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SUMMARY 

The incompressible flow field past a single straight infinitely long 

source line which crosses a circular cylindrical fuselage at right angles has 

been studied. In particular, the streamwise velocity component induced in the 

plane through the source line and the axis of the fuselage and the streamwise 

and circumferential velocity components induced on the surface of the fuselage 

have been determined numerically. 

The results are used to determine the interference effect on the displace- 

ment flow past an unswept wing of infinite aspect ratio attached to a cylindrical 

fuselage. It is shown how the interference effect varies with the ratio R/c 

between the body radius and the wing chord. 

* Replaces RAE Technical Report 71179 - ARC 33437 
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1 INTRODUCTION 

L 

In this Report we intend to study some of the interference effects between 

a fuselage and a non-lifting wing of finite thickness. We choose a simple case, 

similar to the configuration studied in Part I 
1 

, and consider an infinite 

cylindrical fuselage of circular cross section with the axis parallel to the 

main stream and an unswept wing of constant chord and infinite span with the 

same symmetrical section along the span. The fuselage is, attached in mid-wing 

position. 

The task is to determine the pressure distribution on this wing-fuselage 

combination in incompressible flow. The problem can be dealt with by the method 

of A.M.O. Smith (see e.g. Ref.3), which approximates such a configuration by a 

series of planar source panels of constant strength, situated on'the surface of 

wing and fuselage. This method requires rather too much computational effort 

for preliminary studies of a series of configurations. We intend therefore to 

study the problem within the accuracy of a small perturbation theory and thus 

to represent the wing by a source distribution in the plane of the wing. We 

extend this source distribution inside the fuselage in such a way that the local 

reflection effect of the body wall is represented (see Ref.2). For the special 

case of an unswept wing, this means that we deal with an unswept gross wing of 

constant section, i.e. a chordwise distribution of straight infinite source 

lines of constant strength, which cross the fuselage at right angles. 

The source distribution in the plane of the wing induces a non-zero normal 

velocity at the surface of the fuselage. To cancel this we add a further 

source distribution on the surface of the fuselage. This additional source 

distribution induces streamwise and spanwise velocity components in the wing 

plane and streamwise and circumferential velocity components on the surface of 

the fuselage. 

We intend to study wings of different section shape and of different ratio 
'% 

between wing chord and body diameter. To reduce the amount of computation we 

consider first an isolated source line in the presence of the fuselage and deter- 

mine the streamwise velocity component induced in the wing plane and on the 

surface of the fuselage. We determine also the circumferential velocity com- 

ponent on the fuselage,but we have not computed the spanwise velocity component 

in the wing plane since it vanishes at the line where the wing plane intersects 

the fuselage and is of little importance away from the fuselage. 

To illustrate the importance of the interference effect on the displacement 

flow we have calculated some velocity distributions on a 10 per cent thick wing, 
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with RAE 101 section,attached to fuselages of different diameter. A first+order 

and a second-order theory have been considered. 

2 A SINGLE STRAIGHT SOURCE LINE IN THE PRESENCE OF A CIRCULAR CYLINDRICAL 
FUSELAGE 

2.1 Velocities induced by the source line 

Let x, y, z be a Cartesian system of coordinates and x, r, 0 a system 

of cylindrical coordinates. We consider an infinite straight source line through 

x - 0, z = 0, i.e. along the y-axis. The strength of the source line is constant 

and equal to Q per unit length. We consider further an infinitely long cylin- 

drical fuselage of circular cross section y2 + z2 = R2 = 1. The source line thus 

crosses the fuselage at right angles. In the following equations all lengths are 

made dimensionless with the radius R of the fuselage. 

The velocity field of the source line has the components 

V 
X = 8 zx 2 

X +z 

vY 
= 0 

v = P z 
2 2lT x2 + z2 ' 

The source line therefore induces at the surface of the fuselage a normal 

velocity component (positive outwards): 

(1) 

In the following, we shall require the mean value of the normal velocity 

at the cross section x = const 

2n 

5nQ(x) - & vnQix,8)de . 
I 
0 

(2) 
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It is 

GnQ(X) = & 1 - x2 

L rl 
1 + x2 

. 

The integral of vn(x,t3) over the fuselage is 

m 2Tl co 

vn+x,@dedx = 2~r 
J 

Gnq(x)dx 

= 

m 

2n 2 2 

:'[ 

1 

0 

dx = 

(3) 

24 , 

i.e. the integral is equal to the total source strength of that part of the 

source line which lies within the fuselage; as it should be. 

The normal velocity induced by a source line differs in an essential way 

from the normal velocity induced by a straight vortex (see Fig.1 and Fig.1 of 

Ref.1). The normal velocity vnr(x,B) induced by a vortex is an anti- 

symmetrical function with respect to x and with respect to 8, whilst the 

vnQ(x'e) induced by a source line is a symmetrical function with respect to x 

and to 0. As a consequence the mean value Gnr (x) vanishes for each station x, 

whilst GnQ(x) is non-zero. We note further that vnQ(x,e) decreases more 

rapidly with increasing x than v,,(x,e>. 

2.2 Strength of the source distribution on the fuselage which makes the fuselage 
a stream surface 

As with the vortex crossing a fuselage, we intend to use a source distri- 

bution on the surface of the fuselage to cancel the normal velocity v nQ(xI 0) 

induced by the source line. The strength of the source distribution q(x,O) 

must satisfy the equation: 
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vnqW) = - Vnq(X,“) 

$x1,8’) [ 1 - cos(8 - 8’)]d9’dx’ 

(x - x’)2 + 211 
r3 

- cos(8 - et)1 

= 2 

+ ii” [ q(x’,e’) - q(x,ef>][ i - c08(e - e’)lde’dx’ 
13 l 

-m 0 (x - x’)2 + 2[ 1 - COS(~ - e’)l 

(4) 

We intend to solve this equation only approximately by an iteration pro- 

cedure. Equation (4) suggests as a first approximation the source distribution 
q (0) (x,6) obtained by neglecting the last term of this equation. Thus q 

(0) 

must satisfy the equation 

q(o) (x,e) + S(‘)(X) = - 2vnp,e) t (5) 

where 

2ll 

s(o)(x) c l 
5 I 

qm (x,e)de . 

0 

Taking the mean value with respect to Cl of both sides of equation (5) we see 

at once that 

q(o)(x) = - ;; 
nQ(x) (7) 

and hence 

q(o) (x,e> = - 2Vnp,e) + G nqw l (8) 

The integral of the source strength q (0) (x,0) taken over the whole fuselage 

is 



Q) 2a 
qm (x,e)dBdx = - 24 

This means that with the source distribution q (')(x,0) the sum of the sources 

inside the fuselage and on its surface vanishes; this is a necessary condition 

which must be satisfied by q(x,e) to ensure that there is no overall flow 

through the fuselage. 

If we write q(x,9> in the form 

q(x,fs = d”h,e) + Aq(x,@ (9) 

then Aq(x,B) has to satisfy the equation 

2-R 03 27' 

Aq(x,N + & 
I 

Aq(x,e’)de’ = - 
JI 

Is(O)(x’,e’)-q(O)(x,e’)][ l- COS(~-e’)]de’dx’ 
13 

0 -Q) 0 (X - ~1)~ + 2[1 - COS(~ - et)] 

- 71 
-il [ Aq(x’ ,e’> - Aq(x,e’>l[ 1 - cos(@ - e’)] de’dx’ 

I3 
-Q) 0 tx - x')2 + 2[1 - c0s(e - et>1 

. . . . . (10) 

Precisely as above, when considering a first approximation to equation (4), 

we may obtain a first approximation to Aq by ignoring the second double 

integral in equation (lo), giving 

A(l) q(o) + A(')&) = K(l)(x,e) (11) 

where 

m 2n 

K(')(x,@ - - 
[ (0) 

IJ q 
(d,e*) - q(O)(x,V)l[l- c0s(e - B')]de'dx' . (12) 

13 
- 0 (x - x')2 + 2[1- code - ef )I 

Comparing equation (11) with equation (5), we obtain, similar to equation (8) 

A(l) dx,e) = K(l)(x,e> - 1 i?(l)(x) l (13) 
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Since 
ll 

f, 
11 - cos(0 - 0’)lde 

13 
- k[K (k) - E (k)l 

0 (x - x')2 * 2[ 1 - cos(8 - f3’)l 
L 

where K and E are the complete elliptic integrala(of the first and second kind . 

respectively)with the modulus 

k2= 4 2 
4 * (x - x') 

(14) 

we obtain for the mean value of 
K(1) 

(x,e) 

2 
gl)(x) c l 

'i;; P 
K(1) (x, me 

0 

the relation 

O” j(‘)(,“) - ;;(‘)(x) k[K _ E ]dx’ 
2Tr 

(15) 

(16) 

with‘ i(O) (x) from equation (7). 

We have computed values of 
p (x) and of K Q,e) for 8 - 0, 3o", 

60°, 90'. Some values of A(1) q(x,B) are plotted in Fig.2 together with values 

of 4 (O)(x,e). As to be expected, the largest value of 1 A %x.e) I occurs at 

x = 0, where A(‘)$x = 0) = 0.26 ,(‘)(x - 0). 

We note that whilst q -(O) (x) is everywhere negative, A (l)q(x) is positive 

for 1x1 b 0.92. The integral of the source strength 
A(l) 

do> taken over 

the whole fuselage vanishes: 

= 2ll m co 

A(1) q(x,e)dedx = 2n 
i 

A(‘);;(x)dx = x 
I 

ii(‘)(x)dx - 0 . 

-Co -m 

This follows from 
. 



m  m  c=3 

i$)(x)dx = 
i+O)(x') - go)(x) k[K 

2?r 
- E]dx' 

L 
m  m  

er 

J i 

dx' $O)(x) - i$O)(x') k[K 
2ll - E]dx 

--m --m 

2 
and the fact that k is a function of (x - x') . 

We note also that the difference IA (1) q(x,e) - A(%)[ , i.e. the 

difference /I?) cx,e> - P(x)) is relatively small if we compare it with 

the difference )q (O) (x, e> - q(O) (x) I. The ratio 1 q 
(O) (x,9) - q(O) (x) 

q(O) (x) 

varies between 2 
X 

J 
- 
1 + x2 

and 2. It seems appropriate to measure the 

difference %d I in terms of q -(O)(x). At x = 0, the 

ratio 
A(')q(x,fI) - A(l)&x) 

q(O) (x) I 
is not larger than 0.032 and for x-values in the 

range 0 c 1x1 < 1.5 it is nowhere larger than 0.05. For x = 4, a maximum 

value of about 0.07 is reached; we have however to note that 

i(O) (x = 4) = 0.03 $O)(x = 0). 

We could determine from equation (10) improved approximations to Aq(x,fl) 

by the iteration procedure 

,w q(x,e) + A(');(x) - K(l)(x,e) 

m 2n 

-1 i 
[A(“-l)q(xf,ev) - A("-l)q(x,e')][l- cos(e - (j')]de'dx' 

13 
--m b x - x')2 + 2[1 - c0s(e - e’)] 

. . . . (17) 

The fact that the difference IA (1) 
q(x,o) - A%x>l is rather small 

suggests that for V'l the difference between the value of the double 

integral in equation (17) as a function of tf and its mean value is nearly 

negligible. 
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We aim in this Report only towards an accuracy consistent with a small 

perturbation theory approach. We have therefore computed only mean values of 

the double integral in equation (17). If we integrate equation (17) with 

respect to 8, we obtain 

*(Qxj p ii(%) _ OD *(w-(x’) _ *w)-(x) 
2 .I 4T 

k[K - E]dx’ . 

With the notation 

$qX) = - 
OD $w-1) 

I tx’) - z(“-l)(x) k[K _ E]dx’ 
4n 

-00 

we obtain 

V 

P&x) = 

Ic 

K(“)(x) . 

n=l 

Since 

b b 

dx’ [f (x’) - f(x)]F((x- x’)~) = 0 

H a 

we satisfy for each approximation A( the condition 

ca 

I 

A(“)&x)dx - 0 . 

--m 

We have computed values of z(n) (x) far 1 < n .lc<. 6 and found that for every 

n the largest value of IK -b) (x) 1 occurs at x=0 a‘nd that 

1 $n) (x - 0) 1 < 1 lie-l) (x = 0) 1 . 

If the same is true for n > 6, then 
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cm 02 
& 
’ lip(x)l < pp(x = O)l -;j)” < IP(x = O)l . z 

n= n=l 

With Q = 1, 

*p (xc()) =i -f = - 0.3183 

$> ( x=0) = - 0.0821 

p) ( 
x-0) = - 0.0292 

$2 (x = 0) = - 0.0009 

We note that it seems advisable to perform more than the first two steps of the 

iteration procedure (which give q (')(x,0) = q(')(x,f3) + A(l)q(x,e)),but that we 

need not go further than q (6) . 

The approximation to q(x,e) used for computing the velocity components 

induced on the wing and the fuselage- reads thus 

6 

4(x,8) = q(O) (x,e> + 1 
c 

ii(") cx) + K(l) (x,e> - i?(l) (x) 

n=l 

6 

= - 2VnQtX,e) + ;nQt~) + 1 
K(n) (x) + dl)(x,e) -iP) (x) . 

. . . (19) 

Some values of 4(x,8) and of i(x) are plotted in Figs.2 and 3. Values of 

2 
i?'"' (x) are tabulated in Table 1. 

n=l 

The function K (1)(x,0) has the same properties of symmetry as 

vnQ(x,e), i.e. 

K(1) tx,e1 o K(l)(x,r- 0) = K(l) (x,-e) = K(l)(-x,e) . 
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If K(l) (x,0) ie written as a Fourier series, then only terms of the form 

F,(x) cos 2nB arise. Using the numerical values of K (l) (x,l3) we found that it 

was sufficient to consider only the first two terms of the Fourier series, i.e. 

we have used the approximtion: 

,Cl) (x,6> - P(x) = Fl (x) cos 26 + F2(x) cos 48 (20) 

where 

Fl(x) = f #) (x,o) + ; K(l)(x,30’) - + K(l) (x,60’) - f K(1)(x,900) 
1 

I (21) 

F2(x) = f ~(~1 cx,o) - f K(l) (x,3Oo) - + K(l) (x,60’) + + &x,90°) . 
J 

2.3 Streamwise velocity in the plane through the source line and the axis of 
the fuselage 

We consider now the velocities which the source distribution q(x,0) on 

the fuselage induces in the plane z = 0, i.e. the plane through the source line 

and the axis of the fuselage. 

The source distribution produces in z - 0 the additional streamwise 

velocity 

9(x1,8’) (x - x’)de’dx’ 

(x - x1)* + (y 
2 *3 

- cos et) + sin26’ 

m 2n 

= 
i I J 

q(x’ ,8’) (x - x’)de’dx’ 
(22) 

0 4~7 
2 13 l 

-co (X - XI> + y2 + 1 - 2y cos ef 

It produces the spanwise velocity 

m 2ll 

Vyq(X.Y,O) = 

‘d J 
qw,e’) (Y - cos e’)de’dx’ 

(23) 
. -0D 4lT (x - x’)2 + y* + 1 

‘3 l 

- 2y cos e f 
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Since the strength of a source element at a point x,8' is the same as at 

the point x,-O', no velocity component vz is induced in the plane z = 0. 

Since 

4(x,@) = q(-x,e) , 

we have 

Vxq(X’Y,O) = - VxqhY,O) 

and 

vyq(x’Y,o) = vyqc-X&O) l 

(24) 

(25) 

Since 

co 

(x - x')dx' 
13 

= 0 

(x - x')2 + y2 + 1 - 2y cos 8' 

and q(x,e) = q(x,-0), equation (22) can be written in the form 

OD 

Vxq(X,Y,O) = 
IT [q(x',O')- q(x,e')](x - x')de'dx' 

2 (x - x') + y2 + 1 
'3 

- 2y cos 8' 

= 
JJ 

[ q(xl,el) - q(x,el)- q(x’,e = o) + q(x,e=o)l b-x’)de’dx’ 
13 

--m 0 (x - x')2 + y2 + l- 2y cos 8' 

m  IT  

+ 
i 

(x -d)[q(xl,e=O)- q(x,e =O)]dx' de’ 
27' u 

(x-x')2+ y2+1 
73 

-co - 2y cos 8' 

The integral 
de’ 

can be expressed in 
2 2 '3 

(x - x') + y + 1 - 2y cos 0' 

terms of the complete elliptic integral E . We introduce the variable r: 
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With 
cos 0’ = - (1 - 2 sin2 T) 

the integral becomes 

de' 2 dT = 
2 

+ (y + 112 
13 

- 4y sin' T 

2 d7 = 

Jh- x')2+ (y + 1)2 
,3 )3 

l-k2 sin2T 

2 = E(k) 

{(x - x'j2 + (y+l)2 
13 

1-k 
2 

= 2 E W 

[ (x - x’)2 + (y-1)21J(x-x’)2 + (y+l12 

. . . . (26) 

with 

k2 = 4y 

(x - x')* + (y + 1) 2 
(27) 

Vxq(XsY,O) can thus be evaluated from the equation: 

00 7l 

Vxq(x’Y,O) = 
[q(x',8') - 4(x,8')- q(x',B ~0) + q(x,e=O)] (x-x')de'dx' 

(x - x')2 
13 

+ y2 + 1 - 2y cos 8’ 

m  

+ [ q(x’,e = 0) - q (x,e - al (X - x')E (k) dx' 

2 1 
+ (Y (x - x'>2 + (y + 1)2 

(28) 

with k given by equation (27). 
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The numerical evaluation of the double integral does not cause any 

difficulty,except for y = 1, x -f 0, since the integrand is free from 

singularities. 

For y > 1, the denominator of the double integral nowhere vanishes. 

Since q(x,8) = q(-x,0), the integral is zero for x + 0. The same is not true 

for y-fl; in Appendix A it is shown that for x-to the double integral does 

not vanish and that 

lim vx(x ' 0, y = 1, z = 0) = - 0.05305 
X-HI 

When evaluating the single integral for y = 1, we find that as x' -t x the 
-1 aq(x,e=o) l 

limiting value of the integrand is z- ax For y=l, x-+Othe 

single integral tends to zero. 

We intend to extend the present work for an unswept infinite source line 

to swept source lines and later to swept wings of finite span. We are there- 

fore interested to know how important the term K yx,e> - it(l) (x) of the 

source distribution q(x,B) is with respect to the induced v velocity, X 
because the amount of computation is considerably reduced if we have to 

evaluate only the single integrals iP) (x) and not the double integral 

We have therefore computed 

m TI 

Av*(x,y,O) = 
Ji 

[ A*q(x’,e’) - A*q(x,e')](x - x')de'dx' 
X 

--m 0 2lT (x J;;;i-; y2 + 1 - 2y cos e*13 
(29) 

for 

A*q(x,Ef) = K(')(x,e) - i?(l)(x) = Fl(X) COS 28 + F*(X) CO9 48 . (30) 

The integrals 
cos 2nO' 

de' can be expressed in 

(x x') 2 2 - + y + 1 - 2y cos 8' 

terms of complete elliptic integrals. 
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Av'$(x,y,O) - 

OD 

JC [ F1(x’) - Fl(x)l E _ 8(2 - k2) K 
1 k 1 -0D 

+ [F2(x') - F2(x)I 

-;k4K (x- > 13 x')dx' 

. . . . (31) 

where k is given by equation (27). As x tends to zero, Avc(x,y,O) tends to 

zero for all valus y 3 1. 

Av; has for y = R the largest value, 0.0015, at x/R = 0.15 and the 

smallest value, -0.0009, at x/R = 1. These values of [Avsl are sufficiently 

small that they may be neglected in future computations. 

Calculated values of the streamwise velocity induced by the source 

distribution q(x,8) on the fuselage, v 
xq' 

are given in Table 2 and are 

plotted in Fig.4. 

The source line itself induces in the wing plane, z = 0, the streamwise 

we have added in Fig.4 the curve -0.2~ 
xQ* 

We learn from Fig.4 that the interference velocity is of opposite sign to 

the velocity of the source line itself, as is to be expected since the mean 

value of the source strength, q(x), is everyhere negative. We learn further 

that the source distribution on the fuselage induces a much smaller velocity 

than the source line itself. 

This result differs from that for the downwash of a straight vortex line 

crossing a circular cylindrical fuselage. vzI. and v zq (= Avz of Fig.3 in 

Ref.1) have the same sign. At x/R = 1, y/R = 1 the downwash due to the body 

interference is about half that due to the isolated vortex and at x/R = 5, 

YIR = 1 the two are nearly equal. This different behaviour of the inter- 

ference velocities for large 1x1 is due to the fact that the modulus of the 
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normal velocity induced by the vortex line 
r -x sin 0 

v nT = 2n x2 
20 

decreases 
+ sin 

for 1x1 > 1 less with increasing 1x1 than the normal velocity induced by 

the source line 
nQ 

= $ 2 
X 

In Ref.4, it has been suggested that the body effect on the displacement 

flow past a wing might be estimated by means of a source distribution along 

the axis of the fuselage. The strength of the axial source distribution, 

E(x), at a station x was taken as equal to the spanwise integral of that part 

of the source distribution of the gross wing which is inside the fuselage, with 

opposite sign. This means that for an isolated unswept source line a single 

sink of strength 2RQ would be taken. 

To judge how good an approximation is achieved by a single sink we com- 

pare in Fig.5 the streamwise velocity in the produced by 

the single sink situated at x=y=z with the velocity 

vxq(x,L,O) produced by the source distribution q(x,@). The single sink pro- 

duces, of course, no streamwise velocity at x= 0. The source distribution 

produces a velocity which varies discontinuously at x = 0; the mean value at 

x = 0 vanishes also. Fig.5 shows that for IX/RI > 0.3 the single sink pro- 

duces too large a value of -vX. This explains the statement in Ref.4 that the 

'source method' tends to overestimate the interference effect in the junction. 

We may further note that the streamwise velocity induced in the wing plane 

by the single sink situated at x = y = z = 0 decreases for x/R > 0.5 more 

rapidly with increasing spanwise distance y than the velocity -vxq(x,y,O) 

induced by the source distribution on the fuselage. 

We have also plotted in Fig.5 the streamwise velocities which are induced 

by the mean source distributions q(x) and q(O) (x) on the fuselage, i.e. 

source distributions which do not vary with 8. These are calculated from the 

relation 

m 

Vxq(X'Y,O) = + 
[ ;i(x() - q(x)] (x - x’) Edx’ 

(32) 

(x - x')2 
4 

+ (y + 1)2 [(x - x')2 + (y - 1j21 

with k given by equation (27). These source distributions produce, of course, 

a velocity which varies continuously and therefore vanishes at x = 0. 
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Finally, we have plotted the velocity produced by the 

to the source distribution on the fuselage, q (O) (x, e) . The 

the velocities for q(x,e) and q (O) (x, 6) is the sum of the 

the velocities related to i(x) and i(O) (x) and the term 

equation (32) D 

2,4 Streamwise velocity on the fuselage 

first approximation 

difference between 

difference between 

Av; of 

The isolated infinitely long fuselage does not produce any perturbation to 

the flow field. Thus the pressure distribution on the fuselage is entirely due 

to the presence of the wing. 

We determine in this section the velocity due to a single source line 

in the presence of the fuselage. The isolated source line produces the stream- 

wise velocity 

V,QW) = $ 2 x 2 . 
X +sin 8 

The source distribution q(x,O) produces the additional streamwise 

velocity 

Now 

m 2-n 

vxqw) = 
q(x’,e’) (x - x’) db’dx’ 

(x - xy2 + 2Il 
73 

- c0s(e - e’)l 

(33) 

(34) 

de? e 4 E 04 -3 (35) 

- x’>2 + 2[1- cos(8 - 01 (x - x’) 2J- 

with 

k2e 4 
4 (x - xy2 + 

(36) 



19 

Therefore 

[ q(x’,0’) - q(x,B’)] (x - x’)dB’dx’ 

(x - x’)2 + 2 [ 1 
I3 

- cos(e - 0’)l 

= 2ll 

0 [q(x’,@‘) - q(x,V) - q(d,e> + q&e)] (x - x’)de’dx’ 

(X - ~1)~ + 2[1 - code - et)] 
b3 

* co [qW,e) I - Ske)] E(k) dxp 
-00 n(x - x’) J(x-czTT (37) 

with k from equation (36). 

The numerical evaluation of v ,,(x,e) d oes not cause any difficulty for 

x +o. vxq(x,e) is for e #O a continuous antisymmetric function with 

respect to x and therefore v (x = 0, 8 #O) = 0. For 0 2 0 we have 
xq 

already determined the limit v 
=I 

(x+0, 8 = 0) since for 8 - 0 the v 
=I 

from equation (37) is of course the same as v xq(x’ Y - 1, 2 = 0) from 

equation (28). 

Calculated values of vxq (x, 0) are given in Table 3 and are plotted in 

Fig.6. These suggest that the limit of v ,,(x,e) as x and 8 tend to 

zero depends on the manner in which 8 tends to zero, i.e. if 8 - KX and 

x-to the limit of vxq(x,13) differs from the limit obtained for 8 Z 0. 

The single integral in equation (37) vanishes for 8 = 0 and x * 0, 

but has a non-zero value for 0 - KX and x + 0. It is shown in Appendix C 

that the limit of the single integral as x tends to zero has the minimum 

value - when 8 = X. 

In Fig.7, we have plotted for the top of the fuselage, 8 = 90°, the 

streamwise velocity induced by the source line 
vxQ’ 

the velocity induced 

by the source distribution on the fuselage, v 
xq’ 

and the total interference 

velocity vx = v 
xQ 

+ v 
xq’ 

We have also plotted the velocity induced by a 

single sink of strength 2Q situated at x=y= z = 0 and note that this 

gives a good approximation to v xq(x,e = 90'). 
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We may mention that the contribution to v xq(x,e) produced by A*q(x,B) 

of equation (30) is of little importance everywhere on the fuselage, the 

largest and the smallest values of Av* 
w  

are 0.0015 and -0.0011 respectively. 

2.5 Circumferential velocity on the fuselage 

Finally, we consider the circumferential velocity, vO, on the fuselage. 

The isolated source line’ produces the velocity 

veQ = - vy sin 8 + vs cos 8 

Q sin 8 cos 8 
= 5 x2 + sin2 e l 

The source distribution q(x,0) produces the additional velocity 

vgq(x,B) = 

m  2Tr 

X q(x’,V)[-(cos 8 - CO6 8’) Sin 0 + (sin B - sin I3’)cos e]defdx’ 

2 ‘3 
+ 2[1 - code - e*)l 

q(x’,kJ’) sin(8 - 9’)dB’dx’ 
,3 

(x-x’) 2 + 2[1- c0s(e - et>] 

= 
i i 

[q(x’,o’) - q (x,0*)1 sin(8 - e’)de*dx* 

lx - x’j2 * 2 [I- COS(O - e’)] 
‘3 

-m 0 

2ll 

+ 
i 

4(x,0’) sin(0 - O’)dO’ 
47~ [i - c0s(e - of)1 

0 

(38) 

(39) 
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- 2r 

vgqW) = 
iJ 

[q(x',0') - q(x,e') - q(x*,e)+q(x,Q)] sin(B - 8')de'dx' 

-al 0 (x - x')2 + 2[1 
83 

- c0s(e - et)1 

2ll 

+ 
i 

[ q(x,e’) - q(x,e)l[ 1 + code - e’)l d9' 
417 sin(8 - 0') 

. 

0 

(40) 

The numerical evaluation of v 
09 

from equation (40) is straightforward 

except for the case x = 0, 8 + 0. Due to the properties of symmetry of q(x,0), 

the circumferential velocity vanishes for 8 = 90° and for e - 0 except for 

x - 0. It is shown in Appendix A that 

;z veq(x = 0,0) = - k$ vxq(x > 0, y = 1, z = 0) = 0.05305. The limiting value 

of v 
eqas x 

and 8 tend to zero simultaneously depends again on the manner in 

which x and 8 tend to zero. If x = Ke and 8 -+ 0, then the single integral 

in equation (40) has the same behaviour as the single integral in equation (37); 

it reaches a maximum value of -& when K = 1. 

Calculated values of 
ve9 

are given in Table 4 and are plotted in Fig.8. 

For small values of x the ratio between veq(xS@) and veO(x,B) is not larger 

than about 0.2, the ratio increases to about 0.7 for x = 1 and increases to 

slightly more than 1 for x 0 3. 

When evaluating v eq(x,e) 'f rom equation (40), we have used for the source 

strength q(x,ej the approximation 

q(x,e> = 9 (O&e> + 1 -s P(x) . 
LA 
n=l 

Equation (40) implies that the terms v,(x) and Cih) (x) do not contribute 

to the value of %q' 
We have ignored the term A*q(x,e)=K (l)(x,e> - itcl)(x> 

in equation (19); the contribution of A*q(x,e) is small because Fl(x) and 

F2(x) in equation (30) are small. Thus to a high degree of accuracy the 

circumferential components 
vN 

can be considered to come only from the first 

approximation q (O) (x, 6). 
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3 PRESSURE DISTRIBUTIONS ON WING-FUSELAGE COMBINATIONS 

3.1 Pressure distribution on the wing according to first-order theory 

The calculated velocity components due to an isolated source line in the 

presence of the fuselage can be used to determine the pressure distribution on 

a straight wing of given section shape when attached to a fuselage in midwing 

position. 

Within first-order theory, the strength of the source distribution 

qw(x,y) which represents the isolated wing in a mainstream of velocity V. 

parallel to the wing chord is such that the normal velocity in the wing plane 

VzkY4 = 0) satisfies the boundary condition to first order, i.e. 

Vz(X,Y,Z = 0) I= v. 
ai+,Y) 

ax (41) 

where z = zt(x,y) gives the shape of the wing. In the following, we make all 

velocity components dimensionless with vO and take v. = 1. 

We have noted that the source distribution q(x,@) on the fuselage does 

not induce a velocity component Vz(x,Y9Z = 0) in the plane z = 0; therefore, 

the source distribution in the wing plane qw(X,Y) is the same for the wing- 

fuselage combination as for the isolated wing. 

A planar source distribution qw(x,y) induces in z = 0 the normal 

velocity 

Vz(X,Y,Z = 0) = fqw(X,Y) D (42) 

We consider in this Report only wings of constant chord and constant section 

shape along the span, so that 

dzt (xl 
+x,Y) = 2 dx l (43) 

To determine the change in the pressure distribution due to the fuselage - 

to first-order accuracy - we have to determine only the change in the streamwise 

velocity 
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. 

V 

Avx(x,y,z - 0) - gw Q/R 
0 

and by equation (43) 

(44) 

(45) 

where c is the wing chord and the values of can be taken from Table 2. 

For the 10 per cent thick RAE 101 section we have computed 

Avx(x,y = R,O) for various values of the ratio c/R and plotted the results 

in Fig.9. To assist in assessing the importance of the interference effect, 

we have plotted also -O.lvxw(x), where vxw is the streamwise velocity 

perturbation of the isolated wing. 

Fig.9 shows that, except close to the leading edge and near the trailing 

edge, the velocity is reduced (a fact which is well-known from experiment). 

AvX 
vanishes when c/R tends to zero, since c/R + 0 represents the case of 

a straight wing attached to an infinite reflection plate parallel to the main 

stream, which for inviscid flow'does not alter the flow. Av vanishes also 
X 

when c/R tends to infinity, i.e. when, for a wing of given size, the body 

disappears Avx 
( 

behaves for large c/R as & log t . We note that 
> 

according to the first-order theory the interference velocity is not larger 

than 20% of the perturbation velocity of the isolated wing. This result is to 

be expected from the comparison in Fig.4 between v and v where we note 
xq xQ' 

that the magnitude of the interference velocity, -v xq(x,y = R,O), is nowhere 

larger than one fifth of the velocity from the isolated source line. The 

maximum reduction in velocity occurs in the neighbourhood of the position of 

the maximum thickness of the wing. This is to be expected from a consideration 

of a planview of some streamlines on the wing, as sketched e.g. in Fig.X.4 of 

Ref.5. If one makes the assumption that one streamline follows the junction line 
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between wing and body, then this latter streamline departs furthest from the 

straight line y = R at the position of the maximum thickness. One can there- 

fore assume that the distance between neighbouring streamlines is largest at 

this chordwise position. The values of Avx close to the leading edge are 

unreliable due to the shortcomings of the source distribution q il) (x) close 

to the leading edge. 

As a further example, we have plotted in Fig.10 the velocity decrement 

in the junction at the maximum thickness position for a wing of biconvex para- 

bolic arc section. The figure shows a similar variation of Avx as function 

of c/R and similar values of Avx/vxw as shown in Fig.9 for the RAE 101 

section. 

We have mentioned in section 2.3 the suggestion of Ref.4 to estimate 

the interference effect by means of a sink distribution on the axis, which is 

equivalent to the approximation 

(46) 

see also Fig.5. 

gives for x/c = 0.5 

A*vx(x/c = 0.5,~ = R) 
-- t/c 

.*. (47) 

We have plotted A*vx in Fig.10. The figure shows - as expected from Fig.5 - 

that, for c/R > 1, A*vx overestimates the interference velocity Avx 

noticeably, 

For the RAE 101 section and c/R = 5, we have also calculated the velocity 

decrement at some spanwise stations away from the junction. The results are 

plotted in Fig.11. We note that the maximum value of the interference velocity 

varies approximately linearly with the inverse of the spanwise distance, i.e, as 

$if* We may remind ourselves that the interference downwash induced by a 
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lifting wing in the presence of the fuselage varies nearly as 1 

see Figs.4 and 8 of Ref.1. (y/RI2 ' 

3.2 Pressure distribution on the wing according to second-order theory 

It is of some interest to know the interference velocities somewhat more 

accurately than the results from first-order theory. To obtain the pressure 

coefficient to a higher accuracy,one has first to satisfy the boundary condition 

to more than first-order accuracy, secondly one has to take account of the fact 

that the velocity at the surface of the wing differs somewhat from the velocity 

induced in the plane z = 0, and finally when computing the pressure coefficient, 

one has to take account of all velocity components instead of using the first 

order approximation, c (1) % - &). 
P X 

Let us first consider the boundary condition. At the surface of the wing, 

2 = 25 ,(X,Y) # the velocity field has to satisfy the equation 

a=t 
iv0 + Vx(xPY,~,)l~ + Vy(X’Y,Z 1 

a=t - - vz(x,y,z+) = 0 . 
t ay w 

With the present case of an unswept wing of constant section shape 

azt/ay = 0 so that the boundary condition on the wing reads 

azt 
I1 + v,(x,YIQ ax = VpbY rq l 

(48) 

(4% 

We intend to retain in this equation all terms of order (t/c)'. The left hand 

side can be approximated, correct to second order,by 

[l+ v;+x,z = 0) + *vi') (x,y,O)l 2 

where v (1) and Av(" 
X 

are computed from the first-order source distribution 

dz 
q;l)(x) = 2 J-$ . 

We intend to satisfy the boundary condition again by a source distribution 

in the plane of the wing and a source distribution on the fuselage. (Such a 

configuration of singularities would not permit us to satisfy the exact 

boundary condition, to do this a singularity distribution at the surface of the 

wing would be required.) The source distribution in the wing plane is expressed 
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(2) (x) as the sum of two terms q, * Aq(x,y) , where qw (2) (x) is the source distri- 

bution of the isolated gross wing, correct to second order,and Aq(x,y) is an 

interference term. The source distribution on the fuselage, qf(x,B), is 

related to qw 12) (x) : 

(50) 

with q(i - $ , e) from equation (19}, i.e. the two distributions c)(x) and 

qf(x’% taken together, satisfy the boundary condition on the fuselage. 

The interference term Aq(x,y) varies along the span, therefore we cannot 

yet determine without much computation the related Aqf(x,B) which would make 

the fuselage a stream surface. Therefore we do not take full account of the 

interference between Aq(x,y) and the fuselage but determine the effect of 

Aq by) as if this source distribution were acting in the presence of an 

infinite reflection plate, situated in the wing-body junction. 

Let us now consider the contributions to the velocity component vZ(x,y,zt) 

induced by the various source distributions. We approximate the contribution 
(1) zt) induced by q, (x) by the first two terms in the Taylor’s series 

expansion 

p)(x,y,zt) = vy(x,Y,o) + Zt 
z ( 

avfl) (x,y,z) 
az 1 

/Z-O 

dv@)(x,z = 0) 
5 C)(“) _ Zt xw 

2 dx 

The strengths of the source distributions q J2)(x) - 42) (x) 

(51) 

and Aq(x,y) are 

both of second order, we can therefore approximate their contributions to 

vZ(x,y,zt) by the vz in the plane z = 0, i.e. by 

d2) cx) - <)tx) + 
W Aq(x,y) 

2 2 ’ 
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The velocity Avz(x,y,zt) induced by the source distribution on the fuse- 

lage, qftx9e). has to be evaluated numerically, since we do not know the 

. We know that 
PO 

aAvxtx,Y,o) aAv (X,Y PO) 

ax - ay 
(52) 

but we have not computed Avy(x,y,O), except in the wing-body junction where 

Av tx,y - R, 
Y 

2 = 0) = 0. 

We shall compute the velocity in the wing-body junction, AvzJ. 

The velocity component vz on the surface of the fuselage can be 

determined from the circumferential and the normal velocity components 

vz tx, 0) = co8 e v,(x,e) + sin 8 v,(x,e) (53) 

For the source distribution q(x,e) on the fuselage given by 

6 

dx,e) = q("+x,e) + 1 it'"' (x) 
‘L-4 
n=l 

we have determined the circumferential velocity component v 
84 

in section 2.5 
\ 

and calculated values have been tabulated in Table 4. The normal velocity 

component v is known since it is equal to the negative value of v 

given by equ%on (1). 
nQ' 

Values of v 
=q 

are plotted in Fig.12. We note from 

Figs.8 and 12 that, for small 8 and x, the values of v 
eq 

and v are 
=I 

noticeably different, because v 
w 

is, for small x and 8, a rapidly varying 

function of x and 8. 

With vZq(x,e), the velocity in the wing-body junction, 

'z,(x) = R sin e,(x), can be calculated from 

1 

Av,,tX,eJtX)) - ; 
J 

g(x') vzq((: - G) 3 "Jd t') 

Q/R c * 
0 

(54) 
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Using for q,(x) the approximation from first-order theory, equation (43), 

we have computed the AvzJ for two wing-body configurations derived from a 

wing with a 10 per cent thick RAE 101 section. The results are plotted in 

Fig.13, together with a multiple of the vzw of the wing alone according to 
(1) first-order theory, v zw = dzt/dx. The figure shows that the interference 

AvZJ 
is of the order of 10 per cent of the basic v (1) 

ZW. 
The factor of c/R 

on the right-hand side of equation (54) explains why lAvzJl in Fig.13 is so 

much larger for c/R = 5 than for c/R = 2. For given t/c, the ratio t/R 

and with it e,(x) increase also with increasing c/R, but we see from Fig.12 

that the variation of v zq(x, 0) with 8, i.e. whether it increases or decreases 

with increasing 8, depends on the values of x and 8. 

Since Avz (x,y,O) = 0 we obtain from the Taylor's series expansion and 

from equation (52) the approximation: 

aAvx(x,y = R,O) aAv (x,y = R,O) 
AVzJ = - Zt ax 

+ 
aY 1 . (55) 

We have corn ;:ed 
5 

Avx(x,y = R,O), see Figs.9 and 11, and can thus evaluate the 

term - zt -$ of equation (55). We find that for most x-values 

is noticeably smaller than ]AvzJl; it is about 0.151AvzJI. This 

implies that I aAvy/aY I is not negligibly small in the junction, but we may 

expect that it decreases rapidly with increasing y. This implies that we may 

expect that IAV~~] decreases rapidly. 

We have not yet computed v zq(x'Y,=) induced by the source distribution 

on the fuselage for points away from the fuselage y2 + z2 > R2, z > 0. This 

would require the evaluation of 

q(d,e’) (z - sin 8')dB'dx' 
l (56) 

2 
+ (Y - cos e’) 

2 
+ (z - sin e’) 

2’3 

To estimate the effect of Avz(x,y,z = zt) we can therefore only make a crude 

assumption. We choose 
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2 
forl< Y c2 

I I E 

for 1 > 2 * 
I/ ii 

(57) 

Inserting the various contributions to the velocity components into 

equation (49) we obtain the equation 

L- 

1 + v(l)(x,z i 0) + Av;‘)(~,~,o) 
xw 1 2 = q’1;‘x’ - z dv”(x’z = ‘) + t dx 

q(2) 

* w 
(x) - q;l) w 

2 
-t v + AvZ(x,y,zt) 

The boundary condition for the isolated wing, which reads 

1 * /$)(x,0) 1 
dz 
J-$ = s;2)(x) - Zt 

d/$(x,0) 
dx 

gives for the source distribution qi2)(x) the equation 

dZ 

q;*)(x) = 2 2 f .& (ZtVZ)) C 1 
When we insert this relation into equation (58), then we obtain for the 

interf,erence term of the source distribution in the wing plane the equation 

dz 
Aq (x,y) = 2Avi')(x,y,O) -$ - 2Avz(x,~,zt) 

We shall now examine in turn the relative magnitude of the effects 

produced by the two terms in equation (60): 

(58) 

(59) 

(60) 

With the assumed spanwise variation of Avz given by equation (57), we 

obtain for the streamwise velocity component in the wing-body junction induced 

by the source distribution A*q(x,y) = -2Avr(x,y,z) the equation 
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- A*v&x) - 

0 0 

2 - 
2 

I 

x - x’ 
R I 

+ log (61) 

Values of - AvtJ have been computed for the two distributions of AvzJ 

plotted in Fig.13; the results are shown in Fig.14. If we compare Fig.14 with 

Figs.9 and 11 then we note that Aq(x,y) has increased the velocity decrement 

at the maximum thickness position caused by the body interference by 30% for 

c/R = 2 and by 25% for c/R = 5. 

If we assume that Avx (l) (X,Y ,O) varies along the span as 
1 

jG5 ’ as 
suggested by Fig.11, then the source distribution 

A@*(x,y) - 2Av y’ (X,Y ,O) 2 induces in the wing-body junction the velocity 

A**vxJ(x) - 
Av(‘)(x’) dz, 

XJ 
IT ZT 

0 R 

l (62) 
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For the 10 per cent thick RAE 101 section and c/R = 5, equation (62) gives at 

the maximum thickness position the value -A**vti * 0.001. We shall therefore 

ignore the term A**vti. 

The velocity decrement in the junction at the maximum thickness position 

is somewhat further increased when we compute 

with q(2)(x) instead of q:')(x). 

Avx(x,y = R,O) by equation (44) 

Th e effect of the difference 

q;2)(x)r q(;)(x) on Avx(x,y = R, z = 0) is shown in Fig.15. 

Up to now, we have considered the streamwise velocity only in the plane 

z = 0. We want now to study the velocity at the surface of the wing. We 

obtain the perturbation velocity correct to second order from the Taylor's 

series expansion 

vx(x,Y+) = Vx(X,Y,O) + Zt ( 
avx(x,Y,=) 

az ) z=o 

= Vx(X,Y,O) + Zt 
avz (x,Y,o) 

ax l 
(63) 

Since Av~(x,Y,O) = 0, we learn that the difference between the values of the 

streamwise velocity at the surface of the wing and in the plane 2=0 is to 

second-order accuracy the same for the wing-fuselage configuration as for the 

isolated wing: 

vx(x'Y'=t) = Vx(X,Y,O) + Zt 
a2zt (x,Y) 

ax2 
e 

We obtain thus from second-order theory 

vx(x,Y+) = vxw (2+x,y,0> + A+,y,O) + A*x(x,~,O) + zt 
a2q,Y) 

ax2 
(64) 

where v g (X,Y,O) is the velocity component for the isolated wing induced 

inz=O by d"' (x,Y> , Avi2) (X,Y ,O) is the interference velocity induced 

in z = 0 by the source distribution qf(x,8) on the fuselage, given by 

equation (50), and A*v,(x,y,O) is the velocity induced by the source 

distribution Aq(x,y) given by equation (60). 



Fig.6 shows that for small values of x/R the value of v 
w 

is changing 

rapidly when 0 increases from 8 = 0 to 8 = 10' say, even though 

8V 

( ) 
25% 

be(x,8 = 0) 
= -I_) CI 

ae fj=(-j 2X 
0 , except for x = 0. With a 10 per cent thick 

wing and c/R = 5; the maximum value of e,(x) is 14.5'. To learn how good 

an approximation to Avx(x,y,z) is given by the first two terms of the 

Taylor's series, we have computed Avx(x,8) at the fuselage using the v xq(x'e) 
given in Table 3. The results obtained with the first-order source distri- 

bution q, (l) (x) of the wing are plotted in Fig.16. We note that the velocity 

decrement is over most of the chord somewhat larger for z = zt than for 

z = 0; at the maximum thickness position the change in Avx is about the same 

as the Avx produced by q, (2+x) - qL1). The difference Avx(eJ) - Avx(6 = O), 

though a third-order term can thus be of the same size as the second-order 

term AvxJ(O = 0; Aq,). 

In Fig.17 we have plotted the total Avti computed at the surface of the 

wing from the source distribution for which the boundary condition is satisfied 

to second-order accuracy. The important feature is that the changes in Avx 

produced by the various second-order terms are, over most of the chord, of 

the same sign, namely that of the Av(') XJ from first-order theory. Near the 

maximum thickness position, the second-order theory produces, in the wing-body 

junction, for c/R = 5, a 65 per cent larger velocity reduction than first- 

order theory; the corresponding value for c/R = 2 is 60 per cent. 

This behaviour of the second-order corrections differs from that of the 

isolated wing. With the types of thickz5;s distribution used in practice, 

the term v (1) 
xw( x,Q - vxw (l)(x,O) = Zt --+ is mostly a negative term, whilst 

>-- . 
(x,0) is for most of thixchord a positive term. As a con- 

sequence, the difference between the value from second-order theory, 

VE) (x,z,> and the value from first-order theory . /$x,0) is usually for 

much of the chord noticeably smaller than the second-order term 

P(x,O) - P(x.0). This statement does of course not hold near the leading 
d2zt 

edge where the term - z - 
' dx2 

is large, and where the small perturbation 

theory needs a modification, as provided e.g. by the Riegels factor. We may 

quote that for the 10 per cent thick RAE 101 section at x/c = 0.25: 
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v(l) (x = 0.25, z = 0) = 0.1479 xw 

p> (x=0.25, z=O) -v 0.25, z - 0) = 0.0279 
xw 

= - 0.0273 . 

We have noted above that by approximating the source distribution on 

the fuselage qf(xs8) by a source distribution on the axis of the fuselage 

d=t 
of strength Q(x) = 4R dx we obtain for the velocity decrement in the wing- 

body junction a larger value than the first-order term -AvG', see Fig.10. 

Since *vzi' produces usually an underestimate of the actual interference 

effect, it is not surprising that for some configurations the axial source 

distribution has given a reasonably accurate estimate of the interference 

effect. 

The pressure coefficient 

= l- 
2 

C 
P 

(l+vx) -v2-vf 
Y 

can be computed to second-order accuracy from 

cP = 
l- 

[ 

1 + p) + avi2) 
xw 1 2 - (avy2 - [v~;L Avi"12 

=I 1 - [1 + @J-J [1 + vg’ + hy] 2 - (+2 (65) 

except for the yet unknown term (Av 
(1) 2 
Y ) 

o However, in the wing-body 

junction the spanwise velocity is zero, and we may expect that for the 

combination of a fuselage with an unswept wing (Av (1) 2 
Y ) 

is sufficiently 

small everywhere that we may neglect it. 

3.3 Pressure distribution on the fuselage 

To obtain the pressure distribution on the fuselage to first-order 

accuracy, we compute the streamwise perturbation velocity, vx, induced by 

the sources in the wing plane and by the sources on the fuselage, from the 

equation 



34 

vxbQ) = ‘[ qw(x’) [2vLcg ;,j’i sin2e, + d 6) (66) 
V 

with g(x') from equation (43). Values of 3 are given in Table 3. 

For a fuselage attached to wings with a 10 per cent thick RAE 101 section 

and values c/R = 2 and c/R = 5, we have plotted the streamwise velocity at 

the top of the fuselage in Figs.18 and 19. We have also plotted the velocity 

v(l) 
xw( 

x 2 . = R) which occurs in the flow past the isolated wing at the normal 

distance z = R from the wing plane, computed with the source distribution 

p(x). The figures show how the fuselage reduces the perturbation velocity 

by straightening the streamlines past the isolated wing. The velocity vx on 

the top of the fuselage is of course noticeably larger for the fuselage with 

c/R = 5 than for the fuselage with c/R = 2 (note the different scales in 

Figs.18 and 19) because the distance from the wing plane, measured with 

respect to the wing chord is smaller for the case c/R = 5. 

Figs.18 and 19 give also the velocity v at the section 8 - 45 0 of 

the fuselage, wx together with the velocity vxw (x,z = R/42) of the flow past 

the isolated wing. 

To derive the pressure distribution on the fuselage to second-order 

accuracy, 

d2)(x)f 

one would compute vx(x,O) from equation (66) with the source strength 

rom equation (59). The effect of taking qw (2) (x) instead of p w 
is shown for 8 = 45 ' in Figs.18 and 19. 

A further second-order term in vx(x,8) will arise from the source 

distribution Aq(x,y) in the wing plane, given by equation (60). As stated 

above, the spanwise distribution of Av~(x,Y,z& and% therefore the spanwise 

variation of the additional source distribution Aq(x,y) is not yet known. An 
inaccurate assumption about the source distribution can be more misleading 

if one wants to compute the induced Avx at z #O, than if one computes 

AvX 
for z=O. We have therefore not yet made an estimate of this term Avx 

(which would correspond to 
AvCJ of equation (61)). 

A second-order term in the pressure coefficient on the fuselage is pro- 

duced by the circumferential velocity component v,(x,e). This can be com- 

puted from 
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c/R 

v,(x,e> = 

0 
2T[(;s;n;f: Iin q+ 

% 
Values of Q R 19 are given in Table 4. Due to properties of symmetry, v8 

vanishes for 0 = 0 and 0 = 9o". For the wing-fuselage configurations 

considered in Figs.18 and 19, we have computed v0 for 0 = 45', with 

R(X) from equation (43); results are plotted in Fig.20. 

4 CONCLUSIONS AND FURTHER WORK 

The flow field past a single straight infinite source line crossing a 

circular cylindrical fuselage at right angles has been studied. 

It was found that the boundary condition at the surface of the fuselage 

can be satisfied to a relatively high degree of accuracy by a source distri- 

bution q(x,O) on the surface of the fuselage of the strength 

q(x,O) = - 2v,(p,e> + GnQW + Ai(x) (68) 

where A;(x) satisfies the onedimensional integral equation 

A;(x) = 
i 

[V nQ(xv> - -Q(X)  - A;i(x') + ;q(x)] & [K- E]dx' (69) 

where K and E are the complete elliptic integrals of modulus 

k2= 4 2. 
4 + (x - x’) 

It has been found (report to be published) that equations (68) and (69) 

give a good approximation to q(x,6) also for a single swept source line in 

the presence of a fuselage when the source line is continued inside of the 

fuselage up to the axis as the plane image on an infinite reflection plate 

at the side of the fuselage. We may therefore expect that for a wing-fuselage 

combination with a finite wing of varying section shape a sufficiently accurate 

source distribution can also be found by solving the onedimensional integral 

equation (69) instead of solving the complete twodimensional integral equation. 
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The velocity components induced by the source distribution q(x,e) have 

been computed in the wing plane and at the surface of the fuselage. 

The tabulated results have been used to derive for some wing-fuselage 

configurations the interference effect according to first-order theory. It 

was shown that the streamwise perturbation velocity in the wing-body junction 

can be reduced by 10 to 20 per cent. 

The second-order terms have also been evaluated. It is shown that the 

reduction of the streamwise perturbation velocity according to second-order 

theory may be noticeably larger than according to first-order theory; for 

the cases considered by about 60 per cent. This suggests that for wing- 

fuselage combinations it may become more important to include all second-order 

terms than for isolated wings. To do this accurately one requires not only 

the velocity components induced in the wing plane but also those at the surface 

of the wing, in particular the vz - velocity which the source distribution 

q(x,8) on the fuselage induces at z f0 is required. These have not yet 

been computed away from the fuselage. 
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Appendix A 

EVALUATION OF lim v 
*q 

(x ' 0, y = 1,0) AND OF lim v (x = 0,e) 
X-to 0-a eq 

To determine the limit of v 
xq 

(X> 0, y = 1, z = 0) as x tends through 

positive values to zero, we use equation (22) with equations (19), (1) and 

(29) and it follows that, for Q = 1, 

lim 
X+0 

Vxq(X,Y = l,O> = 

Q3 71 

lim 1 sin 2 8 - 5 - 
X-HI 

7 SJ (x x')dadx' 
X’ 2 2 ,3 

-co 0 
+sin f3 

(x - x')2 + 2(1 - cos t3) 

- 6 
=lim -- 1 cl2 1 

X+0 
7r2 . iJ 0 xv2 + -Co 2 JKt3 

E 6 

= lim+l 
X+0 2 IT SJ 

-c 0 
.,ZX:Ze2 ;*. 

(A-1) 

where E and 6 are non-zero. Now for (x - x') > xl2 2 

J 0 (x’ 2 + 02) Jfk&-yp = - [ (X - x’)2 - xq21 (x -6xf)2J(x 1 x’P+ 62’ 

+ lx’1 J&-jG13 
tan-l 6 +f-TryT (x-x ) 

1x11 f/m 
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andfor (X-X’) 
2 CX) 2 

I - 
[ (x _ x’)2 - xV212 (x - x’) 6 2Jm 

We introduce the variable T by the relation 

X’ = x(1 + T) , 

2 
then . (x - x') > x' 

2 for - i - 2 1 < T < -0.5 and (x - x') < x' 2 for 

-0.5 < 'I < ; - 1. 

We can then write 

lim 
-xYo- I -- -0.5 -1 

I L- 
+ 6(1 + T) Tl ! 

T(l + 2T) p&F +& 3 tan-1 
J 

,1:,,&3 1 dT 
; 

:-1 

- d 

6(1 + T>2 _ TU + T) (l+T)fLzT+sJ~ dT 

-0.5 T(If2+7T7 2Jz3 log (l+.r)pz%J2T+1 
I) 
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We take the limit as x/6 tends to zero and obtain 

lim sr*v 
X+0 

xq(x'Y = l,O> 

01 
= 

4 
-4-c* + Tll- rl tan-l\12T 

0.5 4T2 - l &iT3 
+ T(l * T) l+T+lET-i dT 

- &J3 logl+r-mTi 1 
0.5 

+ 
JL- 

-4 
4T2 - 2 log 

T+m 
+ - 1 _ 0 1 4-r is: : T J1 

-r(l + T) l+r+J1+2r 

+ *JE;3 log 1 + 'I -J- dT l (A-2) 1 
These integrals can be determined numerically. For r -f 0.5 the integrand in 

both integrals tends to 11 

12 - ,i& loi3 ; : ;  f  : ;  l When T-ta the integrand 

8 1 in the first integral behaves as - 
15 7' When T + 1 the integrand in the 

first integral tends to 4 
‘5 - y& 1% G l We have computed the value 

lim vxq(x,y = l,O> = - 0.05305 . 
X-+0 

From equation (39) we obtain 
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lim v 
lim 

(x = O,e) = 0M 
q(x',e') sin(0 - B')de'dx' 

eq (3 
e+o x'2+2[1-cos (e-e’)1 

- 271 
lim 1 sin2 8’ sin (e - B')de'dx' 

- e*-;;z 2 3 
+ 2[1 - cos (e - el)l 

E 6 
lim 1 ii e12(f3 - e’)de’dx’ 

= e+o--;;z 2'3 l 

0 -6 [d2 2 + (0 - 0') 

We campare this relation with equation (A-l) and note that, except for 

the sign, the integrals are the same if we interchange x with 8 and x' 

with 0'. It follows that 

lim v 
8-a 'q 

(x=o,e) = - %vxq(X,e = 0) 

= 0.05305. 
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Appendix B 

. 
EVALUATION OF lim Avr,(x > 0, y = 1, z = 0) 

x+0. 

When writing Ref.1, we had not devised a treatment of the limiting 

process similar to the one of Appendix A. 

An unswept vortex line in the presence of a cylindrical fuselage induces 

in the plane through the vortex and the axis of the fuselage an additional 

downwash 

m 21T 

- Avz(x,y = 1,O) = 
i i 

dx',fo sin 0 d0dx' 4lT . 

-co 0 2 + 2(1 - cos 0) 

The only term of q(x,B) which contributes to the limiting value of Av as 
z 

X tends to zero reads 

4(x,0) = r x sin 0 

IT x2 + sin 28 

so that for I' = 1 

lim-AvZ= x-+0 lim - 1 x' sin2 0 dedx' 
2?T2 2 2 

43 iii 

-00 0 (x' - x') + 2(1 - cos El) 

2 I3 

lim 1 

r 

m IT 

=x-+oz M- 
X’ 

-a 0 xl2 + e2 x2 Y e2 1 J&3 
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Now 

lim x dx' 

(x - x')2 + e2 
13 

X 

P 

2d0 =- 
- 2n2 x2 + 02 

0 

lim -J-tan -1 I5 1 
- x/&+0 x2 

;; = 
2n l 

After we have performed the integration with respect to 8, have intro- 

duced the variable r by x' = x(1 + T) and taken the limit f+O, we 

obtain 

- 6 
X’ X e2d0dx' P 

xr2+ 8 2- X 2+82 (x - x') 2 + e2 1 3 

-0.5 
1 I I[ 1+T+ 1 + .,)2 s -- 

1 + 2T Jh3 tan 
-lC-SYi dT 

al2 1 + r 1 
-cm 

OD 

IL- 
1+'1 (1 + T) l+T+G 

+ 1 
-0.5 

iTi;-ij;;;;liilolLrT-h~ dT 

+l 

+ 2 
i[ 

-i-;+ 211; r*,310g*]dr 
T2 

l 

0 

1 

We have evaluated the integrals numerically and obtained the result: 

lim - Avs(x > 0,y - 1,O) = & - 0.05305 

= 0.1061 . 

This value agrees well with the one derived in Ref.1 by graphical extrapolation 

from the values calculated for x #O. 
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Appendix C 

EVALUATION OF k; 
[q(x),0 = Kx) - 4(x,0 - 'QC)] E (k) dx, 

n(x - x')J?ET7z 

The terms G,(x) and aq(x) in q(x,e> do not contribute to the 

limiting value of the integral. We have therefore to consider only 

lim 
X-+0 

1* E 

CrJ 

lim 
X-to i 

-cc 

-r ‘--xl sin 2 2 I3 +sin -2x1 0 sin 2 . 0 2 I x2 o E‘(k) 

n2(x )&45x 

dx' 

= lim _ 2 
X-4 

Ti (x 

co 

cx + x')E (k)dx' 

[ xv2 + sin2 01 

with k2 = 
4 

4 + (x - x' 2> ' 

For small x 

2 
E 

I* 2( - sin 8 

i 

(x + x')dx' 

2a2(x2 + sin2 0) [XV2 + sin2 91 ‘E 

2 
sin e -1 5 z - 

2n2(x2 
&S-tan 

+ sin2 e) 'In ' c > sin 

where E >> x. 

With 0 = KX, we obtain thus 

lim I* = - 
K 

X-to 27T(l + K2) 

llim I*[ has the maximum value -L for K = 1. 
4n 
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Table 1 

6 

VALUES OF P) (x) 

OD 

I 

@--1+xf) - i+"-')(x)] k[K - Ejdx‘ 

where 

X 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 
0.9 
0.95 
1.0 

k20 4 
4 + (x - x‘)2 

K(O)(x) = - 2; 
nQ 

(x) 

6 

ie) (x) 

-0.1305 1.00 

-0.1157 0.95 

-0.1021 0.9 

-0.0896 0.85 

-0.0781 0.8 

-0.0674 0.75 

-0.0576 0.7 

-0 0485 0.65 

-0.0403 0.6 

-0.0329 0.55 

-0.0261 0.5 

-0.0201 0.45 

-0.0147 0.4 

-0.0100 0.35 

-0.0058 0.3 

-0.0022 0.25 

0.0010 0.2 

0.0038 0.15 
0.0061 0.1 
0.0081 0.05 
0.0098 0 

1 
';; 

6 
2 

K it(“) (x) 

nkf 

0.0098 

0.0124 

0.0155 

0.0189 

0.0227 

0.0269 

0.0315 

0.0365 

0.0417 

0.0470 

0.0522 

0.0567 

0.0603 

0.0622 

0.0618 

0.0587 

0.0527 

0.0439 
0.0322 
0.0172 

0 

. 
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Table 2 

STREAMWISE VELOCITY COMPONENT ON THE WING, vx (x,y,z = 0), 

INDUCED BY THE SOURCE DISTRIBUTION q(x,e) ON THE FUSELAGE 

Y 
\ X 

0 

0.05 

0.1 

0.15 

0.2 

0.3 

0.4 

0.6 

0.8 

1.0 

1.25 

1.5 

1.75 

2.0 

2.5 

3.0 

3.5 

4.0 

5.0 

0.0 

1.0 1.05 1.1 1.25 1.5 2.0 

-0.0530 0 0 0 0 0 

-0.0495 -0.0320 -0.0165 -0.0056 -0.0022 -0.0008 

-0.0467 -0.0388 -0.0264 -0.0106 -0.0043 -0.0015 

-0.0444 -0.0399 -0.0312 -0.0148 -0.0063 -0.0023 

-0.0423 -0.0396 -0.0331 -0.0181 -0.0083 -0.0030 

-0.0389 -0.0377 -0.0339 -0.0222 -0.0114 -0.0044 

-0.0364 -0.0356 -0.0332 -0.0243 -0.0139 -0.0056 

-0.0321 -0.0318 -0.0306 -0.0252 -0.0167 -0.0077 

-0.0288 -0.0285 -0.0278 -0.0243 -0.0177 -0.0092 

-0.0259 -0.0258 -0.0253 -0.0228 -0.0177 -0.0101 

-0.0228 -0.0227 -0.0224 -0.0208 -0.0170 -0.0105 

-0.0202 -0.0202 -0.0199 -0.0187 -0.0157 -0.0106 

-0.0180 -0.0181 -0.0177 -0.0168 -0.0146 -0.0104 

-0.0160 -0.0162 -0.0159 -0.0152 -0.0135 -0.0100 

-0.0128 -0.0131 -0.0129 -0.0123 -0.0113 -0.0089 

-0.0104 -0.0107 -0.0106 -0.0102 -0.0094 -0.0078 

-0.0086 -0.0090 -0.0088 -0.0084 -0.0079 -0.0068 

-0.0072 -0.0075 -0.0073 -0.0072 -0.0068 -0.0059 

-0.0051 -0.0054 -0.0054 -0.0052 -0.0049 -0.0045 

-0.0014 -0.0015 -0.0016 -0.0015 -0.0015 -0.0015 



5 
1 X 

0 
0.05 
0.1 
0.15 
0.2 
0.3 
0.4 
0.6 
0.8 
1.0 
1.25 
1.5 
1.75 
2.0 
2.5 
3.0 
3.5 
4.0 
5.0 

10.0 

0 5O loG 2o" 30° 45O 60' 75O 9o” 

-0.0530 0 0 0 0 0 0 0 0 
-0.0495 -0.0629 -0.0384 -0.0196 -0.0131 -0.0090 -0.0072 -0.0062 -0.0059 
-0.0467 -0.0683 -0.0603 -0.0366 -0.0254 -0.0177 -0.0141 -0.0123 -0.0118 
-0.0444 -0.0604 -0.0661 -0.0493 -0.0359 -0.0257 -0.0207 -0.0182 -0.0175 
-0.0423 -0.0535 -0.0642 -0.0569 -0.0446 -0.0329 -0.0269 -0 so239 -0.0229 
-0.0389 -0.0450 -0.0553 -0.0615 -0.0551 -0.0440 -0.0372 -0.0338 -0.0327 
-0.0364 -0.0399 -0.0477 -0.0586 -0.0584 -0.0513 -0.0451 -0.0415 -0.0404 
-0.0321 -0.0338 -0.0380 -0.0483 -0.0545 -0.0554 -0.0528 -0.0506 -0.0498 
-0.0288 -0.0297 -0.0323 -0.0397 -0.0466 -0.0519 -0.0530 -0.0526 -0.0524 
-0.0259 -0.0265 -0.0282 -0.0335 -0.0395 -0.0461 -0.0492 -0.0504 -0.0506 
-0.0228 -0.0233 -0.0243 -0.0279 -0.0325 -0.0388 -0.0428 -0.0450 -0.0456 
-0.0202 -0.0205 -0.0212 -0.0238 -0.0272 -0.0324 -0.0365 

-0:0182 
-0.0388 -0.0396 

-0.0180 -0.0187 -0.0204 -0.0231 -0.0274 -0.0309 -0.0332 -0.0339 
-0.0160 -0.0161 -0.0165 -0.0179 -0.0199 -0.0233 -0.0263 -0.0283 -0.0289 
-0.0128 -0.0129 -0.0132 -0.0140 -0.0152 -0.0172 -0.0194 -0.0207 -0.0212 
-0.0104 -0.0104 -0.0106 *-0.0111 -0.0119 -0.0133 -0.0147 -0.0156 -0.0159 
-0.0086 -0.0086 -0.0087 -0.0091 -0.0096 -0.0105 -0.0114 -0.0121 -0.0123 
-0.0072 -0.0072 -0.0073 -0.0075 -0.0079 -0.0085 -0.0091 -0.0096 -0.0098 
-0.0051 -ro.o051 -0.0052 -0.0053 -0.0055 -0.0059 -0.0062 -0.0065 -0.0066 
-0.0014 -0.0014 -0.0014 -0.0014 -0.0015 -0.0016 -0.0018 -0.0019 -0.0019 

Table 3 

STREAMWISE VELOCITY COMPONENT OX THE FUSELAGE, v--,(x,@, INDUCED 

BY THE SOURCE DISTRIBUTION q(x,e) ON THE FUSELAGE 
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Table 4 

CIRCUMFERENTIAL VELOCITY COMPONENT ON THE FUSELAGE, v&x,6), 

1 X 
8 

0 
0.05 
0.1 
0.15 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1.0 
1.25 
1.5 
1.75 
2.0 
2.5 
3.0 
3.5 
4.0 
5.0 

10.0 

0 

0.0530 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

INDUCED BY THE SOURCE DISTRIBUTION q(x,e) ON THE FUSELAGE 

5O loo 2o" 3o" 

0.0496 0.0464 0.0399 0.0337 
0.0652 0.0519 0.0414 0.0344 
0.0709 0.0618 0.0454 0.0363 
0.0620 0.0677 0.0502 0.0389 
0.0532 0.0672 0.0549 0.0422 
0.0387 0.0593 0.0596 0.0482 
OF0292 0.0493 0.0593 0.0514 
'0.0231 0.0409 0.0556 0.0521 
0.0188 0.0344 0.0507 0.0509 
0.0133 0.0251 0.0407 0.0451 
0.0099 0.0190 0.0325 0.0383 
0.0072 0.0140 0.0248 0.0306 
0.0055 0.0107 0.0192 0.0243 
0.0043 0.0083 0.0152 0.0196 
0.0034 0.0066 0.0122 0.0158 
0.0022 0.0044 0.0082 0.0108 
0.0016 0.0031 0.0058 0.0077 
0.0012 0.0023 0.0043 0.0057 
0.0009 0.0018 0.0033 0.0044 
0.0006 0.0011 0.0021 0.0028 
0.0001 0.0003 0.0005 0.0007 

45O 60' 75O 

0.0249 0.0164 0.0082 
0.0252 0.0165 0.0082 
0.0260 0.0169 0.0084 
0.0273 0.0175 0.0086 
0.0288 0.0183 0.0090 
0.0326 0.0203 0.0098 
0.0357 0.0224 0.0108 
0.0381 0.0243 0.0118 
0.0394 0.0256 0.0125 
0.0388 0.0266 0.0133 
0.0356 0.0257 0.0132 
0.0304 0.0231 0.0122 
0.0252 0.0198 0.0107 
0.0208 0.0168 0.0092 
0.0172 0.0141 0.0078 
0.0120 0.0100 0.0056 
0.0086 0.0073 0.0041 
0.0065 0.0055 0.0031 
0.0050 0.0042 0.0024 
0.0032 0.0027 0.0016 
0.0008 0.0007 0.0004 

9o” 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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SYMBOLS 

C 

#) 
(x,fJ) 

ii(“) (x) 
Q 
q(x,0) 

qm (x,e) 
,w (x,0) 
Aq(x,e) = 
&> 
@o) 

q”(%Y> 

qp (X,Y) 

4h2) (X,Y) 

Aq(x,y) 

R 

X,Y vz 

x,0 

Zt (4 

“0 

V 
X’ vy9 vz 

V n 

Qx) 

71 

wing chord 

see equation (12) 

see equation (18) 

strength of infinite source line 

strength of source distribution on the fuselage related to a 
single source line in the plane 2=0 

first approximation to q(x,0), see equation (8) 

(v + 1) th approximation to q(x.6) 

q(x,8) - 4 (O) (x, e) 

mean value of source strength q(x,e) at a station x 

strength of source distribution on the fuselage related to the 
source distribution qJx) in the plane 2=0 

source distribution in the wing plane representing the isolated 
wing 

source distribution in first-order theory 

source distribution in second--order theory 

interference term of source distribution in the plane z * 0, 
see equation (60) 

radius of fuselage 

rectangular coordinate system, x along the axis of the fuselage 

system of cylindrical coordinates 

section shape 

free stream velocity, taken as unity 

components of perturbation velocity 

velocity component normal to the surface of the fuselage 

mean value of v,(x,e) 

circumferential velocity components at the surface of the fuselage 

vxQ’ vzQg “nQ’ vOQ 
velocity components induced by the isolated source line 

V V 
xq’ zq’ 7’4 

velocity components induced by the source distribution qcx,e> 
on the fuselage 

v. 

j;, 

streamwise velocity component in the flow past the isolated wing 

V 
xw xw 

according to first-order theory 
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SYMBOLS (Contd.) 
. 

p> 
V 

xw xw according to second-order theory 

Avx, Avz interference velocity components 

%J Avz in the wing-body junction 



50 

No. Author 

1 J. Weber 

2 D. Kichemann 

3 J. L. Hess 

A.M.O. Smith 

4 D. Kichemann 

J. Weber 

5 B. Thwaites Incompressible Aerodynamics, Oxford, 

(Ed. > Clarendon Press (1960) 

REFERENCES 

Title, etc. 

Interference problems on wing-fuselage combinations. 

Part I: Lifting unswept wing attached to a cylindrical 

fuselage at zero incidence in midwing position. 

RAE Technical Report 69130 (ARC 31532) (1969) 

Some remarks on the interference between a swept wing 

and a fuselage. 

RAE Technical Report 70093 (ARC 32307) (1970) 

Calculation of potential flow about arbitrary bodies. 

Progress in Aeron. Scs., Vol.8 (1967) 

The subsonic flow past swept wings at zero lift 

without and with body. 

ARC R & M 2908 (1953) 



. 

\ 
n 

I I 

-2 -I 

Fig.1 Normal velocity at the fuselage induced by a 
straight source line 



0.05 - 

Fig.2 Strength of source distribution on fuselage 



Fig.3 Average strength of source distribution on fuselage 



0 *oz 

“X 

-td 

0*03 

O-02 

0.01 

0~ 

Fig.4 Additional streamwise vclocfty in thewing ,plane,r=O, induced 

by the source distributiorr on the fuselage 



\, Single sink 

\ 
\ \ 

1 I I 
I 
I 
I 
I 
r 

Y 8R 

Z=O 

I 2 3 x/R 4 

Fig.5 Additional streamwise velocity in the wing-body junction 



. 
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