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bY 

E. H. Mansfield, F.R.S. 

SUMMARY 

Theoretical analyses are made of the influence of the following features 

on the longitudinal shear and transverse tensile moduli of unidirectional fibre 

reinforced composites: (i) random variations in positioning of individual fibres, 

(ii) overall variations leading to fibre bunching, (iii) overall variations 

leading to interspersed matrix layers, (iv) localised variations resulting in 

matrix pockets. The degree to which these features occur in CFRP is considered, 

and observed discrepancies between measured values of the moduli and theoretical 

predictions assuming a regular hexagonal array are explained. 

* Replaces RAE Technical Report 74182 - ARC 36140. 
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1 INTRODUCTION 

It is well known that certain fibres (notably those of glass, carbon or 

boron) have exceptional lon@tudinal strength and/or stiffness properties. When 

such fibres are embedded in a matrix to form a 'fibre reinforced composite' they 

can be used in a structural context. Unidirectional fibre reinforced composites 

are used as struts, ties or stringers in which configurations the longitudinal 

properties of the fibres show up to maximum advantage. A proper understanding 

of the transfer of load into such members requires a knowledge of the longitudinal 

shear modulus G 
C 

1 of the composite and, to a lesser extent, the transverse 

modulus E C 

2 * A rigorous theoretical determination of GF and E G for uni- 

directional composites based on carbon or glass fibre is not possible because the 

smallness of individual fibres makes their precise dimensions and positioning 

beyond control. However, theoretical predictions of GE: have been made for 

idealised composites in which, for example, the fibres are in regular hexagonal 
l-6 

or square arrays . For small values of the fibre volume fraction, roughly 

< 0.4 , 
vf c 

the choice of array makes little difference to the predicted values 

of G 1 and both are in fair agreement with experimentally determined values. 

However, for the practically important range in which vf > 0.4 , the predicted 

values of Gy for the square array exceed those for the hexagonal array; for 

example, at 
Vf 

= 0.7 , which is near the practical upper limit for 
vf ' 

the 

difference is some 15% for CFRP. Furthermore, the experimentally determined 

values of G 
C 7 
1 are now often significantly higher than the predictions for the 

square array, but insofar as this array yields better agreement than the 

hexagonal array, its use for theoretical prediction is favoured by some authors. 

But this is no more than empiricism for the natural array is hexagonal - like 

the stable array of the red balls in a snooker frame - and, indeed, a close 

examination of the distribution of fibres over typical cross-sections supports 

this view, although there is also an all-pervading randomisation and other 

distributional features associated with the manufacturing process. Another 

objection to the adoption of the square array lies in the fact that the derived 

values of the transverse moduli are not independent of the orientation of the 

composite cross-section, as they should be in an actual composite with a 

basically random distribution of fibres. 

The present paper considers theoretically the influence on the moduli of 

the following features: (i) random variations in positioning of individual 

fibres, (ii) overall variations leading to fibre bunching, (iii) overall 



variations leading to interspersed matrix layers, (iv) localised variations 

resulting in matrix pockets. It is shown that these features, particularly 

numbers (iii) and (iv), can adequately account for the erstwhile discrepancies 

between theory and experiment. In all cases it is assumed that the fibres are 

parallel, a previous paper 8 having shown that longitudinal fibre waviness and 

misalignment have a negligible influence on the composite moduli. 

2 PRINCIPAL NOTATION 

P 

r 

V 

vf 
x9 Y, = 

'n' 'n 
r 

a 

diameter of fibres 

Young's (or tensile) modulus 

plane strain modulus (~1 = 0) 

shear modulus 

height of repeating rectangle 

proportion of pure matrix in annular bands, layers or pockets 

pitch of fibres in regular hexagonal array 

radius of fibre/p 

fibre volume fraction 

overall fibre volume fraction 

Cartesian axes parallel to 1, 2, 3 directions. Fibres in l-direction. 
See Figs.1, 5 

coordinates of fibre centres 

introduced in equation (6) and elsewhere 

'random' displacement of fibre 

direct strain 

Gm/G; 

Poisson's ratio. 

The following indices and suffices are used: 

a 

b 

C 

f 

R 

m 

P 

S 

1, 2, 3 

away from resin-rich pockets - 
bunches of relatively higher fibre volume fraction 

composite - 
fibre - 
Layers of relatively higher fibre volume fraction 

matrix 

pockets of pure matrix 

matrix bands surrounding bunches - 
indicate Cartesian axes (see Figs.], 5) 
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3 EFFECT OF LOCAL RANDOM VARIATIONS IN FIBRE SPACING 

A rigorous analysis to determine the elastic moduli GC and E; of CFRP, 

or other fibre composite, is difficult, even with the simplifying assumption of 

parallel fibres of equal circular cross-section, and published numerical 

results'+ are restricted to such fibres in regular diamond or rectangular 

arrays. These results include as a special case the hexagonal array which is 

particularly important because it is the only one which yields values of G; , 

E; which are independent of the orientation of the composite cross-section. 

This property of isotropy must also be assumed to hold for a random distribution 

of fibres , provided the number of fibres is sufficiently large as in CFRP. 

What is needed is the analysis of arrays which are isotropic like the 

hexagon but, nevertheless, exhibit 'random' deviations. To be amenable to 

analysis they must also exhibit a repeating pattern. Fig.1 indicates how such 

an array can be formed:- 

Starting from a regular hexagonal array with pitch p between adjacent 

fibre centres, we fix the position of those fibres (one in four) which lie on a 

regular hexagonal array with pitch 2p . The six fibres adjacent to each of 

these fixed fibres are now displaced radially by amounts +A at e = o", f120° 

and -A at 9 = +60°, 180'. As may be seen from Fig.1 the resulting pattern of 

fibres repeats itself every 120' and the derived values of Gy and EC2 are 

therefore independent of the orientation of the composite cross-section. The 

essential property of isotropy has thus been maintained despite the introduction 

of an element of randomness into the idealised hexagonal array. [The reader may 

note that other such schemes are available, but this is the simplest.] The 

magnitude of the displacement A may be derived by considerations of randomness. 

Thus, although A has been arbitrarily defined as positive and its direction 

specified, this direction should be regarded as specifying a vanishingly narrow 

sector in which the centre of the displaced fibre must lie, e.g. 8 = 0' specifies 

a vanishingly narrow sector bounded by lines at 0 = +-6 as 6-+0, as 

indicated by the broken lines in Fig.1. The radius of this sector, and hence 

the maximum possible value of A , is (p - d) at which value the displaced 

fibres touch the fixed ones. The chosen value of A is the average of all 

possible displacements in this sector, i.e. 

A = + (P - d) . (1) 

Figs.2,3 show sections of the derived composite for vf = 0.6 and 0.75. 
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It is hoped to derive a rigorous analysis of such randomized hexagonal 

arrays at a later date. For the present we rely on an approximate analysis, 

referred to as the Slicing technique 
9 , which yields lower bounds to the 

composite moduli. For the regular hexagonal array and for values of vf b 0.4 , 

this analysis underestimates the correct values of GF by about 20%. To draw 

any meaningful conclusions we must therefore confine comparisons to these lower 

bounds, making the tacit assumption that the correction factors for given values 

of vf, G" G; 
I 

are the same for the randomized and regular hexagonal arrays. 

Further, although a rigorous solution would yield identical values of GT for 

shearing in the 12 or 13 planes, the Slicing technique yields slightly different 

values. Also, when the influence of fibre randomisation is considered the 

Slicing technique predicts an increase in the shear modulus in the 12 plane and 

a decrease in the 13 plane. The resulting uncertainties in interpretation are 

minimised by adopting an average value G c* 
1 , say, for the shear moduli 

appropriate to the 12 and 13 planes. Similar remarks apply for the transverse 

tensile modulus. 

According to the Slicing technique lower bounds for the shear moduli are 

given by 

C 

G13 

G” 

where 

(1 - rihf (z> > 
1 

dz 

> 

-1 
17)Vf(Y) dY (2) 

and h h 
z' Y 

are the heights of rectangles such as OABC, ODEF which repeat 

themselves in the y and z directions, respectively, as shown in Fig.1. The 

terms Vf (z> and vf (Y) are the local values of the fibre volume fractions in 

vanishingly thin slices at z and y . Thus, adopting for simplicity a unit 

value for the basic hexagonal fibre pitch p , and introducing Yn, Z for the n 
coordinates of the fibre centres, it can be shown that 
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6 

v,(z) = $5 
Cr 

r2 - (z - Zn)2]? 

n=l 

where 

and 

where 

4 

V,(Y) = 
c[ 

r2 - (Y L - Yn> 
2 i 1 

n=l 

z1 = 0, z2 = 1, Z3 = A 

z4 = l+A, Z5 = Z6 = 10 A> , 

> (3) 

(4) 

and 

VfJ3 1 
r = ( > 2n , 

(5) 

A = ; (1 - 2r) or zero , 

depending on whether the randomised or regular hexagonal array is being 

considered. 

The results are shown in Table 1 which tabulates the ratio 

G c* 
1,random Gl,regular I 

c* for various values of vf and Gf G" 
I  1 l 

It will be seen 

that while randomisation always causes an increase in the shear modulus, the 

magnitude of the increase is in practice negligible. Finally we note that 

similar conclusions can be drawn for the transverse tensile moduli Ei, E; for, 

according to the Slicing technique, these moduli are determined by equations 

similar in character to equation (2). 



Table 1 

Va1ues Of G;*random GY*regular , I , 

vf 

0.4 1.003 1.002 1.003 
i 0.5 1.003 1.003 1.005 
~ 0.6 1.004 1.005 1.008 

0.7 1.007 1.012 1.018 
1 0.8 1.008 1.014 1.024 

Gf G" 1 I 
= 20 50 al 

4 OVERALL VARIATIONS LEADING TO FIBRE BUNCHING 

An examination of the overall distribution of fibres, particularly in 

CFRP, frequently shows a bunching effect with regions of relatively higher fibre 

volume fraction surrounded by bands of pure, or nearly pure, matrix. These 

bunches may well have their origin in the tows used in manufacture. The 

influence of such bunching on the longitudinal shear modulus of the composite as 

a whole can be determined adequately by an adaptation of the technique and 

formula due to Hashin 10,ll . 

Hashin has shown that a composite circular cylinder of diameter dc 

consisting of an inner circular cylinder of diameter d. 1 . and a surrounding 

concentric annular cylinder (a tube) with shear moduli G1 and G a , 

respectively, is elastically identical (under longitudinal shear) to a 
h 

homogeneous cylinder with longitudinal shear modulus G1 , where 

G: 
Ga 

= 
1 + r; 

1 - ri , 

where 

r i = v , 

and 

V. 
1 

= (di/dc)2 , 

> (6) 

= volume fraction of inner material. J 
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Hashin represents a fibre-matrix composite by an amalgam of such composite 

cylinders of varying sizes (rather like a two-dimensional version of the graded 

aggregate used in concrete) and hence derives the following expression for the 

longitudinal shear modulus of the composite: 

C 

G1 - 

G" 

where 

= 
1 + rf 

I 
- rf 

(7) 

This type of model can be used to investigate the effect of fibre bunching 

by assuming that the bunched fibres are themselves grouped in circular cylinders 

with a surrounding matrix band of constant thickness. If the overall fibre 

volume fraction of such a 'composite composite cylinder' is vf 
and the 

surrounding matrix band comprises a proportion k 
S 

of the total volume, it 

follows that the fibre volume fraction in the bunched regions, vb , is given by 

Vf 
Vb = 1-k l 

S  

b 
The longitudinal shear modulus of the bunched regions Gl is given by 

where 

(8) 

(9) 

while the longitudinal shear modulus of the 'composite composite cylinder' G; 
is given by 
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C 

G1 1 + rk 
-= 
G" 

1 -rk ' 

where 

rk 
= (1 - ks) . 

(10) 

Substitution of equations (8), (9) into (10) and comparison with (7) shows that 

C 
G1 = 

ks=O ' 
(11) 

Thus the bunching effect has no influence on the longitudinal shear 

modulus of the composite as a whole; the effect of the increased modulus in the 

bunched regions is exactly balanced by the reduced modulus in the surrounding 

matrix bands. What is more, equation (11) shows that the model adopted for 

describing fibre bunching is unnecessarily restrictive because the analysis is 

also valid for arbitrary mixtures of bunched fibres with surrounding matrix 

bands (with, perhaps, differing values of ks) and homogeneous (non-bunched) 

arrays provided only that equation (8) is satisfied. Similar conclusions can 

be drawn for the transverse moduli. 

Of course, the underlying concept in Hashin's model - that cylinders of 

fibre-cum-matrix with ever-decreasing size are available to fill up the gaps 

between larger cylinders - must be regarded primarily as a mathematical 

convenience. It is clearly only an approximation in the context of CFRP, say, 

where the fibres are all about the same size. However, despite this short- 
5 

coming equation (7) gives excellent agreement, up to vf = 0.6 , with Symm's 

accurate numerical values, reproduced in Table 2, for a composite with equal 

fibres in an hexagonal array. 

values of Gy G" 
I 

Beyond this value of vf equation (7) gives 

which increasingly underestimate Symm's results; thus 

Vf = 0.7 it is in error by about 2%, depending on the ratio Gf G" 1 I . We regard 

these differences as too small to detract from the general validity of equation 

(11); indeed, if we take Gf Gm 1 I 
= 20 and vf = 0.7, ks = 0.067 so that 

"F 
= 0.75 and adopt Symm's value for Gb 

El 
l in equation (lo), it is found that 

G1 exceeds C 

G1 by only 0.5%. 
ks=O 
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vf Gf 
1 I 

G” = 6 12 20 120 co 

-- 

0.40 1.80 2.02 2.14 2.30 2.33 
0.45 1.95 2.23 2.37 2.59 2.64 
0.50 2.11 2.47 2.65 2.94 3.00 
0.55 2.30 2.75 2.99 3.37 3.46 
0.60 2.50 3.08 3.39 3.91 4.03 
0.65 2.74 3.47 3.89 4.61 4.78 
0.70 3.02 3.95 4.53 5.55 5.81 
0.75 3.34 4.57 5.38 6.93 7.35 
0.80 3.73 5.39 6.60 9.18 9.96 
0.85 4.22 6.58 8.54 13.70 15.70 

-- 

Table 2 

Values of Gy G” 
I 

for hexagonal array 

0.65 
0.70 
0.75 
0.80 
0.85 

-- 

It may likewise be shown that the bunching effect has little influence on 

the transverse tensile modulus. Numerical values of E;(= E;) f or a composite _ 

with equal fibres in an hexagonal array are not known to the same accuracy as 

for GT but Table 3 presents estimates of E'2 given in Ref.9. 

Table 3 

Values of Ei Em 
I 

for hexagonal array (v = 0.25) 

1 .a4 2.10 2.25 2.45 2.49 
2.00 2.32 2.49 2.76 2.82 
2.16 2.57 2.78 3.12 3.20 
2.35 2.86 3.13 3.58 3.69 
2.56 3.20 3.55 4.15 4.30 
2.80 3.60 4.07 4.90 5.10 
3.09 4.08 4.73 5.88 6.20 
3.40 4.71 5.62 7.36 7.84 
3.80 5.56 6.85 9.71 10.60 
4.27 6.73 a.77 14.50 16.80 

120 m 
I I 

5 OVERALL VARIATIONS LEADING TO INTERSPERSED MATRIX LAYERS 

The curing process in the manufacture of CFRP sometimes results in a banded 

structure, as exemplified in Fig.4, in which the composite is interspersed with 

roughly parallel layers of pure, or nearly pure, matrix. It is easy to determine 

the influence of such bands on the longitudinal shear moduli of the composite, 
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C G12 and 
G;3 ' 

because the stiffnesses of the individual layers combine either 

in series or parallel and the shear moduli depend only on the total thickness 

of the matrix layers, rather than on individual thicknesses and dispositions. 

Indeed, the influence of more than two types of layer (specifying the type by 

its fibre volume fraction) can readily be determined. However, such theoretical 

refinement will seldom be justified and in the ensuing analysis attention is 

confined to two types, namely purely matrix layers (i.e. zero fibre volume 

fraction) and composite layers with fibre volume fraction vR , (see Fig.5). 

The overall fibre volume fraction is 

total thickness of the purely matrix 

total thickness, it follows that 

again denoted by vf and hence, if the 

layers comprises a proportion kQ of the 

5 = I -&kQ ' (12) 

Although it is not orientation-dependent, the longitudinal shear modulus of the 
R purely composite layers will be denoted by G12 or GP;3 depending on whether 

C C 

G12 Or G13 is under consideration. 

5.1 The longitudinal shear modulus GC 
12 

From Fig.5 it is seen that the stiffnesses of individual layers are 

additive and accordingly 

C 

G12 
= (1 - ke)G;2 + kQGm . (13) 

The influence of matrix layers on the shear modulus GT2 is most conveniently 

expressed by the ratio G C C 

12 
I[ 1 

G12 
kg=0 ' 

for which a simple closed form expres- 

sion may be derived if it is assumed that 
G9;2 is given adequately by equation 

(7) with, of course, 
Vf replaced by vR . It may now be shown that 

GC2 
1 -k 

= 

[1 1 G:2 kk 
, 

kg=0 l-1-r f 

(14) 

where I' f is defined in equation (7). 
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It follows that in unidirectional fibre reinforced composites with a given 

ovsraZZ fibre volume fraction the presence of resin-rich layers in the 12 plane 

always increases the longitudinal shear modulus Gy2 . The variation of 
C 

G12 
I[ ' 

GT2 with k R 
is shown in Fig.6 for various values of 

kg=0 
rf ' 

5.2 The longitudinal shear modulus Gy3 

From Fig.5 it is seen that the fZexib 
additive and accordingly 

iZities of individual layers are 

-1 

GY3 = 

1 1 - k, 
. (15) 

The ratio Gr;3 
may be expressed in a form analogous to equation (14): 

k&=0 

G;3 

kR=O 

= 

1 - kQ 
1 + rf 
1 

1 
- 2rf 

-kk I-rf ( > 

. (16) 

It follows that in unidirectional fibre reinforced composites with a given 

overa fibre vohme fraction the presence of resin-rich layers in the 12 plane 

s decreases the longitudinal shear modulus 
C 

G13 l 

The variation of 

with k R 
is shown in Fig.7 for various values of 

kg=0 
rf * 

Example 

The difference between Gy2 and GT3 can be quite marked, as indicated 

by the following example in which 

f 
G12 

f 
= G13 

= 20Gm , 

vf 
= 0.65 , 

kR = 0.133 . 
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From equation (12) it follows that 

VR = 0.75 

and hence, from Table 2, 

Gi2 = G;3 = 5.38Gm . 

Equations (13), (15) now yield 

C 

G12 = 4.80Gm 

and 

C 

G13 = 3.40Gm . 

If these values are compared with the modulus appropriate to a uniform distribu- 

tion of fibres, with vf = 0.65 , it is seen that the presence of matrix layers 

increases the modulus GC 12 by 23% and reduces the modulus Gy3 by 13%. It 

may be confirmed that the simplified equations (14), (16) agree closely with 

these results. 

5.3 The transverse modulus Ez 

The determination of the transverse moduli of a composite with inter- 

spersed matrix layers is a little more complicated because of an interaction 

between the differing layers due to Poisson's ratio effects. Furthermore, 

expressions are first required for the longitudinal tensile modulus E C 

I and 
the relevant Poisson's ratios. Some simplification, with negligible loss of 

accuracy, is achieved by assuming that 

m f f v = v12 = 93 = v ' say. 

It now follows that 

R R C C 
V12 = V13 = V12 = V13 = v , 

and 

E; = v&E; + (1 - vQ)Em , 

(17) 

(18) 

(19) 
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so that 

C 

E1 
= (1 - ke)EP; + kQEm 

f m = 
VfEl m 

+vE , (20) 

in virtue of equation (12). 

Thus the presence of matrix layers does not influence the longitudinal tensile 

modulus E 
C 

1 - Also, in virtue of equation (18) and the Reciprocal Theorem it 

follows that 

R R R R 
v21 v I = E2E1, I v31 v I = E’ ER I 31 ’ 

and 

(21) 

(22) 

The simplest way to determine E; is via the plane strain moduli 
-c -I!, E 

2' E29 
E; where the bar indicates conditions of zero 

7 l 

Use is made of the 

relation 

C 
3 = 

( 
1 - “y2v2] 2 , c EC 

1 

where 

= (1 - ke)E; + kaEy , 

E; = E;/(l - v:,v;$ , 

T = Em/(1 - v2) . 

Substitution of equation (22) in equation (23) and re-arranging yields 

E; = $/{l + v2($/E;)) . 

(23) 

(24) 

(25) 

This relationship can be simplified by neglecting terms of order v2E; in 
C 

comparison with El , whence 
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C 

E2 
= (1 - k&)E; + kQEm , 

which is identical in form to equation (13). 

5.4 The transverse modulus Ez 

(26) 

The previous analysis for determining Ei was facilitated by the fact 

that under an applied transverse stress 
G conditions of plane stress exist 

throughout, with IJ~ and R 
a3 

zero. However, under an applied transverse 

stress 
Us the stress components m R R 

(JT, 5’ 01' 0.2 in the matrix and composite 

layers are all non-zero because of Poisson's ratio effects and differing stiff- 

ness properties in the differing layers. A rigorous expression for Ei is 

accordingly more difficult to derive and to interpret. In practice, however, 

because of their relatively low stiffness the matrix layers tend to have imposed 

on them the naturally occurring strains R R R R - v31c3, - v32~3 in the composite 

layers due to the Poisson's ratio contractions. Furthermore, because of the 

much greater stiffness in the fibre direction R R 
v31c3 

is negligible in compar- 

ison with the naturally occurring strain if the matrix layers were unconstrained. 

This, under an applied stress 
us the matrix layers effectively deform so that 

R R Ef = 0, E; = - v32E3 , and the layers therefore have an effective tensile modulus 

given by 

m* 
E3 

(1 + v)(l - 2v) + 
Em 

(27) 

By the same argument the composite layers are virtually unaffected by the matrix 

layers and they therefore have an effective tensile modulus which is equal to 
R 

E3 l 

The transverse modulus of the composite as a whole is accordingly given 

adequately by 

E; = 

which is identical in form to equation (15). 

6 LOCALISED VARIATIONS RESULTING IN ISOLATED POCKETS OF MATRIX 

(28) 

A closer examination of the distribution of fibres over typical cross- 

sections, as exemplified in Fig.8 which shows a CFRP section in which v 
f 

- 0.6, 
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frequently shows pockets of matrix whose sizes are comparable to the cross- 

section of individual fibres. Such pockets are to be expected when the fibre 

volume fraction is high (v 
f a 0.6 , say), because the surrounding fibres are so 

closely packed as to offer considerable resistance in the cure cycle to the 

multiplicity of fibre movements required to replace such a line of matrix with a 

fibre. Indeed, at higher values of vf a typical cross-section has many of the 

characteristics of the crystalline structure in metals as exemplified in Fig.9 

which shows a CFRP section in which Vf = 0.7 . This is because the hexagonal 

array is now much in evidence, but where such arrays occur (the 'crystal grains') 

their orientation is random. From purely kinematic reasons it follows that 

between such arrays (see Fig.9) there are likely to be 'loose' fibres and pockets 

of matrix. Figs.lO,ll are versions of the theoretically derived random distribu- 

tion of Fig.3 modified by the introduction of pockets of matrix to reduce the 

overall fibre volume fraction to 0.65 and 0.7 respectively, 

The influence of such pockets of matrix on the longitudinal shear rigidity 

can be investigated in a manner similar to that considered in section 4. We 

denote the overall fibre volume fraction by vf , the (local) fibre volume 

fraction away from matrix pockets by va and the volume fraction of such pockets 

by k P 
, so that 

Vf v = a 1 -k l 
(29) 

P 

[Note that if 1 in 20 fibres, say, is 'replaced' by matr 

etc.] 

.x we have kp = 0.05, 

The (local) longitudinal shear modulus of the composite GT away from 

matrix pockets is given approximately by a modified version of equation (7): 

GY -= 
G” 

where 

r = 
a 

l+l? 
a 

' a' 
-r 

V . 

(30) 

J 
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The influence of the matrix pockets on the longitudinal shear modulus can 

now be determined by regarding them as flexible fibres in a stiff matrix. Thus 

a reinterpretation of equation (7) gives 

where (31) 1 

r = k 
P 

In assessing the significance of such pockets it is expedient to determine the 

ratio G ;G; . 

IL ' 

After some elementary manipulation equations (29), (30) 

kP=" 
and (31) yield 

il- p k (1 + Ff)t{l - k /(I + T,)) 

P - kp(l - rf))(' - kp/(l - T,)) ' 

P 

(32) 

where r f is defined in equation (7). 

It follows that in unidirectional fibre reinforced composites with a given 

overal fibre vohme fraction the presence of pockets of matrix always increases 

the longitudinal shear modulus. The variation of with k is 
P 

shown in Fig.12 for various values of Tf . 

Finally we note that, according to the Slicing technique, the ratio 

E' 
EC-i 

I' 

r is 
2_]k =O 

is given approximately by the rhs of equation (32) if f 
P 

redefined as 

. 
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6.1 Application of results to CFRP 

The point has already been made that the underlying concept in Hashin's 

model becomes increasingly invalid at high values of vf . Some improvement in 

equation (32) can therefore be expected if instead of equations (7) and (30) we 

adopt Symm's accurate values for hexagonal fibre arrays. However, if this is 

done the elegant simplicity of equation (32) is lost for instead of a relation 

of the form 

G; G; 

I’ ’ 

= F(k 

kP=" 
P' 

I',) 

we require 

kP=" 

which does not lend itself so readily to graphical presentation. 

As for the value of k 
P 

itself, it is to be expected that for a given 

matrix/fibre combination and manufacturing process, k 
P 

will vary with the 

overall volume fraction v f' 
Clearly it does not depend on the ratio Gf G" 1 

I 
per se, but a relation of the form 

k 
P 

= kp(vf) (33) 

may be valid for a wide range of composites. 

For the particular ratio of Gf 1 
I 

G" = 20 , typical of CFRP, Fig.13 shows the 

variation of Gy 

I[ I 
G; with v f' k using Symm's accurate values5 (augmented 

k =0 P 

by Mansfield8 and reprzduced in Table 2) for [I Gy and Gy . The super- 

kP=" 
imposed broken line shows the increase in the longitudinal shear modulus for 

composites with square rather than hexagonal arrays. For example, at 
vf 

= 0.7 , 

the longitudinal shear modulus appropriate to the square array is 1.155 times 

that for the hexagonal array. The same increase in this modulus would occur if 

an (otherwise) regular hexagonal array were interspersed with matrix pockets 

specified by k = 0.105. 
P 
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7 COMBINED VARIATIONS 

The discussion so far has been deliberately simplified by treating in 

isolation the effects of the different variations in fibre distribution. In 

practice the different variations seldom occur in isolation and this can modify 

some of the earlier conclusions. The most important coupling of effects stems 

from the presence of pockets of matrix in a composite with a banded structure 

(see sections 6, 5). It will be seen, however, that the analysis can be readily 

adapted to cater for this more complex situation. 

7.1 Isolated pockets of matrix in a banded composite 

The geometry of the composite section is specified by the parameters k 
P' 

k" and the overall fibre volume fraction vF . In terms of these parameters 
x, L 

the fibre volume fraction in the composite layers is 

vf 
VR = 1 - kR ' 

while a reinterpretation of equation (29) shows that 

5 
v = a (1 - kp) 

"f 
= (1 - k&l - kp) 

The longitudinal shear modulus GT 
away from matrix pockets is now given by 

given by 

(12 bis) 

. I (34) 

Table 2, or approximately by equation (30), while a reinterpretation of equation 

(31) shows that the longitudinal shear modulus of the purely composite layers 

Gt2 or Gf3) is given by 

GP; l-l- 
-= 

GT 
1 + r; 

where 

r = k . 
P 

(35) 
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Turning now to section 5 it will be seen that GF2S GY3 are given by equations 

(13), (15). 

Example 

Consider again the example on p.13, modified by the presence of pockets of 

matrix specified by 

k 
P 

= 0.05 , say . 

From equation (34): 

V a = 0.79 , 

and hence, by interpolation in Table 2, 

G; = 6.35~~ . 

Equation (35) now yields 

G; = 5.91Gm 

and hence equations (13),(15) yield 

C 

G12 = 5.26Gm 

C 

G13 = 3.57Gm 

, 

, 

. 

If these values are compared with those for which k is zero it is seen 

that the presence of matrix pockets increases GC 12 by abozt 9.5% and Gy3 by 

about 5%. 

7.2 Isolated pockets of matrix in a composite with fibre bunching 

It is shown here that the presence of fibre bunching (see section 4) in a 

composite with isolated pockets of matrix causes an increase in the longitudinal 

shear modulus. For example, let us compare two composites specified by 
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Gf G” 
1 I 

= 20 , 

Vf = 0.6 , 

k 
P 

=O.l , 

ks = 0 or 0.05 . 

In general we have 

vf 
Vb = l-ks ' 

= 0.60 or 0.667 

and hence 

Vf v = 
a (1 -kJ(l -kp) ' 

= 0.632 or 0.703 . 

Interpolation in Table 2 now yields 

GTGm = 
I 

3.70 or 4.58 , 

while a reinterpretation of equation (31) yields 

where 

Thus 

Gb Ga = l - ‘p 
I 11 1+r ' 

P 

r = k . 
P ' 

(8 bis) 

(36) 

(37) 

Gb G” 
1 I 

= 4.28 

and, finally, equation (31) yields 
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G; G” 
I 

= 3.49 if k = 0 , 
S 

and equation (IO) yields 

G; G” 
I 

= 3.89 if k = 0.05 , 
S 

Thus the presence of fibre bunching causes an increase in the longitudinal shear 

modulus of about 11%. The reason for this lies in the fact that the presence of 

matrix pockets causes a greater increase in G; than that predicted by equation 

(9) or Table 2. Similar proportional increases can be expected for the trans- 

verse tensile modulus. 

8 CONCLUSIONS 

This paper considers theoretically the influence of fibre distribution on 

the longitudinal shear moduli GC 
12' G;3 

and the transverse tensile moduli 

E; 

$9 

of unidirectional fibre reinforced composites. The distributions which 

occur in practice, particularly for CFRP, have been noted and, insofar as they 

deviate from a uniform regular hexagonal array, they are categorized as follows: 

(i) random variations in positioning of individual fibres, 

(ii) overall variations ieading to fibre bunching, 

(iii) overall variations leading to resin-rich layers in the 12 plane, 

(iv> localised variations resulting in isolated pockets of matrix. 

Simple geometrical parameters are introduced for specifying the magnitude of 

these deviations, and formulae are derived for the moduli of the composite in 

terms of these parameters and the stiffness characteristics of the fibres and 

matrix. The deviations in fibre distribution are first considered in isolation 

when it is shown that for composites with a given overall fibre volume fraction: 
J- 

(i) and (ii) result in a negligible increase in the moduli of the 

composite, 

(iii) results in increases in the moduli GC , E i (typically up to 20X), 

and decreases in the moduli GC 
13' E; 

(typicifly up to 15X), 

(iv> results in an increase in all the moduli (typically up to 20%). 

The paper concludes with a treatment of combined deviations, focussing attention 

on the combinations (ii), (iv) and (iii), (iv). The results are capable of 
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explaining the observed discrepancies between measured values of the composite 

moduli 7 
and theoretical predictions assuming a regular hexagonal array. 
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Fig. I Fibre centres in randomized hexagonal array 



Fig.2 Randomized hexagonal array (vf = 0.6) 







Fig.5 Composite with matrix layers in 12 plane 



Fig.6 Influence of matrix layers on longitudinal shear modulus Gf2: 
Simplified general relationship 
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Fig.1 1 Randomized hexagonal array with matrix pockets (vf = 0.7, kp = 0.07) 
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Fig.12 Influence of matrix pockets on longitudinal shear modulus: 
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Fig.13 Influence of matrix pockets on longitudinal shear modulus: 
Accurate particular relationship 
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