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SUMMARY

The incompressible flow field past a single straight infinitely long
source line which crosses a circular cylindrical fuselage at right angles has
been studied. In particular, the streamwise velocity component induced in the
plane through the source line and the axis of the fuselage and the streamwise
and circumferential velocity components induced on the surface of the fuselage

have been determined numerically.

The results are used to determine the interference effect on the displace-
ment flow past an unswept wing of infinite aspect ratio attached to a cylindrical
fuselage. It is shown how the interference effect varies with the ratio R/c

between the body radius and the wing chord.

* Replaces RAE Technical Report 71179 — ARC 33437
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1 INTRODUCT ION

In this Report we intend to study some of the interference effects between
a fuselage and a non-lifting wing of finite thickness. We choose a simple case,
similar to the configuration studied in Part I 1, and consider an infinite
cylindrical fuselage of circular cross section with the axis parallel to the
main stream and an unswept wing of constant chord and infinite span with the

same symmetrical section along the span. The fuselage is attached in mid-wing

position.

The task is to determine the pressure distribution on this wing-fuselage
combination in incompressible flow. The problem can be dealt with by the method
of A.M.0. Smith (see e.g. Ref.3), which approximates such a configuration by a
series of planar source panels of constant strength, situated on the surface of
wing and fuselage. This method requires rather too much computational effort
for preliminary studies of a series of configurations. We intend therefore to
study the problem within the accuracy of a small perturbation theory and thus
to represent the wing by a source distribution in the plane of the wing. We
extend this source distribution inside the fuselage in such a way that the local
reflection effect of the body wall is represented (see Ref.2). For the special
case of an unswept wing, this means that we deal with an unswept gross wing of
constant section, i.e. a chordwise distribution of straight infinite source

lines of constant strength, which cross the fuselage at right angles.

The source distribution in the plane of the wing induces a non-zero normal
velocity at the surface of the fuselage. To cancel this we add a further
source distribution on the surface of the fuselage. This additional source
distribution induces streamwise and spanwise velocity components in the wing
plane aud streamwise and circumferential velocity components on the surface of

the fuselage.

We intend to study wings of different section shape and of different ratio
between wing chord and body diameter. To‘reduce the amount of computation we
consider first an isolated source line in the presence of the fuselage and deter-
mine the streamwise velocity component induced in the wing plane and on the
surface of the fuselage. We determine also the circumferential velocity com-
ponent on the fuselage,but we have not computed the spanwise velocity component
in the wing plane since it vanishes at the line where the wing plane intersects

the fuselage and is of little importance away from the fuselage.

To illustrate the importance of the interference effect on the displacement

flow we have calculated some velocity distributions on a 10 per cent thick wing,



with RAE 101 section, attached to fuselages of different diameter. A first-order

and a second-order theory have been considered.

2 A SINGLE STRAIGHT SOURCE LINE IN THE PRESENCE OF A CIRCULAR CYLINDRICAL
FUSELAGE

2.1 Velocities induced by the source line

Let x, y, z be a Cartesian system of coordinates and x, r, 6 a system
of cylindrical coordinates. We consider an infinite straight source line through
x =0, z =0, i.e. along the y-axis. The strength of the source line is constant
and equal to Q per unit length. We consider further an infinitely long cylin-
drical fuselage of circular cross section y2 + z2 =r%=1. The source line thus
crosses the fuselage at right angles. In the following equations all lengths are

made dimensionless with the radius R of the fuselage.

The velocity field of the source line has the components

y - Q. x
X 2 2 2
z
v = 0
y
= 9 ___ 2
Ve 27 2 *
X + z

The source line therefore induces at the surface of the fuselage a normal

velocity component (positive outwards):

vnQ(x,e) = vy cos 6 + v, sin 8

- Q9 sinze 1)
m x2 + sin26

In the following, we shall require the mean value of the normal velocity

at the cross section x = const

<t

2
Q= ;—ﬂ/ Vo ®de (2
0
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It is

x2
— ], (3)
1+ x2

lo

<t

nQ(X> 2r

The integral of vn(x,e) over the fuselage is

@

2n .[ VnQ(x)dx

-0

¢

i

f .[ vnQ(x,e)dedx
—0 0

i.e. the integral is equal to the total source strength of that part of the

source line which lies within the fuselage; as it should be.

The normal velocity induced by a source line differs in an essential way
from the normal velocity induced by a straight vortex (see Fig.l and Fig.l of

Ref.1l). The normal velocity VnP(x’e) induced by a vortex is an anti-

symmetrical function with respect to x and with respect to 6, whilst the

v Q(x,e) induced by a source line is a symmetrical function with respect to x
and to 6. As a consequence the mean value Gnr(x) vanishes for each station x,

whilst ;nQ(x) is non-zero. We mote further that vnQ(x,e) decreases more

rapidly with increasing x than vnr(x,e).

2.2 Strength of the source distribution on the fuselage which makes the fuselage

a stream surface

As with the vortex crossing a fuselage, we intend to use a source distri-

bution on the surface of the fuselage to cancel the normal velocity vnQ(x,e)

induced by the source line. The strength of the source distribution q(x,6)

must satisfy the equation:



Vg (519 (x,0)

= Vaq

o 27
(x 8) / q(x ,0') {1 - cos(® - 98')]de'dx'

X
(x - x ) + 2[1 - cos(e - 8")]

- 250

g(x!e') de'
2 47

o 2

[ [q(x',0') - q(x,6")}[1 - cos(6 - 6'))d6'dx' )
) —3 )

- 0 41r\/('x-x') + 2[1 - cos(s - 8")]

+

We intend to solve this equation only approximately by an iteration pro-
cedure. Equation (4) suggests as a first approximation the source distribution
(0)

q(o)(x,e) obtained by neglecting the last term of this equation. Thus q

must satisfy the equation

q(o)(x.e) + a(o)(x) = - 2vnQ(x,6) (5)
where
27
1@ - . .[ q‘9 (x,0)do . (6)
)

Taking the mean value with respect to 6 of both sides of equation (5) we see

at once that

-(0) -
70 = -V &)

and hence

R I R AN ®

nQ

()

The integral of the source strength q  ’(x,6) taken over the whole fuselage

is
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f [q(o)(x,e)dedx = = 2Q
<o 0

This means that with the source distribution q(o)(x,e) the sum of the sources
inside the fuselage and on its surface vanishes; this is a necessary condition
which must be satisfied by q(x,8) to ensure that there is no overall flow

through the fuselage.

If we write q(x,6) in the form
(0)
q(x,8) = q  °(x,8) + Aq(x,8) (9

then Aq(x,8) has to satisfy the equation

L r i lq © )( ' 6') q( ) (x,6")][1- cos(6 - 6')]1do"dx'
8q(x,0) + 3;‘[ Aq(x,06')de' = [ » °
0 0 (X - x)2 + 2[1 - cos(e - 6')]'
\il

[ Aq(x',0') - Aq(x,06')][1 ~ cos(p-06')]d6'dx'
=+ 3

é!\-S

(=}

2n~J(x - x')2 + 2[1 - cos(o - 8")]

ceese  (10)

Precisely as above, when considering a first approximation to equation (4),
we may obtain a first approximation to Aq by ignoring the second double

integral in equation (10), giving

2 Wgx,0) + 8V3m = kP (x,0) (11)
where
TE (o ©
K(l)(x,e) o - .[ j' [q (x',ef) - q )(xge')lll- cos (6 - 6')Ld9'dx' . (12)
- 0 ZnJ(x - x')2 + 2[1- cos(6 - 6')]l

Comparing equation (11) with equation (5), we obtain, similar to equation (8)

s Pqx,0) = kP00 - 3 ®P 0 . (13)



Since

™
j [1 - cos(6 - 6')ldo 5 = kK@ - E (k)]
0 JQ;'- x')2 + 2[1 - cos(8 -~ 8")]

where K and E are the complete elliptic integrals (of the first and second kind

respectively)with the modulus

K = 4 . (14)
46+ (x - x")

we obtain for the mean value of K(I)(x,e)

2
P& - -2-1; f kD (x,0)de (15)
0
the relation
. -(0) t - "(0)
W = - f q ‘(x %ﬂ 4 ") L [K- E ]dx' (16)

with~ a(o)(x) from equation (7).

We have computed values of E(l)(x) and of K(l)(x,e) for 6 =0, 300,
60°, 90°. Some values of A(l)q(x,e) are plotted in Fig.2 together with values
of q(o)(x,e). As to be expected, the largest value of IA(I)

x = 0, where A(l)a(x = 0) = 0.26 a(o)(x = 0).

q(x,6)| occurs at

(1)-

We note that whilst a(o)(x) is everywhere negative, A " 'q(x) 1is positive

(1)

for |x| > 0.92. The integral of the source strength A q(x,06) taken over

the whole fuselage vanishes:

© 27 ® N
/ 3[ s g(x,0)d0dx = ZW_[ A(1)5(x)dx =7 /. R eyax = 0 .

This follows from

*
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(0) -(0)
[ (1)(x)dx = -f dxf 1) - q (%) k[K - E}dx’

2w

-—00 -0

Y T =(0) -(0) ,_,
e [ 2025000

-+
-—C0

and the fact that k is a function of (x - x')2

We note also that the difference IA(l)q(x,e) - A(l)q(x)l, i.e. the

difference IK(I)(x,B) - E(1>(x)| is relatively small if we compare it with

q(o)(xze) -45‘0)(X)

the difference lq(o)(x,e) - a(o)(x)|. The ratio

~(0
q( )(X)
varies between 2 x 5 and 2. It seems appropriate to measure the
1 +x
difference |A<1)q(x,e) - A(l)q(x)l in terms of q(o)(x) At x = 0, the
(1) - A=
ratio A q‘f(g; A7 Tqx) is not larger than 0.032 and for x-values in the
x q (%)

range O < |x| < 1.5 it is nowhere larger than 0.05. For x = 4, a maximum
value of about 0.07 is reached; we have however to note that
a(O) (x = 4) = 0.03 a<0)(x = 0).

We could determine from equation (10) improved approximations to Aq(x,6)

by the iteration procedure

2,0 + 83 = kP x,0

2m e _
/ &g ,0m) - 80 g(e,8m)]01 - cos(e - 8')]1de"dx’
0

3

é‘““ws

2r [(x - x')2 + 2[1 - cos(8 - 8")]
cees  (17)

The fact that the difference |A(1)q(x,0) (1) (x)| is rather small
suggests that for v > 1 the difference between the value of the double
integral in equation (17) as a function of 6 and its mean value is nearly

negligible.
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We aim in this Report only towards an accuracy consistent with a small
perturbation theory approach. We have therefore computed only mean values of
the double integral in equation (17). If we integrate equation (17) with

respect to 6, we obtain

_ . g PR PN O O
WM - KW .[ A 9D =87 900 [k - Elex

-00

With the notation

- _(V-l) " ’(V-l)
kM = - f“ )oK ) (K- E]ex’
we obtain
v
2P = 4 Y B .
n=1
Since
b b
f dx/ dx' [f£(x') - £(x)]F((x- x')z) = 0
a a
V)=

we satisfy for each approximation A" “q(x) the condition

-~}

[ A(“)E(x)dx = 0 .

00

We have computed values of K(n)(x) for 1 ¢ n.¢ 6 and found that for every

n the largest value of |E(n)(x)| occurs at x = O and that
8™ (x = 0)] < 3R Px =0y .

If the same is true for n > 6, then
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Z K| < KO@=-0] ) ®" < R®x=0].
n= n=1
With Q = 1,
29 =0 = -1 - -o0.318
RV (x=0) = - 0.0821
2 =0) = - 0.0292
K8 =0) = - 0.0009

We note that it seems advisable to perform more than the first two steps of the
iteration procedure (which give q(l)(x,e) = q(o)(x,e) + A(l)q(x,e)),but that we
(6)

need not go further than ¢ .

The approximation to q(x,8) used for computing the velocity components

induced on the wing and the fuselage reads thus

‘ 6
q(x’e) = q(O) (xpe) + i Z E(n)(x) + K(l)(x’e) - l-((l)(x)
n=1
6
=T 2vnQ(x’e) + ;nQ(x) + 4 i(n)(x) + K(l)(x,a)-i(l)(x) .
n=

s (19)
Some values of q(x,6) and of q(x) are plotted in Figs.2 and 3., Values of
j;: E(n)(x) are tabulated in Table 1,

n=1

. 1 .
= The function K( )(x,e) has the same properties of symmetry as
(x,8), i.e.

vnQ

K(l)(x,e) = K(l)(x,n-e) = K(l)(x,—e) = K(l)(-x,e) .
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If K(l)(x,e) is written as a Fourier series, then only terms of the form
Fn(x) cos 2nd arise, Using the numerical values of K(l)(x,e) we found that it

was sufficient to consider only the first two terms of the Fourier series, i.e.

we have used the approximtion:

kD00 - KM x) = F (0 cos 28 + F,(x) cos 48 (20)
where
Feo = 3 kP00 + 3 kP ,30% - 58P (x,60% - 1 kM (x,90% '
b (21)
P00 = kP (x,0) - kP (x,30% - 3 kP (x,60%) + 3 kP (x,90% 4

2.3 Streamwise velocity in the plane through the source line and the axis of
the fuselage

We consider now the velocities which the source distribution q(x,8) on
the fuselage induces in the plane 2z = 0, i.e. the plane through the source line

and the axis of the fuselage.

' The source distribution produces in 2z = 0O the additional streamwise

velocity

@« m

[ q(x',e')(x - x')de'dx’'

- 0 4nJ&; - x') + (y - cos 6') + sin" 8"

vxq(X,y.O)

0 27
_ .[ .[ q(x',0")(x - x")de'dx’' . (22)
2 2 ‘3
- 0 (x -x""+y"+1 - 2y cos 8'

It produces the spanwise velocity

o 2m
1 ) - ) ] ]
y q(x,y,O) _ [ é q(x',8')(y = cos 6')d8'dx . (23)
~w 4n

3
1
J~Zx - x')z + y2 + 1~ 2y cos 6'
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Since the strength of a source element at a point x,6' 1is the same as at

the point x,-6', no velocity component v, is induced in the plane =z = 0,

Since
q(x,B) = q(_x,e) ’
we have
qu(x’y’o) = = qu(-x’}”O) (24)
and
qu(x,y,o) = qu(‘x,y,o) . (25)
Since

8

(x - x")dx'

~eo \f(x - X')2 + y2

= 0

33
+ 1 ~ 2y cos 6'

and q(x,6) = gq(x,-8), equation (22) can be written in the form

© oq
(S T ] S | (T |
v (x,y,0) = [q(x",8" - q(x,6")] (x - x")de"dx
*q 7 2 3
- Q Zw'ka -x")" +y" +1- 2y cos §'
®
_ f / [q(x',6") - q(x,0") - q(x,6 = 0) + q(x,6=0)] (x -~x')d6"dx'
13
-~ 0 ZHka - x')2 + y2 +1- 2y cos 8'
b ™
. [ (x = x")lq (x',6 =0)= q(x,0 =0>]dx'[ de"
] 2m 5 5 ~ 3
- OJ(x—x') +y +1~-2y cos ®
™
. de’ .
The integral can be expressed in

0 ka - x')2 + y2 + 1 - 2y cos 6'3

terms of the complete elliptic integral E . We introduce the variable T:

g' = 7 -2t .
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With
cos 8' = = (1 -2 sin2 T)
the integral becomes
m m/2
de' - 2 dr
‘—13 2 2 Pl 13
ka - x') + y + 1 - 2y cos 9' 0 ka = x")" + (y+1)° = 4y sin” 1
m/2
i, 2 [
= _43
ka x') + (y+ 1) 0 J& k sxn T
_ 2 E (k)
3 2
’ -
Jz;>_ x')2 v (y+ 1)2 1 -k
- 2 E (k)
2

[(x-x")2+ (y-l)zhﬁx-:c')2 + (y+1)
e (26)

with

2 4y
k = 27)
x-xD2+ (y+1)?

(x,y¥,0) can thus be evaluated from the equation:

@ il
(x,y,0) =[J[“fﬁW-me%qumwm+qmmﬂm@-www“-

3
1
21r‘[(x - x')2 +y2 + 1 - 2y cos 0!

o

[Q(x' ;6 = 0) = Q(xze = O)] (x - x") E (k) dx' (28)

+

1

- m(x - X')2 + (y - 1)2]J(x - X')2 + (y + 1)2

with k given by equation (27).
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The numerical evaluation of the double integral does not cause any
difficulty, except for y =1, x » O, since the integrand is free from

singularities.

For y > 1, the denominator of the double integral nowhere vanishes,
Since q(x,6) = q(-x,8), the integral is zero for x = 0. The same is not true
for y - 1; in Appendix A it is shown that for x -+ O the double integral does

not vanish and that

limv (x>0, y=1, z =0) = - 0.,05305
x
x+0
When evaluating the single integral for y = 1, we find that as x' +» x the
limiting value of the integrand is E%Féglgigﬂll . For y =1, x -+ O the

single integral tends to zero.

We intend to extend the present work for an unswept infinite source line
to swept source lines and later to swept wings of finite span. We are there-
fore interested to know how important the term K(l)(x,e) - i(l)(x) of the
source distribution q(x,6) 1is with respect to the induced Vo velocity,
because the amount cof computation is considerably reduced if we have to

evaluate only the single integrals E(n)(x) and not the double integral

K(l)(x,e).

We have therefore computed

o
* ' 'y - ' p_— ' '
Av*(x,y,0) = [A q(x',6") A*q (%, 6 )] (x x')de'dx (29)
* 7. 2 13
- 0 ZWNﬁ; - x")"+y" +1 -2y cos 0
for
* — (1) - "‘(1) _
A*q(x,06) = K (x%,8) K (x) = Fl(x) cos 29 + Fz(x) cos 46 ., (30)
T

. cos 2n0' ' .

The 1integrals ) de can be expressed in

2

0 J(x - x')2 +y~ +1- 2y cos 8'

terms of complete elliptic integrals.
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Av;(x,y,O) =

@

~—73 3 2

8my

-0

3
"o K 128 (16 _16 .2 . 7 .4
+ [P, (x") Fz(x)][--—————1 2 E + ——-ks <-——5 = k + 35 k' )E

2

32(2 = k) 128(16 24,2 84)]} 'y gt

- K +—[-—+=+—k"=-=k K (x ~ x')dx
k 3 575 5

ss e (31)

where k 1is given by equation (27). As x tends to zero, Avi(x,y,o) tends to

zero for all valus y 5 1.

]

Av§ has for y = R the largest value, 0,0015, at x/R = 0.15 and the
smallest value, -0,0009, at x/R = 1., These values of IAV;| are sufficiently

small that they may be neglected in future computations.

Calculated values of the streamwise velocity induced by the source
distribution q(x,6) on the fuselage, qu’ are given in Table 2 and are

plotted in Fig.4.

The source line itself induces in the wing plane, 2z = 0, the streamwise

v

velocity QXQ L

7R - 2m x/R

; we have added in Fig.4 the curve —0.2vxq.
We learn from Fig.4 that the interference velocity is of opposite sign to
the velocity of the source line itself, as is to be expected since the mean
value of the source strength, q(x), is everywhere negative, We learn further
that the source distribution on the fuselage induces a much smaller velocity

than the source line itself,

This result differs from that for the downwash of a straight vortex line
crossing a circular cylindrical fuselage, Vor and vzq (= sz of Fig.3 in
Ref.1) have the same sign. At x/R =1, y/R =1 the downwash due to the body
interference is about half that due to the isolated vortex and at x/R = 5,
y/R = 1 the two are nearly equal, This different behaviour of the inter-

ference velocities for large |x| is due to the fact that the modulus of the
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. . . r - in 6
normal velocity induced by the vortex line v e o— —2= 31~} decreases
nl’ 2n x2 + sin2 5

for |x| > 1 1less with increasing |x] than the normal velocity induced by

Q sin2 6
the source line (v = e .
nQ 2m 2 .
X + sin 6O

In Ref.4, it has been suggested that the body effect on the displacement
flow past a wing might be estimated by means of a source distribution along
the axis of the fuselage. The strength of the axial source distribution,
E(x), at a station x was taken as equal to the spanwise integral of that part

of the source distribution of the gross wing which is inside the fuselage, with

opposite sign. This means that for an isolated unswept source line a single

sink of strength 2RQ would be taken.

To judge how good an approximation is achieved by a single sink we com-

pare in Fig.5 the streamwise velocity in the wing-body junction produced by

the single sink situated at x =y =z =0 é% zx 3 with the velocity
.}x +1

vxq(x,l,O) produced by the source distribution q(x,6). The single sink pro-

duces, of course, no streamwise velocity at x = 0. The source distribution

produces a velocity which varies discontinuously at x = O; the mean value at

x = 0 vanishes also. Fig.5 shows that for lx/R’ > 0.3 the single sink pro-

duces too large a value of V.- This explains the statement in Ref.4 that the

'source method' tends to overestimate the interference effect in the junction.

We may further note that the streamwise velocity induced in the wing plane
by the single sink situated at x =y = z = 0 decreases for x/R > 0.5 more
rapidly with increasing spanwise distance y than the velocity —vxq(x,y,o)

induced by the source distribution on the fuselage.

We have also plotted in Fig.5 the streamwise velocities which are induced
by the mean source distributions a(x) and a(o)(x) on the fuselage, i.e.

source distributions which do not vary with 6. These are calculated from the

relation

ER e

Vg (e7i0) = .[ [3(x") = G0l (x = x') Edx! o2

Jo =292+ o+ DL - xH% 4 7 - DY

with k given by equation (27). These source distributions produce, of course,

a velocity which varies continuously and therefore vanishes at x = O.



18

Finally, we have plotted the velocity produced by the first approximation
to the source distribution on the fuselage, q(o)(x,e). The difference between

the velocities for q(x,6) and q(o)(x 8) 1is the sum of the difference between
the velocities related to q(x) and q(o)(x) and the term Av; of

equation (31),

2.4 Streamwise velocity on the fuselage

The isolated infinitely long fuselage does not produce any perturbation to

the flow field. Thus the pressure distribution on the fuselage is entirely due

to the presence of the wing.,

We determine in this section the velocity due to a single source line

in the presence of the fuselage. The isolated source line produces the stream-

wise velocity

(x,8) = L ——X__ (33)
Q 2m x2 + sin2 0

The source distribution gq(x,0) produces the additional streamwise

velocity
w 2
- 6') (x - x") do'dx'
vxq(x,e) / .[ 3 (34)
- Q0 J(x - x")% + 2[1 - cos(6 - 8")]
Now
U
de’ - 4E (k) (35)
3
0 \Jx - x)% + 21~ cos(s - 81 (x - x") 2 (x - x1)2 +4
with
2 4
k® = 5 (36)
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Therefore

o

i

|

2
[q(x',8") - q(x,8")] (x - x")de"'dx’
2 13
© 0 4“J(x - x")" +2[1 - cos(e - 8")]

vxq(x,e) =

o 27
- .[ [q(x',6') - q(x,68") - q(x',8) + q(x,8)] (x = x')d6'dx’'

2 *3
bf(x = x")° + 2[1 - cos(6 - 8")]

[q(x',0) - q(x,)] ECK) 4.+ (37
' 2
o omlx - x") JGx - x4 4

3+

with k from equation (36).

The numerical evaluation of vxq(x,e) does not cause any difficulty for
X # 0, vxq(x,e) is for 6 #0 a continuous antisymmetric function with
respect to x and therefore vxq(x =0, 6 ¥0) =0, For 6 = 0 we have
already determined the limit qu(x +0, 8§ =0) since for 6 = 0 the vxq
from equation (37) is of course the same as vxq(x, y =1, z = 0) from

equation (28).

Calculated values of vxq(x,e) are given in Table 3 and are plotted in
Fig.6. These suggest that the limit of vxq(x,e) as x and 6 tend to
zero depends on the manner in which 6 tends to zero, i.e. if 6 = kx and

x + 0 the limit of vxq(x,e) differs from the limit obtained for 6 = 0.

The single integral in equation (37) vanishes for 6 =0 and x + 0O,
but has a non-zero value for 6 = kx and x > 0. It is shown in Appendix C
that the limit of the single integral as x tends to zero has the minimum

value - i% when 6 = x,

In Fig.7, we have plotted for the top of the fuselage, 6 = 90°, the
streamwise velocity induced by the source line VxQ? the velocity induced
by the source distribution on the fuselage, vxq’ and the total interference
velocity v, = va + vxq' We have also plotted the velocity induced by a
single sink of strength 2Q situated at x =y = z = O and note that this

gives a good approximation to vxq(x,e = 90°).
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We may mention that the contribution to vxq(x,e) produced by A*q(x,9)
of equation (30) is of little importance everywhere on the fuselage, the

largest and the smallest values of Av;“(q are 0,0015 and -0.0011 respectively.

2.5 Circumferential velocity on the fuselage

Finally, we consider the circumferential velocity, Vgs OR the fuselage.

The isolated source line produces the velocity

v = =-v sin 6 + v cos 6
y V4

0Q

- é% s;n 6 co; 6 (38)
x~ + sin” 6

The source distribution q(x,6) produces the additional velocity

veq(x,e) =
o 27
- q(x",6') -(cos 68 = cos 6') sin 8 + (sin 6 - sin 6')cos 6] de'dx"
) V3
S An_J(x - x")° + 2[1 - cos(® - 8")]

© 27
- q(x',8"') sin(® - 6')d8'dx’
—
-0 0

z.-,TJ (x - x')2 +2[1- cos(s - (':3')]1

)
= j [ [q(x',0") - q(x,08"))sin(® - 6')d6"dx"'
e o

AW\[(X - x')2 + 2 [1- cos(o - 9')f3

3

2n
N / q(x,0') sin(0 - 0')do" (39)
0

4m 1l - cos(6 - 07)]
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o 2
(x,8) = ./ ]‘ [q(x',0") - q(x,68') = q(x',0)+q(x,0)] sin(8 - 6')d0'dx’
00 O

3

3
sz(x - x')2 + 2[1~ cos(6 - 8")]

27
[q(x,6") ~ q(x,0)][1 + cos(8 - 6')]1d9"
* f 4m sin(e - 8') . ' (40)
0

The numerical evaluation of v from equation (40) is straightforward

8q

except for the case x =0, 6 - 0, Due to the properties of symmetry of q(x,8),

the

X =

lim v, (x =0,6) = - lim vxq(x >0,y =1, z

00

circumferential velocity vanishes for 6 90° and for 6 = 0 except for

0. It is shown in Appendix A that

0) = 0.05305. The limiting value

bq x>0

of v. as x and 6 tend to zero simultaneously depends again on the manner in

6q

which x and 6 tend to zero. If x =«6 and 6 - O, then the single integral

in equation (40) has the same behaviour as the single integral in equation (37);

. . 1
it reaches a maximum value of -— when ¢ = 1,

For

47

Calculated values of v are given in Table 4 and are plotted in Fig.8.

6q
small values of x the ratio between veq(x,e) and VGO(X’6> is not larger

than about 0,2, the ratio increases to about 0.7 for x = 1 and increases to

slightly more than 1 for x = 3,

When evaluating v_ (x,0) from equation (40), we have used for the source

fq

strength q(x,0) the approximation

6
q(x,8) = q(o)(X,e) + ) Zi(n)(x) .

n=1

Equation (40) implies that the terms ;n(x) and Zﬁ(n)(x) do not contribute

to the value of v

s+ Ve have ignored the term a¥q(x,0) =K x,0) - K ()

in equation (19); the contribution of A*q(x,6) is small because Fl(x) and

FZ(X) in equation (30) are small. Thus to a high degree of accuracy the

circumferential components v can be considered to come only from the first

approximation q(0>(x,8).

0q
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3 PRESSURE DISTRIBUTIONS ON WING~FUSELAGE COMBINATIONS

3.1 Pressure distribution on the wing according to first—order theory

The calculated velocity components due to an isolated source line in the
presence of the fuselage can be used to determine the pressure distribution on
a straight wing of given section shape when attached to a fuselage in midwing

position.

Within first-order theory, the strength of the source distribution
qw(x,y) which represents the isolated wing in z mainstream of velocity V0
parallel to the wing chord is such that the normal velocity in the wing plane

vz(x,y,z = 0) satisfies the boundary condition to first order, i.e.

9z (%,y)
VZ(X,Y,Z =0) = VO —~3§"——"‘ (41)

where =z zt(x,y) gives the shape of the wing., In the following, we make all

velocity components dimensionless with VO and take VO =1,

We have noted that the source distribution q(x,6) on the fuselage does
not induce a velocity component vz(x,y,z = 0) in the plane =z = 0; therefore,
the source distribution in the wing plane qw(x,y) is the same for the wing-

fuselage combination as for the isolated wing,

A plznar source distribution qw(x,y) induces in z = 0 the normal

velocity

VZ(X’YBZ =0) = iqw(XQY) ° (42)

We consider in this Report oniy wings of constant chord and constant section

shape along the spen, sc that

dzt(x)
qw<XsY) = 2 dx . (43)

To determine the change in the pressure distribution due to the fuselage =

to first-order accuracy - we have to determine only the change in the streamwise

velocity
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AVX(X,}’,Z =0) = qw(x') Q/R Y (44)

x x'
¢/R vxq<ﬁ "R % ’ 0>
0

and by equation (43)

x x'
c 1 dzt/C qu(ﬁ—?-’ %’O> X!
Avx(x,y,o) =2 ﬁ'_[ xTe /R d<?> (45)
0

v
where ¢ 1is the wing chord and the values of 6;% can be taken from Table 2,

For the 10 per cent thick RAE 101 section we have computed
Avx(x,y = R,0) for various values of the ratio c¢/R and plotted the results
in Fig.9. To assist in assessing the importance of the interference effect,
we have plotted also —O.1vxw(x), where Vo is the streamwise velocity

perturbation of the isolated wing.

Fig.9 shows that, except close to the leading edge and near the trailing
edge, the velocity is reduced (a fact which is well-known from experiment).
Avx vanishes when c¢/R tends to zero, since c¢c/R + O represents the case of
a straight wing attached to an infinite reflection plate parallel to the main
stream, which for inviscid flow'does not alter the flow. Avx vanishes also
when c¢/R tends to infinity, i.e. when, for a wing of given size, the body

. 1 c
disappears Avx behaves for large c¢/R as TR log /e We note that

according to the first—order theory the interference velocity is not larger
than 207 of the perturbation velocity of the isolated wing. This result is to

be expected from the comparison in Fig.4 between vxq and VxQ’ where we note

that the magnitude of the interference velocity, -vxq(x,y = R,0), is nowhere
larger than one fifth of the velocity from the isolated source line. The
maximum reduction in velocity occurs in the neighbourhood of the position of
the maximum thickness of the wing. This is to be expected from a consideration
of a planview of some streamlines on the wing, as sketched e.g. in Fig.X.4 of

Ref.5. If one makes the assumption that one streamline follows the junction line
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between wing and body, then this latter streamline departs furthest from the
straight line y = R at the position of the maximum thickness. One can there-
fore assume that the distance between neighbouring streamlines is largest at
this chordwise position. The values of Avx close to the leading edge are

unreliable due to the shortcomings of the source distribution qél)(x) close
to the leading edge.

As a further example, we have plotted in Fig.1l0 the velocity decrement
in the junction at the maximum thickness position for a wing of biconvex para-
bolic arc section., The figure shows a similar variation of Avx as function

of c¢/R and similar values of Avx/vxw as shown in Fig.9 for the RAE 101
sectiomn.

We have mentioned in section 2.3 the suggestion of Ref.4 to estimate
the interference effect by means of a sink distribution on the axis, which is

equivalent to the approximation

V;‘é(x.y = R)
¢/R

1 x/R
= 5 (46)

J1 + (x/R)?
< - -}—(->, this
c
A*vx(x/c = 0.5,y = R) 4

see aglso Fig.5. With the parabolic arc section z, = 2t
2
_ 2 c c - 1

c\ 4
1+ o.2sﬁﬂ

[eR ]

gives for x/c = 0,5

eee (47)

We have plotted A*vx in Fig.10. The figure shows ~ as expected from Fig.5 -

that, for c/R > 1, A*vx overestimates the interference velocity Avx

noticeably,

For the RAE 101 section and c¢c/R = 5, we have also calculated the velocity
decrement at some spanwise stations away from the junction. The results are
plotted in Fig.ll. We note that the maximum value of the interference velocity

varies approximately linearly with the inverse of the spanwise distance, i.e. as

;}ﬁ . We may remind ourselves that the interference downwash induced by a
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lifting wing in the presence of the fuselage varies nearly as

2 ’
see Figs.4 and 8 of Ref.l. (y/R)

3.2 Pressure distribution on the wing according to second-order theory

It is of some interest to know the interference velocities somewhat more
accurately than the results from first-order theory. To obtain the pressure
coefficient to a higher accuracy, one has first to satisfy the boundary condition
to more than first-order accuracy, secondly one has to take account of the fact
that the velocity at the surface of the wing differs somewhat from the velocity
induced in the plane 2z = 0, and finally when computing the pressure coefficient,
one has to take account of all velocity components instead of using the first

order approximation, cél) = = 2vi1).

Let us first consider the boundary condition. At the surface of the wing,
z = zt(x,y), the velocity field has to satisfy the equation

3z 9z
t t
[Vo + vx(x,y,zt)]3§_-+ vy(x,y,zt) TR vz(x,y,zt) = 0 . (48)

With the present case of an unswept wing of constant section shape
azt/ay = 0 so that the boundary condition on the wing reads

oz
{1+ vx(x,y,zt)] Lt . vz(x,y,zt) . (49)

X%
We intend to retain in this equation all terms of order (t/c)z, The left hand
side can be approximated, correct to second order, by

dz
{1+ vii)(x,z = 0) + Avil)(x,y,o)] §§£

1 . . . .
where viw) and Avil) are computed from the first-order source distribution

dz
(1) t
x = Sy — L3
L ) 2 dx
We intend to satisfy the boundary condition again by a source distribution
in the plane of the wing and a source distribution on the fuselage. (Such a
configuration of singularities would not permit us to satisfy the exact
boundary condition, to do this a singularity distribution at the surface of the

wing would be required.) The source distribution in the wing plane is expressed
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as the sum of two terms qéz)(x) + Aq(x,y), where qéz)(x) is the source distri-
bution of the isolated gross wing, correct to second order,and Aq(x,y) is an
interference term. The source distribution on the fuselage, qf(x,e), is

related to qéz)(x)t

c¢/R

wwo = [P (58 -x ) @
X'

with q(-%:- - e> from equation (19), i.e. the two distributions q‘(,z) (x) and

qf(x,e), taken together, satisfy the boundary condition on the fuselage.

The interference term Aq(x,y) varies along the span, therefore we cannot
yet determine without much computation the related Aqf(x,e) which would make
the fuselage a stream surface. Therefore we do not take full account of the
interference between Aq(x,y) and the fuselage but determine the effect of
Aq(x,y) as if this source distribution were acting in the presence of an

infinite reflection plate, situated in the wing-body junction.

Let us now consider the contributions to the velocity component vz(x,y,zt)
induced by the various source distributions. We approximate the contribution

vil)(k,y,zt) induced by qél)(x) by the first two terms in the Taylor's series

expansion
(1)

v (x,y,2)

(1) - z
Vz (x’Y:zt) VZ (X,}’,O) + zt( 32 ) 30

¢D) Q)

(x) dv - (x,2 = 0)

. __._._qwz - g, (51)

The strengths of the source distributions qéz)(x) - qél)(x) and Aq(x,y) are
both of second order, we can therefore approximate their contributions to

vz(x,y,zt) by the v, in the plane z =0, i.e. by

(2) (1
q, () = q 7 (x) . 8aGoy)
2 2 )
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The velocity sz(x,y,zt) induced by the source distribution on the fuse-
lage, qf(x,e), has to be evaluated numerically, since we do not know the
dAv
9z

derivative ( i) . We know that
z=0

(52)

<3sz> o BAvx(x,y,O) 8Avy(x,y,0)

3z 3% -

z=0 3y
but we have not computed Avy(x,y,O), except in the wing-body junction where

Avy(x,y =R, z=0) =0,

We shall compute the velocity in the wing-body junctionm, AVZJ.

The velocity component v, on the surface of the fuselage can be

determined from the circumferential and the normal velocity components
vz(x,e) = cos 0 ve(x,e) + sin 6 vn(x,e) (53)

For the source distribution q(x,6) on the fuselage given by

6
a0 = q©(x,0) + Z 8 ()

n=1

we have determined the circumferential velocity component veq in section 2.5
' N

and calculated values have been tabulated in Table 4, The normal velocity
component v is known since it is equal to the negative value of vnQ’
given by equation (1), Values of vzq are plotted in Fig.12., We note from
Figs.8 and 12 that, for small 6 and x, the values of vBq and vzq are
noticeably different, because vnq is, for small x and 8, a rapidly varying

function of x and 0.
With vzq(x,e), the velocity in the wing-body junctionm,
'zt(x) = R sin BJ(x), can be calculated from
1 v {(2-2)S5
zq\\c c /R’ J '
‘)

c 1
by 3 (x,6;(x)) = 'ﬁf 1, (x") Q/R <
0

(54)
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Using for qw(x) the approximation from first-order theory, equation (43),
we have computed the szJ for two wing-body configurations derived from a
wing with a 10 per cent thick RAE 101 section. The results are plotted in
Fig.13, together with a multiple of the Vo of the wing alone according to
first-order theory, v(l) = dzt/dx. The figure shows that the interference

zZw
Av is of the order of 10 per cent of the basic v(ié. The factor of c¢/R

onzihe right-hand side of equation (54) explains why IAVZJI in Fig.13 is so
much larger for c¢/R =5 than for c¢/R = 2, For given t/c, the ratio ¢t/R
and with it GJ(x) increase also with increasing c¢/R, but we see from Fig.l12
that the variation of vzq(x,e) with 6, i.e, whether it increases or decreases

with increasing 6, depends on the values of x and 8.

Since sz(x,y,O) = 0 we obtain from the Taylor's series expansion and

from equation (52) the approximation:

BAvx(x,y = R,0) 8AYy(x,y = R,0)
AVzJ " [: 9% * dy :]' (55)

We have comgxted Avx(x,y = R,0), see Figs.9 and 11, and can thus evaluate the
v

term - z —— of equation (55). We find that for most x-values
BAvx
z, 5% is noticeably smaller than IAVZJI; it is about 0.15|AvzJ » This

implies that laAvy/ayI is not negligibly small in the junction, but we may
expect that it decreases rapidly with increasing y. This implies that we may

expect that |AVZJI decreases rapidly,

We have not yet computed vzq(x,y,z) induced by the source distribution

on the fuselage for points away from the fuselage y2 + z2 > Rz, z > 0. This

would require the evaluation of

o 27
) ] - : ] 1 )
v (x,y,z) = q(x',8')(z - sin 6')d6'dx . (56)
- 0 dﬂJEk - x"N" + (y - cos 8")° + (z - sin 8")

To estimate the effect of sz(x,y,z = zt) we can therefore only make a crude

assumption., We choose
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sz(x,y,zt) = szJ(x) <2 - %l) for 1 < g. < 2
R R
= for -}.-’- > 2 °
R

Inserting the various contributions to the velocity components into

equation (49) we obtain the equation

1) (L)
dz q (%) dv (X,2 =
(2) (1)
Q" (x) - q (%)
o+ i 2 W 4o Aq(}z(’Y) + sz(x,Y’zt)

The boundary condition for the isolated wing, which reads

(L
dz dv (x,0)

gives for the source distribution qéz)(x) the equation

dz
(2) t d (L
qw (x) = 2 [;x * dx ztvxw {J

When we insert this relation into equation (58), then we obtain for the

interference term of the source distribution in the wing plane the equation

(1) dzt
Aq(x,y) = 2Avx (x,y,0) yreadie 2sz(x,y,zt)

We shall now examine in turn the relative magnitude of the effects

produced by the two terms in equatiom (60):

29

(57)

{58)

(59)

(60)

With the assumed spanwise variation of sz given by equation (57), we

obtain for the streamwise velocity compoment in the wing-body junction induced

by the source distribution A*q(x,y) = —2sz(x,y,z) the equation
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0 0 ;J}x - x')2 + y'2
7
I )
) oo [
- l’.?-_J____(z_z'_) o2
m R N\ 2 X = X'
X X
0 (ﬁ'“ 1%> , R I
- "\ '
1+ <x x > + 1
R X!
+ log IX - x'l d<_i_> . (61)
R
A

Values of - Av;‘(J have been computed for the two distributions of szJ

plotted in Fig.13; the results are shown in Fig.l4., If we compare Fig.l4 with
Figs.9 and 11 then we note that Aq(x,y) has increased the velocity decrement
at the maximum thickness position caused by the body interference by 307 for
¢/R = 2 and by 25% for c/R = 5.

1 , 1
If we assume that Avi )(x,y,O) varies along the span as /R ° as

suggested by Fig.1ll, then the source distribution
dz

Agt*(x,y) = 2Avi1)(x,y,0)~a;£ induces in the wing-body junction the velocity

(1), ht
Ava)(x ) dzt 1 (x = x")dx"'dy"
Ak ky (x) = . B Y
xJ m dx y'/R 5 513
R J(x -x")"+ (y' -R)
¢/R av__ (X R -
xJ\R) dz, R X I};
= dx' 4 - X

L E )T
|
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For the 10 per cent thick RAE 101 section and c¢/R = 5, equation (62) gives at
the maximum thickness position the value -A**va = 0,001, We shall therefore

1 A** L]
ignore the term Vs

The velocity decrement in the junction at the maximum thickness position
is somewhat further increased when we compute Avx(x,y = R,0) by equation (44)
with q(z)(x) instead of qél)(x). The effect of the difference
qéz)(x) - q(é)(x) on Avx(x,y = R, z = 0) is shown in Fig.l15.

Up to now, we have considered the streamwise velocity only in the plane
z = 0, We want now to study the velocity at the surface of the wing. We
obtain the perturbation velocity correct to second order from the Taylor's

series expansion

v_(x,y,2)
v _(x,¥,2,) = v_(x,y,0) + z —e
x Tt x' 7?0 t 9z 220

BVZ(X,Y,O)

t 9% * (63)

= vx(x,y,o) + z

Since sz(x,y,O) = 0, we learn that the difference between the values of the
streamwise velocity at the surface of the wing and in the plane z = 0 1is to
second-order accuracy the same for the wing-fuselage configuration as for the

isolated wing:

2
' 0 zt(x’Y)
Vx(x’Y9zt) = Vx(x’Yso) + 2 R 5 °
x
We obtain thus from second-order theory
2
(2) 62) 3 zt(x,Y)
v (6,y,2.) = vt (%,y,0) + AV 7(x,y,0) + Ay (%,¥,0) + 2, ———— (64)

ox

where véi)(x,y,o) is the velocity component for the isolated wing induced
in z = 0 by qéz)(x,y), Aviz)(x,y,o) is the interference velocity induced
in z = 0 by the source distribution qf(x,e) on the fuselage, given by

equation (50), and A*vx(x,y,o) is the velocity induced by the source

distribution Aq(x,y) given by equation (60).
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Fig.6 shows that for small values of x/R the value of vxq is changing

rapidly when 6 increases from 6 =0 to 6 = 10° say, even though

Bvx v, (x,6 = 0)
X = = 0, except for x = 0., With a 10 per cent thick
30 0=0 e x

wing and c¢/R = 5, the maximum value of GJ(x) is 14,5°. To learn how good
an approximation to Avx(x,y,z) is given by the first two terms of the
Taylor's series, we have computed Avx(x,e) at the fuselage using the vxq(x,e)
given in Table 3, The results obtained with the first-order source distri-
bution qél)(x) of the wing are plotted in Fig.16. We note that the velocity
decrement is over most of the chord somewhat larger for z = z, than for

= 0; at the maximum thickness position the change in Av is about the same
as the Avx produced by q(z)(x) - q(l). The difference AVX(BJ) - Avx(e = 0),

though a third-order term can thus be of the same size as the second-order

term Ava(e = 0; Aqw).

In Fig.17 we have plotted the total Av computed at the surface of the

wing from the source distribution for which t§2 boundary condition is satisfied
to second-order accuracy. The important feature is that the changes in Avx
produced by the various second-order terms are, over most of the chord, of

the same sign, namely that of the Avi}) from first-order theory. Near the
maximum thickness position, the second-order theory produces, in the wing-body
junction, for c¢/R =5, a 65 per cent larger velocity reduction than first-

order theory; the corresponding value for c¢/R = 2 1is 60 per cent.

This behaviour of the second—-order corrections differs from that of the

isolated wing. With the types of thlcknﬁss distribution used in practice,

the term v( )(x z ) - v(l)(x 0) = z is mostly a negative term, whilst

t dx2

vii)(x,o) - vii)(x,o) is for most of the chord a positive term. As a con-

sequence, the difference between the value from second~order theory,

vis)(x,zt) and the value from first-order theory. vié)(x,o) is usually for

much of the chord noticeably smaller than the second-order term

V(ii(x’O) - v(ii(x,o). Thig statement does of course not hold near the leading
Zt

t dx2

is large, and where the small perturbation

edge where the term - z

theory needs a modification, as provided e.g. by the Riegels factor. We may

quote that for the 10 per cent thick RAE 101 section at x/c = 0.25:
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1
viw)(x = 0.25, z =0) = 0,1479

v (x =0.25, z=0) - v (x =0.25 2z =0) = 0.0279
XwW Xw

2

<ﬁ .
z “_—_> = - 0.0273 .
t 2
dx

x=0.25

We have noted above that by approximating the source distribution on

the fuselage qf(x,G) by a source distribution on the axis of the fuselage
dz
t . . . .
of strength Q(x) = 4R T Ve obtain for the velocity decrement in the wing-
body junction a larger value than the first-order term —Avi}), see Fig.10,
Since Avi}) produces usually an underestimate of the actual interference
effect, it is not surprising that for some configurations the axial source

distribution has given a reasonably accurate estimate of the interference

effect.

The pressure coefficient

c = 1-@Q+v )2 - v2 - vz
P X y z

can be computed to second-order accuracy from

- 2 2
c = 1 -1+ v(z) + Av(zi}. - (Av(l))2 - [}(2)+ AV(Z{]
P B Xw x y PAY z
— dz \2 2
- 1- 1 <?13?E>] [1 s vy Av}(cz)J - (AV;I))Z (65)

except for the yet unknown term (Avél))z, However, in the wing-body
junction the spanwise velocity is zero, and we may expect that for the
combination of a fuselage with an unswept wing (Av}(’l))2 is sufficiently

small everywhere that we may neglect it.

3.3 Pressure distribution on the fuselage

To obtain the pressure distribution on the fuselage to first-order
accuracy, we compute the streamwise perturbation velocity, A induced by

the sources in the wing plane and by the sources on the fuselage, from the

equation
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v (x,8) = q (x")

(e}
£
N
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v
with qw(x') from equation (43)., Values of 6§% are given in Table 3,

For a fuselage attached to wings with a 10 per cent thick RAE 101 section
and values c¢/R =2 and c¢/R = 5, we have plotted the streamwise velocity at
the top of the fuselage in Figs.l18 and 19. We have also plotted the velocity
vii)(x,z = R) which occurs in the flow past the isolated wing at the normal
distance z = R from the wing plane, computed with the source distribution
qil)(x). The figures show how the fuselage reduces the perturbation velocity
by straightening the streamlines past the isolated wing. The velocity v, on
the top of the fuselage is of course noticeably larger for the fuselage with
¢/R = 5 than for the fuselage with ¢/R = 2 (note the different scales in
Figs.1l8 and 19) because the distance from the wing plane, measured with

respect to the wing chord is smaller for the case c¢/R = 5,

Figs.18 and 19 give also the velocity Vi at the section 6 = 45°
the fuselage, together with the velocity v( )(x z = R/V/2) of the flow past

the isolated wing.

To derive the pressure distribution on the fuselage to second-order
accuracy, one would compute Vo (x,6) from equation (66) with the source strength
q: )(X)from equation (59). The effect of taking qé )(x) instead of qél)(x)

is shown for 6 = 45° in Figs.1l8 and 19,

A further second-order term in vx(x,e) will arise from the source
distribution Aq(x,y) 1in the wing plane, given by equation (60). As stated
above, the spanwise distribution of sz(x,y,zt) and. therefore the spanwise
variation of the additional source distribution Aq(x,y) is not yet known. An
inaccurate assumption about the source distribution can be more misleading
if one wants to compute the induced Avx at 2z #0, than if one computes
Avx for z = 0., We have therefore not yet made an estimate of this term Avx

(which would correspond to Av;J of equation (61)),

A second-order term in the pressure coefficient on the fuselage is pro-
duced by the circumferential velocity component ve(x,e). This can be com-

puted from
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ve(x,e) - /' q (x") sin § cos 0O .

0 v E.-..}.c_'_z-#- 'n28 Q/R
2m R R si

v
Values of 6?% are given in Table 4. Due to properties of symmetry, £

vanishes for 0 =0 and 0 = 90°. For the wing-fuselage configurations
considered in Figs.l8 and 19, we have computed £ for 6 = 450, with
qw(x) from equation (43); results are plotted in Fig.20.

4 CONCLUSIONS AND FURTHER WORK

The flow field past a single straight infinite source line crossing a

circular cylindrical fuselage at right angles has been studied.

It was found that the boundary condition at the surface of the fuselage
can be satisfied to a relatively high degree of accuracy by a source distri-

bution q(x,0) on the surface of the fuselage of the strength
Q06,0 = = 2v 0 (6,0) + v G+ 84 (x) (68)

where 0q(x) satisfies the onedimensional integral equation

Aq(x) = f [GnQ<x') - GnQ(x) - Aq(x") + bq(x)] % [K- E] dx"' (69)

where K and E are the complete elliptic integrals of modulus

K- : .

b+ (x - x")?

It has been found (report to be published) that equations (68) and (69)
give a good approximation to q(x,6) also for a single swept source line in
the presence of a fuselage when the source line is continued inside of the
fuselage up to the axis as the plane image on an infinite reflection plate
at the side of the fuselage. We may therefore expect that for a wing-fuselage
combination with a finite wing of varying section shape a sufficiently accurate
source distribution can also be found by solving the onedimensional integral

equation (69) instead of solving the complete twodimensional integral equation.
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The velocity components induced by the source distribution q(x,8) have

been computed in the wing plane and at the surface of the fuselage.

The tabulated results have been used to derive for some wing—-fuselage
configurations the interference effect according to first-order theory., It

was shown that the streamwise perturbation velocity in the wing-body junction

can be reduced by 10 to 20 per cent.

The second-order terms have also been evaluated. It is shown that the
reduction of the streamwise perturbation velocity according to second-order
theory may be noticeably larger than according to first-order theory; for
the cases considered by about 60 per cent., This suggests that for wing-
fuselage combinations it may become more important to include all second-order
terms than for isolated wings, To do this accurately one requires not only
the velocity components induced in the wing plane but also those at the surface
of the wing, in particular the v, - velocity which the source distribution
q(x,8) on the fuselage induces at z ¥ 0 1is required. These have not yet

been computed away from the fuselage.,
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Appendix A

EVALUATION OF lim v (x > 0, y = 1,0) AND OF lim v, (x = 0,8)
x0 X4 o0 4

To determine the limit of vxq(x:> 0, y=1, 2=0) as x tends through
positive values to zero, we use equation (22) with equations (19), (1) and

(29) and it follows that, for Q = 1,

1;
xtg (x,y 1,00 =

, 2 ' ,
sin” 6 (x = x'")dedx

m
[ 3
y X'+ sin” © ka _ x,)z

lim 1

3
+ 2(1 - cos 9)

© & 2
_ lim _ 1 ‘[ 0 (x - x')d6dx'
T x0 2 ' 2 2 \ 3
T e g ¥ * 6 J(x - x')2 + 82
e § 2
lim 1 x' (x ~ x')dedx'
= — A"'l
x>0 * TT2 .[ _[ -J ( )
- 0 J(x - X )

2
1
where ¢ and § are non-zero. Now for (x -~ x'")" > x

de _ 8

-
+ 62) (x - X'>2 + 0 [ (x - x')2 - X'zl (x - X')zw/(x - X')2+52

1 -1 Gq&;~x')2 -

tan

2
X
)
x| J(x - x")2-x'2 |X'|J(>c-x')2*62
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and for (x - x')2 < x'2

dé

3
0 (124 GZ)J(x ~ 2 4 o2

8

[ (x - x')2 - x'2]2 (x - x')zJ(x - X')Z + 62‘

_ 1 log x'J(x - x')2 + 62 + de'z -(x - x')2
13 “ . ‘
2x2j¥'2 - (x - x')2 x'J{x - x')2 + 62 - qu'z - (x - x')2
We introduce the variable 1 by the relation
x' = x(1+1) ,
then . (x - x')2 > x'2 for - i -1<1<=-0,5 and (x - x')2 < x'2 for
0.5 <1 < L 1.
X
We can then write
.2 -
—Oos 2
lim }_ + §(1 + 1) e a1+ x| tan-l 5J-3T -1 dt
x>0 R 13 )
£ (1 + 21) \fx" 17 + 6 J;'ZT -1 | 141 |\fx“T
x
-1
x
2
_ S(L + 1) (1 + 1) 1 (1+1)J§212+62+6J21+1
3 og - = dt
-0.5 T(1+271) xzrz + 62 2421+l (1+T)J¥2T2+62-6J2T+1



Appendix A 39

We take the limit as x/6 tends to zero and obtain

. 2
lim 7 vxq(x,y = 1,0)

x>0
_ [j- 412 . Tll - TL ta —1 V2t - 1 (1l + r) log 1+ 1 +v27 + lj}dr
B 2 _ 3 1 - fT
0,547 ~ 1 J21-1 2,}21+1 l+t-v2r+l
0:5

—7 081+T+“+2T]dr . (A-2)
2Jl+21.- L+t -1+

These integrals can be determined numerically, For Tt -+ 0.5 the integrand in

11 3 1.5 + V2

both integrals tends to 17 ~ 1672 log 1.5 =77 * When 1t - » the integrand

in the first integral behaves as %% 17 o When 71 + 1 the integrand in the
T
first integral tends to 4. 1 10 2 + V3 We have computed the value
integ 3 8575 p
lim vxq(x,y =1,0) = - 0.05305 .

x>0

From equation (39) we obtain
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o 27
i LA 3 - at " 3.t
(x = 0,8) = lim J q(x',0') sin(8 - 8')d6'dx

6-+0 ™
4w Jx'z + 2[1 - cos (86 ~ oM

lim v
6-0

3

o 21 2
. lim _ 1 f sin” 6' sin (6 - 6')de'dx'
60 2 )
T 60 [x'2 + sin2 8']Jx'2 + 2[1 - cos (6 - 8")]
e & 2
_ lim _ 1 f 8'“(8 - 8')de'dx'
60 2 3
™0 s [x'? e e'Z]JX'2 + (8 - e')2

We compare this relation with equation (A-1) and note that, except for
the sign, the integrals are the same if we interchange x with 6 and x'

with ©', It follows that

lim v, (x = 0,6 = = limv 8 =0
sg Voat* T 009 g Vxq (20 = O

= 0.05305.
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Aggendix B

EVALUATION OF lim Av__(x >0, y =1, z = 0)
x0 - 2T

When writing Ref.l, we had not devised a treatment of the limiting

process similar to the one of Appendix A.

An unswept vortex line in the presence of a cylindrical fuselage induces
in the plane through the vortex and the axis of the fuselage an additional

downwash

2n
q(x',0) sin 0 d8dx'
4
0

//(x - x')2 + 2(1 - cos 9)

5 .

- sz(x,y = 1,0) = /

The only term of q(x,6) which contributes to the limiting value of sz as

X tends to zero reads

r .
dtaey - Epaing
x~ + sin” ©
so that for T =1
lim - Av = lim 1 f x' sin” 6 dedx' -
00 2 X0 5n2 2, in? oy 3 3
=0 0 (x"" + sin” 8) 4 (x - x'")° + 2(1 - cos 8)

_ lim _1_ [ f x'6%dodx
x>0 2 =13
217 a0 %+ 0ddix - x1)2 + 82
_ lim| 1 /'/'[ x'  _x ] 6°dodx’
T x0], 2 ) 2 2 2 ~3
27 lop =X'T 48 x“ + 8 J(x-x')2+62

dx'

5
6240
T T3 3 2 3
-
A O R N PO
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Now
) ©
1lim X 8 do [ dx' _ X f 2d6 -
x>0 2 2 ]3 2 2
2n 0 x + 0 —m‘\I(x - x,)2 + 92 2T x + 0
1im .-];- tan_l .§. = ..l—
x/6-0 1r2 X 2 *

After we have performed the integration with respect to 6, have intro-

duced the variable T by x' = x(1 + 1) and taken the limit % + 0, we
obtain
© [ 2
lim 1 f[[ x! - X 8°dedx -
x>0 2 12 2 2 Y
2n_w0x+e x* + 0 J(x_x) 2'3

[}
I
N
ﬂlp
N
— —
1
'\..
w
o L
+|+
[ ]
~
-+
L~
-
+
~
P
t
[
=
1
Pt
[ ]
+iN
P
A
[
—J
[}
A

. [':14-‘[_(1-0-1)2 10g1+r+“/1+2'r dr
1+ 27 3
-6.5 a1 + 21 L+r-Jl+2

f[ e w fT7 e

+1 J’_—
2 .[ [:2 1 10 1 +yl -7 ;J dt
0 -1 ZJ 1 - T

We have evaluated the integrals numerically and obtained the result:

lim = sz(x >0,y =1,0) = -il-"- - 0.05305
x+0
= 0,1061 .

This value agrees well with the one derived in Ref.l by graphical extrapolation

from the values calculated for x ¥ 0.
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) . ) )
EVALUATION OF )1;3 [qx',6 = xx) - q(x,6 = xOJE (k) .
—o m(x - x") j(x - x')2 + 4

The terms ;n(x) and Zq(x) in q(x,8) do not contribute to the

limiting value of the integral. We have therefore to consider only

2
- _[— sin 6 _ sin 6 :J F (k)
?
lim I* = lim —x'" + sin © X + sin O dx!
~0 x>0 2 7
X —c T(x = x"Af(x = x")" + 4
. . 2 ¥ ‘
_ lim _ sin” 0 .[ (x + x"YE (k)dx'
x>0 2, 2 .2
7 (x” + sin® 8) [x'2 . sin2 e]\R;'_ x')2 .4
with k2 = 4 5 .
4+ (x - x'%)
For small x
9 €
I* - sin” 6 ./ (x + x')dx'
27r2(x2 + sin? 8) [x'2 + sin2 9]

-€

_ sin2 0 2x tan-l < € >
2n2(x2 + sin2 sin B sin ©

where ¢ >> X,

With 6 = ¢x, we obtain thus

K
1im I* = - .—.——.—2.—-
x>0 271'(1 + )

lim I * has the maximum value L for « =1,

40

43



44

Table 1

6

VALUES OF Z g™ (3
ne

R®e) = - zl;'[ RO Dy - RO D ) kK - Elax’

a0

where 2 4

O - - 27, @)

6 6
X j{; E(n)(x) 1 x2 ZE; E(n)(x)

n= x n=
0 -0.1305 1.00 0.0098
0,05 -0.1157 0.95 0.0124
0.1 -0.1021 0.9 0.0155
0.15 -0.0896 0.85 0.0189
0.2 -0.0781 0.8 0.0227
0.25 -0.0674 0.75 0.0269
0.3 -0.0576 0.7 0.0315
0.35 -0 0485 0.65 0.0365
0.4 -0.0403 0.6 0.0417
0.45 -0.0329 0.55 0.0470
0.5 -0.0261 0.5 0.0522
0.55 -0.0201 0.45 0.0567
0.6 -0.0147 0.4 0.0603
0.65 -0.0100 0.35 0.0622
0.7 -0.0058 0.3 0.0618
0.75 -0.0022 0.25 0.0587
0.8 0.0010 0.2 0.0527
0.85 0.0038 0.15 0.0439
0.9 0.0061 0.1 0.0322
0.95 0.0081 0.05 0.0172

1.0 0.0098 0 (4]




Table 2

STREAMWISE VELOCITY COMPONENT ON THE WING, vngx,y,z = 0),

INDUCED BY THE SOQURCE DISTRIBUTION q(x,6) ON THE FUSELAGE

< { 1.0 1.05 1.1 1,25 1.5 2.0

0] -0.0530 0 0 0 0 0
0.05 -0.0495 -0.0320 ~0.0165 -0.0056 -0,0022 -0.0008
0.1 ~-0.0467 -0.0388 ~0.0264 -0,0106 -0,0043 =0.0015
0.15 ~-0.0444 ~-0,0399 ~0.0312 -0.0148 -0.0063 -0.0023
0.2 -0,0423 -0.0396 ~0,0331 -0.0181 -0,0083 -0.0030
0.3 ~0.0389 -0.0377 ~0,0339 -0,0222 -0.0114 -0.0044
0.4 ~0.0364 -0,0356 ~0,0332 =0.0243 -0.0139 -0.0056
0.6 -0,0321 -0.0318 ~0.,0306 -0.0252 -0,0167 -0.0077
0.8 -0.0288 -0,0285 ~0,0278 -0.0243 ~0,0177 -0.0092
1.0 -0.0259 -0.0258 ~0,0253 -0.0228 -0,0177 -0.0101
1,25 -0.0228 -0,0227 ~0.0224 ~0.0208 -0,0170 ~0.0105
1.5 -0,0202 -0.0202 ~0.0199 -0.0187 =0,0157 ~0.0106
1.75 ~0.0180 -0,0181 -0.0177 -0,0168 -0.0146 -0.0104
2.0 -0.,0160 -0.0162 -0.0159 -0.,0152 -0.,0135 -0.0100
2.5 -0,0128 -0,0131 ~0,0129 -0.0123 -0.0113 -0.0089
3.0 -0.0104 -0.0107 -0.0106 -0.0102 ~0.0094 -0.,0078
3.5 ~0.0086 ~0,0090 ~0.0088 -0.0084 -0,0079 -0.,0068
4,0 ~0,0072 -0.0075 -0.0073 -0.0072 -0.0068 -0.0059
5.0 ~-0.0051 -0.0054 -0.0054 -0,0052 -0.0049 -0.0045
10.0 -0.0014 -0.0015 ~0.0016 -0.0015 -0.0015 -0.0015




Table 3

STREAMWISE VELOCITY COMPONENT OXN THE FUSELAGE, vxq(x,e),INDUCED

BY THE SOURCE DISTRIBUTION q(x,8) ON THE FUSELAGE

9%

) 0 50 10° 20° 30° 45° 60° 75° 90°
0 -0.0530 0 0] 0 0 0 0 0 0
0.05 | -0.0495 | -0.0629 | -0.0384 | -0.0196 | -0.0131 | -0.0090 | -0.0072 | -0.0062 | =-0.0059
0.1 -0.0467 | -0.0683 | -0.0603 | =0.0366 | =-0.0254 | -0.0177 | -0.0141 | =-0.0123 | -0.0118
0.15 | -0.0444 | =-0.0604 | =-0.0661 | =-0.0493 | =-0.0359 | -0.0257 | -0.0207 | -0.0182 | =-0.0175
0.2 -0.0423 | -0.0535 | -0.0642 | -0.0569 | -0.0446 | =0.0329 | -0.0269 | -0.0239 | -0.0229
0.3 -0.0389 | -0.0450 | -0,0553 | =0.0615 | =-0.0551 | -0.0440 | -0.0372 | ~-0.0338 | -0.0327
0.4 -0.0364 | =-0,0399 | -0.0477 | -0.0586 | -0.0584 | -0.0513 | -0.0451 | =0.0415 | =0.0404
0.6 -0.0321 | -0.0338 | -0.0380 | -0.0483 | =-0.0545 | -0.0554 | -0.0528 | —-0.0506 | -0.0498
0.8 -0,0288 | -0,0297 | -0.0323 | -0.0397 | -0.0466 | -0.0519 | -0.0530 | -0.0526 | =-0.0524
1.0 -0,0259 -0.,0265 -0,0282 -0,0335 -0,0395 -0.0461 -0,0492 -0.0504 -0,0506
1.25 | -0.0228 | -0.0233 | -0,0243 | =-0.0279 | -0.0325 | -0.0388 | -0.0428 | ~-0.0450 | -0.0456
1.5 -0.,0202 -0.0205 -0,0212 -0,0238 -0.,0272 -0.0324 -0,0365 -0.0388 -0.0396
1.75 | -0.0180 | -0.0182 | -0.0187 | -0.0204 | -0.0231 | -0.0274 | -0.0309 | -0.0332 | =-0.0339
2.0 -0,0160 | -0.0161 | -0.0165 | -0.0179 | -0.0199 | -0.0233 | -0.0263 | =-0.0283 | -0.0289
2.5 -0.0128 | -0.0129 | -0.0132 | =-0.0140 | -0,0152 | =-0.0172 | -0.0194 | -0.0207 | -0.0212
3.0 -0.0104 | -0.0104 | -0.,0106 | "-0.0111 | -0.0119 | =-0.0133 | -0.0147 | -0.0156 | -0.0159
3.5 -0.0086 | -0.0086 | -0,0087 | =-0.0091 | -0.,0096 | -0.0105 | —0.0114 | =-0.0121 | -0.0123
4,0 -0,0072 -0.0072 -0,0073 -0.0075 -0,0079 -0.0085 -0.0091 -0.0096 -0.0098
5.0 -0.0051 -0,0051 -0,0052 -0.0053 -0.0055 -0.,0059 -0.0062 -0,0065 -0.,0066
10.0 -0.0014 | -0.0014 | -0,0014 | -0.0014 | -0.0015 | -0.0016 | -0.0018 | =-0.0019 | -0.0019




Table 4

CIRCUMFERENTIAL VELOCITY COMPONENT CON THE FUSELAGE, Veq}x,e),

INDUCED BY THE SOURCE DISTRIBUTION q(x,6) ON THE FUSELAGE

”
@

0 5° 10° 20° 30° 45° 60° 75°

o
w

e & & ® o ® & & 8 o e e ¢ s e © *
COoOOoOWwWOoOuULmOoO~NuUnpPpOooU WD F O
w wu (2]

O WWNNNHPEFRE PR HOODODOOOO OO

=

-

0.0530 0.0496 0.0464 0.0399 0.0337 0.0249 0.0164 0.0082
0.0652 0.0519 0.0414 0.0344 0.0252 0.0165 0.0082
0.0709 0.0618 0.0454 0.0363 0.0260 0.0169 0.0084
0.0620 0.0677 0.0502 0.0389 0.0273 0.0175 0.0086
0.0532 0.0672 0.0549 0.0422 0.0288 0.0183 0.0090
0.0387 0.0593 0.0596 0.0482 0.0326 0.0203 00,0098
0,0292 0.0493 0.0593 0,0514 0,0357 0.0224 0.0108
0.,0231 0.0409 0.0556 0.0521 0.0381 0.0243 0.0118
0.0188 0.0344 0.0507 0.0509 0.0394 0.0256 0.0125
0.0133 0.0251 0.0407 0.0451 0.0388 0.0266 0.0133
0.0099 0.0190 0.0325 0.0383 0.0356 0.0257 0.0132
0.0072 0.0140 0.0248 0.0306 0.0304 0.0231 0.0122
0.0055 0.0107 0.0192 0.0243 0.0252 0,0198 0.0107
0.0043 0.0083 0,0152 0.0196 0.0208 0.0168 0.0092
0.0034 0.0066 0.0122 0.0158 0.0172 0.0141 0.0078
0.0022 0.0044 0.0082 0.0108 0.0120 0.0100 0.0056
0.0016 0.0031 0.0058 0.0077 0.0086 0.0073 0.0041
0.0012 0.0023 0.0043 0,0057 0,0065 0.0055 0.0031
0.0009 0.0018 0.0033 0.0044 0.0050 0.0042 0.0024
0.0006 0,0011 0.0021 00,0028 0.0032 0.0027 0.0016
0.0001 0.0003 0.0005 0.0007 0.0008 0.,0007 0.0004
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c
k1) (x,8)

R(V)(X)

Q
q(x,8)

q(O)(x’e)

a™ (x,0)
Aq(x,0)
q(x)
q¢(x,6)

qw(x’Y)

Q£1)(XIY)

qiz)(x.y)

Aq(x,y)

v v
’ Tz

Q

Vo s V_

v
xXw

LD

y V

nQ

SYMBOLS

wing chord
see equation (12)

see equation (18)

strength of infinite source line

strength of source distribution on the fuselage related to a
single source line in the plane 2z =20

first approximation to q(x,6), see equation (8)

(v + 1)th approximation to q(x,6)
0
q(x)e) - q( )(x’e)
mean value of source strength q(x,6) at a station x

strength of source distribution on the fuselage related to the
source distribution qw(x) in the plane z = 0

source distribution in the wing plane representing the isolated
wing

source distribution in first-order theory
source distribution in second-order theory

interference term of source distribution in the plane z = O,
see equation (60)
radius of fuselage

rectangular coordinate system, x along the axis of the fuselage
system of cylindrical coordinates

section shape

free stream velocity, taken as unity

components of perturbation velocity

velocity component normal to the surface of the fuselage

mean value of vn(x,e)

circumferential velocity components at the surface of the fuselage

s V velocity components induced by the isolated source line

0Q
velocity components induced by the source distribution q(x,8)
on the fuselage

streamwise velocity component in the flow past the isolated wing

Viw according to first-order theory



ey

Av _, Av
X z

A
VzJ

SYMBOLS (Contd.)

Vo according to second-order theory
interference velocity components

sz in the wing-body junction
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Fig.l Normal velocity at the fuselage induced by a
straight source line
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Fig.2 Strength of source distribution on fuselage
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Fig.3 Average strength of source distribution on fuselage



0:0b

0-0§

003

002H

(alla]]

Fig.4 Additional streamwise velocity in thewing plane,z=0, induced
by the source distribution on the fuselage
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Fig.5 Additional streamwise velocity in the wing-body junction



0-08¢
007 |-

006 |-

008 \

Y

0-03 H

0.02}

0-01

05 10 IS 2.0 x[R 30

Fig. 6 Streamwise velocity on the fuselage due to
source distribution on the fuselage



08 ¢

007 |

10°

000 H
2o°

005 4
".i‘ 30°
003 | ‘
45°

<
o
0

|

)
~
P\

0oz |-
60°
0ot |
§=75°
a] ] I L ] ]
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to first-order theory
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Fig. Il Interference velocity in the plane of the wing
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source distribution on the fuselage
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the source distribution on the fuselage
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Fig. 18 Streamwise velocity component on the fuselage
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