The direct application of the methods referred to in Section 2 to planforms 
with edge cranks would seem obviously doomed to failure, since the choices 
of coordinates and loading form made in (2) and (3) lead to logarithmically 
infinite downwash (i.e. W) values on the planform along each streamwise 

iJ 
line through an edge crank. 

With this in mind, some effort was made at B.A.C. to devise ways of 
overcoming the rather special mathematical problems associated with a 
lifting surface theory treatment of cranked planforms. In the following, 
a brief time-history is presented of the relevant thought development 
and measures adopted. 

3.1 The Method Outlined in References 1 and 5 

The first approach to be investigated involved the following simple 
reasoning. For symmetric planforms with edge cranks at the centre- 
line (i.e. y = W = 0), physical requirements are that ACp(x,y) is 
smoothly varying and dAC = 0 at y = 0. In terms of the E,q 

* 
coordinates of (2), these requiremnts infer that dACp 

( > 
must be 

av s 
discontinuous across q = 0. Thus, if a separated form for ACp is 
re uired, 
(37 

arm is led to postulate that a 
is gained by simply replacing q by II/ . f 

lausible modification to 
Obviously, in general, 

the downwash contributions associated with the separate aij terms 
will contain logarithmic type singularities at 71 = 0. It 1s 
therefore necessary that the coefficients of these singularities 
reduce to zero when the contributions are added together. Analysis 
was used to extract the analytic expressions which defiIle the 
downwash lo@rithmic singularity coefficients for each of the (i,j) 
loading terms. Equating the sum of the coefficients to zero was 
shown to be equivalent to requiring that the sidewash should be zero 
along t) = 0; which is of course physically required. Thus it was 
possible to infer that convergent solutions for the aij might be found 
by using a collocation procedure which incorporates the zero sidewash 
condition at the wing centre-line. The main numerical problem lay in 
implementing this condition effectively, since it could only be 
imposed at a finite number of chordwise points. However, during the 
same period of time a t ntion was tur ed towards some previous, little 
known work by Germain te ' and Legendre r " on incompressible cross-flow 
arouxxl an infinite angular sector. Since, through the concepts of 
matched asymptotic expansions, the 'inner' problem of finding 
the linearised theory cross-flow potential in the neighbourhood of 
a cranked wing apex is exactly that investigated by Germain and 
Legendre, it was decided to redirect effort onto a practical 
assessment of their infinite sector work. 

3.2 The Infinite Sector Solution and its Implications 

Germaint6) showed that the problem of finding the linearised 
perturbation velocity potential, (9, around a plane infinite angular 
sector inclined to a free stream of speed U at an angle a has a set 
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of eigensolutions of the form 

i# 
vi = U a r .fi 

( > 
g,z 
xx 

i = O(l)= 

where r is the radius length fYom the apex given by 

rD = x1 + yr + z= (see Figure 1). 

Here, Vi and fi are the eigenvalues and eigenfunctions, respectively, 
and both are parametric functions of sector half angle y. 

Germain also showed that there is just one eigenvalue, say uo, in the 
interval (0,l) for all y. This eigenvalue is such that 

vo = 3 for y= R (straight leading edge) 
1 

and v. = 1 for y = 0 (slender-body theory 
approximation) 

Following on from Germain's work, Legendre(') introduced the 
coordinates (r,8,v) such that 

x = r co9 8 , y = r sin 6 , z = rtanhr 
cash r cash T 

and showed that the fi satisfy the equation 

aqi + a’fi + Vi(VI+I) * fi = O 
- 

aTa ;1;;;- cosh=r 

Then, through use of the conformal transformation 

a + ib r+i6 _ eiy 

> 
-iY s 

r+i.0 _ ,-iy 

he obtained the first two terms in series expansions for v. and f, 
which are valid for small y. \ 

Using Legendre's work as a basis, analysis in Beference 8 shows 
that, across the sector in z = 0, the potential difference associated 
with the first eigenvalue problem may be written as 

(6) 

(71 
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where u = (cos6-cosy) so that 0 < u < I for y > 101 > 0 
(1-cosycose) 

and where Eo(u;y) is a regular function of u* 

Using (7), the associated linearised form for ACp may be written as 

uo-’ AC+ = -& . aAo$ ar 4 
l U . 

p (u y) . 
0 ’ 

T 

where F is a regular function of u, 
a degre8 of arbitrariness. 

the proportionality indicating 

The form for A+ given in (7) may be taken to represent the 'inner' 
solution associated with the apex neighbourhood of wings with a 
leading edge crank of half angle y. This should closely approximate 
the local variation of a 'fully matched' or 'overall planform' 
solution for any finite wing containing a similar leading edge 
crank. It was thought worthwhile to attenpt to test the practical 
validity of such a concept by using (7) in conjunction with the 
'regular planform ' lifting surface theory nethod of Reference 2. 

3.2.1 An attempt to gain numerical evidence from which to assess 
the practical value af the infinite sector solution 

In Reference 9 a variety of convergence tests were carried out 
using the method of Reference 2. One of these tests involved 
the use of standard Multhopp-type collocation point distributions 
in attempting to gain convergence on a constant chord wing 
whose hyperbolic edges have a very small radius of curvature 
at the centre line. The exercise showed that ACp convergence 
is very slow as the number of collocation points is increased. 
This ACp convergence problem was found to be related to a 
large amplitude variation of downwash between collocation points, 
especially near the wing centre line. This is indicative that, 
in terms of the coordinates used in (3), the basic mathematical 
model requires a ra$d variation of ACp in the centre line 
neighbourhood and, because of the smooth global variation of 
the form assumed for AC 
spanwise distribution o IK 

together with the locally sparse 
boundary conditions (i.e. collocation 

stations), this requirement is only being mat in a very 
approximate fashion. 

Based on this evidence and reasoning, it appeared clear that 
the only effective way to improve overall convergence 
characteristics on wings with local rapid changes of edge 
curvature would be to modify the assumed form for ACp. 
However, it also seemad possible that, using the original 
form for ACp, a local improverrent of solution quality might 
be gained by concentrating more boundary conditions in the 
relevant neighbourhood. Such a local improvement could be 
envisaged only at the expense of solution quality elsewhere 
on the wing. 
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A test of the truth of this conjecture is reported in 
Reference 9 where solutions for the aforementioned hyperbolic 
edged wing,using full-span Multhopp collocation distributions 
on each half wing,are discussed. This unusual type of 
collocation distribution concentrates boundary conditions 
near the centre line as well as near the tips. It was found 
that solution c3nvcrgence &arscteristics near the centre 
line are greatly improved but those further outboard are 
drastically worsened. 

This positive result led to calculating so-called 'Half span 
Multhopp' solutions for the artificially rounded planform 
illustrated in Figure 2a. In the centre line region plots 
were made of log 2 as a function of logr along lines of 

0 Ua 
constant 8, where r and 8 are measured with respect to a 
displaced Cartesian system with origin at the pseudo crank 
apex (see Figure 2a). These plots are illustrated in Figure 3 
and, through use of limited range least squares fitting 
techniques, it was shown that the family of lines could be 
represented by 1% = v' logr + logD(B;y) 

or A& = f . D(B;y) for 0 < 101 < y 

where y = z, v' = 0.816 and D(0;y) is the function illustrated 
4 

in Figure 4. The synnnetric nature of D together with its 
singular behaviour near 6 = +y allowed it to be rewritten as 

D(e) = ll+ . i(u;y) , where i is regular near 8 = +y, 
1 

SO that 3 = r" . u' . ii(u;y ) 
Ua 

Ehich is nom in the infinite sector form given by (7); v' and 
E can thus be thought of as approximations to u. and Eo, 
respectively. 

Work on the fundamental eigenvalue Rroblem has been carrie 
on by a number of different workers. Brown and ? Stewartson lo) 
derived asymptotic expansions for ~0, valid near y = 0 and B 
and refined their estimate of y. for y = ,a through a 7' 

4 
numerical procedure. 
;;,G&,$: p)) 

Starting from Legendre's equation for 
and using finite difference techniques, 

gained numerical solutions for the mixed 
boundary value problems in terms of the unknown parameters 
Vi. This formulation finally led to evaluating the Vi through 
solving a matrix eigenvalue problem. 
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For y = I, the available best estimates for u. are: 
4 

Brown and Stewartson : 0.8147 

Rossiter : 0.8145 

ad these are to be compared with the approxiroate value of 
0.816 gained from the currently reported work at B.A.C. 

Recent work by Taylor(") has provided an accurate expansion 
for the function Fo(u;z) where F. appears in the exwession 

qF+J L 
4 

for AC given by (8). 
Tp 

A comparison of values for this function 
from aylor's expansion and from the B.A.C. results is 
illustrated in Figure 5. The agreement is seen to be 
remarkably good, especially considering the exploratory 
nature of the B.A.C. work. 

Thus for a finite planform with small radius of curvature 
rounding of the leading edge (see Figure 2a), the evidence 
strongly suggests that near the pseudo apex the behaviour of 
the solution is of the geometrically related infinite sector 
type. This correlation necessarily breaks down in the 
immediate neighbourhood of the locally rounded cage. 

As has already been inferred in Reference 9, this locally 
valid infinite sector behaviour of A$ may be expected near 
all leading edge cranks irrespective of orientation of the 
line of symmetry. A special case of a leading edge crank 
is found at thz forward tip corners of a wing with finite tip 
chord. From solutions using a standard KulthoB type of 
collocation point distribution it has been found that A# is 
indeed symmetric about the bisector of the tip corner angle 
and that its local variation along lines of constant 8(see 
Figure 2%) may again be accurately represented by (7). 

Having collected evidence to shoal that the infinite sector 
solution may be regarded as a locally valid linnerl solution 
for finite wings, the problem remained of how to use this 
information in formulating the lifting surface theory problem 
such that it converges to the required 'fully matched' 
solution. 

3.3 A Discussion of Different Approaches to Finding 'Fully Wtched' 
Linearised Solutions for Y?ings with a Leading Edge Centre-Section 
Crank 

In tackling lifting surface theory problems through the use of 'inner' 
solution inforrmtion it is sometimes possible to split the solution 
process into the following three main steps. 
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Step ow involves using explicit 'inner' solutions in choosing a 
suitable non-arbitrary form for a 'partially matched' loading. 
Step two uses information gained from step one in defining a 
subsidiary lifting surface problem of a type already known to 

be soluble. Finally, a converged solution of this subsidiary 
problem is combined with the loading chosen in step one to give 
a 'fully matched' solution to the original problem. An example 
of such a procedure is to be found in the treatment of wings with 
control surfaces reported in Reference 4. 

However, when attempting to use the infinite sector solution in 
treating planforms with edge cranks this approach cannot be used 
as it statis. A possible variation on the theme might be to 
generalise the B.A.C. procedure already described in Section 3.2.1. 
This would involve developing a lifting surface tkory method 
suitable for a convergent treatment of planforms with locally rapid 
radius of curvature variations 

I 
and then using the arbitrariness in 

the infinite sector form in (8 to attempt to effect a good matching 
of solutions. 

A more direct approach may be initiated through mking a careful 
choice of a suitably arbitrary representation for the 'fully matched 
loading. The necessary arbitrariness in the representation may be 
thought of, in general, as requiring that the loading be expressed 
in terms of a weighted sum of two-dimensional modes. This set of 
modes may contain subsets each of which corresponds to a different 
area of influence. 

Through the lifting surface theory integral equation each loading 
mode gives rise to a two-dimensional downwash mode whose shape 
characteristics depend, not only on the cho:.en loading mode, but 
also on the shape of the geometric area over which the double- 
integral is evaluated. The degree of success in solving a specific 
boundary value problem thus depends on haw convergent are combinations 
of these downwash modes in fitting the required normal velocity 
distribution over the specified planform area. If one considers only 
the simple case of simulating smooth imposed doyfnwash variations, 
then due care should be exercised to ensure that the chosen set of 
loading modes does not contain anomalous members which require 
irregular or near irregular variations in their corresponding 
downwash modes. Incidentally, it is often found convenient to 
assum that the t:;-o-dimensional loading variations may be expressed 
in terms of separated one-dimensional modes, as has been done in (3). 

Such reasoning indicated that a number of choices of loading 
representation might be suitable for treating the current problem. 
These choices were divided into two main categories, each of which 
will now be discussed. 

3.3.1 Loading Representation by I:!eans of Local or Regional Eodes 

The concent of local modes becomes useful if the planform 
area is divided up into two or more adjoining regions ard it 
is required to separately represent the loading over each region. 
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The main problem associated with such a representation lies 
in choosing the regional modes such that a sufficient degree 
of continuity is maintained across region boundaries. If 
this is not done adequately t'hen the corresponding downwash 
modes will exhibit singular variations at the boundaries ard 
doubt is cast on the validity of any resulting loading 
solutions. Rxamples of this type of representation are to 
be found in the 'overlapped patching' techniques mentioned 
in Reference 8, and in so-called 'panel methods'. 

'Overlapped patching' was an attempt to satisfy continuity 
requirements by forcing modes associated with any one region 
to terminate with polynomial type zeros along lines inside 
the adjacent regions. Thus, modes associated with any two 
adjacent regions overlap in the neighbourhood of the coxmnon 
region boundary, and the degree of continuity along the 
terminal lines may be adjusted through choice of the order 
cPpolynomial zeros. However, a one-dimensional numerical 
exercise showed thatthis forced termination of the loading 
modes introduces downwash mode variations which are extremely 
rapid near the termiml points, thus leading to an ill- 
conditioned problem. 

On the other hand, 'panel methods ' have been, and are being 
successfully employed in treating non-linear problems through 
theuse of surface singularities. However, at the time that 
the currently outlined work sequeme was in progress, it was 
felt that linearised lifting surface theory required a degree 
of loading continuity across Fare1 boundaries which might 
make the application of panel methods to such problems 
impracticable. 

3.3.2 Loading Representation by Xeans of Global Eodes 

The term global modes is used to infer that the range of 
applicability of such modes is restricted only by the planform 
boundary. Since such modes extend over the cQnplete planform 
it is prudent to couch them in terms of coordinates which have 
been chosen to satisfy the requiremnts in (B) of Section 2.1. 

In what follows, discussion will be restricted to the treatment 
of planforms whose leading edges are cranked at the centreline 
(~0) and maybe described by 

where f may only be irregular at -1, or 

II = +4 = x.g(x) (10) 

where g is regular. The planforms are also assumed to have 
regular trailing edges of the form 

X = xt(q) = h(r)“) l 
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Examples of such planforms are illustrated in Figures 6a and 
b. At B.A.C., the development of ideas related to a choice 
of global representation suitable for planforms of thz above 
type took place in two distinct phases, and these will now be 
discussed. 

Phase I: The Global Representation of Reference 8 

As indicated in Section2.1, an initial consideration 
in treating all lifting surface theory problems is 
concerned with the choice of coordinates with which 
to work. Althou 

t 
due attention was paid to the 

requirem3nts in B) of Section2.1, it was thought 
advantageous to also bear in mird the conical nature 
of the loading in the neighbourhood of the crank 
apex. This resulted in advocating the use of the 
coordinates C and x defined by 

where Q and xt are of the forms given in (10) and 
(ll),respectively. 

In the C,x plane, the planform thus beconms the 
rectanglegivenby-l<Ccl,O<X<l. Typical 
coordinate lines are illustrated in Figure 6a and 
the pseudo conical form of those for constant c is 
clearly seen. Using these coordinates and the *inner' 
solution form given in (8), it was thought that a 
suitable 'fully matched' global representation for 
the loading could be written as 

wbre T,(u) is a Chebyshev polynomial of order n 
with-l <u c 1. 

Also, in an attempt to satisfy the requirena?nt stated 
in (C) of Section2.l, it was decided to integrate 
initially with respect to x along lines of 5. 

However, as may be seen from Figure 6a, there exists 
a region forward of the trailing edge in which the 
form of the < coordinate lines is such that they tend 
to become parallel to lines of constant qe This property 
of the 5 coordinate lines, together with the non-linear 
relation giving q in terms of c and x were found to 
introduce severe numerical integration problems and 
inaccuracies for the following reasons. 
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The kernel function of the integral equation contains 
singularity having the Cartesian form 

An initial integration with respect to x 
thus'produces singular effects in the C plane which 
are very difficult to identify in an analytic fashion. 
This difficulty is most severe for integration along 
lines which become nearly parallel to the stream 
direction in the vicinity of t) = qs* The consequence 
of not having an accurate analytic description of the 
c plane singularities is that it is impossible to 
gain accurate downwash values from the second 
integration. It was thus decided that the approach 
was impracticable and the phase of work was therefore 
discontinued. 

Phase 2: The Global Representation used in Reference 13 

Work during Phase I showed that severe numerical 
integration difficulties were introduced by using 
coordinates which pandered to the conical form of 
the 'inner' solution. Most of these difficulties 
stemmed from transforming the improper Cartesian 
singularity in the kernel function, and this therefore 
suggested that q should be selected as one integration 
coordinate. Having nride this choice an attempt was 
then made to choose a second coordinate subject to the 
requirements of (B) in Section 2.1. 

Referring to (2), the coordinate <, which is introduced 
for regular planforms, is seen to satisfy the 
requirements of (B) for cranked planforms except 
that the coordinate lines are cranked also. Thus 
for cranked planforms, from the definition 

x = x&d + bq’l) - x&TJ)l E t 

the lines of constant 5 are seen to possess dis- 
continuous slope with respect to q corresponding to 
the discontinuous slope of x&(q). However, for 
planforms with leading and trailing edges of the 
form of (9) and (ll), respectively, an analogous 
coordinate to that of (2) may be defined by 

lines of constant c being given by 

x = [  t  qd + (l-9 x;(1) Ii l 

(12) 

(13) 
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Using the definitions (9) and (II), these lines 
are seen to be smooth and regular as required by 
(B), except of course the line corresponding to 
< = 0 which describes the cranked leading edge. 
Coordinate lines from (13) are illustrated in 
Figure 6b. 

Using the coordinates ,$,q (henceforth E will be 
defined by (42)) the required singular variations 
of the loading representation are simply constructed. 
Referring to (8), the conical apex singularity form 
is applicable to straight leading edges; however it 
may be applied to a more general leading edge shape 
by rewriting the variable u as follows. 

From (7) u = 
. (Ex~y) ' 

and writing co38 = x , cosy = 
Ap 

xc 
7+ 

there results, after manipulation, 

which reduces to the original form if x4 is linear. 
The required trailing edge singularity, i.e. byxp, , 
may be written without loss of generality as 1x$ -x 12 
and that at the tip as {I-qs]Z. Thus, using the 
'inner' solution form in (8), the singular content 
of a fully matched loading representation may be 
written as 

Using this expression, and noting that 

a fully IIlatched loading representation takes the 
general form 



where K$ (E,d is a regular function of E and q. 

The simplest logical approximation to AC3 may be 
written as 

n-l m-l 
AC; = 

cc 
aij 9 gj . 

i=o j=O 

However, since the coordinates {,r~ no longer take 
account of the conical form of the regular part of 
the 'inner' solution, i.e. of F,(u,y), it was 
decided to assess the near apex capabilities of 
this simple AC; form before attempting to implement 
its use in the double integral. The resulting 
fitting exercise showed conclusively that only 
forms for AC5 which explicitly include the function 
F, could be regarded as suitable. Two such possible 
forms are 

hcc = aFob,Y) + bij gi q2j , 
/ / 
i=O j=O 

i=O j=O 

however, it will be shown later that 
representation in (I&L) is decidedly 
the multiplicative form in (l&b). 

the additive 
inferior to 

$. COMMJ3NTS ON !!'HE TRRATMENT OF CROPPED DRL'TA PUNFORMS 
REPORTRD IN REFERENCE 13 

In order to assess the practicality of the coordinate system and loading 
representation introduced in Section 3.3.2.2, it was decided to apply 
these to a simple class of planforms so that results could be obtained 
within a reasonably short timescale. The planforms chosen constitute 
the cropped delta class and are defined by, 

xt(‘l) = s s (a constant) 
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s wi-kh A the taper ratio; (with no loss of 

generality unit semispan is assumed). 

From (?2) and (13), 

where ah) = C< - a2r12) s 

and the loading representation is, 

vO -1 
ACp = r [rx + a~2JZ]t I-& WQCG , 

J- e 

with r = (x2+)+12). 

Chebyshev polynomials are introduced into the representation for AC$, so 
that it is rewritten as 

(n-l) (G-1) 
Aq = FobbY) 

cc 

aij Ti(2~‘) T,j(q) l 

i=O j=O 

(15) 

In order to investigate the effect of the function F,(u,y), a representation 
was &LSO considered in which the function was omitted, i.e. 

(n-1) G-1) hc* 
P= 

cc 
aij Ti(2k1) T,.J(?) (16b) 

itO j=O 

The alternative representations in (168) and (16b) are referred to as 
'including 3" and 'excluding F', respectively. 

Introducing (15) into (1) ard noting that 

the basic incompressible equation becomes, 

w (+11,) = - ’ Ti 75 
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with X = (x-xr) , R = k-xr)' + h-rl,)'j ad 
e as defined in (15). 

Introducing the loading representation, M is defined in terms of 
downwash modes through B 

w kr,Q = - 1 
(n-l) (i-q) 

IT xirb FE 
&ij wij (4&r9,) 9 

id) j=O 

(17) 

where the doPJnwash modes are defined by, 

with 

v,-1 
Kk,d = r Irx + crg'&? + d(q) Fo(u,y) . 

X 

For the AC$ representation in (16b), F,(u,y) is omitted from (IT). 

4.1 Evaluation of the Downwash Modes 

The expression (18) for the downwash modes is analogous to the 
corresponding expression (5) for regular planforms, so that the 
techniques developed for the latter (Reference 2) can be extended 
to apply to the present case. Particular complications arise in 
the present case mainly due to the presence of the term K(,$,q) in 
the spanwise integration. 

K(E,q) is infinite at the apex (5 = T) = 0), and in the neighbourhood 
of the centreline (Q = 0) exhibits rapid variations for e small; 
as illustrated in Figure 7. Also, because of the presence of 
K({,q) it is in general impossible to perform an analytic evaluation 
of the finite part integral. 

A computer program has been written in IBM System/j60 Fortran IV 
to evaluate the downwash modes from (18), using developments of 
the techniques of Reference 2. In order to obtain results within 
a short tixrescale, the program was no t written to cover all Parametric 
cases. In particular, for qs either at the centreline or in its 
immediate neighbourhood it was found that special integration 
techniques are required in order to maintain the accuracy of spanwise 
integrations and these could not be incorporated within the timescale. 
In the chordwise integration a similar problem was found for &. 
approaching the leading edge. 

(IT) 
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Thus the program that evaluates the downwash modes is restricted in 
that tr and/or 17 cannot be positioned arbitrarily close to zero. 
Hmever, this &L not prevent collocation solutions from being 4 
obtained since one is not forced to choose collocation points in 
these positions. In practice, the downwash modes have been 
evaluated for {r, 7js = 0.01, with no apparent loss of accuracy. 

4.2 Numerical Results 

Numerical results have been obtained for a particular flatplate 
cropped delta planform with 45" leading edge sweep and taper ratio 
l/7, (Aspect Ratio 3), at unit incidence (W/U = ?). 

For this le ding edge sweep, 
Rossiter'"iFS. as, 

the value of u. was taken from 

V 
0 

= 0.8145 (see also Section 3.2.1) 

For the function F (u,y), the expansion due to Taylor('e) was used. 
This function, whi$h is plotted in Figure 5 against the variable T/x, 
is simply approximated in terms of the variable u by the quadratic, 

F(u) = F,(u,z) = (0.7646 + 0.2555~ - 0.0201~") . 
+J F. 1,. 

4 

4.2.1 Collocation Distributions for Loading Solutions 

Loading solutions are obtained by solving the relation (17) 
for the Zn unknowns aij by specifying the downwash + (QII,) 

at En collocation points (E ,fl ). For a loading representation 
that contains the form (14~7, ghe relation (47) will be 
slightly mdified, however this will be considered later. 

The collocation distributions chosen were of the standard 
Multhopp type in the new coordinates. In the spanwise sense 
only even distributions were used, so that there is not a 
collocation station at '1, = 0. In the chordwise sense, since 
the loading is defined in terms of polynomials in E, the 
collocation distribution is chosen as a Multhopp distribution 
in er. 

Thus the spanwise distribution is, 

7j, = co9 
( > & 

9 s=l,iii . 
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For the chordwise distribution, if 

Cr = 4 [I-co~(~~I-,)] , r=Ln 9 

then the distribution is, 

E, = c, t r=l,n . 

A usual chordwise distribution, as used for regular planforms, 
would be in terms of a percentage chord variable, i.e. if, 

;; = x-x&l) Y (20) 

c(d 

then the normal distribution would be, 

ii =c 
r r, r=l,n . 

Thus the collocation distribution used is, from (?5), 

whereas the usual distribution, as applied to the cropped 
delta, would be, 

X rs = bls,l + c(rl&l . 

The two distributions are compared in Figure 8 for 
(Sn) = 04,5). 

In what follows the order of a loading solution is written in terms 
of the number of collocation stations on the full span, i.e. 
Z = m spanwise, and n chordwise. Thus the order of solution 
is denoted by (m,n). 

For comparison purposes, some solutions have also been 
obtained using the regular planform programs. For these 
solutions, the planform is rounded inboard of lql = 0.2, 
and the chordwise collocation distribution is of the 
usual type, i.e. Zr = 5, as above. 
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Loading Solutions 

Table 1 compares tk A$ distributions obtained from the 
cranked planform grogram solutions, both 'including I?' and 
'excluding F' , and the regular planform program solution. 
The solutions are for (m,n) = (16,5) and results are given 
along six spanwise stations at chordwise stations j; defined 
by (20). At q = 0, the regular planform values cannot be 
strictly compared since the Z stations corresporu3. to different 
points in spce due to the planform rounding, however the 
values are included for completeness. For g >, 0.2, a strict 
comparison is valid. 

Away from q = 0, the cranked planform solutions and regular 
planform solutions are in quite good agreement. In particular, 
the cranked planform solution 'including F' is closer to the 
regular planform solution than the cranked planform solution 
'excluding F'. It should be noted that (m,n) = (16,5) does 
not represent a converged solution for any of the three 
loading forms, so that exact agreement is not expected. 

At rj = 0, the two cranked planform solutions are considerably 
different. Figure 9 compares the convergence with increasing 
m of the two cranked planform solutions at 77 = 0. The two 
(243) solutions are compared in Figure 10. Figure 9 indicates 
that by including the sRecia1 function in the loading 
representation, the convergence of the solution is greatly 
improved. Accepting the (24,5) solution 'including F* to 
be close to convergence, then the solution 'excluding F' is 
clearly unsatisfactory. It can be inferred that a prohibitive 
number of terms would be required to achieve convergence for 
this latter solution. This inference can also be made by 
considering the variation of the downwash modes. 

Figures 11 and 12 illustrate the ns variation of the first 
few spanwise downwash modes along the constant & line, 
Cr = 0.0794, which corresponds to the first chordwise 
collocation station for n = 5. From (17) the required 
downwash is to be represented by a linear combination of 
downwash modes. Referring to Figure 11, for the loading 
representation 'excluding F', the rapid variation of the 
modes near ns = 0 indicate that these modes are unsuitable 
for the representation of smooth downwash variations. In 
obtaining collocation solutions, as the number of spanwise 
loading terms is increased the most inboard ns collocation 
station is positioned closer to the centreline and hence the 
effect of the local rapid variations is more apparent. 

Referring to Figure 12, the benefit of including the special 
function in the loading representation is well illustrated. 
The downwash modes for the representation 'including F' vary 
smoothly in the centreline region and hence are well suited 
for the representation of smooth downwash variations. It is 
to be noted tl--mt both loading representations result in rapid 
variations in the downwash modes in the tip region, i.e. ns near 
1, thus illustrating tk inadequacy of the assumed loading 
representations near the leading edge tip corner. 
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Consideration of the downwash modes also indicates the 
unsuitability of the loading form in (?.!+a), since that 
representation would require the downwash to be represented 
by a combination of the Woo mode of Figure 12 ard the 
unsatisfactory modes of Figure Il. 

The convergence with increasing chordwise terms of 'including F' 
solutions is illustrated in Table 2, where ACp distributions 
at six spanwise stations are presented for (m,n) = (14,4), 
(14,5), (-14,8), (14,9). The distributions at 7 = 0 are also 
plotted in Figure 13. 

4.2.3 Downwash Interpolation 

The previous section describes various loading solutions 
obtained through satisfying (17) at 'm collocation stations 
on t& half planform. Substituting the loading solutions 
back into (Ii'), the downwash can be evaluated at any point 
on the planform. ('Pith the present program this excepts 
the region &., qs < 6, with l = 0.07, approximately.) 
Evaluation of the downwash at points other than the 
collocation points used to obtain the loading solution, is 
here referred to as downwash interpolation. Ideally, for 
the planform considered, the downwash should be unity at 
all points on the planform, so that the discrepancy of the 
interpolated dowmash from unity is a measure of the accuracy 
of a loading solution. 

In the previous section, the advantage of including the 
special function in the loading representation was demonstrated. 
This is further illustrated in this section by comparing 
downwash interpolations. 

Figure 14 compares the chordwise downwash interpolation at 
the first spnwise collocation station, vs. = 0.1045, of the 
(14,5) solutions. On the evidence of this figure there is 
little to choose between the two solutions. Over most of 
the range the discrepancies from unity are less than l', but 
larger discrepancies are inferred at the leading edge. 

The remainder of the downwash interpolations are far the (:6,5) 
solutions. The various interpolation lines are shown in 
Figure 15. 

Figure 16 compares the spanwise downwash interpolation at the 
first chordwise collocation station, er = 0.0794. The 
advantage of including the special function is clearly 
illustrated by the improved variation in the centrelire region. 
Also included in Figure 16 is the corresponding domnwash 
interpolation from the regular planform solution, for 
comparison. The rapid variation in the neighbourhood of 
‘IS = 1 is an indication of the effect of the inadequacy of 
the loading representation in the leading edge tip corner 
region, as mentioned in the previous section. 
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Figure 77 compares the spanwise downwash interpolation at 
a chordwise collocation station nearer the trailing edge, 
& = 0.5712. Surprisingly perhaps, the solution'excluding F' 
again shows a large discrepancy near qs = 0. 

Figure 18 compares the chordwise downwash interpolation at 
the station Q, = 0.01 and it is seen that the solution 
'excluding F' shows a large discrepncy over most of the 
range. 

Finally, Figure 19 compares the spanwise downwash interpolation 
at a station close to the leading edge i.e. Er = 0.01. Again, 
the advantage of 'including F1 is apparent in the centreline 
region but the effect of the tip corner leading deficiency is 
now more obvious. 

5. CONCLUDING REMARKS 

An account has been given of a line of research which reveals a gradual 
development of ideas that, in general, connect the successful treatments 
of 'regular' and 'irregular' planforms. The 'irregular' planforms 
considered were restricted to the cropped delta type, but the principles 
which guided the derivation and assessment of the xethod are of general 
value. The most important of these principles may be summarised by the 
following statements. 

(i) Determine th? analytic form of special loading variations required 
by I& imposed boundary conditions (see (A) of Section 2.1). 

(ii) Choose coordinates suitable for integration (see (B) and (C) of 
Section 2.1). 

(iii) Using (i) and (ii) select a modal form for the fully matched 
loading which yields a set of downwash modes which are compatible 
in the sense of Section 3.3. 

Using (i), the concept of matched asymptotic expansions led to recognising 
the practical usefulness of the infinite sector solutions, and this was 
verified through the work described in Section 3.2.1. Implications of 
(ii)eventually led to the choice of integration coordinates made in 
Section 3.3.2.2 and (iii) helped in judging the relative merits of the 
fully matched loading representations used in Section 4. 

Using the experience gained during the currently reviewed work program, 
it is foreseen that convergent treatments are possible for symmetric 
planforms having both their leading and trailing edges cranked at the 
centre section. Also, an improvement of solution quality in the tip 
regions is envisaged. 
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Symbols 

a. 
lj 

C 
P 

C 

"a 

d 

FO 

fi 

K 

M 

m 

iii 

n 

R 

r 

S 

Tn 

U 

U 

W 

Coefficients used in defining loading representations 

pressure coefficient 

Local chord 

Root chard value i.e. cR = c(0) 

Function defined in equation (15) 

Function used in equation (8) to define the infinite sector form 
for AC 

P 

Eigenfunctions associated with the infinite sector problem 

Function defined in equation (19) 

Free stream Mach number 

In Section 4 onwards refers to the total number (even) of 
spanwise collocation stations 

The number of sparwise collocation stations on the half span 
i.e. iii 5 m 

? 

The n&r of chordwise collocation points along each spanwise 
collocation station 

As defined in equation (5) 

Radial distance from local apex origin. Also, subscript designating 
a collocation point coordinate. 

Semi span of the planform. Also, subscript designating a collocation 
point coordinate. 

Chebyshev polynomial of crder n 

Free stream speed 

Variable as defined in equation (7) 

Vertical perturbation velocity 
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Symbols Contd. 

m ij Downwash modes 

X As defined in equation (5) 

XSY 92 Right handed set of Cartesian coordinates 

xe 

=t 
a 

B 

Y 

A 

9 

f 

# 

i@ 

X 

x-coordinate of the planforn~leading edge (see e.g. equation (9)) 

x-coordinate of the planform% trailing edge (see e.g. equation (11)) 

Incidence angle of the free skeam 

= Gil? 

Half angle of infinite sector or a planform edge crank 

Operator giving difference between upper and lower surface planform 
values (see e.g. ACp) 

Non-dimensional. coordinate defined in Section 3.3.2.1 

= s As defined in equation (2) 
s 

rycoordinate of the planformbleading edge (see e.g. eqwtion (10)) 

Angle measured from bisector of an infinite sector or a planf'orm 
edge crank 

Eigenvalues associated with the infinite sector problem 

Non-dimensional coordinates defined by equation (2) for regular 
planforms, and by equation (12) for ?lanforms with a leading edge 
crank 9 

Perturbation velocity potential 

Eigensolutions associated with the infinite sector problem 

Non-dimensional coordinate defined in Section 3.3.2.1 
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1 Table Comparison of AC, Distributions from & 
Solutions with (m,n) = (16,5) for 

Cropped Delta Planform 
AC* at 0 = 0.0 

x 'Excluding F1 'Including F' 'Regular Planform 

.005 5.7897 7.4719 15.7290 
,025 4.2941 5.5355 7.3498 

.o5 3.7725 4.8463 5.4464 

.I 3.3047 4.1878 4.1387 

.2 2.8541 3.4424 3.1737 

l 3 2.5472 2.8781 2.6518 

.4 2.2543 2 -3998 2.2532 

95 1.9425 1.9997 1.9081 

.6 I .6147 1.6625 1.5910 

l 7 I.2909 1.3521 1.2870 

.8 0.981 y 1.0272 0.9812 

.9 0.6537 O-6647 0.6460 

.95 0.4429 0.4543 0.4398 

AC, at r) = 0.2 2. 

X *Excluding F' 

,005 20.6434 

,025 9.2275 

005 6.5271 

.1 4.6264 

.2 3.2797 

.3 2.6453 

84 2.2104 

.5 1.8531 

.6 1.5327 

l 7 1.2326 

.8 0.9386 

l Y 0.6203 

.95 0.4229 

'Including F1 'Regular Planform' 

21.0094 20.6006 

9 05095 9.3351 

6.8102 6.6940 

4.8997 4.8319 

3.4794 3.4697 

2.7630 2.7933 

2.2768 2.3220 

1 .YW 1.9401 

i .5869 1.6038 

1.2846 1.2901 

0.9711 0.9806 

0.6330 0.6458 

O-4357 oJAo5 
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Table 1 (Continued1 Comparison of ACp Distributions from 
Solutions with (m,n) = (16,~) for 

Cropped Delta Planform 
AC,atq = 0.4 .r 

X 'Excluding Ft 

l 005 26.4373 

.025 14.7634 

005 8.2622 

.I 5.7549 

.2 3.v164 

.3 3.0347 

04 2.4511 

.5 2.0024 

.6 1.6271 

-7 1.2941 

.8 0.9783 

.v 0.6425 

095 0.4368 

'Including F1 'Regular ?l.anforml 

27.1839 27.3460 

12.1091 12.1569 

8.5135 8.5283 

599353 5.9252 

4.0348 4.0132 

3.1189 3.1008 

2.5153 2.5035 

2.0553 2.0485 

1.6722 1.6681 

I.3305 1.3275 

1.0040 1.0016 

0.6582 0.6567 

o-4-485 o.4475 

AC,, at q = 0.6 

5 *Excluding F' 

.005 3284925 

.025 14.3910 
005 10 .o4g6 

.I 6.9210 

.2 4.6117 

93 3.5ovv 

.4 2.7936 

.5 2.2541 

.6 1.8098 

07 1.4202 

.8 1.0582 

.v 0.6883 

095 0.4688 

tIncluding F' 'Regular Planform' 

33.1T70 33.0318 

14.6700 14.6369 

10.2461 10.2273 

7 00577 7.0507 

4.7033 4.7048 

3.5797 3.5820 

2.8496 2.8497 

2.3000 2.2975 

1.8472 1.8440 

I.4498 l.4478 

1.0801 1.0802 

0.7026 0.7032 

0 -4788 0.4785 
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Table 1 (Continued) Comparison of AC, Distributions from I- 
Solutions with (m,n) = (16,5) for 

Cropped Delta Planform 

AC, at r) = 0.8 

Q *Excluding F* *Including F* 'Regular Planform' 

-005 39 06307 40.2038 39.9057 

.025 17 l 4545 j7.7074 17.5980 

005 12.1074 12.2831 12.2269 

.I 8.2342 8.3538 8.3421 

.2 5 03648 5.4429 5.4623 

93 3.9989 4.0579 4.0802 

l 4 3.1157 3.1627 3.1768 

.5 2.4554 2.4936 2.4980 

.6 1.91% 1.9505 1.9493 

07 1.4642 1.4880 1.4868 

.8 1.0627 1.0801 1.0818 

-9 0.6814 0.6927 0.6949 

-95 0.4650 0.4730 0.4734 

si 'Excluding F1 

0005 42.0171 

.025 18.6593 

005 ' 13.0348 

.I 8.9031 

.2 5.6655 

.3 4.0009 

.4 2.9069 

.5 2.1363 

.6 1.5827 

07 1.1757 

.8 0.8524 

-9 0.5449 

095 0.3645 

AC, at r) = 0.9 

'Including F1 
-- 

42.5743 

18.9047 

13.2054 

9 .OlYY 

5.7419 

4.0563 

2.9475 

2.1659 

1.6047 

1.1928 

0.8657 

0.5535 

0.3699 

'Regular Planform 

42.8826 

19.0143 

13.2562 

9.0182 

5.7033 

4.0191 

2.9268 

2.1613 

1.6069 

I.1919 

0.8590 

0.5492 

0.3711 



Table 2 WI 

. 

(1414) (1495) (1498) (14,Y) 

.005 7.4409 7.5722 7.7835 7.8198 

.025 5.5136 5.6091 5.7603 5.7855 

-05 4.8298 4.9087 5.0267 5.0446 

.I 4.l827 4.2349 4.2917 4.2949 

.2 3.4633 3.4609 3.4094 3.3949 

l 3 2.9151 2.8718 2.7978 2.7948 

l 4 2.4307 2.3805 2.3636 2.3714 

.5 2.0045 1.9823 2.0099 2 .ooao 

.6 l&II 1.6564 1.6685 1.6651 

-7 1.3298 1.3556 I.3432 1.3475 

.8 1.0331 1.0301 1.0252 1.0219 

.Y 0.6830 0.6627 0.6690 0.6722 

995 0.4526 0.4543 0.4583 0.4564 

ii (14,4) (14,5) (1438) (14,9) 

.m5 20.5974 20.7744 21.0038 21.0382 

.025 9.3504 9.4160 9.4831 9.4889 

005 6.7221 6.7555 6.7726 6.7697 

.I 4.8750 4.8790 4.8548 4.8472 

.2 3.5133 3.4910 3.4552 3.4540 

.3 2.8142 2.7873 2.7770 2.7808 

.4 2.3158 2.2995 2.3103 2.3lO4 

.5 1.9158 1.9163 1.9258 1.9234 

.6 1.5764 1.5879 1.5860 1.5872 

l 7 1.2724 1.2808 1.2759 1.2767 

.8 0.9753 0.9705 0.9700 0.9686 

-9 0.6426 0.6353 0.6378 0.6391 

995 0.4335 0.4354 0.4366 0.4354 
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Comparison of AC,, Distributions from tIncluding F' 

Solutions with (m,n> = (14,4), (14,5), (14,8), (14,9) 

for Cropped Delta Plaxxk'orm 
AC, at q = 0.0 L 

AC, at q = 0.2 & 
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Table 2 (Continued) 
Comparison of AC, Distributions from 'Including I?' 

Solutions with (m,n) = (14,4), (14,5), (14,8), (14,9) 

for Cropped Delta Planf'orm 
AC, at q = 0.4 

X 

,005 

’ .025 

.o5 

.I 

.2 

93 
l 4 
.5 
.6 

l 7 
.8 ' 

09 
l 95 

ii 

.005 32.8129 32.7851 32.8101 32.8161 

.025 14.5662 14.5630 14.5665 14.5658 

005 10.1986 10.2030 10.2016 10.2ooo 

.I 7.0548 7.0640 7.0621 7.0618 

.2 4.7284 4.7354 4.7369 4.7379 
93 3.6064 3.6074 3.6085 3.6084 
.4 2.8680 2.8641 2.8635 2.8632 

.5 2.3076 2.3025 2.3022 2.3026 

.6 1.8464 1.8439 1.8453 1.8456 
.7 l-4652 1.4472 I.4487 1.4484 
.8 1.0768 1.0813 1.0806 1.0807 

09 0.7032 0.7039 0.7032 O-7033 

095 0.4807 0.4777 0.4783 0.4781 

(14,4) -- 

27.4074 27.5175 27.5455 27.5403 
12.1965 12.2282 12.2359 12.2370 

8.5641 8.5724 8.5742 8.5767 

5.9552 5.9450 5.9428 5.9448 
4.0277 . 4.0101 4.0085 4.0083 
3.lool 3.0902 3.0928 3.0926 
2.4941 2.4961 2.5010 2.5015 

2.0390 2.0492 2.0519 2.0521 

1.6655 1.6753 1.6734 1.6731 

1.3338 1.3349 1.3316 1.3318 

1.0120 1 .ool+o l-0047 1.0048 

0.6607 0.6567 0.6590 0.6588 

0.4455 O&J+96 0.4492 0.4494 

(14,4) 

(14,5) 

hc at q = 0.6 

(144) 

. 

(14,5) (14,8) 

(14,T) 

(14,T) 
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Table 2 Continued 
Comparison of AC Distributions from 'Inciuding~ 

Solutions with (m,;) = (14,4), (14,5), (14,3), (IL,91 

for Croppea Delta Flarforrn 

4 at q = 0.8 
. 

ii v 

.005 

.025 

905 
.I 

.2 

93 
.4 

-5 
.6 
-7 

.a m 

.Y 

095 
* 

- 
ii 14,4i (:4,5) (14d3) (14,Y) 

.005 43 aa69 42.7830 :,2.8137 42.8166 

.025 18.9992 16.96-l4 18.9552 1;.951+2 

.05 13.1801 13.2186 13.2081 13.2075 

.I 8.9256 9 .oou, y .oooo 9.0008 

.2 5.6730 5.7161 5.7221 5.7224 

l 3 4.0500 4.0402 4.0396 4.0390 

.4 2.98C9 2.9426 2.9385 2.9337 

.5 2.2023 2.1580 2.1652 2.16?5 

.6 1.6160 1.6086 1.6146 1.61~~ 

.? 1.1730 1 ."1948 1.5978 1 .I974 

.8 0.8366 0.8654 0.8610 0.8GlL+ 

.Y 0.5540 0.5534 0.5509 0.5507 
-95 0.3925 0.3709 0.3733 0.3735 

(l4,4) -(14,5) - (14,8) (14,9) 

39.8969 39.9793 ~O.OL+li 

17.6252 17.6408 17.6463 
12.2653 12.2616 12.2519 

8.3310 8.3657 8.3517 

5.4803 5.4687 5 .&?8 

4.0784 4.0776 4.0861 

3.1657 3.1726 3.1791 

2.4575 2.Ly58 2.4946 
I.9450 I.9491 1.9436 
1.4%9 1.4868 1.4845 
1.0856 1.0~04 1 .O&+O 

0.6940 0.6929 0.6951 

0.4693 0.4723 0.4707 

40.0!+10 

17.6432 

12.2535 

8.35113 

5.~676 

4 .o?m 

3.1793 

2.4943 
1.9437 
I.4349 

-1.0838 
0.6952 

0.4709 
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