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SUMMARY 

During the last few years conformal mapping has successfully been applied 
to obtain systems of coordinates suitable for the numerical calculation of the 
inviscid compressible flow past a prescribed profile in two dimensions. Here 

tensor analysis is used to show that in three-dimensional flow problems certain 
integrability conditions can be used to calculate three families of coordinate 
surfaces, one of which contains the surface of a given body shape. They are 
efficient for numerical work, i.e. they define a 'smooth' system of grid points 
which are closely spaced near the body and are sparse at large distance from 
the body. Two cases are considered in some detail, one suitable for wings of 
finite aspect ratio and one suitable for swept wings of infinite aspect ratio. 
The latter case is also of mathematical interest, since the theory of complex 
functions can be used to calculate the coordinate surfaces for a given body 
shape. 
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1 INTRODUCTION 

In recent years it has become apparent that in aircraft design a great 

deal more information is required on the effects of compressibility on the air- 

flow past wings and wing body combinations than can be obtained from linearised 

theory. Transonic small perturbation theory has helped to fill in the gap of 

theoretical knowledge, in particular since Murman and Cole', Krupp and Murman2, 

Steger and Lomax have written computer programs for two-dimensional flow. 

These have recently been extended to cover three-dimensional flows past wings 

at near sonic speeds (Lomax 
4 

, Bailey and Steger5). 

On the other hand it has always been highly desirable to obtain solutions 

of the complete equations of motion for compressible inviscid flow. The method 

by Sells' for two-dimensional subsonic flow and the method by Garabedian7, which 

covers also enclosed supersonic systems in a two-dimensional flow are both based 

on the solution of difference equations in a suitable grid which is obtained by 

conformal mapping of the exterior of the profile contour on the exterior (or 

interior) of a circle. The lines of constant radius and constant peripheral 

angle in the circle plane form a suitable system of coordinates in which a 

convenient grid can be defined in which mesh size is totally related to the 

required accuracy of information and also infinity can be treated within a finite 

working space. For elliptic problems methods based on variational techniques 

(see review by H. Rasmussen8) have been used and the use of finite element 

techniques - which has proved successful in structural problems - has been 

advocated in fluid dynamic problems (Argyris'). Recently a fairly comprehensive 

review of this field by Yoshihara 10 has appeared. 

In order to obtain results of reasonable accuracy it appears to be 

advantageous to use a grid in the difference sceheme in which the body surface 

is a coordinate surface. This has been done by Sells' and Garabedian7 in their 

difference equations and also by Rasmussen and Heys I1 in their treatment of the 

variational approach by difference methods. So the application of conformal 

mapping to obtain suitable grids for two-dimensional problems had several 

advantages, namely (1) the treatment of infinity was simplified, (2) the treat- 

ment of the boundary condition in the body surface was simplified and improved 

in accuracy and (3) the mesh size in the field was easily adjusted to 

requirements of accuracy and definition. 

This Report is concerned with the question whether some, if not most, of 

these points can also be achieved in three-dimensional flow problems. Tensor 
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analysis is a useful tool in trying to answer this question, since it provides 

a fairly simple description of all possible systems of coordinates which can be 

used in a three-dimensional Cartesian space 12,13 . In section 2 a general system 

of coordinates is discussed in terms of its associated base vectors and normal 

vectors and a number of useful relations (for co-variant and contra-variant 

components of a vector) is given. In section 3 the conservation equations for 
14 mass, momentum and energy for inviscid flow are written down in general 

vector notation, 

In order to simplify the description of the directions of the normal base 

vectors and normal vectors in relation to the Cartesian coordinates, three Euler 

angles are introduced in section 4.2. They are normally used to describe the 

motion of a rigid body in three-dimensional space. Here they help to simplify 

the geometric relations. 

In order to define a general system of coordinates certain integrability 

conditions have to be satisfied. They are discussed in section 4.1. It appears 

that in general six of the nine integrability conditions in terms of the three 

Euler angles, the lengths of the three base vectors and the three angles between 

the three base vectors are used to obtain the components of the fundamental 

metric tensor. The three degrees of freedom which exist in this system can in 

many cases be used to obtain a completely orthogonal system. The remaining 

three integrability conditions are used to establish a coordinate system on the 

body surface. This system of coordinates would be appropriate for the calcula- 

tion of a compressible flow past a finite wing or a wing-body combination (Case I, 

section 2). A system consisting of ellipsoids and two families of hyperboloids 

(Lamb15) is a well-known example. 

Another interesting case (Case II, section 5) arises when one tries to 

establish a system of coordinates, in which one of the Cartesian coordinate 

planes is retained and only two new families of coordinate surfaces are defined. 

This system is useful for the investigation of the flow past a semi-infinite 

body, 
16 as was done by Walkden , for the calculation of supersonic flows. Another 

interesting example is a wing of infinite aspect ratio (section 5) on which 

geometric properties (e.g. sweep) vary along its span. Here one has to satisfy 

six integrability conditions of which two are to be satisfied on the body 

(section 5.1). The two remaining degrees of freedom can be used to define 

conformal mapping within the planes which are retained as coordinate surfaces, 

with the mapping dependent on this first variable as a parameter (section 5.2). 



5 

Here the calculation of the coordinates for a given infinite body shape can be 

reduced to the computation of two analytic functions of a complex variable. 

In both these cases the coordinates can be calculated first and the 

conservation equations can be solved as a second step. If one chooses stream- 

surfaces as coordinate surfaces (e.g. Walkden") the integrability conditions 

must be solved together with the conservation equations. 

A number of appendices give some more details of the analysis in the main 

part of the Report. They are meant to help the reader who has less experience 

in tensor analysis. 

2 GENERAL SYSTEMS OF COORDINATES 

Consider a transformation of the form 

i . 

X = x1(E1,E2,E3) ; i = 1,2,3 

and its inverse 

2 = &x1 ,x2,x3) ; i = 1,2,3 , 

(2-1) 

(2-2) 

i 
where x , i = 1,2,3, refer to orthogonal Cartesian coordinates, and 

Si, i = 1,2,3 denote general coordinates 12,13 . 

The Jacobians of the transformation are denoted respectively by . 
J z and Jk G g 

axJ 

where JJ* = 1 and J,J* fi 0 except, perhaps, at some isolated singular points. 

At each point P we construct a system of 'base' vectors a., i = 1,2,3 

(Fig.1) which are tangential to the curves of intersection of the-lurfaces 

5 
i-l = const. and 5 i+l 

= const., and a reciprocal system of 'normal' vectors 
i 2 , i = 1,2,3, normal to the surfaces c1 = const. The normal vectors are 

defined by the relations 

. 
Jc.. ai = 1JkT xa zj -k ’ (2-3) 

We note in equation (2-3) that a summation is carried out over the repeated 

index i. This convention of tensor analysis will be adopted throughout the 

presentation that follows unless otherwise stated. 
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In (2-3) we define 

& = 
ijk 

+I if ijk are an even permutation of 1,2,3 

= -1 if ijk are an odd permutation of 1,2,3 
= 0 in all other cases. 

The differential forms of (2-l) and (2-2) will be given by 

a? = $ a$ G &gj , 
xJ j 

i = 1,2,3 (Z-4) 

and 

. 
aci = $. axj G t*iaxj 

axJ j , i = 1,2,3 (2-S) 

respectively. It is shown in Appendix A (see equations (A-2), (A-9)-(A-11)) 

that the relations between the vectors j 

j 
&is 2 and the Cartesian unit base 

vectors Ci' C are of the form 

2.i = A 
i--a ' 

aj = pj cn - n- , 

(Z-6) 

(2-7) 

respectively. The fundamental metric is given by 

as2 i j 
= gijaS a5 , (2-B) 

where g.. 
1J 

is the symmetric co-variant metric tensor of order two defined by 

the equation 

The symmetric contra-variant metric tensor gl' is given by 

ij . , 
is = & ' aJ , 

(2-9) 

(2-10) 

and in Appendix A (equations (A-14)-(A-20)) the following relations are 

established: 



. 
galgin = n G 

J2 = IPijl 

J*2 = IgkR( = J-2 

R % = $&a 

Furthermore, any vector 1 can be written in the form 

R R 
v=va =:a G- -!?, ' 

7 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

(2-15) 

(2-16) 

where 5 and VR are the co-variant and contra-variant components of v and - 

from Appendix A (equations (A-25)-(A-28)) we have the relations 

n 
VR = tpn , 

R *R i 
v = tiu , (2-18) 

(2-17) 

. 
where u. and u1 are the components of v in the Cartesian reference frame. 

Also, using equations (A-30)-(A-33), 

- 
of Appendix A we will have 

R 
v. = g. v (2-19) 

1 1R 

i . 
V = glSvs (2-20) 

v. = v . a. 1 - -1 

i i 
v =v.a . - - 

(2-21) 

(2-22) 

If Ai and A' denote the magnitudes of the vectors zi and fir then 

from equations (A-35) and (A-38) we obtain the relations 



. 
t; = A; cos 0; , (Z-23) 

and 

Ai t. 
J 

= A1 cos Bqi , (2-24) 

where 03 denotes the angle between the vectors 2.; and 2j and 0": r denotes 
. 

the angle between a1 
J 

and cj . denotes the angle 

between a. and a. and (ji!t 
Furthermore, if 0.. 

1J k 
denotes the angle between 2 and a' then - 

from equaF:ons (A-J;)-(A-67) of Appendix A we obtain the following relations 

cos 0.. = k cos 8. cos 0% 
1J 1 jka ' 

cos ekR = rsrs cos ey cos ey , 

g. - 13 
= AiAj cos 0.. , 

=J 

kR 
g = AkAR cos ekR , 

(2-25) 

(2-26) 

(2-27) 

(2-28) 

J; = (A1A2A3)-2J2 

= 1 + 2 cos e12 cos e23 cos e31 - cos 2 e12 - cos 2 '23 - cos 2 e31 , (2-29) 

JOg = sin f3N+1,N+2 > 0 , 

where 

Jo = . 
'ln 'N,N+l sin 8 N+l,N+2 

sin ON+2 ,N+3 
, 

(2-30) 

(2-31) 

(2-32) 

sin f3 
. 

N,N+l 'ln 'N+l,N+2 cos eN+2sN = cos e N,N+l 'OS 'N+l,N+2 - 'OS 'N+2,N ' 

(2-33) 

sin eN,N+’ sin 0 
N+l,N+2 

cos e cos eN sN+ 1 cos $J+ 1 ,N+2 - cos 8 N+2,N 
N+2,N = . 

(2-34) 
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We note that the use of a capitalized index N in equations (2-30)-(2-34) means 

no summation over N. 

3 EQUATIONS OF MOTION 

3.1 General case 

The equations of continuity, momentum and energy for a steadily moving 

compressible inviscid fluid under the influence of no external forces are 14 

a (Jpvk> = 0 , 
xk 

(3-I > 

-A- (4q2) - (v x 2>i = - p -7, i = 1,2,3 (3-Z) 
a? a? 

q2 = VkVk (3-3) 

vkas = 
xk 

0 , (3-4) 

* 
where vr are the contra-variant components of the fluid velocity vector 3 
P the fluid density, p the fluid pressure, Cl the vorticity vector, q the - 
fluid speed and s the entropy. In addition to equations (3-I)-(3-4) we also 

have the general gas law 

dh = $ +Tds , (3-5) 

where h is the enthalpy and T the temperature. 

An alternative form of (3-2) is 

vk-L* -- 
1 k a 

agk ’ 2 
v TV ‘V 1 ap 

agl k 
--- 

p agl 
(3-2a) 

which is useful sometimes. 

For irrotational flow we must have g = 0 so that using (3-5) in (3-2) 

we obtain the momentum equations (3-2) in the form 

--% (h + /q2) = Ta& , i = 1,2,3 . (3-e) 
a? x1 
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. 
If equation (3-6) is multiplied scalarly by vi we obtain 

+ lq2) = TV i as 7. 
x1 

(3-7) 

Since external forces and viscous effects are neglected the left hand side of 

(3-6) vanishes since the total energy is constant upstream and remains constant 

along a streamline. We therefore obtain Bernoulli's equation in the form 

h+;q2 = c , (3-8) 

where c is a constant except across shock waves. Therefore s remains 

constant along streamlines. In the case of hornentropic flow s will have the . 
same value everywhere. Multiplying (3-2) by vi we note 

i v . (VXR). = 0 , (3-9) - -1 

since 

mk = E - . kRm avm 

d 
(3-10) 

In the case of a perfect gas the equation of state will be of the form 

P = RpT , 

where R is the gas constant and the speed of sound, a, will be given by 

a2 = E = dP 
P c > dp s=const. 

(3-11) 

where y is the ratio of specific heats. Also the enthalpy can be written 

in the form 

2 
h = +, 

Y 

and the general gas law (3-5) can be written 

(3-12) 

dh = a'($+$) . (3-13) 
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Using (3-4), (3-12) and (3-13) in equations (3-l) and (3-8) respectively we 

obtain the continuity equation and Bernoulli's equation in the form 

. 
1 a* (Jvi) - &L&i& = 
J at1 a2 at1 O ’ 

and 

a2 2 
Y -1 

+jq = const. . 

(3-14) 

(3-15) 

The speed of sound is determined from equation (3-15) in terms of q2 so that, 

in general, the field equations to be solved are the continuity equation (3-14) 

and the condition for irrotationality 

ok = 0 , k = 1,2,3 . (3-16) 

We also note that only two of the equations (3-16) are independent since the 

identity (a/agk)(Jflk) = 0 holds everywhere throughout the field. The 

equations of motion (3-14) and (3-16) must be solved with the appropriate 

boundary conditions which hold on the body surfaces and at infinity. 

3.2 Potential flow 

We consider the inviscid flow past a wing or a wing-body combination. We 

introduce a velocity potential 9 by 

a@ v. = - , i = 1,2,3 (3-17) 
1 a$ 

so that equations (3-16) are satisfied. The system of coordinates should be 

chosen so that the surface 5 
N 

= const. corresponds to the body surface. 

Using equations (A-31) in the continuity equation (3-14) we obtain 

glJv.q 
- -% = 0 , 

a2 a$ 

which, together with (3-17) and the relation 

(3-18) 

q2 
. . 

= glJvivj (3-19) 
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provides us with an equation for the velocity potential 0. In the special 

case when the reference system is orthogonal (see section 4) we obtain 

g 
ij = g. * iJ 

=O,i+j and equation (3-18) will have the form 

1 a 

A~A2A3 aSi 
% (Ail2 a(q2) c = o . - -V 
at1 2a2 agl at’ 

The boundary condition that holds on 5 N = const. is 

VN = 0 (3-21) 

(3-20) 

since there is no flow through the surface of the body. In addition to (3-21) 

we must impose a suitable condition on the transformation at large distances from 

the body which leaves the flow field undisturbed. In the case of a lifting wing 

further boundary conditions must be applied along the vortex sheet behind the 

wing, which state that there are no forces between the two faces of the sheet. 

As will be seen in sections 4 and 5 a system of differential equations, the 

'integrability conditions', can be used to determine the coordinates and the 

quantities Ai and cos eik for a prescribed body geometry. After this first 

stage the flow field can be calculated using the equations in this section 3. 

3.3 Streamline coordinates 

An interesting application of ideas similar to these developed in this 

Report has been made by F. Walkden, who calculated the three-dimensional 

supersonic flow past a given body shape by marching in the stream direction. 

He retained one coordinate x1 = E,* (section 5) and used stream surfaces as 

coordinate surfaces, so that in his case the integrability conditions and 

the equations of motion had to be solved simultaneously. We let v coincide - 
with al so that 

2 3 v =v =o 

1 
v1 = E+p = (A1)2v1 (3-23) 

I 1 
v2 = g2p = A2A, cos B12v (3-24) 

1 1 
v3 = g3p = A3A, cos e3]v (3-25) 
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q2 = vlvl = 

The conservation equation (3-14) takes the form 

a 
q- 

as* 
log (JoA2A3) + 

and equations (3-16) are: 

-vi!- (A@ 
x3 

- -+- (A3 
x 

cos e31q) = 0 

--$ (A1ql 
3.6 

- -?- (A2 
xi' 

cos e12q> = 0 , 

(3-26) 

(3-27) 

(3-28) 

(3-29) 

4 FINITE BODIES (Case I) 

4.1 The integrability conditions 

The necessary and sufficient conditions for the existence of an integral 

of equations (2-4) are given by the following nine equations 

a iti) = -$- (tk) , 
a$ \ 

(i f j, k = 1,2,3) .(4-l) 

In general these equations must 

the form (2-l) and (2-2) can be 

in the form 

where 

n i,k 

hold everywhere in order that transformations of 

found. The nine equations (4-l) can be written 

R i,k = 0 , i,k = 1,2,3 (4-Z) 

It will prove useful in what follows to introduce $,k where 

-i,k R = cos 0 *k i,a 
!LR * (4-4) 
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Next we prove that a necessary and sufficient condition for the 

integrability of equations (2-4) is that, for any given i, the following 

six equations hold in the field 

-i,k 52 = 0 , 

$+l,k = 0 , 

k= 1,2,3 , 

k= 1,2,3 , 

and the following three equations hold on some surface 5 i+2 = const. 

-i+2,k n = 0 , k- 1,2,3 . 

(4-5) 

(4-6) 

(4-7) 

First we assume that for any given i we have (4-5) and (4-6) satisfied in 

the field and (4-7) satisfied on the surface 5 i+2 
= const. Then from (A-48) 

we have lcos et"/ = JG # 0 and it follows from equation (4-4) that 

Q i,k = 0 , 

n i+l,k = 0 , 

at every field point and 

i-2 i+2,k = 0 , 

on 5 
i+2 

= const. We also have the identities 

k= ~2~3 , 

k= 1,2,3 , 

k= 1,2,3 

a (QE*k) = 0 , 
at" 

k = 1,2,3 

(4-Q 

(4-9) 

(4-10) 

(4-11) 

which hold at every field point, Therefore, using (4-8) and (4-9) in the field 

we can integrate (4-11) with respect to 5 i+2 to obtain, with (4-IO), 

s-2 i+2,k = 0 , k= 1,2,3 , (4-12) 

at every point and the nine equations (4-2) are satisfied. The converse follows 

from equations (4-4) and our assertion is proved. 

Our choice of the field equations (4-5)-(4-7) in the subsequent analysis 

will be 
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&k = 0 , k= 1,2,3 , (4-13) 

&k = 0 , k = 1,2,3 , (4-14) 

together with 

;‘,k = o 
, k= 1,2,3 (4-15) 

on the surface 5' = const. Using the relations (A-39) we find that the field 

equations (4-13) and (4-14) will be of the form 

6k aA 
--L-L+~ 
A,Ak ac3 ' 

cos 8 *," --$ (~0s 0;) = $3 + A3 cos 6: --$ (cos 6;) , 

3 

k= 1,2,3 , (4-16) 

(Sk aA 
' '+A *k a -- 'COS8 - 

A,Ak aE2 a ac2 

gk 2 aA *k a = --+ A case - 
A2Ak a$ 2 a acl 

k= 1,2,3 , (4-17) 

and the equations (4-15) which hold on c1 = const. will have the form 

k 
62 aA 

-- 
A2Ak ac3 

+ A 

2 

cos 8 t" + (COS ey) = -$& 3 + A3 cos e: 3 (,os e;) , 

3 

k- 1,2,3 . (4-18) 

In section 4.2 the above form of the integrability conditions will be used for 

the first special reference system in which e23 f ~12, e12 = e3’ = IT/~. 

4.2 Nearly orthogonal system (Euler angles) 

We choose e12 3 e31 z n/2 and obtain al/Al _ = al/A1 and 

a’ l 23 = 5' * 22 = 0, s2 . a3 = A2A3 cos 823 f 0 so that the fundamental 

base vectors z2 and c3 are both orthogonal to the base vector a' * The 

angle '23 between the base vectors z2 and c3 is arbitrary. In the case 

'23 = IT/~ the coordinate system will be orthogonal (see Fig.3a). In general, 
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the orientation of the base and normal vectors must be expressed in terms of 

nine direction cosines. However, by introducing the three Euler angles 0, (p 

and J, (see Appendix B) and the angles 8.. 
iJ 

the task of defining the direc- 
tions of the base and normal vectors can be considerably simplified. In 

Appendix B the direction cosines of the vectors a, a1 are derived in terms - 
of 0, 4, do and e23 and are tabulated in Tables 1 and 2. Furthermore, in 
Appendix D the integrability conditions (4-16)-(4-18) are shown to reduce to 

the following nine equations for A 1s A29 A3, or 4, d.~ and 028: 

aA - = A3 ae 

x3 
sin (JI - e28) - - w 

as' 
sin 8 COS($ - e23) - 

d 
(4-19) 

A1 
i 
sin ($ - a4 e23) sin 8 - 

x3 
+ cos(+ - e23> ae 

- 
at3 1 

= 
- A3 -+ (J, - w e23) + cos 8 - (4-20) 

36 at’ 

A1 sin $ sin 0 w ae 
- + cos J, - 
x3 x3 

. = sin e23 
a A3 -- 
x1 

cos e23A3 -L (JI w 

x1 
- e23) + cos e - 

x’ 
(4-2 1) 

aA 
- = A2 
x2 

ae $ - - a4 

x1 
sin 8 cos 7j~ - 

a.2 

A1 i 
sin w 8 cos $ - - ae a A2 

x2 
sin+- 

1 
= - 

x2 x1 

(4-22) 

(4-23) 

A1 cos JI ae - + sin J, sin 8 ibk 
x2 x2 

c~s e &- + -i!L 
at1 a51 

(4-24) 
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A2 
sin 0 ~0s IJJ 34- - sin II, %- 

x3 x3 I 

= A3 0 COS(I/J - 823) + - sin (1cI - e23) % (4-25) 
x ac 

sin f323 
aA - + cos 923A2 
x3 

cos e %- + aJI 
ac3 ac3 

= A3 
I 

a (4~ - '23) 

x2 
+ cos 8 aA 

x2 I 
(4-26) 

A2 
1 

cos e ?L + ?!L 
aE3 ac3 1 

= - sin e23 aA - + cos e23A3 
x2 i 

cos 9 a* + 
a(+ - e23) 

x2 x2 1 
. 

. . . (4-27) 

Equations (4-19)-(4-24) are the integrability conditions governing the reference 

system at every point not on the surface E1 = const. f C. The remaining three 

equations (4-25)-(4-27) will be satisfied at every point on 5 1 = C. We 

note that the six integrability conditions are relations between the three %s 
the three Euler angles 0, 8, J, and the angle 823. So we may choose 

'23 = lT/2, which leads to an orthogonal system of coordinates. This statement 

is consistent with the fact that we have used the three degrees of freedom which 

exist in a general three-dimensional system of coordinates, by putting 

e12 = e23 = e31 = IT/~. 

The special orthogonal system of coordinates which is obtained through 

the use of ellipsoidal coordinates is discussed in Appendix E. 

Finally we note that the integrability conditions associated with axially 

symmetric geometries can easily be obtained in a number of different ways 

(see Appendix F). 

(a) 8 = I , <I=$ , A1=r 

X2 =rcosEl , 3 1 
X = r sin 5 

(b) I/.J = 823 = ; , t3 = 4 , A3 = r 

(4-28) 

(4-29) 

X2 
3 =rsin5 , 3 3 

X = r cos 5 
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cc> c$=;, El=@ , Al=': 

x1 =rsinc' , 2 x = - r cos 5l 

Cd) J, = 0 , e23 = ; , c2=+ , A2=r 

X2 
2 =rsinE , 3 2 

X =rcosc . 

(4-30) 

(4-31) 

4.3 Possible method of solution 

As was stated in section 3.2 the conservation equations for the compressible 

flow past a given wing can be reduced to one differential equation for the 

velocity potential Q with the remaining quantities following from the energy 

equation (Bernoulli) and the equation of state. For example 

2 a 
- 1 

+dq2 = const. . 
Y 

(4-32) 

If, for certain body geometries the system can be made orthogonal then this 

equation takes the form (3-20) with appropriate boundary conditions on the body 

and at infinity. 

The three parameters Ai and the three Euler angles 4, 0, $ have to be 

calculated from the six equations (4-19)-(4-24) in the field (with 823 = n/2) 

and the three equations (4-25)-(4-27) on 51 = C, where the direction cosines 
k 

~0s el, which according to Table 1 are functions of the Euler angles 8 and 

$9 are defined by the geometry of the body shape. We may assume that 0 and 

+ are prescribed on 5 
1 = C as functions of two parameters a2 

3 and o , say. 

An iteration scheme on the following lines could be used in order to 

calculate the coordinate system on the body c1 = C. A suitable guess 

E2 = c2 (02 ,cr3> and c3 = 53(cr2,cr3) (4-33) 

enables us to determine 8 and $ as functions of 5 2 and 
3 

5 . Then (4-26) 

and (4-27) can be used to find A2 and IJ and (4-25) to find A2/A3. Since 

dxk = AR cos e;d$ kd = 0) (4-34) 

k 2 
X and o and 3 o can be related to 5 2 and 5 3 and the iteration cycle 

is closed. 
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In the field one would probably use a second iteration scheme, whereby 

e.g. (4-20) is used to obtain +, (4-21) is used to obtain A3, and (4-24) to 

obtain A1/A2. The remaining equations (4-22) and (4-23) can be used either to 

obtain A2 and 0, with 4 following from (4-19), or to obtain A2 and $ 

with 8 following from (4-19). This is only one of several possible computation 

schemes. The best one can only be found by practical experience. One problem 

here is the formulation of the appropriate boundary conditions for these partial 

differential equations. For shapes with certain geometrical symmetries, 

conditions not only on a1 ' but also on &2 and/or c3 may be known. In 

addition we have to insure that the three A. 1 
and the Euler angles 4, 8, + 

are periodic both in 5 2 and 3 5 . 

In view of all these difficulties it appears to be wise to gain experience 

in the handling of such problems by first considering a wing of finite aspect 

ratio where the system of coordinates can be obtained as a perturbation to the 

ellipsoidal coordinates mentioned before (see Appendix E). 

5 INFINITE BODIES (Case II) 

5.1 Integrability conditions 

We represent the infinite body by the equation 5 2 = const. and we choose 

a reference system in which the base vectors 52 and 23 are restricted in such 

a way that they remain normal to c -1' The base vector 21 is completely 

unrestricted. The angles 8.. 
iJ 

are arbitrary (see Fig.2) and it is shown in 

Appendix B that in general only one Euler angle a(=$ + $) is required in the 

description of the coordinate system. In subsection B.3 of Appendix B the 

direction cosines of the fundamental base and normal vectors are derived in 

terms of 6.. and ~1. 
iJ 

These are given in Tables 1 and 2 and in Appendix D the 

integrability conditions are derived in the form 

aA 12 -= -ii- - a 
851 x3 (A1 cos 8 31 )+A 1 sin (3 31 cos 0 x3 (a-0 23 > , O-2) 

A3 

ah - e,,) a = - - 
x1 x3 

A1 cos e 12 
sin 8 31 + A1 coS e31 

ahi - e23) 

x3 
, (5-3) 

a 
- A1 sin 031 sin 8 l2 
x2 

= 0 , (5-4) 
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aA -= 
a51 

-?- (A, 
at2 

cos e12) - A1 sin 012 cos 03* % , 
x 

aa a 
A2-=-( 

x1 x2 
A1 cos 031 sin 012) + A1 cos 012 % , 

9.5 

aA . aa -= 
x3 

a (A3 
x2 

cos O,,) + A3 sin 823 - , 
x2 

aa 
A2- = - -?- (A3 sin 823) + A3 aci 

x3 x2 
'OS '23 2 * 

(5-5) 

(5-6) 

(5-7) 

(5-8) 

We note that equations (5-l)-(5-8) hold everywhere and, from the derivation 

in Appendix D, it is clear that equations (4-l) and thus equations (5-I)-(5-8) 

are necessary and sufficient conditions for the integrability of equations (2-4). 

The number of conditions is reduced to eight since the equation R 191 =0 is 

satisfied identically in this case. A further reduction in the number of 

independent equations is possible since A1 = A'(51) or A' = 1. This follows 

by using equations (A-53) and (A-62) in equations (5-l) and (5-4) above to 

obtain (a/at2)(A') = (a/a<3)(A') = 0. Equations (5-2), (5-3), (5-5)-(5-8) 

are now the necessary and sufficient conditions for the integrability of 

equations (2-4). 

It is possible to prove an analogous theorem to that proved in section 4 

for the six equations (5-2), (5-3) and (5-5)-(5-8). The theorem can be stated 

in the form. The necessary and sufficient conditions that equations (2-4) 

possess an integral are that equations (5-5)-(5-8) hold at every point on and 

external to 5 2 = const. and that equations (5-2)-(5-3) hold on C2 = const. 

The necessity of the above conditions follows immediately from the fact 

that equations (5-2)-(5-3) and (5-5)-(5-8) must hold everywhere. To prove 

sufficiency we must replace the system (5-2)-(5-3) and (5-5)-(5-8) with an 

equivalent system of equations. This equivalent system of equations is obtained 

from (4-l) by retaining the direction cosines cos 0: of al. From equations 

(D-12), (D-13), (D-17), (D-18), (D-21) and (D-22), remembering equations 

(B-35)-(B-45), we find 



a - 
x' 

a - 
a2 

A3 cos(ct - 823)] = 2 {AI ~0s (1 , 

${A2 sin o} = - --$[A1 Cos @y} p (5-11) 

--${A2 cos e} = --+{A1 cos 6:) , 

A3 cos(a - 823) = 
I 

e?-- (A2 cos cl> , 
x3 

-?- (A2 sin a) . 
x3 

21 

G-9) 

(5-10) 

(5-12) 

(5-13) 

(5-14) 

Differentiating (5-14) with respect to 51 and using (5-11) we obtain, 

after interchanging the orders of differentiation 

A3 sin (a - 823)} + -${A, cos ":)] = 0 . 

Therefore if (5-9) holds on E2 = const. then by integrating (5- 15) we find that 

(5-9) holds at every point in the field external to c2 = const. Again, if we 

differentiate (5-13) with respect to E* and use (5-12) we obtai n 

(5-15) 

A3 cos(cl - e23)} - --${A1 cos 8;) = 0 , (5-16) 

so that if (5-10) holds on C2 = const. then (5-10) holds at every point in the 

field external to = const. This completes the proof. 

In a similar manner we can prove the following alternative forms of the 

theorem. The necessary and sufficient conditions for the integrability of 

equations (2-4) are that equations (5-2)-(5-3) and (5-7)-(5-8) hold everywhere 

at points on and external to some surface E3 = const. and that equations 

(5-5)-(5-6) hold at every point on 5 3 = const. OF that equations (5-2)-(5-3) 
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and (5-5)-(5-6) hold everywhere at points on and external to t1 = const. and 

that equations (5-7)-(5-8) hold at every point on E1 = const. In what follows 

in sections 5.2 and 5.3 the first form of the theorem will be used, 

5.2 Conformal mapping in cross-sectional planes 

In the special case where '23 = r/2, A2 = A3 = A (Ref.17) we can prove 

the following additional theorem concerning the integrability conditions. The 

necessary and sufficient conditions that equations (2-4) possess an integral 

are that the following four equations hold everywhere on and outside the 

surface 5 2 = const. 

a - (Al cos 0; a = - 
x2 x3 

, 

, 

--ii- (A 
x2 

cos a) = - -ii- (A 
ac3 

sin a> , 

(5-17) 

(5-18) 

(5-19) 

-?- (A 
x2 

sin a) = --ii- (A 
x3 

cos CL) , (5-20) 

and that the following two equations hold on the surface 5 2 = const., and on 

the circle (52)2 + (<3)2 = L2:c1 = const., L -+ m 

-?- (A 
at1 

sin a> , 

a - (A1 cos 6; a = 
x3 

- (A cos cl> . 
a+ 

(5-21) 

(5-22) 

First we assume that (5-9)-(5-14) hold everywhere on and external to the 

surface 5 2 = const. By using (5-9) and (5-12) together with (5-10) and (5-11) 

we obtain (5-17) and (5-18). The fact that (5-19)-(5-20) hold everywhere on 

and external to c2 = const. and that (5-21)-(5-22) hold on E2 = const. and 

on (C212 + (C312 = L2:$ = const., L + m follows immediately from equations 

(5-13)-(5-14) and (5-9)-(5-10). The necessity of the conditions stated in the 

theorem is therefore established. 
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To prove sufficiency we note that since equations (5-17)-(5-20) hold 

everywhere on and outside the surface 5 2 = const. then . 
fl -A1 

( 
cos 8 

2 

' 

+ i cos f3 3 
1 ) 

and f2 f Ae-I" are analytic functions of 

E2 + it3 E 5 at every point on and external to t2 = const. for any given 
1 value of 5 . The function 

af,/ac * 
f2 must depend on 5 1 in such a way that 

is analytic. Then F f (af,/aE3) - I 
i(af,/ag > is analytic at every 

point on and external to E2 = const, F vanishes on c2 = const. and on the 

circle (E2>2 + (53)2 = L2:<l = const., L -f m by virtue of equations (5-21)- 

(5-22). By Cauchy's integral formula we obtain F = 0 everywhere on and 

outside E2 = const. so that equations (5-21)-(5-22) hold everywhere. From 

these two equations together with equations (5-17)-(5-20) we obtain equations 

(5-9)-(5-14) and the theorem is proved. 

On the surface c2 = const. the unit vector a2/A2 is specified so - 
that using (B-50)-(B-52) we obtain, on 5 2 = const. the relations 

*2 = _ 
cos 0 

12 cos 0 s 1 sin 0 -1-I , 
31 

cos e *2 Jo cos c1 

2 = . sin e3* 
z J13 cos c1 , 

c0.5.e 
"2 Jo sin c1 

= - 3 sin e31 

(5-23) 

(5-24) 

(5-25) 

where, since A 1 = 1, 

-1 
-$ 

A1 = Jo = 1 - 2 e12 - 2 e31 cos cos = (1 - ,2,-f sin 8 31 * (5-26) 

Since c1 is now specified on t2 = const. by equations (5-24)-(5-25) and 
. 

= Aeel' is analytic in 
2 + is 3 then In A- ia is analytic in 5 

2 + is 3 
f2 5 

and In A can be found on E2 = const. (a circle in the In t-plane) by using 

the well known cotangent integral 17 . The functions A and c1 can be found 

uniquely at every point on and external to 5 
2 = const. We also have, using 

(B-43)-(B-45) 

fl 
cos e12 + i cos e 

31 q= AJO 
= Ah'D iJ2 + i 172 , (5-27) 
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and fl/f2 is an analytic function of 5 
2 + is 3 with a known real part on 

E2 = const. Therefore, again using the cotangent integral, we can find the 

imaginary part of fl/f2 on E2 = const. 
2 

and can determine fl/f2 uniquely 

at every point on and external to 5 = const. The four unknowns of the 

reference system A, CL, 812, e31 can now be found everywhere. These variables 

must be such that equations (5-21)-(5-22) are satisfied everywhere on 

E2 = const. and at infinity. However, since F is an analytic function of 

c2 3 + is then if ReF = 0 OP IIUF = 0 on c2 = const. equations (5-21) and 

(5-22) are both satisfied. We must restrict ourselves to cases where F -+ 0 

at infinity. 

In this special system of coordinates one can use complex function theory 

to obtain the metric tensor and all relevant information. An alternative way 

of looking at this result is as follows. 

We define the transformation of coordinates by 

x1 = c1 , x2 + ix3 = f(cl,<) = 2 

with 5 = c2 + is3 . 

Then z = f(El,<) defines a conformal map for constant cl and 

. 
f2 

= Ae-I” = af 
as l 

The dependency on E1 must be such that 

f1 = 2L.Z 2 3 

x1 
A1 ( cos 8, + i cos 81 

J 

is an analytic function of C. Then 

F = afl . af2 --I- = 
x3 a2 

is an analytic function which is identically zero. 

If we want to find the coordinates for a given shape C2 = 0, we first 

apply conformal mapping on a circle in cross-sectional planes x1 = 5 
1 

= const. 

This enables us to obtain the arc length elements ds as a function of C1 

and 3 *2 
5 . Since the direction cosines cos CI~ are known, we find u (and a) 
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on the body and the function fl'f2 according to (5-27) can be calculated 

everywhere outside the body c2 = 0. 

When the coordinate system is established the nonlinear potential 

equation (3-18) is then solved subject to the following boundary condition 

on 5 
2 = const. 

v2 = 0 , (5-28) 

i.e. 

2i a@ 
g -=o, 

a9 
(5-29) 

and an appropriate boundary condition at infinity. 

6 CONCLUDING REMARKS. 

The equations of motion and associated kinematic boundary conditions of 

an inviscid, compressible non-conducting and steadily moving gas have been 

stated in a general coordinate system. The necessary and sufficient conditions 

which must be satisfied in the determination of the general reference system 

have been derived. In two cases the governing field equations and boundary 

conditions are formulated explicitly in terms of the reference system coordinates, 

a system of Euler angles and the fluid flow variables. In the first case a 

system of semi-orthogonal curvilinear coordinates is employed which can be 

used for the calculation of the flow field past a wing of finite aspect ratio. 

The second case applies to the problem of potential flow past an infinite body, 

e.g. a swept wing of infinite aspect ratio. In this case the methods of complex 

analysis can be exploited in the determination of the system of coordinates. 
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Appendix A 

SOME RELATIONSHIPS FROM TENSOR ANALYSIS 

The differential length vector ds is given by the equations (see Refs.12 - 
and 13) 

ds = ,dxk = - ~pK' . (A-1) 

Using (2-5) together with (A-l) we find 

k Aa = t&c+ . 

. 
Also, from the definitions of ti and t *i 

R 
we obtain 

. . 
&*I = gJ 

iR R * 

The Jacobian J can be written in the form 

rsn E mjkJ 
= 

Ersntmtjtk ' 

so that from (2-3) and (A-2) we obtain 

. 

JE i=s rsni 
ijk: rsntitj tk2 9 

= trtsc x c j k-r -s ' 

i.e. 

rsni & 
rsntitj tk?. = trtsc n 

j k rsnc ' 

Multiplying (A-7) by 
*’ *k 

t Jt 
R P 

and using (A-3) we find 

ERpn (ty - sn) = 0 

so that 

(A-2 > 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9 > 
n ni 

C = t.a . - l- 



28 Appendix A 

Again, on multiplying (A-9) by t? and using (A-3) we obtain 

aj = n- . t*j p 
- (A-10) 

The reciprocal relation to (A-2) is found in a similar manner and has the form 

*R 
Gl 

=ta. 
n -!L 

(A-11) 

We also have the relations 

. 
Li = tiikCk = cl . - - 

Using equations (A-2), (A-3) and (A-10) we have 

. 
a+. . g = 

j *igk 
'2% j = 

The symmetric co-variant metric tensor g.. 
1J 

is defined by 

g ij 
= .5i ' .Ej ' 

and the symmetric contra-variant metric tensor g ij is given by 

g ij=' ' z1 . &J . 

Using (A-2), (A-3) and (A-10) we have 

. pgin = ($ . . B> ‘pi . ~> 
= (6rst~q(6pqt;t~) , 

i.e. 

. 
g’lgin = $$$ = fp . 

n n 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 
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Furthermore, we have 

J2 = & 2 I I i 

J2 = gik , I I 

and, since JJ* = 1, we also obtain using (A-16) and (A-17), 

J *2 = gij . 
I I 

From (A-2) we can write 

using (A-2) 

(A-17) 

= 6rstf$ , 

= G,,titIa' , 

i.e. 

Similarly 

R . 
a = g%$ . 

using (A-9) 

Any vector v can be written in one of the following forms 

!2 
v = va - R- ' 

or 

R v = va - --R ' 

(A-18) 

(A-19) 

(A-20) 

(A-21) 

(A-22) 



30 Appendix A 

where 
VR iand v 

R 
are the co-variant and contra-variant components of v. If - 

U. and 1 u , i = 1,2,3, are its co-variant and contra-variant components in the 

Cartesian reference frame we have 

. 
v = ulc - -i ’ 

i v = u.c - 1- , 

so that, using (A-2), (A-9)-(A-12) and (A-21)-(A-24) we find 

“R 
U = t v n n R ' 

n 
VR = t!LUn ' 

i iR u = tv R ' 

VR = t*q . 
i 

From (A-19), (A-21) and (A-22) we have 

II v = va - R- ' 

R s = v g&i 9 

i.e. 

R s S 
v f&a = 2 vs , 

so that 

R 
V 

S = fzRsV * 

Similarly it can be shown by inversion that 

. . 
V1 = g12VQ . 

(A-23) 

(A-24) 

(A-25) 

(~-26) 

(A-27) 

(A-28) 

(A-29) 

(A-30) 

(A-31) 
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Using (A-15), (A-21) and (A-31) we find 

i 
v.a - - 

i R = va f,- *a ' 

. 
= g%), , 

i.e. 

Also 

. . 
v . a' = v1 . - - 

v . a. = v. . - -1 1 

(A-32) 

(A-33) 

If the length of &i is denoted by Ai and the angle between the vectors 
. 

i!li and 
Sj 

is denoted by 0!, then 

and from (A-2) we have 

so that 

2; l Sj 
= A; cos 0; , 

A.i ‘% = tj , 

. , 
t; = Ai cos 0; . 

Similarly 

and 

. . . 
a1 . cJ = A' cos 0 

*i 
- - j ' 

*i 
. 

t. = A' cos 9 
*i 

3 j ' 

*i 
. 

where 13. and cj . 
J 

is the angle between a1 - - 

(A-34) 

(A-35) 

(A-36) 

(A-37) 

(A-38) 
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Using (A-36) and (A-38) in (A-13) we find 

j Zi * S = (2%) . (tp) 
. 

= A;AJ cos t3; cos 8 *j n 
n &,'C 

i.e. 

. 
AiAJ cos 0; cos ,;j = 6! . 

1 

. 
If we set di = cos 6: cos e *j 

k then 

di=O, i#j, 

and 

(A-39) 

(A-40) 

where the use of a capitalized index in equation (A-41) and in what follows 

means no summation over that index. 

Furthermore if 8.. 
1J 

denotes the angle between 5; and a. and ekQ 

denotes the angle between zk and a' 
-J 

we have - 

(A-41) 

AiAjcos8.. = ii.". 
iJ 3 

= AiAj cos 6; cos 0. Q6 
J kQ ' 

using (A-2) and (A-36), so that 

c0s 8.. = cos e 
k 

cos e 
1J i Q6 j kQ l 

Similarly 

cos ekQ = tirs cos e*k cos e*' . 
r S 

(A-42) 

(A-43) 

(A-44) 
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We also have, from (A-14) and (A-15), 

8. * =J 
= AiAj cos 8.. , 

1J 

and 

kR 
g = AkAR cos BkR . 

Using (A-17) and (A-45) the Jacobian J will be given by 

J2 = Ig i j l  , 

= (AIA2A3)2J; , 

33 

(A-45) 

(A-46) 

(A-47) 

where 

2 
JO = j 

I I 
cos e. 1 

= 1 + 2 cos e12 cos e23 cos e31 - cos 2 %2 - cos 2 '23 - cos 

. . . (A-48) 

Also, since JJ* = 1, we obtain using (A-18), (A-41), (A-46) and (A-47), the 

relation 

d1d2d3J-' = 
1230 

The system of equations (A-16) can be solved for g 
ij and the solution is 

expressible in the form 

2 in E Jg 
= 

ijk 
cnrs 

gjrgks l 

Using (A-45), (A-46) and (A-47) we have 

Eijk J2A2A2A2AiAn 0 1 2 3 (-0s fjin = E nrsA A A+ cos 8 cos 8 
rsJ r j sk ' 

(A-49) 

(A-50) 

(A-51) 

l 
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Setting i = n = N in (A-51) we obtain 

J;(A,A2A3)*(AN)* = G+&+* sin * 'N+l N+2 , 
, 

i.e. 

JOS" = sin 8 
N+l,N+2 ’ ’ l 

Again, setting i=M#N,n = N in (A-51) we find 

cMjkJ;cc cos 0 NM = cNrs c-s !J 
r j 

cos 0 sk ' 

(A-52) 

(A-53) 

(A-54) 

i.e. 

. . 
'Mjk 'ln 'N+l,N+2 'ln 'M+l,M+2 COS eNM = ENrs COS e COS esk , (A-55) 

r j 

so that 

. . 
sin e23 sin e3* cos 8 12 = cos e23 cos e31 - cos e12 , (A-56) 

. sm e3] . sm e12 cos 8 23 = cos e 31 cos e,* - cos e23 , (A-57) 

. sin e12 . sin e23 cos e 31 
= cos 8 12 cos e23 - cos e31 . (A-58) 

If the system of equations (A-16) are solved for g.. the solution will be of 
13 

the form 

Eijk *2 
. 

J gin = EnrsgrJgsk . (A-59) 

On using (A-45), (A-46) and (A-47) we find 

,ijkA A cos 0 = J;(A,A,A,)*E 
. 

nrsArASAJAk cos erJ 
sk 

in in 
cos 8 . (A-60) 
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If we set i = n = N in (A-60) we obtain 

E"~~G = Ji(AIA2A3)2~Nrs(AN+l)2(AN+2)2 sin2 8N+2SN+3 . 

On using (A-53) equation (A-61) reduces to 

Jo = sin eN,N+l sin 'N+l,N+2 
sin eN+2 ,N+3 . 

Again, ifwe set i=MfN,n = N in (A-60) we obtain 

c"jks cos eNM = J;(AlA2A3)2~NrsArAsAjAk cos 8 cos esk , 

(A-61) 

(A-62) 

(A-63) 

i.e. using (A-53) and (A-62), 

$k sin eN+1,N+2 sin eM+1,M+2 
cos eNM = ENrs cos 8 r j cos e 

sk 
, (A-64) 

so that 

sin e23 sin e31 cos e12 = cos e23 cos e31 - ~0s e12 , (A-65) 

sin e31 sin e12 cos e23 = cos e31 cos e12 - cos e23 , (A-66) 

sin e 
12 

sin e23 cos e31 = cos e12 cos e23 - cos e31 . (A-67) 
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Appendix B 

SPECIAL SYSTEMS OF COORDINATES 

B.l The Euler angles 

In order to simplify the relations 

cos 8 R 

k' 1 
we introduce three Euler angles 

Since a is normal to 22 and 
fi3 ,"T 

between the directional cosines 

4, 0, * in the following form. 

can consider these three vectors as 

belonging to two orthogonal systems 
L 
a', 22, 

respectively (Fig.2). Here 

b3 = -.%a +a 
k.3 l a 

1 
g22 -2 -3 ' = I33 .  fi2 = 0 

g23 k2 = z2 - - a 1 
is33 -3 ' !L2 l a 

= k2 .  a3 = 0 .  

Since 

2 2 
- - 

3, 3 g22g33 g23 b3 k3 
‘22’33 ‘23 

= = l 

833 
, - 

822 
, 

we have 

. 
!i2 ’ k3 g23 52 l 53 ‘23 = - 

(3 l 

The orientation of the vectors in the first system in relation to the Cartesian 

system can be expressed in terms of the Euler angles $,e,JI andthatofthe 

second system in terms of the Euler angles 4, 8, $ + 7712 - 823. In Appendix C 

the general rotation matrix for an orthogonal set of vectors is derived in terms 

of the Euler angles (9, 0 and B and the associated direction cosines are 

expressed in terms of 4, 8 and B. Setting in turn B = JI and 

6 = 4 + T/2 - e 
23 

the nine direction cosines for the vectors al/A' - ' $4 

and a3lA3 can be written in the form 
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cos 0 
*1 

= 1 case , 

a1 - 

I 

cos 0 
*1 

7: 2 = sin 0 sin $ , 

*1 
case = 3 sin 0 cos I$ , 

(B-1) 

03-Z) 

(B-3) 

2. 
A2 

. 

I 

cos 0' = 2 sin 8 sin 7/J , 

cos e 
2 

= 2 cos qJ cos jJ - sin $J sin il, cos 0 , 

3 case = 2 
-(sin$cos$+cos$sin+cos8) , 

(B-4) 

(B-5) 

(B-6) 

cos d 3 = sin 0 sin (+ - 023) , 

3. 

I 

2 

A3 
. c0se = 3 cm (JI - e23) cos $I - sin (J, - e23) sin $J cos 8 , 

3 
c0se = 3 - (cos (IJ - e23) sin $ + sin (J, - e23) cos Q, cos 0) 

(B-7) 

(B-8) 

. (B-9) 

In the subsequent analysis the unit vectors al/A' , 22lA2 and z3fA3 will be 

considered as a fundamental triad of base vectors with direction cosines given 

by (B-l)-(B-9). 

B.2 Case I: e12 s e3, E IT/~, e23 f ~r/2 

11 In this case we have al/Al = 2 /A and so the direction cosines of the 

base vector al/A1 will be given by equations (B-I)-(B-3). The direction 

cosines of the base vectors z2/A2 and a3/A3 will be given by equations 

(B-4)-(B-9) (Fig.3, Tables 1 and 2). 

Since e12 = f331 = IT/~ we have g12 = g3] = 0 and from equations (2-33) 

and (2-34) we obtain 

12 
cos e = cos e31 = 0 , (B-10) 

(B-11) 23 c0se = - cos 8 
23 ' 
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so that 

Appendix B 

and 

12 31 EC = g = 0 , 

23 
g = - A2A3 cos 0 23 ' 

8 ‘2 = 031 = 71 
T ’ 

fj23 = 7T - 023 . 

We also obtain from equation (2-32) 

JO = sin f323 . 

From equations (2-15) we obtain 

a2 = g22z2 + g 23 
- 23 ' 

3 33 a - = g3s2 + g 23 ' 

and, using (2-28) and (B-13), we can write 

a2 - 52 23 
z= cosec 023 q - cot 823 ~3 , 

and 

3 a 22 53 
‘;;";= - cot e23 T + CoSeC 823 5 ' 

(B-12) 

(B-13) 

(B-14) 

(B-15) 

(~-16) 

(B-17) 

(~-18) 

(B-19) 

(B-20) 

i.e. 

*2 k k 
case = k 

cosec 023 cos O2 - cot 023 Cos e3 , k= 1,2,3 , (B-21) 

and 

*3 k k 
case = - cot ez3 cos e2 + cosec e23 ~0s e3 , k = 1,2,3 . (B-22) 

k 



Appendix B 39 

The direction cosines of the base vectors _ a2/A2 and a3/A3 are then given by - 

cos 8 *2 = sin 8 cos(* - 623) , (B-23) 
1 

case = - (cos 4 sin (J, - 
. e23) + sin C$ cos 8 cos($ - e23)) , (B-24) 

cos 8 
*2 
3 

= sin 4 sin (+ - e23) - cos 4 cos e cos(JI - e23) , (B-25) 

- sin 8 cos + , 

sin $ cos 0 + sin 0 cos e cos + , 

- sin (p sin $ + cos (p cos e cos $ . 

(B-26) 

(B-27) 

(~-28) 

When e23 - Tr/2 the reference system will be completely orthogonal in 

which case we will have 

. . 
8 = 

ij 
_ $J G ; , i+j , 

g.. = g 
ij E 

iJ 
0 3 

and 

*i 
8. z 

J 
ei , 

(B-29) 

(B-30) 

i,j = 1,2,3 . (B-31) 

B.3 Case II: ailA 13 1 2; ei. F IT/~, i f j 

Since allA l3 1 *I *1 
2 we must have cos 8 2 = cos 8 3 

= 0 and therefore 
- 

e = 0 from equations (B-2) and (B-3). The direction cosines of the base 

vectors al/Al, &2/A2 and a31A3 will now have the form (Fig.4, Tables 1 - 
and 2) 
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c cos 8 *I 1 = 1, (B-32) 

1 
a 

- I 

*1 -: 
A1 

cos e = 0 , 2 (B-33) 

*1 
case =o, 3 (B-34) 

2. A2 . case 2 = 2 cos 01 , (B-36) I case 
1 

= 2 0 , (B-35) 

cos 8 3 = 2 -sincl , (B-37) 

r cos e* = 0 , 3 (~-38) 

$2. 
1 

2 

A3 l 

case = 3 cos (a - e23) , 

I c0se 3 
3 = -sin(a-0 ) , 23 

(B-39) 

(B-40) 

where a=$+$. In this case we will only have one Euler angle a since 

4 and J, appear in the form 4 + 4. . 

To find the direction cosines of the base vector al/A1 we write, using 

equations (A-19), (A-41) and (A-46) 

21 a' 

q-= d; 7 - d;dq2 cos f312 $ - didi cos B31 " , 
A 3 

(B-41) 

i.e. 

cos e k *1 
1 

= d;cosek _ d1d*2 
12 cos d2 cos 0; - d;di3 cos ~3~' cos 0; , (B-42) 

k = 1,2,3 . 

Using equations (B-32)-(B-40), (A-53) and (A-56)-(A-58) we find the direction c 
cosines of the base vector a* IA' in the form 
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/ 
cos e 1 

1 = JO/sin 023 = sin e31 sin 012 = sin 812 sin 031 , 

2 
cos 8 = 1 ( 

cos 0 31 
sin c1 - cos e 12 sin (a - 023) 

)! 
sin 023 , 

al . 
A ’ 

1 

= - sin c1 cos E131 sin 812 + cos c1 cos 012 , 

sin (~1 - e23) cos e 
12 . = sin e3* + cos(a - e23) cos e3* , 

3 
c0se = 1 cos 8 31 cos CY. - cos e 12 cos (a - e,,))/sin e23 , 

= - cos a cos 03’ sin e12 - sin c1 cos 8 l2 , 

L 
cos(a - e23) cos 8 

12 = sin 8 31 - sin (U - e23) cos e3* . 

In a similar manner we can write for the base vectors _ a2/A2 and 

f ** 
7 = dl cos 8 

12 al *2 52 *3 cos e23 3 

- + d2 A2 + d3 Al A3 ’ 

and 

cos e3’ s + di2 cog e23 2 + dt3 z . 
1 3 

Using (B-41) in (B-46) and (B-47) we obtain 

*2 
cos e 

12 
cos 8 

*1 f sin2 fj12d*2 k 
cos 8 = k k 2 cos e2 

+ (COS 8 
23 - cos e31 cos e12)d;3 k c0s e1 , k = 1,2,3 (B-48) 

41 

(B-43) 

(B-44) 

(B-45) 

a3/A3 

(~-46) 

(B-47) 

and 

cos e 
*3 = k cos e3’ cog ecl + (COS e23 - cog e31 cog e12)d;2 cos el; 

+ sin2 e31d*3 
3 cos 8 

k 
3 ’ 

k = 1,2,3 . 

. . . (B-49) 
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The direction cosines of the base vectors a2/A2 and a3/A3 are therefore - - 
given by 

*2 
case = 1 

cos 012 = cos e~~nc~:,e~~n-ecos %2 , 
(B-50) 

31 

f sin (a 12 A2 : I cos e ;' = - sjn e23-sYz3;:y = - sin (c1 - 023) sin 0 , (B-51) 

I *2 cos(a-8 )J 
case =-. 23 O 

12 
3 

. sin 823 sin e31 = - cos(cx - 623) sin 8 , (B-52) 

*3 = 1 
cos ,31 = cos e~~,c~:,":2_ecos e31 , 

23 

sin clJ 0 
sin0 ' 

= 
sin e23 sin c1 sin Cl31 , 

12 

cos clJ 0 = . sin B12 sin t323 
= cos a sin e31 , 

where J o is given by (A-48). 

In this case we will have 

*1 = *1 = IT 
e2 - e3 - 2 , 

and, from (B-50) and (B-531, 

(B-53) 

(B-54) 

(B-55) 

(~-56) 

5 
+:2 f e12 

(B-57) 

"3 = 
el - e31 . (B-58) 

In conclusion we note that the direction cosines of the unit base normal vectors 

which have been derived in this section are tabulated in Tables I and 2. 
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Appendix C 

GENERAL RIGID BODY ROTATION MATRIX 

At any point P we consider four orthogonal Cartesian frames of reference 

in which the coordinates of any other point Q will be represented by 

t = (2, 2, t3), u = (2, u 
2 12 

, u3>, v = (v , v , v3) and w = (WI, w 
2 

, w3>. 

The frame (P, ul, i2, u3) 
- 

is obtained by a rigid body rotation 4 about the 

ti axis and the resulting coordinate transformation will be given by 

U - = Tit , - 

where 

(C-1) 

(C-2) 

Similarly the frames (P, v*, v2, v3) and (P, WI, w2, w3) will be 

obtained by successive rotations 8 and B about the u2 and vl axes 

respectively. The corresponding coordinate transformations will be given by 

and 

V = T2u , (C-3) - - 

where 

W = T3x , (C-4) - 

and 

(C-5) 

(c-6) 
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The resultant transformation will be given by 

W = Tt , - - 

where 

T = T3T2Tl . 

But 

i . 
w = tk cos a; , 

(C-7) 

(C-8) 

(C-9) 

. 
where a;; is the angle between the ith axis in the (P, w', w2, w3) frame 

and the kth axis in the (P, t*, t2, t3> frame. Using (C-7) and (C-9) together 

with (C-8) we find 

1 cos ci = 1 case , (C-10) 

1 
cosa = 2 sin 8 sin $I , (C-11) 

1 
cosa = 3 sinOcos$ , (c-12) 

2 cos c4 = 1 sin 8 sin f3 , (C-13) 

2 cosci = 2 cos $I cos B - sin $ sin 8 cos 6 , (C-14) 

2 
cos a = 3 

- (sin (a cos B + cos I$ sin 8 cos 6) , (C-15) 

3 cosa = 1 
-sin9 cos B , (c-16) 

3 cos a = 2 sin 8 cos 9 + cos 8 sin 4 cos 0 , (C-17) 

3 cosc1 = 3 - sin B sin Cp + cos f3 cos Cp cos 0 . (C-18) 
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Appendix D 

DERIVATION OF THE INTEGRABILITY CONDITIONS 

D.1 Case I: 012 - 831 f n/2, 023 f T/2 

In equations (4-16) we take k = 1 so that 

1 aAl k-1 a -- 
A,Al X3 

+A *case - *I a 

c1 ac3 
= A3 cos 0o - 

as' 
(D-1) 

Since AlA *1 *1 = 1, cos Ocl = cos f3q, c1 = 1,2,3 and cos 8u cos 0: = 1 then 

equation (D-l) reduces to 

aAl *I a 
- = A3 cos 0o - 
x3 x1 

(D-2) 

Also, since cos 6 *I cos ea = 0 a 3 the right hand side of (D-2) can be written 

as - A3 cos e;(a/aEl) 

Using the equations (B-I)-(B-9) the direction cosines cos 0 
a 
3 and cos 0 

*1 
a ' 

ci = 1, 2, 3, can be expressed in terms of 8, I#I, + and 023 and we obtain 

~1 a - A3 cos e3 - 
a2 

= 
- A3 sin e sin($ - e23) cos e) 

+ 
( 

cos ($J - e23) cos 0 - sin ($ - e23) sin 0 cos 8 
1 

-+( sin 8 sin $1 
x 

-( cos (VJ 
. - e,,) sin 4 + sm ($ - e2,) cos 4 cos 8 

> --% 
1 

agl sin 8 cos 4) 
1 

= 
- A3 sin (JI - e23) 

[ 
sin 8 -+ cos e> - sin I$ cos 8 -+( sin e sin $1 

ac at 

- cos 4 cos e "( sin 8 cos $1 
x I 

+ cos(qJ - e23) 
[ 

cos 4 -2 (sin 8 sin $1 
x1 

- sin 4 sin 8 cos $11 
II 

= A3 sin ae (I) - e23) - - 
x1 

sin 8 COS($ - e23) w - 
x1 

, (D-3) 
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i.e. 

aA - = A3 
x3 

sin (Jo - 023) y - sin 6 cos(J, - 823) - (D-4) 
x 

which is equation (4-19). 

In a similar manner if we take k = 2 and k = 3 in equations (4-16) and 
use the expressions for the direction cosines in Appendix B and Tables 1 and 2 

we will obtain equations (4-20) and (4-21). The remaining equations (4-22)-(4-27) 

are derived by taking the systems of equations (4-17)-(4-18), setting k = I,2 

and 3 in each system and proceeding in the same manner as in the derivation 

of (4-19)-(4-21). The resulting six equations will be of the form 

aA - = A2 
x2 

sin $ E-- 
x1 

sin t3 cos $ - 

A1 [ 
sin w C3 cos $ - - 

x2 
sin$- 

I 
a A2 = - 

x2 a2 
, 

A1 
i 

a0 
cos qJ - 

x2 
;i2] r mae + sin 7j~ sin 8 - 

A2 
{ cos e 2J.L + aJ, 

a$ a$ 1 ’ 

A2 i 
w sin 8 cos J, - - ae 

x3 
sin 7J - 

x3 I 

= A3 w sin 0 cos($ - f323) - - 
x2 

sin (JI - e23) 

aA 
2 sin e23 - 

x3 
+ cos e23 A2 

A2 
! 

cosfjaO+?!L = _ 
ac3 ac3 

(D-5 > 

(D-6) 

(D-7) 

(D-8) 

+ cos e23A3 
a(+ - e,,) 

, 
(D-9) 

. . . (D-10) 
t 
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D.2 Case II: al/A 1, 1 2; 0 
- ij $ T/2, i f j 

To derive equations (5-1)-(5-S) it is convenient to start with 

equations (4-l). The first three integrability conditions are obtained by 

setting i = 3, j = 1 and k = 1,2,3, and using the expressions for the 

direction cosines given in Appendix B by equations (B-35)-(B-40) and 

(B-43)-(B-45). We obtain, using (A-62), 

Al sin ~3~1 sin 8 12 = 0 , (D-11) 

a 
3 
a< 

sin (a - e,,) cos 6 12 sin El 
31 + cos(a - e,,> cos e3* 

a 
= -L- x1 

A3 COSb - e,,) 1 . (D-12) 

cos(cx - e,,) cos e 
12 sin 8 31 - sin (~1 - e23) cos e3* ,3 

a = - 
x1 c 

- A3 sin (~1 - e23) 1 . (D-13) 

If we form the sum (D-12) x cos(a - 823) - (D-13) x sin (CX - 02,) we obtain 

after some algebra the relation 

a A3 -= -?- (A1 cos e3*) + Al sin e3* cos e12 4 (CX - e,,) . (D-14) 
as1 x3 x 

Again, if we form the sum (D-12) x sin (a - 023) + (D-13) x cos(cl - e23) and 

proceed as above we obtain 

a(cl - e,,> a a b 

A3 
= - - 

x1 x3 
Al cos 8 12 sin 8 31 +Al > 

cam 8 - e23) 
31 

x3 
. (D-15) 

Similarly, if we set i=2,j=l and k = 1,2,3 in equations (4-l) 

we obtain, after using equations (B-35)-(B-40), (B-43)-(B-45) and (A-62) 

a - sin e31 sin 0 l2 
ac* > 

= 0 , (D-16) 



48 Appendix D 

sin c1 cos El 31 . sin 8,2 + cos ci cos e -$ [A2 cos a] , (D-17) 

31 - cos c1 cos 8 sin e12 - sin c1 cos 0 12 = )I -%- 
at 

A2 sin e] . 

Again, if we form the sums (D-17) x cos c1 - (D-18) x sin c1 and 

(D-17) x sin cx + (D-18) X cos cx we obtain the relations 

aA -= 
at1 

-?- (A1 
x2 

cos 0 12) - A1 sin e12 cos 0 31 aa 
- 
x2 

, 

. . . (~-18) 

(D-19) 

and 

A2 
k-c-- a 

36' x2 
cos e31 sin e12 

> 
+ A1 cos e12 % . (D-20) 

ac 

Finally, if we take i= 3, j = 2, k = 1,2,3 in equations (4-l) we obtain 

an identity when k = 1 and the following two equations for k = 2 and k = 3 

a - 
x2 

and 

a a - = 
x2 

sin (a - 623) 1 - A2sina 
x3 C 1 

. 

(D-21) 

(D-22) 

Forming the sums (D-21) X cos c1 + (D-22) X sin c1 and 

- (D-21) x sin c1 + (D-22) x cos c1 and proceeding as before we obtain 

the following two equations 

aA -= 
x3 

-?- (A3 cos e23) + A3 sin e23 a% , 
x2 ac 

and 

(D-23) 

A2 
aa = -- a 

x3 x2 
(A3 sin e23) + A3 cos 023 '3 . (D-24) 

a5 

The eight integrability conditions will be given by equations (D-11), (D-14), 

(D-15), (D-16), (D-19), (D-20), (D-23) and (D-24). 
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Appendix E 

ELLIPSOIDAL COORDINATES 

In this special orthogonal curvilinear coordinate system equations (2-l) 

will have the form 
15,18 

dnS2GS3 , 

3 3 x = S1snS2dnS , 

(E-1 > 

(E-2) 

(E-3) 

(o<$<='; - 2R~52g2K;-2K1~~3~21:1) . 

Here o is a positive parameter such that OGa<l and o, (1 -0) are the 

parameters associated with the variables E2 and 5 3 which arise in the 

introduction of the Jacobian elliptic functions. These functions possess the 

following well known properties: 

snS2 = sin97 , 

2 cnS = coscp , 

dnS2 = (1 -0 sin2cP)! , (E-6) 

where P E;2 = s dv , 0 (1 - 0 sin2 ,)! 

and 

GE3 = sin? , 

GC3 = coscp , 

zs3 = (l-(1 - 0) sin' Cp)" , 

(E-4) 

(E-5) 

(E-7) 

(E-8) 

(E-9) 

(E-10) 
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where 

Appendix E 

dy 
( I  -  [l -  U ]  sin2 ,)1 l 

(E-II) 

From (E-4)-(E-11) it follows that 

dn2C2 = 1 - osn2c2 , (E-12) 

22 22 sn5 = l-cn5 , (E-13) 

dn2C2 = (1 - a) + acn2c2 , (E-14) 

Z2E3 = 1 - (1 - s>sn2E;3 , 

E2c3 = 1 -2 3 -cn5 , 

(E-15) 

(E-16) 

and 

;r;;2c3 = cs + (1 - a)cn2E3 . (E-17) 

Also the functions snS2, cnS2 are periodic in C2 with period 4K and dnS2 

has a period 2K where K is given by 

K- J 
dv 

0 (I - u sin 2 f' y) 

The derivatives of the Jacobian elliptic functions are given by 

d (snF2> = cnC2dnS2 , 
dE2 

-& (cnE2) = 
dE2 

- snS2dnS2 , 

A (dnS2) = - asnE2cnc2 . 
G2 

(E-18) 

(E-19) 

(E-20) 

(E-21) 
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Furthermore snS2, cd 
2 and dnS2 are analytic for all real values of 5 2 

and snS 
2 and cn5 

2 have simple zeroes at the points 0, +2K, +4K,... and 

+K, +3K, +5K,... respectively. The function dnS2 has no real zeroes. 

A similar set of properties hold for the functions KS3 -3 , cnS and ZS3 

with c replaced by 1 - c and K by K1 where K1 is given by 

n/2 

K' = 
s 

dy 
1 * 

(E-22) 

0 (1 - (1 - 0) sin2 y) 

The complete properties of the Jacobian elliptic functions and their associated 

functions can be found outlined in Refs.15 and 18. 

The surfaces Cl, C2 , t3 = const. will be, respectively, an ellipsoid, 

hyperboloid of one sheet and a hyperboloid of two sheets. The equations defining 

these surfaces are 

xl2 x22 x32 

l2 + ]2+7 = 1 , 

I+5 a+< 5 

x12 x22 x32 
-+ 
dn2C2 22- 22=l, 

ccn 5 osn 5 

(E-23) 

(E-24) 

and 

o)sn -23- 5 a>cn -2 3 (E-25) (1 - (* - 5 

We also have, from (2-4), (2-23), (B-I)-(B-9), (E-I)-(E-3) and (E-19)-(E-21) 

the relations 

-1 

dnS2zS3 = A, cos 6; = A1 cos 8 , (~-26) 

2 
tl = A, cos 8; = A1 sin 0 sin $ , (E-27) 

3 
5 = snS2Q3 = A1 cos 0; = A1 sin 0 cos Cp , (~-28) 

1 
t2 = = A2 cos 0; = A2 sin 6 sin + , (E-29) 
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= A2 cos 0; 

= A2 (cos 4 cos J, - sin I$ sin $ cos 0) , 
. . . (E-30) . 

3 
t2 = C1dnS3cnS2dnS2 = A2cose; = - A2 (sin 4 cos J, + cos Cp sin II, cos 0) , 

.a. (E-31) 

1 t3 = dnS2&C3zS3 = A3cos0; = - A3 cos JI sin 0 , (E-32) 

2 t3 = cnS2GS3ZC3 = A3 cos 0'3 

= A3 (sin J, cos $ + cos J, sin 0 cos 8) , 

. . . (E-33) 

3 t3 = - A1 - a)snS2ZS3GS = 3 - A3 (sin $ sin C$ - cos $ cos $I cos e> . 

. . . (E-34) 

From (E-26)-(E-34) we obtain 

A1 = B2B3 (1 + (c')~)-' (a + ,,'j2)-' 9 

A2 = BIB3 , 

A3 = BIB2 , 

with 
4 

Bl f acn2C2 + (1 - a)G2C3 , 

1 
B2 = -2 3 dn 5 + (C112 , 

> 
1 

B3 = + (cl)2 , 

f 

(E-35) 
1 

(~-36) 

(E-37) 

(~-38) 

(E-39) 

(E-40) 
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J = A,A2A3 = 
(BlB2B3> 

1 7. 
1 + (A2 0 + ts1)2 

. . . (E-41) 

Also, the Euler angles are given by 

1 
0 + (5 > dnE2zc3 

case = 
c( 12) 

asn252 + (51)2 zi2c3 + (A2 
1 , (E-42) 

(E-43) 

and 

US*S2C*52~S (E1j2 
1 

tan$ = 
1 ' 

(E-44) 

dnS2zS3z53 (51)2 

From (E-38)-(E-41) we find that the singular points of the transformation, 

i.e. the points for which J = 0, occur when Bl = 0 or B3 = 0. The 

equations Bl = 0 and B3 = 0 imply g2 = tK, c3 = &, and 5' = 0, C2 = 0 

respectively so that from (E-l)-(E-3) we see that the singular points of the 

transformation lie on the hyperbola given by the equations 

(x’)2 (x3>2 -- 
1 

- = 1 
-u u , 

and the ellipse given by the equations 

(x1)2 + gz = , , 

x2 = 0 

3 x =o . 

(E-45) 

(~-46) 
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In Tables 3 and 4 we find the values of cos 8, tan 6, tan $, Bl, B2 and 

B3 for any given 51 and special values of the arguments 5 2 
and . c3 The 

expressions shown in Tables 3 and 4 will hold for all values of CT except where 

otherwise stated and the values of the functions at other points can be found 

from these tables and the properties of the Jacobian elliptic functions given 

above and in Refs.15 and 18. 

In the special cases when o + 0 and o + 1 we obtain, from the above 

formulae: 

Case u -f 0 

2 
snS -f 2 sin5 , 

2 cn< + 2 
cos5 , 

dnS2 + I , 

snc3 + tanh c3 , 

-3-3 
cnS ,dnS + sech c3 , 

I( + $ , I? -f m , 

B1 = 3 sech 5 , 

B2 = (A2 , 

B3 = 5 
1 

, 

cos e = E1 tanh c3 

( 
ts')2 + sech2 c3 ' 

tan4 = 2 cot5 , 

tanJI = 0 . 

(E-47) 

(~-48) 

(E-49) 

(E-50) 

(E-51) 

(E-52) 

(E-53) 

(E-54) 

(E-55) 

, (~-56) 

(E-57) 

(~-58) 

The singular points of the transformation are along the axis x2 = 0, x3 = 0. 
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2 sn< -+ tanh c2 , 

cnS2,dnS2 -+ 2 sech 5 , 

GC3 -+ 3 sin5 , 

zs3 -f 3 
c-5 , 

zYE3 -+ 1 , 

K-tm, K1+;, 

B1 = sech c2 , 

B2 = ((c1j2 + 1)’ 

2 sech 5 2 case sin = 5 
3 

1- , 

(A2 + tanh2 c2 
I 

5* 3 
tan+ = cosech c2 cos 5 

1 , 

tan JI = . 

The singular points of the transformation lie on the plane 

3 = 0 
> 

2 
X and along the axis x1 =x =o. 

(E-59) 

(E-60) 

(~-61) 

(~-62) 

(~-63) 

(~-64) 

(~-65) 

(~-66) 

(~-67) 

(~-68) 

(E-69) 

(E-70) 
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Appendix F 

THE INTEGRABILITY CONDITIONS FOR SOME AXIALLY SYMMETRIC GEOMETRIES 

F.l Case 8 = IT/2 (e12 = f331 = T/2) 

Here we set 

2 x = r cos 5* (F-1 > 

3 x = r sin c1 (F-2) 

r = Al (F-3) 

and 

0 = --cl . (F-4) 

We find, after some algebra, that equations (4-19) and (4-22) will be satisfied 

and that (4-25) is an identity. Equations (4-20), (4-21), (4-23) and (4-24) 

state that + - 13 23' A3, A2 and $ are independent of c', i.e. independent 

of $J. The remaining integrability conditions will be of the form 

aA sin 823 - 
x3 

+ cos 823A2 % = A3 -$ (JI - 623) 9 
ac ac 

A2+ = aA 

ag 
- sin 923 - 

x2 
+ cos 023A3 -2 ($ 

x2 
- e23) 9 

(F-5) 

(F-6 > 

and equations (F-5), (F-6) will reduce to the Riemann-Cauchy conditions in the 

special case A2 = A3 s A, 023 = -IT/~ so that Ae -i$ is an analytic function 

of 5 
2 

+ is 
3 for any value of 5'. 

F.2 Case + = 823 = IT/~ (01, = B31 = r/2) 

In this case we set 

x2 = r sin 5 3 

3 3 x = r cos 5 

r = A3 

and 

(F-7) 

(F-8) 

(F-9) 

Q = c3 (F-10) 
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Equations (4-21) and (4-27) will be satisfied and (4-24) will be 

identically satisfied. Equations (4-19), (4-20), (4-25) and (4-26) state that 

A1' 8 and A2 are independent of 5 3 and the two remaining equations (4-22) 

and (4-23) become 

and 

(F-11) 

(F-12) 

In the special case when A1 = A2 G A equations (F-11) and (F-12) reduce 

to the Riemann-Cauchy equations and Ae -i0 will be an analytic function of 

C1 + ic2. The body can be represented again by c2 = const. 

Case 4 = 1~12 

We set 

x* = rsin5' , (F-13) 

x2 = -rcosc* , (F-14) 

r = A1 , (F-15) 

and 

0 = 5’ * (F-16) 

Equations (4-19) and (4-22) are satisfied and (4-25) becomes an identity. 

Also equations (4-20), (4-21), (4-23) and (4-24) state that I/J - 823, A3, A2 

and JI are independent of 5'. The remaining integrability conditions will be 

of the same form as (F-5) and (F-6) and reduce to the Riemann-Cauchy conditions 

when A2 = A3 = A and 823 = x/2 as in the case 8 = ~12. 

F.4 Case + = 0, 923 = r/2 

We set 

x2 = r sin c2 

3 2 
r cos 5 

2 
x = A2=r,5 =$ . 
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The integrability conditions are 

aA - = ae 
x3 

-A - 
3 at’ 

a9 aA 
*1---- = - 

x3 a$ ’ 

with A 
I' A3' 0 independent of C2. 
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Table 1 

. L 

UNIT BASE VECTORS A-* k $ = s cos e; 

2 
JO = I + 2 cos e 12 cos e23 cos c13, - cos 2e,2- cos 2e23- 2e cos 31 

!?.=2 R=3 
I I 

k=I 1 
I 

cos 8 sin 0 sin 0 I sin 0 cos $I 

H k=2 sin 8 sin I/J cos 4 cos * - sin $ cos e sin IJJ -sin I$ cos JI - cos (b cos 0 sin I/J 
al 
vi v k-3 sin e sin ($ - e23) 

cos 0 COS(* - e23) - sin $I cos($ - e23) 

- sin 41 cos 8 sin (Q - e23) - cos + cos e sin (I/J - e,,) 

cos e 
Qk=l JO 31 sin c1 - cos e12 sin (a - e23) cos e31 cos ~1 - cos e12 COS(C~ - e,,) 

. 
Z+ 

sm e23 sin e23 sin 823 

a+3 
&I k=2 0 
v cos a - sin cx 

9k =31 0 COS(~ - e,,) -sin(a-8 ) 23 



Table 2 

H 
aJ In 
u” 

UNIT NORMAL VECTORS (Ak)-lak = cos 0 
*k R 

- as 

k=I cos e 

k=2 sin e COS(+ - e,,) 

k=3 - sin e cos I/J 

k=l 1 

k=2 
cos e23 cos e31 - cos e,2 

, . sin e23 sm e3* 

cos e12 cos e23 - cos 0 
k=3 31 . sin e12 sin 623 

sin 8 sin f$ sin 8 cos I$ 

- cos $ sin (+ - e,,) sin $I sin ($ - e,,) 

- sin $ cos 8 cos($ - 023) - cos 4 cos 8 cos($ - e23) 

cos 0 
*k 
R R=l R 2 = R=3 

cos 4 sin + + sin I$ cos 0 cos $ - sin 41 sin $ + cos 4 cos 0 cos $ 

0 0 

Jo sin (a - e23) 

- sin e 23 sin e31 

Jo COSb - e23) 
-7 sm 923 sin e31 

Jo sin 01 
. . sin e12 sin 923 

Jo cos c1 

sin 812 sin 023 

. c * 



Table 3 

“  c 

tan * 

VALUES OF cos 9, tan $, tan $ AT C2 = O,k, C3 = 0,k’ 

C2 = k 

5?1 - a+,< 
3 

di2E3 + 5’ 

0 

0 

5 
1 

4 
2 

( ) 0+5 
,2 f 

snS2 

E3 = k’ 

2 2 
am5 +5 

,2 z 

)’ 

0 

m 



Table 4 

VALUES OF B1, B2, B3 AT c2 = 0,k; C3 = O,k* 

5* = 0 I C2 = k 5 = 3 0 c3 = k1 

B1 (1 - (1 - &i2s3+ (1 - cl)Q3 > 0 (1 - 0s**~*+ aLIS > 0 

B2 zi2c3 + 2 (&3 + '1*y (I + "Iz)i (0 + cl*) 

I B3 I 
5' , (0 + cl2 )" , (osn*E* + 5'*! 1 (osn*C.* + 'Iz)i 1 
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SYMBOLS 

r 

a 

2.; 
. 

a1 

A 

Ai . 
Al 

!+ k3 

Bi 
C 

2; 
i 

C 

cn 

- 
cn 

ds 

ds 

dn 

F 

fl 

f2 
g ij 

g 
ij 

h 

speed of sound 

base vector 

normal vector 

= A2 = A3 (subsection 5.2) 

magnitude of base vector 2-i 

magnitude of normal vector a i - 
vectors in orthogonal systems (Fig.1) 

magnitude related to A. 

constant in equation (3:7) 

(Appendix E) 

Cartesian unit base vector 

Cartesian unit normal vector 

Jacobian elliptic function with parameter o and argument c2 
(Appendix E) 

Jacobian elliptic function with parameter 1 - 0 and argument 

t3 (Appendix E) 

differential length vector, equation (A-I) 

magnitude of differential length vector, equation (2-8) 

Jacobian elliptic function with parameter o and argument c2 
(Appendix E) 

Jacobian elliptic function w 

c3 (Appendix E) 

ith parameter 1 -0 and argument 

afl . af2 ---I- 
x3 x1 

*1 ( cos 8 2 1 + i cos 0 3 1 ) 

Ae -icl 

co-variant metric tensor of order 2 

contra-variant metric tensor of order 2 

specific enthalpy 

J- - 1 
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SYMBOLS (continued) 

J, J* 

JO 

Jacobians of general transformations 

(AlA2A3)- ‘J 

* 
JO 

123 -1 
dld2d3J0 

quarter periods of elliptic functions with parameters u and 
1 -u 

K, K1 

R radius of large circle (subsection 5.2) 

P fluid pressure 

P point in Euclidean three space 

9 fluid speed 

r polar coordinate (Appendix F) 

R gas constant 

S specific entropy 

sn Jacobian elliptic function with parameter cs and argument c2 
(Appendix E) 

- 
sn Jacobian elliptic function with parameter 1 - o and argument 

\ c3 (Appendix E) 

T temperature 

T1, T2, T3 rigid body rotation matrices (Appendix C) 

t vector in Cartesian reference frame 

ith contra-variant component of vector t 

vectors in Cartesian reference system 

U. 
1 

i 
U 

V. 
1 . 

V1 . 
2 

a 

a! 1 

.th 
1 co-variant component of vector u 

th 
i contra-variant component of vector x 

co-variant component of vector 1 

contra-variant component of vector 1 

Cartesian coordinate 

++J, 

angle between i th axis in (P, WI, w2, w3) Cartesian frame and 

kth axis in (P, t', t2, t3) Cartesian frame 
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SYMBOLS (continued) 

B 

Y 
6 

ij 

6 ij 

,j i 

. 
2 
E.. qk' 

eijk 

0 

8 
ij 

& 

e j 

e; j 

lJ 

P 

u 

P, (p’ 

n 

&k 

;i,k 1 

Subscripts 
. . 
1, J, k 

N 

Euler angle 

ratio of specific heats 

co-variant Kronecker delta symbol = 0, i # j 
=l,i=j 

contra-variant Kronecker delta symbol = 0, i f j 

=l,i=j 

mixed Kronecker delta symbol = 0, i # j 

=l,i=j 

i th general coordinate 

=lfor i,j, k an even permutation of 1, 2, 3 

=- 1 for i, j, k an odd permutation of 1, 2, 3 

= 0 if,any two of i, j, k are the same 

Euler angle 

angle between the vectors zi and Sj 
. 

angle between the vectors a1 and aj 

angle between the vectors 5.i and .5j 

angle between the vectors aj and 2i 

cos e12 

sin 8 
31 

fluid density 

parameter of Jacobian elliptic function 

amplitude of Jacobian elliptic functions with parameters o and 
1 -u 

Euler angle 

velocity potential function 

Euler angle 

vorticity vector 

iam 8 E - 
( ) 

tk 
aS'1 m 

cos 8 
*k i,R 
P 

indices running from 1 to 3 

index used in definition of 4 (no summation over N) 
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SYMBOLS (concluded) 

Superscripts 

. . 
1s JY k indices running from 1 to 3 

N index used in definition of no summation over N) 
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Fig.1 Base and normal vectors 
(right angles indicated by parallelograms) 

Fig.2 Two othogonal systems 
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Fig.3 Base and normal vectors (case I) 

Fig.4 Base and normal vectors (case IT) 
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