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SUMMARY

An attempt has been made to develop a subsonic lifting surface theory
method capable of calculating convergent loading solutions for symmetric
planforms with a leading edge crank. This document traces the time
history of thought and method development at B.A.C. (Military Aircraft
Division) which connects the successful treatments of regular and cropped
delta type planforms that are reported in References 1 and 13, respectively.
Finally, some mention is made of possible future generalisations of the
basic cranked planform method.
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INTRODUCTZON

Three-dimensional linearised theory contributes significantly in the
subsonic design of lifting wings. Within the linearised theory
framewark, one of the main problems is the accurate evaluation of the
improper double-integral associated with subsonic lifting surface
theory. Reference 1 (1967) presented a critical survey of the then
existing methods far solving the classical lifting surface problem
and a brief account of the method developed at B.A.C. (M.A.D.).

The B.A.C. method, which is described in detail in Reference 2, has
been shown to produce solutions to the classical lifting surface
problem that exhibit excellent convergence characteristics. However,
in common with the other methods described in Reference 1, the B.A.C.
method is only applicable to "regular planforms"; i.e. planforms
without slope discontinuities of leading and/or trailing edges. There
was a definite requirement for a proper treatment of irregular, or
cranked, planforms since they are of the type usually considered in
practical wing design procedures.

This long standing practical requirement prompted B.A.C. to concentrate
some thought and effort into an attempt to develop a lifting surface
theory method capable of evaluating convergent loading solutions for
cranked planforms. This document is intended to record the train of
events which eventually led to the development of such a method, for

a restricted class of planforms.

The work was carried out at B.A.C. (M.A.D) under research contract
XKD/3D/24 for the Aircraft Research Branch of the Ministry of Aviation
Supply.

THE BASIC PROBLEM AND METHOD OF SOLUTION FCOR REGULAR PLANFORMS

The basic integral equation of subsonic lifting surface theory may be
written in the form

%’;(xr,ys) = -%_1_’][[ &cp(x,y) [1 - (x-xr) 1 %gcy_-.c;l’l)a s

S (Gemx )82y )|

where W is the local downwash or incidence distribution,
U

ACp is the unknown load distribution, and S is the planform area.

2.1 Regular Planform Methods

For planforms without cranks, termed regular planforms, several
methods exist for the solution of (%), a few of which are outlined
in Reference 1. The various methods may be segregated into groups
such that each group contains methods having a number of common
features. In general though all the methods embody the use of
similar integration coordinates and loading representations.



Normalised variables are introduced such that

m=y em £ = {f:;ﬁ;fl} ’ (2)
c(n

80 that the planform is transformed into the rectangle
f~-1<n<1,0¢¢<1},

n.b. it is assumed here that the planfarm is symmetric about
¥ = O although asymmetric configurations can easily be catered
for.

The loading distribution is approximated by means of an expression
of the type

n-1 m-1
&p(x,y) = V1-n* ’_1;_{ Z Z aiy P3(£)e5(n) (3)
i=0 §=0

where Py(¢), Qj(n) are usually chosen from known sets of orthogonal
polynomials and the coefficients ajj are unknown.

The problem is thus reduced to evaluating the mm unknowns 8ij by
satisfying equation (1) at mn suitably chosen collocation

points (xp,ys)e The main numerical difficulties arise in
evaluating the double integral in (1) for each of the terms in (3).

The essential difference between the B.A.C. method and all the other
methods is that in the B.A.C. method the finite-part integration with
respect to 7 along lines of constant ¢ is performed first. Thus (1)
is written in the form

%7 (€.on,) = -%;iﬂ . aiy Wis (&0m) (4)
i=0 3j=0
with
W3 5(pomg) = f Pi(f)EJF Qj(n)gé_ql Vren® [1-.;.] %an:%f), » (5)
0 -1
and

X = (ex), R o= [x%8%(yy)TR



The advantages of this procedure over those used in other known
methods are described in Reference 1. The essential achievements
are that calculation accuracy is unimpaired as collocation points
approach edges of the planform and that no restrictions are

imposed on positioning the points. In general, excellent convergence
characteristics are obtained as the number of loading terms in (3)

is increased.

At this point it is worth mentioning that the following general
procedure has been advantageously followed at B.A.C. with respect
to choosing and using integration coordinates in lifting surface
theory problems.

(A) Use matched asymptotic expansion techniques to determine &Cp
singularity orders and locations compatible with the required
boundary conditions.

(B) Choose a pair of basic integration coordinates such that the
&Cp singularity locations are exactly deseribed within the
families of coordinate lines. In general, the lines in a
coordinate family should be smooth and regular although special
points may be present at which derivative singularities need
to be accommodated.

(€) Initial integrations should, if possible, be carried out with
respect to a coordinate whose lines do not pass through the
location of an infinite ACp singularity.

In the present section, emphasis has been placed on the treatment
of lifting surface theory problems related to smoothly distorted
surfaces with regular planforms. For such problems, the &,7
coordinates defined in (2) have already been extensively used by
other workers in the field anmd they are also seen to satisfy the
requirements made in (B). However, nearly all methods for evaluating
the double integral of lifting surface theory involve an initial
integration with respect to £, and this gives rise to severe
numerical inaccuracy when evaluating the dowrnwash at points close
to the leading edge. The root cause of this trouble is located in
the fact that the infinite ACp singularity along the planform's
leading edge is included in the first integration. This produces
singular effects in the final integrand which become more and more
difficult to handle as downwash points approach the leading edge.
Incidentally, the same type of problem appears when use is made of
any other initial integration coordinate whose lines cross the
leading edge (see eg. Reference 3). All such methods are seen to
violate the requirement in (C).

Less obvious examples of the value of using (A), (B) and (C) are to
be found in the successful treatments of wings with control surfaces
reported in Reference 4, and wings with a leading edge crank as
reported in this document.



3.

THE TREATMENT OF PLANFORNMS WITH EDGE CRANKS

The direct application of the methods referred to in Section 2 to planforms
with edge cranks would seem obviously doomed to failure, since the choices
of coordinates and loading form made in (2) and (3) lead to logarithmically
infinite downwash (i.e. 'E) values on the planform along each streamwise

U
line through an edge crank.

With this in mind, some effort was made at B.A.C. to devise ways of
overcoming the rather special mathematical problems associated with a
lifting surface theory treatment of cranked planforms. In the following,
a brief time-history is presented of the relevant thought development
and measures adopted.

31 The Method Outlined in References 1 and 5

The first approach to be investigated involved the following simple
reasoning. For symmetric planfarms with edge cranks at the centre-
line (i.e. y = n = 0), physical requirements are that ACp(x,y) is
smoothly varying and dACp = O at y = O. In terms of the £,7

on
discontinuous across n = O. Thus, if a separated form for ACp is
required, one is led to postulate that a plausible modification to
(3% is gaired by simply replacing n by |n|. Obviously, in general,
the downwash contributions associated with the separate aji; terms
will contain logarithmic type singularities at n = 0. It 1is
therefore necessary that the coefficients of these singularities
reduce to zero when the contributions are added together. Analysis
was used to extract the analytic expressions which define the
downwash logarithmic singularity coefficients for each of the (i,j)
loading terms. Equating the sum of the coefficients to zero was
shown to be equivalent to requiring that the sidewash should be zero
along n = O; which is of course physically required. Thus it was
possible to infer that convergent solutions for the aj; might be found
by using a collocation procedure which incorporates the zero sidewash
condition at the wing centre-line. The main numerical problem lay in
implementing this condition effectively, since it could only be
imposed at a finite number of chordwise points. However, during the
same period of time a?tintion was tur?ed towards some previous, little
known work by Germain‘®’ and Legendre 7 on incompressible cross-flow
around an infinite angular sector. Since, through the concepts of
matched asymptotic expansions, the 'imer' problem of finding
the linearised theory cross-flow potential in the neighbourhood of
a cranked wing apex is exactly that investigated by Germain and
Legendre, it was decided to redirect effort onto a practical
assessment of their infinite sector worke.

coordimates of (2), these requirements infer tma:<8A02> must be
13

342 The Infinite Sector Solution and its Implications

Germain®®) showed that the problem of finding the linearised
perturbation velocity potential, ¢, around a plane infinite angular
sector inclined to a free stream of speed U at an angle & has a set



of eigensolutions of the form

X X

i¢ = Uarvi.fi (Z:ﬁ) i = 0(1)09

where r is the radius length from the apex given by

r® = x®+y%+2?

(see Figure 1).

Here, v and f; are the eigenvalues and eigenfunctions, respectively,
ard both are parametric functions of sector half angle Y.

Germain also showed that there is just one eigenvalue, say v,, in the
interval (0,1) for all y. This eigenvalue is such that
Vo =% for y= m (straight leading edge)
2

and vo=1 for y =0 (slender-body theary

approximation)
Following on from Germain's work, Legendre(7) introduced the
coordinates (r,6,7) such that

x = rcos @@, y = rsiné, z = r tanh 7
cosh 1 cosh 7

and showed that the £5 satisfy the equation

3% + 3%y + vi(vi+1) .f5 = 0 (6)

ar? 36° cosh®r
Then, through use of the conformal transformation

a +ib = log er+16 - e - iy ,
er+io _ e-iy

he obtained the first two terms in series expansions for v, and f,
which are valid for small Y. >

Using Legendre's work as a basis, analysis in Reference 8 shows
that, across the sector in z = 0, the potential difference associated
with the first eigenvalue problem may be written as

v i
bpeT ° ¥ E,(usy) (7)
Ta



where u = (cosf-cosy) so that 0 <u <1 for y> [6] >0
(1-cosycosé)

and where Eo(u;y) is a regular function of u.
Using (7), the associated linearised form for ACp may be written as

v -1 _t
&p =-2 . W pear ° LTu®, Fo(u;y) (8)

Ua e

where F_ is a regular function of u, the proportionality indicating
a degree of arbitrariness.

The form for given in (7) may be taken to represent the 'inmer'
solution associated with the apex neighbourhood of wings with a
leading edge crank of half angle y. This should closely approximate
the local variation of a 'fully matched' or 'overall planform'
solution for any finite wing containing a similar leading edge
crank. It was thought worthwhile to attempt to test the practical
validity of such a concept by using (7) in conjunction with the
‘regular planform' lifting surface theory method of Reference 2.

3,24 An attempt to gzain numerical evidence from which to assess
the practical value of the infinite sector solution

In Reference 9 a variety of convergence tests were carried out
using the method of Reference 2., One of these tests involved
the use of standard Multhopp-type collocation point distributions
in attempting to gain convergence on a constant chord wing

whose hyperbolic edges have a very small radius of curvature

at the centre line. The exercise showed that ACp convergence

is very slow as the number of collocation points is increased.
This ACp convergence problem was found to be related to a

large amplitude variation of downwash between collocation points,
especially near the wing centre line. This is indicative that,
in terms of the coordinates used in (3), the basic mathematical
model requires a rapid variation of ACp in the centre line
neighbourhood and, because of the smooth global variation of

the form assumed for AC, together with the locally sparse
spanwise distribution o? boundary conditions (i.e. collocation
stations), this requirement is only being met in a very
approximate fashion.

Based on this evidence and reasoning, it appeared clear that
the only effective way to improve overall convergence
characteristics on wings with local rapid changes of edge
curvature would be to modify the assumed form for AC.
However, it also seemed possible that, using the original
form for ACp, a local improvement of solution quality might
be gained by concentrating more boundary conditions in the
relevant neighbourhood. Such a local improvement could be
envisaged only at the expense of solution quality elsewhere
on the wing.



A test of the truth of this conjecture is reported in
Reference 9 where solutions for the aforementioned hyperbolic
edged wing,using full-span Multhopp collocation distributions
on each half wing,are discussed. This unusual type of
collocation distribution concentrates boundary conditions
near the centre line as well as near the tips. It was found
that =olution convergence characteristics near the centre
line are greatly improved but those further outboard are
drastically worsened.

This positive result led to calculating so-called 'Half span

Multhopp' solutions for the artificially rounded planform

illustrated in Figure 2a. In the centre line region plots

were made of log <_L_\Q> as a function of logr along lines of
Ua

constant 6, where r and 8 are measured with respect to a
displaced cartesian system with origin at the pseudo crank
apex (see Figure 2a). These plots are illustrated in Figure 3
and, through use of limited range least squares fitting
techniques, it was shown that the family of lines could be
represented by log <%9> = ¥ logr + logD(6;y)

a

or Op = r’ . D(6;y) foro0 < |6] <y

Ua

where y = ¥, ¥ = 0.816 and D(8;y) is the function illustrated

A
in Figure 4. The symmetric nature of D together with its
singular behaviour near @ = *y allowed it to be rewritten as

iy

D(8) = u® . E(u;y), where E is regular near 6 = ty,

Y

so that A = r . u? . E(uyy )
Ua

which is now in the infinite sector form given by (7); ¥ and
E can thus be thought of as approximations to v, and Eo»
respectively.

Work on the fundamental eigenvalue problem has been carrie
on by a number of different workers. Brown and Stewartson
derived asymptotic expansions for vo, valid near y = O and w,
and refined their estimate of v, for vy =T through a 2
N
numerical procedure. Starting from Legendre's equation for
the 4 (see (6)) and using finite difference techniques,
Rossiter'®?’ gained numerical solutions for the mixed
boundary value problems in terms of the unknown parameters
vie This formulation finally led to evaluating the vj through
solving a matrix eigenvalue problem.

10)



For y = m, the available best estimates for v, are:

4

Brown and Stewartson : 0.8447
Rossiter i 0.8445

and these are to be compared with the approximate value of
0.816 gained from the currently reparted work at B.A.C.

Recent work by Taylar“’) has provided an accurate expansion

for the function Fy(u;m) where F appears in the expression
Folism

for AC, given by (8). A comparison of values for this function

from Tgylor's expansion and from the B.A.C. results is

illustrated in Figure 5. The agreement is seen to be

remarkably good, especially considering the exploratory
nature of the B.A.C. work.

Thus for a finite planform with small radius of curvature
rounding of the leading edge (see Figure 2a), the evidence
strongly suggests that near the pseudo apex the behaviour of
the solution is of the geometrically related infinite sector
type. This correlation necessarily breaks down in the
immediate neighbourhood of the locally rounded edge.

As has already been inferred in Reference 9, this locally
valid infinite sector behaviour of A¢ may be expected near
all leading edge cranks irrespective of orientation of the
line of symmetry. A special case of a leading edge crank

is found at the forward tip corners of a wing with finite tip
chord. From sclutions using a standard Multhopp type of
collocation point distribution it has been found that A¢ is
indeed symmetric about the bisector of the tip corner angle
and that its local variation along lines of constant 6 (see
Figure 2b) may again be accurately represented by (7).

Having collected evidence to show that the infinite sector
solution may be regarded as a locally valid 'inner' solution
for finite wings, the problem remained of how to use this
information in formulating the lifting swrface theory problem
such that it converges to the required 'fully matched®
solution.

3.3 A Discussion of Different Approaches to Finding 'Fully Matched'
Linearised Solutions for Wings with a Leading Edge Centre-Section
Crank

In tackling lifting surface theory problems through the use of 'inner!
solution information it is sometimes possible to split the solution
process into the following three main steps.



Step one involves using explicit 'inner' solutions in choosing a
suitable non-arbitrary form for a 'partially matched' loading.
Step two uses information gained from step one in defining a
subsidiary lifting surface problem of a type already known to

be soluble. Finmally, a converged solution of this subsidiary
problem is combined with the loading chosen in step one to give

a '"fully matched! solution to the original problem. An example
of such a procedure is to be found in the treatment of wings with
control surfaces reported in Reference 4.

However, when attempting to use the infinite sector solution in
treating planforms with edge cranks this approach cannot be used

as it stands. A possible variation on the theme might be to
generalise the B.A.C. procedure already described in Section 3.2.1.
This would involve developing a lifting surface theory method
suitable for a converzent treatment of planforms with locally rapid
radius of curvature variations, and then using the arbitrariness in
the infinite sector form in (85 to attempt to effect a good matching
of solutions.

A more direct approach may be initiated through making a careful
choice of a suitably arbitrary representation for the 'fully matched'
loading. The necessary arbitrariness in the representation may be
thought of, in general, as requiring that the loading be expressed
in terms of a weighted sum of two-dimensional modes. This set of
modes may contain subsets each of which corresponds to a different
area of influence.

Through the 1lifting surface theory integral equation each loading
mode gives rise to a two-dimensional downwash mode whose shape
characteristics devend, not only on the chocen loading mode, but

also on the shape of the geometric area over which the double-
integral is evaluated. The degree of success in solving a specific
bourdary value problem thus depends on how convergent are combinations
of these downwash modes in fitting the required normal velocity
distribution over the specified planform area. If one considers only
the simple case of simulating smooth imposed downwash variations,
then due care should be exercised to ensure that the chosen set of
loading modes does not contain anomalous members which require
irregular or near irregular variations in their corresponding
downwash modes. Incidentally, it is often found convenient to

assume that the two-dimensional loading variations may be expressed
in terms of separated one-dimensional modes, as has been done in (3).

Such reasoning indicated that a number of choices of loading
representation might be suitable far treating the current problem.
These choices were divided into two main categories, each of which
will now be discussed.

3.3.1 Loading Representation by eans of Local or Regional Modes

The concept of local modes becomes useful if the planform
area is divided up into two or more adjoining regions anml it
is required to separately represent the loading over each region.
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The main problem associated with such a representation lies
in choosing the regional modes such that a sufficient degree
of continuity is maintained across region boundaries. If
this is not done adequately then the corresponding downwash
modes will exhibit singular variations at the boundaries amd
doubt is cast on the validity of any resulting loading
solutions. ZExamples of this type of representation are to
be found in the 'overlapped patching' techniques mentioned
in Reference 8, and in so-called 'panel methods'.

'Overlapped patching' was an attempt to satisfy continuity
requirement s by foreing modes associated with any one region
to termimate with polynomial type zeros along lines inside
the adjacent regions. Thus, modes associated with any two
ad jacent regions overlap in the neighbourhood of the common
region boundary, and the degree of continuity along the
terminal lines may be ad justed through choice of the order
of polynomial zeros. However, a one-dimensional numerical
exercise showed that this forced termination of the loading
modes introduces downwash mode variations which are extremely
rapid near the terminal points, thus leading to an ill-
conditioned problem.

On the other hand, 'panel methods' have been, and are being
successfully employed in treating non-linear problems through
the use of surface singularities. However, at the time that
the currently outlined work sequemce was in progress, it was
felt that linearised lifting surface theory required a degree
of loading continuity across nanel boundaries which might
make the application of panel methods to such problems
impracticable.

Loading Representation by Means of Global Modes

The term global modes is used to infer that the range of

applicability of such modes is restrieted only by the planform
boundary. Since such modes extend over the complete planform
it is prudent to couch them in terms of coordinates which have
been chosen to satisfy the requirem nts in (B) of Section 2.1.

In what follows, discussion will be restricted to the treatment
of planforms whose leading edges are cranked at the centreline
(n=0) and may be described by

x = xfn) = lnl.e(n?) (9)
where f may only be irregular at n=1, or
n o= n(x) = x.g(x) (10)

where g is regular. The planforms are also assumed to have
regular trailing edges of the form

x = x(n) = n(n?) . (11)



- 11 -

Examples of such planforms are illustrated in Figures 6a and
be At B.AJC., the development of ideas related to a choice
of global representation suitable for planforms of the above
type took place in two distinct phases, and these will now be
discussed.

Phase I: The Global Representation of Reference 8

As indicated in Section2:, an initial consideration
in treating all lifting surface theory problems is
concerned with the choice of coordinates with which
to worke. Although due attention was paid to the
requirements in %g) of Section2), it was thought
advantageous to also bear in mind the conical nature
of the loading in the neighbourhood of the crank
apex. This resulted in advocating the use of the
coordinates { and y defined by

¢
and Y

ﬂ/ﬂ&
x/xt ’

where 71, and x4 are of the forms given in (10) and
(11), respectively.

In the {,x plane, the planform thus becomes the
rectangle given by =1 < { < 1, 0 < ¥ < 1. Typical
coordinate lines are illustrated in Figure 6a amd

the pseudo conical form of those for constant { is
clearly seen. Using these coordinates and the 'imer'
solution form given in (8), it was thought that a
suitable 'fully matched' global representation for
the loading could be written as

v -1 oo o
acp=x° . Ll:g j{: j{: ajy Ty (2x-1)T2;(¢)
1-¢®

i=0 j=0

where Tp(u) is a Chebyshev polynomial of order n
with -1 <u < 1.

Also, in an attempt to satisfy the requirement stated
in (C) of Section23, it was decided to integrate
initially with respect to y along lines of (.

However, as may be seen from Figure 6a, there exists

a region forward of the trailing edge in which the

form of the { coordinate lines is such that they tend

to become parallel to lines of constant n This property
of the { coordinate lines, together with the non-linear
relation giving n in terms of { and y were found to
introduce severe numerical integration problems and
inaccuracies for the following reasons.
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The kernel function of the integral equation contains
an improper singularity having the cartesian form
(n-ns§". An initial integration with respect to x
thus produces singular effects in the { plane which
are very difficult to identify in an analytic fashion.
This difficulty is most severe for integration along
lines which become nearly parallel to the stream
direction in the vicinity of n = ng. The consequence
of not having an accurate analytic description of the
{ plane singularities is that it is impossible to
gain accurate downwash values from the second
integration. It was thus decided that the approach
was impracticable and the phase of work was therefore
discontinued.

Phase 2: The Global Representation used in Reference 13

Work during Phase I showed that severe numerical
integration difficulties were introduced by using
coordinates which pandered to the conical form of

the 'inner' solution. Most of these difficulties
stemmed from transforming the improper cartesian
singularity in the kernel function, and this therefore
suggested that 7n should be selected as one integration
coordinate. Having mde this choice an attempt was
then made to choose a second coordinate subject to the
requirements of (B) in Section 2.1.

Referring to (2), the coordinate £, which is introduced
for regular planforms, is seen to satisfy the
requirements of (B) for cranked planforms except

that the coordinate lines are cranked also. Thus

for cranked planforms, from the definition

x = xe(n) + {xt(n) - x&(n)i ¢

the lines of constant £ are seen to possess dis-
continuous slope with respect to n corresponding to
the discontinuous slope of x&(n). However, for
planforms with leading and trailing edges of the
form of (9) and (11), respectively, an analogous
coordimate to that of (2) may be defined by

£ = { x* - xy(n) } , (12)
xg(n)-x5(n)

lines of constant & being given by

x = [exm+ (- X ] - (13)
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Using the definitions (9) and (11), these lines
are seen to be smooth and regular as required by
(B), except of course the line carresponding to
¢ = O which describes the cranked leading edge.
Coordinate lines from (13) are illustrated in
Figure 6b.

Using the coordinates £,n (henceforth ¢ will be
defined by (12)) the required singular variations

of the loading representation are simply constructed.
Referring to (8), the conical apex singularity form
is applicable to straight leading edges; however it
may be applied to a more general leading edge shape
by rewriting the variable u as follows.

From (7) u = (cosO—cosx) ,

1-cosfcosy
and writing coad = X » cosy= x, R
x¥y? /x:-ryz‘

there results, after manipulation,

u = < x’-xz > >
2,.2

TX + X, V X4y

which reduces to the original form if x, is linear.
The required trailing edge singularity, i.e. {xt-xgz, ,
may be written without loss of generality as {xf —x°}]2
and that at the tip as {1-n*]2. Thus, using the
*imner' solution form in (8), the singular content

of a fully matched loading representation may be
written as

v _-1 1 1 1
g .{rx . x, /x2+ya'}2. {x:_xa;a [1-7%]7 .
x’-xz

Using this expression, and noting that

&) - (®)

a fully mtched loading representation takes the
general form




+
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v » 1
o ) 'y 1 3 \
&y =T frx + xey&2+y’}2 \[1;{ v 1-n? , acy

where ACY (&,n) is a regular function of £ and 7.

The simplest logical approximation to AC§ may be

written as
-1 m=1 i as
i=o j=0

However, since the coordinates &,n no longer take
account of the conical form of the regular part of
the 'imer' solution, i.e. of Fy(u,y), it was
decided to assess the near apex capabilities of

this simple ACE form before attempting to implement
its use in the double integral. The resulting
fitting exercise showed conclusively that only
forms for AC¥ which explicitly include the function
F, could be regarded as suitable. Two such possible
forms are

(n—1) (m—1) . .
ack aFo(“’Y)"Z Z by & 0N, (142)

i=0 j=0

and
(n—1) (m-1)

» Fo(u,y) j{: :E: o ; éi n? o, (14Db)
i=0 j=0

however, it will be shown later that the additive
representation in (14a) is decidedly inferior to
the multiplicative form in (414b).

8

COMMENTS ON THE TREATMENT OF CROPPED DELTA PLANFORMS
REPORTED IN REFERENCE 4

In order to assess the practicality of the coordinate system and loading
representation introduced in Section 3.3.2.2, it was decided to apply
these to a simple class of planforms so that results could be obtained
within a reasonably short timescale. The planforms chosen constitute
the cropped delta class and are defined by,

a |nl

x (n)

xt(n) cp (a constant)
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where c = ( a ) ’ with A the taper ratio; (with no loss of
R 1=A

generality unit semispan is assumed).

From (12) and (13),

¢ = (_x_____a_) , x = {a%n® + a(mel (15)
a(n)
where a(n) = (c; - a®p?) ,

and the loading representation is,

V.-

1 \ 3 N -
&, = T ° frx + an®/1+a®}2 \[1%§ V1-n? oy,

with r = (x®+9?).

Chebyshev polynomials are introduced into the representation for AC§, 80
that it is rewritten as

acs = 7 ( )%’f)%) (26-1) T, () (16a)
5 = FO u,y aj j Ti 1 T3j n) . 1
1=0 =

In order to investigate the effect of the function F,(u,y), a representation
was also considered in which the function was omitted, i.e.

i (n=1) (m~1)

ack :E: j{: a; 3 Ti(2§-1) Tzd(n) (16b)
i=0 =0

The alternative representations in (16a) and (16b) are referred to as
'including F! and 'excluding F', respectively.

Introducing (15) into (1) and noting that

dx dy = dxdn = d(pagedn ,

2x

the basic incompressible equation becomes,




with
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X o= (%) 5 R o= [Gex)?+ () am

& as defined in (45).

Introdueing the loading representation, W is defined in terms of

dowrwash modes through U
(6.0m.) o) =) (6.7.)
¥ (& ,n = =1 Y\ asq Wi Y ’
g or’'s ETe JTLJ \epalig
$=0 j=0

where the downwash modes are defined by,

with

Wy (Gun) = ' 2,(261) [1=8 [1 Tag()R(e,n)V1-n® (1-X) ag ag
f; ¢ fl1 { R} (n-n,)
-1 ]

Kem) = 0 frx+ anhea® IF a(n) F(u) .

X

Far the AC§ representation in (16b), Fo(u,y) is omitted from (19).

4o

Evaluation of the Downwash Modes

The expression (18) for the downwash modes is analogous to the
corresponding expression (5) for regular planforms, so that the
techniques developed for the latter (Reference 2) can be extended
to apply to the present case. Particular complications arise in
the present case mainly due to the presence of the term K(&,7n) in
the spanwise integration.

K(é,m) is infinite at the apex (¢ = 7 = 0), and in the neighbourhood
of the centreline (7 = 0) exhibits rapid variations for & small;

as illustrated in Figure 7. Also, because of the presence of

K(&,n) it is in general impossible to perform an analytic evaluation
of the finite part integral.

A computer program has been written in IBM System/360 Fortran IV

to evaluate the downwash modes from (%18), using developments of

the techniques of Reference 2. In order to obtain results within

a short timescale, the program was not written to cover all parametric
cases. In particular, for 7, either at the centreline or in its
immediate neighbourhood it was found that special integration
techniques are required in order to maintain the accuracy of spanwise
integrations and these could not be incorporated within the timescale.
In the chordwise integration a similar problem was found for &,
approaching the leading edge.

(17)

,» (18)

(19)
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Thus the program that evaluates the downwash modes is restricted in
that &, and/or n, cannot be positioned arbitrarily close to zero.
However, this dii not prevent collocation solutions from being
obtained since one is not forced to choose collocation points in
these positions. In practice, the downwash modes have been
evaluated for £, g = O0.01, with no apparent loss of accuracy.

Numerical Results

Numerical results have been obtained for a particular flatplate
cropped delta planform with 45° leading edge sweep and taper ratio
1/7, (Aspect Ratio 3), at unit incidence (W/U = 1).

For this 1e§ding edge sweep, the value of vy was taken from
as

Rossiter(1?

v, = 0.8145 (see also Section 3.2.1)

For the function Fo(u,y), the expansion due to Taylor(*3) was used.

This function, whidh is plotted in Figure 5 against the variable W/x,

is simply approximated in terms of the variable u by the quadratic,
F(u) = Fo(uag) = (0.7646 + 0.2555u = 0.0201u®) .

Fo 197

Le241 Collocation Distributions for Loading Solutions

Loading solutions are obtained by solving the relation (17)
for the fin unknowns ajj by specifying the downwash ¥ (fr’ns)
U

at mn collocation points (& ,n.). For a loading representation
that contains the form (14a), the relation (17) will be
slightly modified, however this will be considered later.

The collocation distributions chosen were of the standard
Multhopp type in the new coordinates. In the spanwise sense
only even distributions were used, so that there is not a
collocation station at n_ = O. In the chordwise sense, since
the loading is defined in terms of polynomials in &, the
collocation distribution is chosen as a Multhopp distribution

in fro

Thus the spanwise distribution is,

ng = cos (_sw , S=1,m .
2m+1
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For the chordwise distribution, if

§r = 1 1 - cos /2r7w s r=1,n ,
2 2n+1
then the distribution is,
£r=§r  J !‘=1,n .

A usual chordwise distribution, as used for regular planforms,
would be in terms of a percentage chord variable, i.e. if,

x = x=x,n) , (20)
c(n)

then the normal distribution would be,

Thus the collocation distribution used is, from (15),

1
- 2,2 ¥3
x., = ta*n2+a(n) (1%,

whereas the usual distribution, as applied to the cropped
delta, would be,

x, = laln| +o(n)l] -

The two distributions are compared in Figure 8 for

(2@,n) = (14,5).

In what follows the order of a loading solution is written in terms
of the mumber of collocation stations on the full span, i.e.

2m = m spanwise, and n chordwise. Thus the arder of solution

is denoted by (m,n).

For comparison purposes, some solutions have also been
obtained using the regular planform programs. For these
solutions, the planform is rounded inboard of |n| = 0.2,
and the chordwise collocation distribution is of the

usual type, i.e. ir = §r as above.
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4422 Loading Solutions

Table 1 compares the ACp distributions obtained from the
cranked planform program solutions, both 'including F' and
‘exeluding F', and the regular planform program solution.

The solutions are for (m,n) = (16,5) and results are given
along six spanwise stations at chordwise stations X defined
by (20). At n = O, the regular planform values camnot be
strictly compared since the X stations correspond to different
points in space due to the planform rounding, however the
values are included for completeness. For p 2 0.2, a strict
comparison is valid.

Away from n = 0, the cranked planform solutions and regular
planform solutions are in quite good agreement. In particular,
the cranked planform solution 'including F' is closer to the
regular planform solution than the cranked planform solution
texcluding F'. It should be noted that (m,n) = (16,5) does
not represent a converged solution for any of the three
loading forms, so that exact agreement is not expected.

At n = 0, the two cranked planform solutions are considerably
different. Figure 9 compares the convergence with increasing
m of the two cranked planform solutions at = O. The two
(24,5) solutions are compared in Figure 10. Figure 9 indicates
that by inciuding the special function in the loading
representation, the convergence of the solution is greatly
improved. Accepting the (24,5) solution 'including F' to

be close to convergence, then the solution 'excluding F' is
clearly unsatisfactory. It can be inferred that a prohibitive
number of terms would be required to achieve convergence for
this latter solution. This inference can also be made by
considering the variation of the downwash modes.

Figures 11 and 12 illustrate the ng variation of the first
few sparwise downwash modes along the constant & line,

&r = 0.0794, which corresponds to the first chordwise
collocation station for n = 5. From (17) the required
downwash is to be represented by a linear combination of
downwash modes. Referring to Figure 411, for the loading
representation 'excluding F', the rapid variation of the
modes near 7g = O indicate that these modes are unsuitable
for the representation of smooth dowmwash variations. In
obtaining collocation solutions, as the number of spanwise
loading terms is increased the most inboard ng collocation
station is positioned closer to the centreline and hence the
effect of the local rapid variations is more apparent.

Referring to Figure 12, the benefit of including the special
function in the loading representation is well illustrated.

The downwash modes for the representation 'including F' vary
smoothly in the centreline region and hence are well suited

for the representation of smooth dowrnwash variations. It is

to be noted that both loading representations result in rapid
variations in the downwash modes in the tip region, i.e. ng near
1, thus illustrating the inadequacy of the assumed loading
representations near the leading edge tip corner.
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Consideration of the downwash modes also indicates the
unsuitability of the loading form in (’4a), since that
representation would require the downwash to be represented
by a combination of the Wy, mode of Figure 12 amd the
unsatisfactory modes of Figure 11.

The convergence with increasing chordwise terms of 'including F!
solutions is illustrated in Table 2, where AC, distributions

at six spanwise stations are presented far (m,n) = (14,4),
(14,5), (14,8), (14,9). The distributions at 5 = O are also
plotted in Figure 13.

Le2.3 Downwash Interpolation

The previous section describes various loading solutions
obtained through satisfying (17) at fn collocation stations
on the half planform. Substituting the loading solutions
back into (17), the downwash can be evaluated at any point
on the planform. (With the present program this excepts
the region ¢&., ng < €, with € = 0.01, approximately.)
Evaluation of the downwash at points other than the
collocation points used to obtain the loading solution, is
here referred to as downwash interpolation. Ideally, for
the planform considered, the downwash should be unity at
all points on the planform, so that the discrepancy of the
interpolated dowmwash from unity is a measure of the accuracy
of a loading solution.

In the previous section, the advantage of including the

special function in the loading representation was demonstrated.
This is further illustrated in this section by comparing
dowrwash interpolations.

Figure 14 compares the chordwise downwash interpolation at
the first spanwise collocation station, ng = 0.1045, of the
(14,5) solutions. On the evidence of this figure there is
little to choose between the two solutions. Over most of
the range the discrepancies from unity are less than 17, but
larger discrepancies are inferred at the leading edge.

The remainder of the downwash interpolations are far the (76,5)
solutions. The various interpolation lines are shown in
Figure 15.

Figure 16 compares the spanwise downwash interpolation at the
first chordwise collocation station, &, = 0.0794. The
advantage of including the special function is clearly
illustrated by the improved variation in the centrelire region.
Also included in Figure 16 is the corresponding downwash
interpolation from the regular planform solution, for
comparison. The rapid variation in the neighbourhood of

g = 1 is an indication of the effect of the inadequacy of

the loading representation in the leading edge tip cormer
region, as mentioned in the previous section.
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Figure 17 compares the spanwise downwash interpolation at

a chordwise collocation station nearer the trailing edge,

€yr = 0.5712. Surprisingly perhaps, the solution ‘excluding F'
again shows a large discrepancy near 7ng = O.

Figure 18 compares the chordwise downwash interpolation at
the station ng = 0.01 and it is seen that the solution
'excluding F' shows a large discrevancy over most of the
range.

Finally, Figure 19 compares the spanwise downwash interpolation
at a station close to the leading edge i.e. ¢&p = 0.01. Again,
the advantage of 'including F' is apparent in the centreline
region but the effect of the tip corner loading deficiency is
now more obvious.

CONCLUDING REMARKS

An account has been given of a line of research which reveals a gradual
development of ideas that, in general, connect the successful treatments
of 'regular' and 'irregular' planforms. The 'irregular' planforms
considered were restricted to the cropped delta type, but the principles
which guided the derivation and assessment of the method are of general
value. The most important of these principles may be summarised by the
following statements.

(i) Determine the analytic form of special loading variations required
by the imposed boundary conditions (see (A) of Section 2.1).

(ii) Choose coordimates suitable for integration (see (B) and (C) of
Section 2.1).

(iii) Using (i) and (ii) select a modal form for the fully matched
loading which yields a set of downwash modes which are compatible
in the sense of Section 3.3.

Using (i), the concept of matched asymptotic expansions led to recognising
the practical usefulness of the infinite sector solutions, and this was
verified through the work described in Section 3.2.1. Implications of
(ii) eventually led to the choice of integration coordinates made in
Section 3.3.2.2 and (iii) helped in judging the relative merits of the
fully matched loading representations used in Section 4.

Using the experience gained during the currently reviewed work program,
it is foreseen that convergent treatments are possible for symmetric
planforms having both their leading and trailing edges cranked at the
centre section. Also, an improvement of solution quality in the tip
regions is envisaged.
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Coefficients used in defining loading representations
Pressure coefficient

Local chord

Root chord value i.e. c¢p = c(0)

Function defined in equation (15)

Function used in equation (8) to define the infinite sector form
for ACP

Eigenfunctions associated with the infinite sector problenm

Function defined in equation (19)
Free stream Mach number

In Section 4 omwards refers to the total number (even) of
spanwise collocation stations

The number of spamwise collocation stations on the half span
ioeo f!-! = m

2

The number of chordwise collocation points along each spanwise
collocation station

As defined in equation (5)

Radial distance from local apex origin. Also, subscript designating
a collocation point coordinate.

Semi span of the planform. Also, subscript designating a collocation
point coordimte.

Chebyshev polynomial of arder n

Free stream speed
Variable as defined in equation (7)

Vertical perturbation velocity
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Symbols Contde.

ij

XsYs2

Downwash modes

As defined in equation (5)
Right handed set of cartesian coordinates

x-coordimte of the planform's leading edge (see e.g. equation (9))
x-coordinate of the planforzs trailing edge (see e.g. equation (11))

Incidence angle of the free stream
Y 1-u3
Half angle of infinite sector or a planform edge crank

Operator giving difference between upper and lower surface planform
values (see e.g. ACP)

Non-dimensional coordinate defined in Section 3.3.2.1

I As defired in equation (2)
s

n-coordimte of the planform's leading edge (see e.g. eqution (10))

Angle measured from bisector of an infinite sector or a planform
edge crank

Eigenvalues associated with the infinite sector problem

Non-dimensional cocrdinates defined by equation (2) for regular
planforms, and by equation (412) for planforms with a leading edge
crank !

Perturbation velocity potential

Eigensolutions associated with the infinite sector problem

Non-~dimensional coordinate defined in Section 3.3.2.1
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Table 1 Comparison of AC, Distributions from
Solutions with_ﬁ;ln) = (146,5) for
Cropped Delta Planform
AQP at n = 0.0
x 'Excluding F! 'Including F' 'Regular Planform'
005 5.7897 Tel719 15.7290
.025 42941 55355 73498
05 37725 4..8463 5elhibly
o1 343047 4.1878 4.1387
o2 2.8541 Sehli2h 34737
o3 2.5472 2.8781 2.6518
ol 2.2543 2.3998 2.2532
5 149425 1.9997 1.9081
6 106147 1.6625 1.5910
7 1.2909 1.3521 1.2870
.8 0.9819 1.0272 0.9812
.9 0.6537 0.6647 0.6460
«35 04429 0.4543 0.4398
AQP at p = 0.2
x '*Excluding F! 'Including F! 'Regular Planform!

.005 20,6434 21.0094 20,6006
.025 9.2275 9.5095 93351
.05 6.5271 6.8102 6.6940
o1 L6264 4..8997 4.8319
o2 3.2797 3e479% 3.4697
o3 2.6453 2.7630 2.7933
ok 242104 2.2768 2,3220
5 1.8531 1.9040 1.9401
.6 1.5327 1.5869 1.6038
o7 1.2326 1.2846 1.2901
8 0.9386 0.9711 0.9806
<9 0.6203 0.6330 0.6458
<95 0.4229 0.4357 0.4405
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Table 1 (Continued) Comparison of AC, Distributions from
Solutions with (m,n) = (46,5) for
Cropped Delta Planform
AEP at p = 0.

X 'Excluding F! 'Including F' 'Regular Planform'
.005 26.4373 27.1839 27 3460
.025 11,7634 12,1091 12,1569
.05 8.2622 8.5135 8.5283
o1 5.7549 5.9353 59252
o2 3.9164 4.0348 440132
3 3.0347 3.1189 3.1008
oy 2.4541 2.5153 2.5035
5 2.0024 2.0553 2.0485
.6 1.6271 1.6722 1.6684
o7 1.2941 1.3305 1.3275
.8 0.9783 1.0040 1.0016
9 0.6425 0.6582 046567
«95 0.4368 04485 Oelh75

Mpat n = 0.6

x *Excluding F' 'Including F' 'Regular Planform'
«005 32.4925 33.1170 33.0318
.025 © 14,3910 14,6700 14..6369
«05 10.0496 10.2461 10.2273
o1 6.9210 7.0577 7.0507
o2 L6117 47033 4. 7048
o3 35099 3.5797 3.5820
ol 2.7936 2.8496 2.8497
5 2.2541 2,3000 2.2975
.6 1.8098 1.8472 1.8440
o7 1.4202 1.4498 1.4478
-8 1.0582 1.0801 1.0802
<9 0.6883 0.7026 0,7032
«95 0.4688 0.4788 0.4785
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Table 1 (Continued) Comparison of AC_ Distributions from
Solutions with;igln) = (16,5) for
Cropped Delta Planform
ACP atn = 0.8

X 'Excluding F! 'Including F! 'Regular Planform'
«005 39.6307 40.2038 39.9057
+025 174545 17.7074 17.5980
«05 12.1074 12.2831 12,2269
o1 8.2342 8.3538 83421
o2 5.3648 54429 54623
3 3.9989 4.0579 4.0802
ol 31157 3.1627 3.1768
5 2.4554 2.4936 2,4980
.6 1.9198 1.9505 1.9493
ol 14642 1.4880 1.4868
.8 1.0627 1.0801 1.0818
<9 0.6814 0.6927 0.6949
95 044650 04730 04734

& atn = 0.9

x 'Excluding F' 'Including F! 'Regular Planform!'
.005 42,0174 42,5743 42.8826
.025 1846593 18.9047 19.0143
.05 - 13.0348 13.2054 13.2562
ol 8.9031 9.0199 9.0182
o2 5.6655 57419 5.7033
o3 4.0009 4.0563 4.0191
o 2.9069 2.9475 2.9268
5 2.1363 2.1659 2.1613
.6 1.5827 1.6047 1.6069
o7 1.1757 1.1928 1.1919
.8 0.8524 0.8657 0.8590
9 0.5449 0.5535 0.5492
+95 0.3645 0.3699 0.3741
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Table 2 Comparison of AC, Distributions from 'Ineluding F'
Solutions with (m,n) = (4h,0), (14,5), (14,8), (14,9)
for Cropped Delta Planform
A, at 7 = 0.0

x (14,4) (14,5) (14,8) (14,9)
005 T o4409 7.5722 7.7835 7.8198
025 5.5136 5.6091 5.7603 5.7855
.05 4.8298 449087 5.0267 560446
o 4 .1827 L2349 42947 42949
2 3.4631 3.4609 5409, 343949
o3 2.9151 2.8718 2.7978 2.7948
o4 2.4307 2.3805 243636 23714
5 2.0045 1.9823 2.0099 2.0080
.6 1.6411 146564 1.6685 1.6651
7 1.3298 1.3556 1.3432 1.3475
8 1.0331 1.0301 1.0252 1.0219
.9 0.6830 0.6627 0.6690 0.6722
+95 0.4526 04543 0.4583 0.4564

patn = 0.2

x (1454) (14,5) (12,8) (14,9)
».005 20.5974 20,770, 24,0038 24.0382
.025 9.3504 9.4160 9.4831 9.4889
.05 6.7221 6.7555 6.7726 6.7697
o1 48750 4 +.8790 4 .8548 L8472
o2 345133 34910 34552 34540
3 2.8142 2.7873 2.7770 2.7808
A 2.3158 2.2995 2.3103 243104
) 1.9158 1.9163 1.9258 1.9234
.6 1.5764 1.5879 1.5860 1.5872
7 1.2724 1.2808 1.2759 1.2767
.8 0.9753 0.9705 0.9700 0.9686
.9 0.6426 0.6353 0.6378 0.6391
.95 0.4335 0.4354 0.4366 0.4354
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Table 2 (Continued)
Comparison of AC. Distributions from 'Including F!

Solutions with (m,n) = (14,4), (14,5), (14,8), (14,9)

for Cropped Delta Planform
ACP at n = O-_lj:

x (14,4) (14,5) (14,8) (14,9)
«005 274074 27.5175 27.5455 2745403
.025 12.1965 12.2282 12.2359 12.2370
.05 8.5641 8.5724 845742 8.5767
o1 5.9552 5.9450 5.9428 5.9448
o2 4.0277 4.0101 44,0085 4..0083
3 3.1001 3.0902 3.0928 3.0926
A 2.4941 2.4961 2.5010 2.5015
5 2.0390 240492 2.0519 2.0521
6 1.6655 1.6753 1.6734 1.6731
o7 1.3338 143349 1.3316 1.3318
.8 1.0120 1.0040 1.0047 1.0048
.9 0.6607 0.6567 0.6590 0.6588
«95 0.44155 0.44.96 0.4492 0.4494

_QE]; at n= 0.6

x (1,4 ) (14,5) (14,8) (14,9)
.005 32.8129 32,7854 32,8101 32.8161
.025 14..5662 14..5630 14..5665 14,5658
.05 10.1986 10.2030 10.2016 10.2000
.1 7.0548 7.0640 7.0621 7.0618
2 4..7284 447354 4.7369 47379
.3 3.6064 3.6074 346085 3.6084
o 2.8680 2.8641 2.8635 2.8632
5 2.3076 2.3025 2.3022 2.3026
6 1.8464 1.8439 1.8453 1.8456
o7 14452 14472 1.4487 1448
.8 1.0768 1.0813 1.0806 1.0807
.9 0.7032 0.7039 0.7032 0.7033
.95 0.4807 0.4777 0.4783 0.4781




Tatle 2 (Continued)

Comparison of AC_ Distributions from 'Incliuding I

Solutions with (m,n) = (4,4}, (14,5), (14,8), (14,9)

for Cropped Delta Flarnform

AC_ at = 0.8

x (14 54) (14,5) (14,8) (14,9)
.005 39.8969 39.9793 40.0416 40,0410
.025 17.6252 17.6408 176463 17.6432
.05 12.2653 12.2616 12.2519 12.2535
o1 8.3810 8.3657 83517 8.3518
o2 5.4803 5.4687 5.4678 5.L676
o3 4,078 40776 4.0861 4 0668
o 341657 3.4726 3.1791 3.1793
5 24375 2.4958 2.4946 2.4943
6 1.9450 149491 1.9436 1.9437
.7 1.4889 1.4868 1.4845 1.4849
.8 1.0856 1.0804 1.0840 1.0833
.9 0.6940 0.6929 0.56951 0.5952
.95 044693 0.4723 044707 04709

AC_ at n = C.9

x (1450 (14,5) (14,8) (12,9)
.005 43,0869 42.7830 42.8137 42.8166
.025 18,9992 18,9614 1849552 1569542
.05 13.1801 13.2186 13.2081 13,2075
o1 8.9256 9.0024 9.0000 9.0008
o2 5.6730 5.7161 5.72214 5.722)
.3 4+.0500 I + 0402 440396 4 .0390
A 2.98C¢ 2.9426 249385 2.9337
.5 2.2023 2.1680 2.1658 241695
.6 1.6160 1.6086 1.6146 1.6
.7 1.1730 1.41948 1.4978 1.1974
.8 0.8366 0.865/ 0.3610 0.8614
<9 0.5540 0.5534 0.5509 0.5507
+95 0.3925 0.3709 0.3738 0.3735
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FIG.2A. ROUNDED PLANFORM USED TO ILLUSTRATE CRANK
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FIG.2B. (r,e) COORDINATES FOR LEADING EDGE -TIP
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FIG. 4. THE FUNCTION D(6.y) FOR y=7/4
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FIG.6A. ILLUSTRATION OF £, x COORDINATES.
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FIG.8. COMPARISON OF COLLOCATION DISTRIBUTIONS

FOR CROPPED DELTA. (m,n) =(14,5).
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FIG.9. COMPARISON OF CONVERGENCE ACp AT 1=0 WITH
INCREASING SPANWISE TERMS
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FIG.10. COMPARISON OF ACp DISTRIBUTION AT n=0




sk ¢=0-0794

T Wo1 Wo2

Woo

-10 | | L. 1 t 1 L 1 |

0-0 0 0-2 03 0-4 05 0-6 0-7 08 0-9 1-0

s —
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FIG.13. CONVERGENCE OF ACp AT n=0 WITH INCREASING
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Hewitt, B.L. and Kellaway, W.

DEVELOPMENTS IN THE LIFTING SURFACE THEORY
TREATMENT OF SYMMETRIC PLANFORMS WITH A
LEADING EDGE CRANK IN SUBSONIC FLOW

An attempt has been made to develop a subsonic lifting
surface theory method capable of calculating convergent
loading solutions for symmetric planforms with a leading
edge crank. This document traces the time history of
thought and method development at B.A.C. (Military
Aircraft Division) which connects the successful
treatments of regular and cropped delta type planforms
that are reported in References 1 and 13, respectively.
Finally, some mention is made of possible future
generalisations of the basic cranked planform method.
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